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will look into several applications of CNNs besides image recognition
Semantic segmentation

Object localization

Object detection

Instance segmentation
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Computer vision tasks

So far: Image Classification

S. Cheng (OU-Tulsa)

- >

4096 to 1000

CNN applications

Fully-Connected:

Class Scores
Cat: 0.9

Dog: 0.05
Car: 0.01

Feb 2017



Computer vision tasks

Other Computer Vision Tasks

Semantic Classification Object Instance
Segmentation + Localization Detection Segmentation

il 2 - &

GRASS, CAT, CAT DOG, DOG, CAT
u TREE, SKY L R
No objects, just pixels Single Object Multiple Object
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Computer vision tasks

Semantic Segmentation

5 AR L e - - y. =

GRASS, CAT, CAT DOG, DOG, CAT  DOG, DOG, CAT

N TREEfKY IS -\ RN - Y,
No objects, just pixels Single Object Multiple Object
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Computer vision tasks

Semantic Segmentation

Label each pixel in the
image with a category
label

Don't differentiate
instances, only care about
pixels

S. Cheng (OU-Tulsa) CNN applications

Feb 2017
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Computer vision tasks

Semantic Segmentation Idea: Sliding Window

Classify center
Extract patCh pixel with CNN

Farabet et al, “Learning Hierarchical Features for Scene Labeling,” TPAMI 2013
Pinheiro and Collobert, “Recurrent Convolutional Neural Networks for Scene Labeling”, ICML 2014




Computer vision t

Semantic Segmentation Idea: Sliding Window

Classify center
Extract patCh pixel with CNN

Problem: Very inefficient! Not
reusing shared features between

overlapping patChes Farabet et al, “Learning Hierarchical Features for Scene Labeling,” TPAMI 2013
Pinheiro and Collobert, “Recurrent Convolutional Neural Networks for Scene Labeling”, ICML 2014

CNN applicati



Computer vision tasks

Semantic Segmentation Idea: Fully Convolutional

Design a network as a bunch of convolutional layers
to make predictions for pixels all at once!

Conv Conv Conv argmax
— — — —>

Y Scores: Predictions:
CxHxW HxW

Convolutions:
DxHxW

S. Cheng (OU-Tulsa) CNN applications Feb 2017 9/94



Computer vision tasks

Semantic Segmentation Idea: Fully Convolutional

Design a network as a bunch of convolutional layers
to make predictions for pixels all at once!

' u Conv Conv Conv Conv argmax
. —

—> | —> | — —

Input: N\ J -
3x IE)I x W Y Scores: Predictions:
CxHxW HxW

Convolutions:

Problem: convolutions at DxHxW

original image resolution will
be very expensive ...
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Computer vision tasks

Semantic Segmentation Idea: Fully Convolutional

Design network as a bunch of convolutional layers, with
downsampling and upsampling inside the network!

Med-res: Med-res:
D, x H/4 x W/4 D,x H/4 x W/4
Low-res:
D,x H/4 x W/4
High-res: High-res: Predictions:
3xHxW D, x H/2 x W/2 D, x H/2 x W/2 Hx W

Long, Shelhamer, and Darrell, “Fully Convolutional Networks for Semantic Segmentation”, CVPR 2015
Noh et al, “Learning Deconvolution Network for Semantic Segmentation”, ICCV 2015

S. Cheng (OU-Tulsa) CNN applications Feb 2017 11/94



Computer vision tasks

Semantic Segmentation Idea: Fully Convolutional

Downsampling: Design network as a bunch of convolutional layers, with Upsampling:
Pooling, strided downsampling and upsampling inside the network! 2?2?

convolution Med-res: Med-res:

D, x H/4 x W/4 D,x H/4 x W/4
Low-res:
D,x H/4 x W/4
High-res: High-res: Predictions:
3xHxW D, x H/2 x W/2 D, x H/2 x W/2 Hx W

Long, Shelhamer, and Darrell, “Fully Convolutional Networks for Semantic Segmentation”, CVPR 2015
Noh et al, “Learning Deconvolution Network for Semantic Segmentation”, ICCV 2015

S. Cheng (OU-Tulsa) CNN applications Feb 2017 12 /94



Computer vision tasks

In-Network upsampling: “Unpooling”

Nearest Neighbor P “Bed of Nails”
12 1 112 2 1 2 -
I 3 3|4 4 3 4
3 3|4 4
Input: 2 x 2 Output: 4 x 4 Input: 2 x 2

S. Cheng (OU-Tulsa) CNN applications

0|20
0|00
0|4 0
0|00
Output: 4 x 4
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Computer vision tasks

In-Network upsampling: “Max Unpooling”

Max Pooling
Remember which element was max!

