Semi-supervised learning

Samuel Cheng

University of Oklahoma

March 6, 2025

What is Semi-Supervised Learning?

Definition: Semi-supervised learning (SSL) is a paradigm that leverages a small amount of labeled data and a large amount of unlabeled data to train a model.

- Bridges the gap between supervised and unsupervised learning.
- Useful when labeled data is scarce but unlabeled data is abundant.

Goal: Improve learning efficiency by using both types of data.

Annotation Challenges

Variation in available data quantum basis annotation complexity

Annotation Challenges

10% of the classes account for 93% of the data

Why Semi-Supervised Learning?

Challenges in Supervised Learning:

- Labeled data is often expensive and time-consuming to acquire.
- Certain domains (e.g., medical imaging, genomics) require expert annotation.

Solution: Semi-supervised learning reduces reliance on labeled data while leveraging the abundance of unlabeled data.

Key Approaches in Semi-supervised Learning

- Model-Generated Labeling (Pseudo-Labeling)
- Consistency Regularization

Common Assumptions:

- Clustering assumption: Similar data points belong to the same class.
- Smoothness assumption: Decision boundaries should lie in low-density regions.

Process:

- Train an initial model on the small labeled dataset.
- ② Use the model to predict labels for unlabeled examples.
- Select confident predictions and treat them as ground truth.
- Retrain the model with the expanded dataset

Benefit: Expands training data without human intervention.

Process:

- Train an initial model on the small labeled dataset.
- ② Use the model to predict labels for unlabeled examples.
- Select confident predictions and treat them as ground truth.
- Retrain the model with the expanded dataset

Benefit: Expands training data without human intervention.

Process:

- Train an initial model on the small labeled dataset.
- ② Use the model to predict labels for unlabeled examples.
- Select confident predictions and treat them as ground truth.
- Retrain the model with the expanded dataset.

Benefit: Expands training data without human intervention.

Process:

- Train an initial model on the small labeled dataset.
- ② Use the model to predict labels for unlabeled examples.
- Select confident predictions and treat them as ground truth.
- Retrain the model with the expanded dataset.

Benefit: Expands training data without human intervention.

Consistency Regularization

Core Idea: The model should produce the same output for an input and its perturbed version.

- Enforces robustness to small changes in the input.
- Encourages smooth decision boundaries.

Technique:

• Training consistency constraints (e.g., Mean Teacher, VAT, Pi-Model).

Reference: Sajjadi, M., Javanmardi, M., and Darrell, T. (2016). "Regularization with stochastic transformations and perturbations for deep semi-supervised learning." Advances in Neural Information Processing Systems (NeurIPS), 2016.

Consistency Regularization vs. Data Augmentation

Key Differences:

- Data Augmentation: Introduces variations in input data to improve generalization but does not explicitly enforce consistency in model predictions.
- Consistency Regularization: Actively enforces stable model predictions under perturbations, ensuring smooth decision boundaries.

Example:

- Data Augmentation: Random cropping, flipping, color jittering.
- Consistency Regularization: Enforcing prediction similarity under transformations via loss terms.

Examples of Consistency Loss

Common Loss Functions Used in Consistency Regularization:

• Mean Squared Error (MSE): Penalizes differences between the original and perturbed outputs.

$$L_{\text{consistency}} = ||f(x) - f(\tilde{x})||^2$$

• KL Divergence (Kullback-Leibler): Measures the difference between two probability distributions.

$$L_{\text{consistency}} = D_{\text{KL}}(p(y|x) \parallel p(y|\tilde{x}))$$

Intuition: The model should produce similar outputs for an input and its augmented version.

10/14

Mean Teacher Model

Concept: Uses two networks, a student and a teacher, to enforce prediction consistency.

- The teacher model is an exponential moving average (EMA) of the student.
- The student is trained to minimize the difference between its predictions and the teacher's.
- Helps improve stability and prevents overfitting.

Reference: Tarvainen, A. and Valpola, H. (2017). "Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results." NeurIPS 2017.

Virtual Adversarial Training (VAT)

Core Idea: Finds adversarial perturbations that cause maximum change in the model's output and penalizes them.

• First, find the adversarial perturbation that maximizes the divergence in model output:

$$r^* = \mathop{\mathsf{arg}} \max_r D_{KL}(p(y|x) \parallel p(y|x+r))$$

• Solve using gradient ascent:

$$g = \nabla_r D_{KL}(p(y|x) \parallel p(y|x+r))$$

• Normalize and scale the perturbation:

$$r^* = \epsilon \frac{g}{\|g\|}$$

• Then, train the model to minimize the divergence under this perturbation:

$$L_{VAT} = D_{KL}(p(y|x) \parallel p(y|x + r^*))$$

Reference: Miyato, T., Maeda, S.-I., Koyama, M., and Ishii, S. (2018). "Virtual adversarial training: A regularization method for supervised and semi-supervised learning." *IEEE TPAMI 2018.*

Pi-Model

Concept: Ensures prediction consistency by training on multiple perturbed versions of each input.

- Passes the same input through the model twice with different augmentations or dropout.
- Computes a consistency loss to align the predictions.
- Encourages the model to learn stable representations.

Why is it called Pi-Model?

- The name "Pi-Model" is derived from the use of two different perturbed versions of the same input x, enforcing prediction consistency between them.
- The two views form a symmetry, akin to the mathematical notion of π , which is often associated with duality and balance.

Reference: Laine, S., and Aila, T. (2017). "Temporal ensembling for semi-supervised learning." *ICLR 2017.*

Summary

- Semi-supervised learning helps models learn efficiently with minimal labeled data.
- Pseudo-labeling: Model generates labels for unlabeled data.
- Consistency Regularization: Model is trained to be invariant to small input perturbations.
- Techniques such as Mean Teacher, VAT, and Pi-Model help enforce consistency and improve learning.

Impact: Semi-supervised learning improves generalization and reduces reliance on costly labeled datasets.