1 2|6 3
3 6|2 1 5 6
112121 7|8 Rest of the network
7 3|4 8
Input: 4 x 4 Output: 2 x 2

Corresponding pairs of
downsampling and
upsampling layers

S. Cheng (OU-Tulsa) CNN applications

Max Unpooling
Use positions from
pooling layer

Input: 2 x 2

0|2

1 0 0

00

0 0 4
Output: 4 x 4

Feb 2017

14 /94



Computer vision tasks

Learnable Upsampling: Transpose Convolution

Recall:Typical 3 x 3 convolution, stride 1 pad 1

Input: 4 x 4 Output: 4 x 4

S. Cheng (OU-Tulsa) CNN applications Feb 2017 15/94



Computer vision tasks

Learnable Upsampling: Transpose Convolution

Recall: Normal 3 x 3 convolution, stride 1 pad 1

-_—

Dot product
between filter
and input

Input: 4 x 4 Output: 4 x 4

S. Cheng (OU-Tulsa) CNN applications Feb 2017 16 /94



Computer vision tasks

Learnable Upsampling: Transpose Convolution

Recall: Normal 3 x 3 convolution, stride 1 pad 1

-_—

Dot product
between filter
and input

Input: 4 x 4 Output: 4 x 4
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Learnable Upsampling: Transpose Convolution

Recall: Normal 3 x 3 convolution, stride 2 pad 1

Input: 4 x 4 Output: 2 x 2

S. Cheng (OU-Tulsa) CNN applications Feb 2017 18 /94



Computer vision tasks

Learnable Upsampling: Transpose Convolution

Recall: Normal 3 x 3 convolution, stride 2 pad 1

-_—

Dot product
between filter
and input

Input: 4 x 4 Output: 2 x 2
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Computer vision tasks

Learnable Upsampling: Transpose Convolution

Recall: Normal 3 x 3 convolution, stride 2 pad 1

> Filter moves 2 pixels in
Dot product the input for every one
between filter pixel in the output
and input

Stride gives ratio between
movement in input and
output

Input: 4 x 4 Output: 2 x 2

S. Cheng (OU-Tulsa) CNN applications Feb 2017 20/94



Learnable Upsampling: Transpose Convolution

3 x 3 transpose convolution, stride 2 pad 1

Input: 2 x 2 Output: 4 x 4

S. Cheng (OU-Tulsa) CNN applications Feb 2017 21 /94



Computer vision tasks

Learnable Upsampling: Transpose Convolution

3 x 3 transpose convolution, stride 2 pad 1

—_—

Input gives
weight for
filter

Input: 2 x 2 Output: 4 x 4

S. Cheng (OU-Tulsa) CNN applications Feb 2017 22 /94



Computer vision tasks

Learnable Upsampling: Transpose Convolution

3 x 3 transpose convolution, stride 2 pad 1

Sum where

/ output overlaps

> Filter moves 2 pixels in
Input gives the output for every one
weight for pixel in the input

filter

Input: 2 x 2

S. Cheng (OU-Tulsa)

Stride gives ratio between
movement in output and
input

Output: 4 x 4

CNN applications Feb 2017 23 /94



Computer vision tasks

Learnable Upsampling: Transpose Convolution

3 x 3 transpose convolution, stride 2 pad 1

Sum where

/ output overlaps

> Filter moves 2 pixels in
Input gives the output for every one
weight for pixel in the input

filter

Input: 2 x 2

S. Cheng (OU-Tulsa)

Stride gives ratio between
movement in output and
input

Output: 4 x 4
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Computer vision tasks

Learnable Upsampling: Transpose Convolution

. . Sum where
Other names: 3 x 3 transpose convolution, stride 2 pad 1 output overlaps
-Deconvolution (bad) /
-Upconvolution
-Fractionally strided
convolution
-Backward strided > Filter moves 2 pixels in
convolution Input gives the output for every one
weight for pixel in the input
filter
Stride gives ratio between
movement in output and
input
Input: 2 x 2 Output: 4 x 4

S. Cheng (OU-Tulsa) CNN applications Feb 2017 25/94



Computer vision tasks

Transpose Convolution: 1D Example

Input FiIter<

|

a/);
I,

S. Cheng (OU-Tulsa)

_—
\

CNN applications

Output

ax

ay
az

Output contains
copies of the filter
weighted by the
input, summing at
where at overlaps in
the output

Need to crop one
pixel from output to
make output exactly
2x input

Feb 2017 26 /94



Computer vision tasks

Semantic Segmentation Idea: Fully Convolutional

Downsampling: Design network as a bunch of convolutional layers, with Bﬁ:g::irr:gno%:strided
. . i ing insi !
POOIInlg’t-smded downsampling and upsampling inside the network! transpose convolution
convolution Med-res: Med-res:
D, x H/4 x W/4 D,x H/4 x W/4

Low-res:
D,x H/4 x W/4

Input: High-res: High-res: Predictions:
3xHxW D, x H/2 x W/2 D, x H/2 x W/2 Hx W

Long, Shelhamer, and Darrell, “Fully Convolutional Networks for Semantic Segmentation”, CVPR 2015
Noh et al, “Learning Deconvolution Network for Semantic Segmentation”, ICCV 2015

OU-Tulsa) CNN applications Feb 2017 27 /94
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Computer vis

Fig. 4. Result on the ISBI cell tracking challenge. (a) part of an input image of the
“PhC-U373” data set. (b) Segmentation result (cyan mask) with manual ground truth
(yellow border) (c) input image of the “DIC-HeLa” data set. (d) Segmentation result
(random colored masks) with manual ground truth (yellow border).

S. Cheng (OU-Tulsa) CNN applications Feb 2017 29 /94



Computer vision tasks

Dice Coefficient

@ Dice Coeflicient is a similarity measure for two sets.
o Given sets A and B, the Dice Coefficient is defined as:

) 2IANB
DICG(A, B) = ’AA‘_F‘B\

e It ranges from 0 (no overlap) to 1 (perfect overlap).

S. Cheng (OU-Tulsa) CNN applications Feb 2017 30/94



Computer vision tasks

Dice Loss

@ Dice Loss is derived from the Dice Coefficient and used as a loss function for
segmentation tasks.

@ The Dice Loss for predicted segmentation P and ground truth segmentation G is
defined as:
DiceLoss(P, G) = 1 — Dice(P, G)

e Lower values of Dice Loss indicate better overlap between predicted and ground truth
segmentations.

S. Cheng (OU-Tulsa) CNN applications Feb 2017 31/94



Computer vision tasks

Classification + Localization

5 AR L e - - y. =

GRASS, CAT, CAT DOG, DOG, CAT  DOG, DOG, CAT

N TREEfKY IS -\ RN - Y,
No objects, just pixels Single Object Multiple Object
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Computer vision tasks

Classification + Localization

Class Scores
Fully Cat: 0.9

Connected: Dog: 0.05
4096 to 1000 Car 0.01

Fm‘
Vector: Connected:

4096 4096104  Box
Coordinates
. . (Xv y, W, h)
Treat localization as a

regression problem!

heng (OU-Tulsa) CNN applications Feb 2017 33/94



Computer vision tasks

Classification + Localization Correct label:
Class Scores l
Fully Cat: 0.9 » Softmax
Connected: Dog: 0.05 Loss

4096 to 1000 Car: 0.01

Fm‘
Vector: Connected:

4096 4096104  Box
Coordinates —» L2 Loss
. . (Xv y, W, h)
Treat localization as a T

regression problem! Correct box:
x,y,w,h)

heng (OU-Tulsa) CNN applications Feb 2017 34 /94



Computer vision tasks

Classification + Localization Correct label:
Class Scores l
Fully Cat: 0.9 » Softmax
Connected: Dog: 0.05 Loss

4096 to 1000 Car: 0.01

\

Multitask LOSS 4 —»Loss

\ A
. Fully
Vector: Connected:

409 4006104  Box
Coordinates —» L2 Loss

(Xv Yy, w, h) T

Treat localization as a

regression problem! Correct box:
(X, y, W', h)
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Computer vision tasks

Classification + Localization Correct label:
Class Scores l
Fully Cat: 0.9 » Softmax
Connected: Dog: 0.05 Loss
4096 to 1000 Car: 0.01
.\‘;\ E i E \l_l u\/m—| \J
Bt — ’n /\} =+ —>Loss
- Fully
Often pretrained on ImageNet V:gst;()sr Connected: B
(Transfer learning) 4096 to 4 ox
Coordinates —» L2 Loss
L (%, y, w, h)
Treat localization as a T

regression problem! Correct box:
(X, y, W', h)

U-Tulsa) CNN applications Feb 2017 36/94



Computer vision tasks

Aside: Human Pose Estimation

Represent pose as a
set of 14 joint
positions:

Left / right foot
Left / right knee
Left / right hip

Left / right shoulder
Left / right elbow
Left / right hand
Neck

Head top

Johnson and Everingham, "Clustered Pose and Nonlinear Appearance Models
for Human Pose Estimation”, BMVC 2010

S. Cheng (OU-Tulsa) CNN applications Feb 2017



Computer vision tasks

Aside: Human Pose Estimation

___» Left foot: (x, y)

— Right foot: (x, y)

4096 Head top: (%, y)

Toshev and Szegedy, “DeepPose: Human Pose
Estimation via Deep Neural Networks”, CVPR 2014

heng (OU-Tulsa) CNN applications Feb 2017 38/94



Computer vision tasks

Aside: Human Pose Estimation

Correct left
foot: (X, y')

\

___» Leftfoot: (x,y) » L2Iloss

— Right foot: (X, y) » L2 loss }:

4= —> Loss
Vector:\A " /

4096 Head top: (X, ¥) + L2 loss

*

Correct head

Toshev and Szegedy, “DeepPose: Human Pose tOp' (X Y )
Estimation via Deep Neural Networks”, CVPR 2014

heng (OU-Tulsa) CNN applications Feb 2017 39/94



Computer vision tasks

Object Detection

A AN N R = ; y- =

GRASS, CAT, CAT DOG, DOG, CAT  DOG, DOG, CAT

N TREEfKY IS -\ RN - Y,
No objects, just pixels Single Object Multiple Object
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Computer vision tas

Object Detection: Impact of Deep Learning

80% PASCAL VOC
70%

A

60% Before deep convnets

50% { k 4

40% A A !

A Using deep convnets

—

30%

20%

mean Average Precision (mAP)

10%
0%
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

Figure copyright Ross Girshick, 2015. year
Reproduced with permission.
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CAT: (x,y,w, h)

DOG: (x,y, w, h)
} DOG: (x,y, w, h)
1l CAT:(x,y,w,h)

| DUCK: (x, ¥y, w, h)
} DUCK: (x, Y, W, h)

nnnnnnnnnnn
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Computer vision tasks

Object Detection as Regression? ~ Fach image needs a

different number of outputs!

CAT:(X,y,W,h) 4 nhumbers

DOG: (x,y, w, h)

DOG: (x,y,w, h) 16 numbers
CAT: (x, ¥, w, h)

J DUCK: (x, y, W, h) Many
DUCK: (X, y, W, h) numbers!

nnnnnnnnnn

S. Cheng (OU-Tulsa) CNN applications Feb 2017 43 /94



Computer vision tasks

Object Detection as Classification: Sliding Window

Apply a CNN to many different crops of the
image, CNN classifies each crop as object
or background

Dog? NO
Cat? NO
Background? YES

S. Cheng (OU-Tulsa) CNN applications Feb 2017 44 /94



Computer vision tasks

Object Detection as Classification: Sliding Window

Apply a CNN to many different crops of the
image, CNN classifies each crop as object
or background

Dog? YES
Cat? NO
Background? NO
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Computer vision tasks

Object Detection as Classification: Sliding Window

Apply a CNN to many different crops of the
image, CNN classifies each crop as object
or background

Dog? YES
Cat? NO
Background? NO
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Computer vision tasks

Object Detection as Classification: Sliding Window

Apply a CNN to many different crops of the
image, CNN classifies each crop as object
or background

Dog? NO
Cat? YES
Background? NO
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Computer vision tasks

Object Detection as Classification: Sliding Window

Apply a CNN to many different crops of the
image, CNN classifies each crop as object
or background

Dog? NO
Cat? YES
Background? NO

Problem: Need to apply CNN to huge
number of locations and scales, very
computationally expensive!

S. Cheng (OU-Tulsa) CNN applications Feb 2017 48 /94



Computer vision tasks

Region Proposals
e Find “blobby” image regions that are likely to contain objects

Relatively fast to run; e.g. Selective Search gives 1000 region
proposals in a few seconds on CPU

Alexe et al, “Measuring the objectness of image windows”, TPAMI 2012

Uijings et al, “Selective Search for Object Recognition”, JCV 2013

Cheng et al, “BING: Binarized normed gradients for objectness estimation at 300fps, CVPR 2014
Zitnick and Dollar, “Edge boxes: Locating object proposals from edges”, ECCV 2014

OU-Tulsa)

CNN applications
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R-CNN

Girshick et al, “Rich feature hierarchies for accurate object detection and
semantic segmentation”, CVPR 2014.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.



R-CNN

Regions of Interest
(Rol) from a proposal
method (~2k)

Girshick et al, “Rich feature hierarchies for accurate object detection and
semantic segmentation”, CVPR 2014.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.



Computer vision tasks

R-CNN

LS Warped image regions

Regions of Interest
(Rol) from a proposal
method (~2k)

Girshick et al, “Rich feature hierarchies for accurate object detection and
semantic segmentation”, CVPR 2014.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

Feb 2017



omputer vis

R-CNN

ConvN Foryvard each
ConvN ot region through
ConvNet
ConvN et
& Warped image regions

Regions of Interest
(Rol) from a proposal
method (~2k)
Girshick et al, “Rich feature hierarchies for accurate object detection and

semantic segmentation”, CVPR 2014.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

Input image

CNN applic s Feb 2017 53 /94



Computer vis

R-CNN
Classify regions with
SVMs

Forward each

ConvN .
ConvN ot region through
ConvNet
ConvN et
& Warped image regions

Regions of Interest
(Rol) from a proposal
method (~2k)
Girshick et al, “Rich feature hierarchies for accurate object detection and

semantic segmentation”, CVPR 2014.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

Input image

CNN applic s Feb 2017 54 /94



Computer vis

Linear Regression for bounding box offsets

R-CNN

| Bbox reg || SVMs | Classify regions with

| Bbox reg || SVMs SVMs
| Bbox reg | | SVMs | ‘
ConvN Foryvardheachh
ConvN ot region throug
ConvNet
et
ConvN &
Warped image regions

Regions of Interest
(Rol) from a proposal
method (~2k)

Girshick et al, “Rich feature hierarchies for accurate object detection and
. semantic segmentation”, CVPR 2014.
InpUt Image Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

55/94
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omputer vis

R-CNN: Problems

+ Ad hoc training objectives el Bbox reg || SvMs
* Fine-tune network with softmax classifier (log loss) [Bboxres | [svots |
« Train post-hoc linear SVMs (hinge loss) o [ | et

* Train post-hoc bounding-box regressions (least squares)

* Training is slow (84h), takes a lot of disk space

* Inference (detection) is slow
* 47s / image with VGG16 [Simonyan & Zisserman. ICLR15]
* Fixed by SPP-net [He et al. ECCV14]

Girshick et al, “Rich feature hierarchies for accurate object detection and
semantic segmentation”, CVPR 2014.
Slide copyright Ross Girshick, 2015; source. Reproduced with permission.
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Fast R-CNN

Girshick, “Fast R-CNN”, ICCV 2015.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

CNN appl



Fast R-CNN

“conv5” feature map of image

)

Forward whole image through ConvNet

Girshick, “Fast R-CNN”, ICCV 2015.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.




Computer vision tasks

Fast R-CNN

Regions of g/:/i “conv5” feature map of image
Interest (Rols)

from a proposal
method

Forward whole image through ConvNet

Girshick, “Fast R-CNN”, ICCV 2015.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.
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Computer vision tasks

Fast R-CNN

L /=7 /7 “RolPooling” layer
Regions of > “conv5” feature map of image

Interest (Rols) T
from a proposal
method

Forward whole image through ConvNet

Input image

Girshick, “Fast R-CNN”, ICCV 2015.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.
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Fast R-CNN

Linear +
Softmax
softmax

classifier
Fully-connected layers
L /—7 /7 “RolPooling” layer
Regions of > “conv5” feature map of image
Interest (Rols) T
from a proposal Forward whole image through ConvNet
method

Input image

Girshick, “Fast R-CNN”, ICCV 2015.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.
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Fast R-CNN
Softmax |s—ionffr?wra:< Bounding-box

classifier regressors
FCs Fully-connected layers
L /—7 /7 “RolPooling” layer

Regions of M’convs” feature map of image

Interest (Rols)
from a proposal
method

Forward whole image through ConvNet

Input image

Girshick, “Fast R-CNN”, ICCV 2015.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

Feb 2017



Computer vision tasks

Fast R-CNN |

. | Log loss + Smooth L1 loss Multi-task loss
(Training) &
sofmox

Girshick, “Fast R-CNN”, ICCV 2015.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.




Computer vision tasks

Fast R-CNN
I Log loss + Smooth L1 loss Multi-task loss

Trainin
( g) Linear + ’/ t$
softmax

Girshick, “Fast R-CNN”, ICCV 2015.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.
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Computer vision t

R-CNN vs SPP vs Fast R-CNN

e Test time (seconds)
Tralnlng tlme (HOU I'S) Il Including Region propos... [l Excluding Region Propo...

R-CNN R-CNN
SPP-Net
SPP-Net

Fast R-CNN 8.75

Fast R-CNN
0 25 50 75 100

60

Girshick et al, “Rich feature hierarchies for accurate object ion and i ion”, CVPR 2014.
He et al, “Spatial pyramid pooling in deep convolutional networks for visual recognition”, ECCV 2014
Girshick, “Fast R-CNN”, ICCV 2015

CNN applicati Feb 2017



Computer vision t

R-CNN vs SPP vs Fast R-CNN

Test time (seconds)

I Including Region proposals [l Excluding Region Proposals

Training time (Hours)

R-CNN R-CNN
SPP-Net

SPP-Net

Fast R-CNN 8.75 .

— Er Problem:

iy . .
4 . - - 10 032 < Runtime dominated
o 5 by regionsproposals!
Girshick et al, “Rich feature hierarchies for accurate object ion and i ion”, CVPR 2014.

He et al, “Spatial pyramid pooling in deep convolutional networks for visual recognition”, ECCV 2014
Girshick, “Fast R-CNN”, ICCV 2015

CNN applicati Feb 2017



Computer vision tasks

Faster R-CNN: | P raseimion

Make CNN do proposals!

Insert Region Proposal

Network (RPN) to predict
proposals from features N
b proposals
Jointly train with 4 losses: /
1. RPN classify object / not object Region Proposal Network 75\
2. RPN regress box coordinates H
3. Final classification score (object TEatr i

classes)
4. Final box coordinates

CNN
4 /

Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NIPS 2015 LS XTT 77 =
Figure copyright 2015, Ross Girshick; reproduced with permission
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Computer vision tasks

Faster R-CNN:

Make CNN do proposals!

R-CNN Test-Time Speed
R-CNN
SPP-Net
Fast R-CNN 2.3

Faster R-CNN| 0.2

0 15 30 45

U-Tulsa) CNN applications Feb 2017 68 /94



|Ro

Deep
ConvNet TQQE

Conv

S. Cheng (OU-Tulsa) CNN applications

-

projectio rﬁ‘\

Outputs: bhox

softmax regressor

L
feature map

el FC FC
pooling
layer WC FCs

Rol feature

Ve Et or Far each Rol
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S. Cheng (OU-Tulsa)

conv

| conv,

feature
maps

RPN

Rols
Average Voting

Score Maps

Fully connected

CNN applications
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https://medium.com/@jonathan_hui/understanding-region-based-fully-convolutional-networks-r-fcn-for-object-detection-828316f07c99

top-left  top-center bottom-right

KF(c+1)-d

conyv

f
4
"N
l ' conv

image

/1battu:

maps v v
C+1 C+1

) position-sensitive
k(C+1) score maps

k=3
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Region-based fully convolutional network (R-FCN)

position-sensitive
Rol-pool

position-sensitive score maps

CNN applications Feb 2017
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Region-based fully convolutional network (R-FCN)

position-sensitive
Rol-pool

h ....!J
‘Q.ﬁ

position-sensitive score maps
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Region-based fully convolutlonal netwmk (R-FCN)

Table 1: Methodologies of region-based detectors using ResNet-101 [9].
| R-CNN [7] | Faster R-CNN [19,9] | R-FCN [ours]

depth of shared convolutional subnetwork 0 91 101
depth of Rol-wise subnetwork 101 10 0

S. Cheng (OU-Tulsa) CNN applications Feb 2017 74 /94



Feature pyramid network (FPN)

+{prie]

(e) Similar Structure with (d)

(c) Pyramidal feature hierarchy (d) Feature Pyramid Network
@ a) hand-engineered features @ b) Alexnet-like
@ c) Multiscale prediction (e.g. ssd) @ d) Feature pyramid network
@ ¢) U-Net
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Feature pyramid network (FPN)
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Computer vision tasks

Detection without Proposals: YOLO / SSD

Within each grid cell:

- Regress from each of the B
base boxes to a final box with
5 numbers:
(dx, dy, dh, dw, confidence)

- Predict scores for each of C
classes (including
background as a class)

Input image Divide image into grid Output:
3xHxW 7x7 7x7x(5*B+C)
Image a set of base boxes
Redmon et al, “You Only Look Once: centered at each grld cell
Unified, Real-Time Object Detection”, CVPR 2016 Here B = 3

Liu et al, “SSD: Single-Shot MultiBox Detector”, ECCV 2016
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Detection without Proposals: YOLO / SSD

Go from input image to tensor of scores with one big convolutional network! .

Within each grid cell:

- Regress from each of the B
base boxes to a final box with
5 numbers:
(dx, dy, dh, dw, confidence)

- Predict scores for each of C
classes (including
background as a class)

Input image Divide image into grid Output:
3xHxW 7x7 7x7x(5*B+C)
Image a set of base boxes
Redmon et al, “You Only Look Once: centered at each grld cell
Unified, Real-Time Object Detection”, CVPR 2016 Here B = 3

Liu et al, “SSD: Single-Shot MultiBox Detector”, ECCV 2016
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https://youtu.be/aoiAIlz2QIo
https://youtu.be/aoiAIlz2QIo

Focal loss

ulsa)

Computer vision ta

5
CE(p) = —log(m) _"f=85
—_— 0.
4 FL(p) = —(1 — p)” log(p) y=1
—_—=2
3 =8
3
o
2 .
well-classified
examples
1f K—H
0 .

0 0.2 0.4 0.6 0.8 1
probability of ground truth class

Figure 1. We propose a novel loss we term the Focal Loss that
adds a factor (1 — p)” to the standard cross entropy criterion.
Setting v > 0 reduces the relative loss for well-classified examples
(p« > .5), putting more focus on hard, misclassified examples. As
our experiments will demonstrate, the proposed focal loss enables
training highly accurate dense object detectors in the presence of
vast numbers of easy background examples.
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Computer vision tas

RetinaNet

A I
class+box . | |

subnets , . dlass ‘

/ I subnet |

’ | WixH WxH WxH | 1

class+box ' X256 X4 X256 KA |

subnets : :

— I I

class+box | ! / / / I

subnets . : :

oo WixH -3 |

Ll e || ) |

L subnet |

Vi I

N !

(a) ResNet (b) feature pyramid net (c) class subnet (top) (d) box subnet (bottom)

Figure 3. The one-stage RetinaNet network architecture uses a Feature Pyramid Network (FPN) [20] backbone on top of a feedforward
ResNet architecture [16] (a) to generate a rich, multi-scale convolutional feature pyramid (b). To this backbone RetinaNet attaches two
subnetworks, one for classifying anchor boxes (c) and one for regressing from anchor boxes to ground-truth object boxes (d). The network
design is intentionally simple, which enables this work to focus on a novel focal loss function that eliminates the accuracy gap between our
one-stage detector and state-of-the-art two-stage detectors like Faster R-CNN with FPN [20] while running at faster speeds.

CNN applicati Feb 2017 80 /94


https://arxiv.org/pdf/1708.02002.pdf

RetinaNet

Computer vision tasks

backbone AP AP50 AP75 AP S AP M AP L
Two-stage methods
Faster R-CNN+++ [16] ResNet-101-C4 34.9 55.7 37.4 15.6 38.7 50.9
Faster R-CNN w FPN [20] ResNet-101-FPN 36.2 59.1 39.0 18.2 39.0 48.2
Faster R-CNN by G-RMI [17] | Inception-ResNet-v2 [34] 34.7 55.5 36.7 13.5 38.1 52.0
Faster R-CNN w TDM [32] Inception-ResNet-v2-TDM | 36.8 57.7 39.2 16.2 39.8 5241
One-stage methods
YOLOv2 [27] DarkNet-19 [27] 21.6 44.0 19.2 5.0 22.4 355
SSD513 [22,9] ResNet-101-SSD 31.2 50.4 333 10.2 345 49.8
DSSD513 [9] ResNet-101-DSSD 33.2 53.3 35.2 13.0 354 51.1
RetinaNet (ours) ResNet-101-FPN 39.1 59.1 423 21.8 427 50.2
RetinaNet (ours) ResNeXt-101-FPN 40.8 61.1 44.1 241 44.2 51.2

S. Cheng (OU-Tulsa)
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Computer vision tasks

Precision and recall

o Precision and recall are important metrics to evaluate classification models.
@ They are particularly useful when the dataset is imbalanced.
e i.e., one class has significantly more samples than another class

@ These metrics give a better understanding of model performance compared to
accuracy.
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Computer vision tasks

Confusion Matrix

e A confusion matrix is a table that helps to visualize the performance of a
classification model.

o It shows the actual and predicted classes.

@ The confusion matrix consists of four elements: True Positive (TP), True Negative
(TN), False Positive (FP), and False Negative (FN).
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Precision

Definition (Precision)
Precision is the ratio of correctly predicted positive instances to the total predicted
positive instances. It is also known as Positive Predictive Value (PPV).

TP

P .. _
recision 7TP TFP
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Recall

Definition (Recall)
Recall is the ratio of correctly predicted positive instances to the total actual positive
instances. It is also known as Sensitivity, Hit Rate, or True Positive Rate (TPR).

TP

e —
Recall = F5=3x
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e mAP is a widely used evaluation metric for object detection tasks.

e It measures both precision (how many predicted objects are actually objects) and
recall (how many objects are detected by the model).

e Average precision (AP) is computed for each class and then averaged to obtain mAP.
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Intersection over Union (IoU)

e IoU is a measure of the overlap between the predicted bounding box and the ground
truth bounding box.

e IoU ranges from 0 (no overlap) to 1 (perfect overlap).

@ A higher ToU threshold requires tighter overlap between predicted and ground truth
bounding boxes.
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mAP@0.5:0.95

o mAP@0.5:0.95 evaluates the model’s performance across a range of IoU thresholds.
It computes the AP at ToU thresholds from 0.5 to 0.95 with a step of 0.05.

@ The final mAP@0.5:0.95 is the average of the AP values computed at each IoU
threshold.

This metric provides a better understanding of the model’s performance at various
levels of bounding box overlap.
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Object Detection: Lots of variables ...

Base Network Object Detection Takeaways
VGG16 architecture Faster R-CNN is

ResNet-101 Faster R-CNN slower but more
Inception V2 R-FCN

_ accurate
Inception V3 SSD

Inception SSD is much
ResNet Image Size faster but not as

MobileNet # Region Proposals accurate

Huang et al, “Speed/accuracy trade-offs for modern convolutional object detectors”, CVPR 2017

R-FCN: Dai et al, “R-FCN: Object Detection via Region-based Fully Convolutional Networks”, NIPS 2016

Inception-V2: loffe and Szegedy, “Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift”, ICML 2015
Inception V3: Szegedy et al, “Rethinking the Inception Architecture for Computer Vision”, arXiv 2016

Inception ResNet: Szegedy et al, “Inception-V4, Inception-ResNet and the Impact of Residual Connections on Learning”, arXiv 2016
MobileNet: Howard et al, “Efficient Convolutional Neural Networks for Mobile Vision Applications”, arXiv 2017
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Instance Segmentation

5 AR L e - - y. =

GRASS, CAT, CAT DOG, DOG, CAT  DOG, DOG, CAT

N TREEfKY IS -\ RN - Y,
No objects, just pixels Single Object Multiple Object
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Mask R-CNN

Classification Scores: C
Box coordinates (per class): 4 * C

R R
Rol Align Conv Conv
256 x14x14 256 x 14 x14 Predict a mask for

each of C classes

Cx14x14

He et al, “Mask R-CNN", arXiv 2017
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He et al, “Mask R-CNN", arXiv 2017
Figures copyright Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Girshick, 2017.
Reproduced with permission.




Computer vision tasks

Mask R-CNN
Also does pose

Classification Scores: C
Box coordinates (per class): 4 * C
Joint coordinates

R R
Rol Align Conv Conv
256 x14x14 256 x 14 x14 Predict a mask for

each of C classes

Cx14x14

He et al, “Mask R-CNN", arXiv 2017

(OU-Tulsa) CNN applications Feb 2017 93 /94



Computer

Mask R-CNN
Also does pose

He et al, “Mask R-CNN", arXiv 2017
Figures copyright Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Girshick, 2017.
Reproduced with permission.




	Computer vision tasks

