
Appendix D

Appendix D: Multivariate
Gaussian Distribution

D.1 Introduction

Gaussian or Normal distribution is the most important and widely used dis-
tribution in engineering. In this chapter, we will present the basic tools to
manipulate the multivariate Gaussian distribution.

Just a quick note on convention. Vectors are in bold. Random variables are
in upper case and realizations of random variables are in lower case. Therefore,
a vector random variable is in bold upper case.

D.2 Probability density function

The probability density function (pdf) of a multivariate Gaussian random vari-
able X with mean µ and covariance matrix Σ is given by

pX(x) =
1√

det(2πΣ)
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
. (D.1)

For convenience, we will also denote the multivariate Gaussian pdf withN (x;µ,Σ).
Note that x and µ are symmetric inN (x;µ,Σ). We haveN (x;µ,Σ) = N (µ; x,Σ) =
N (µ− x; 0,Σ) = N (0;µ− x,Σ). These equations are trivial but are also very
handy at times.

Without confusion in notation, a common convention is to use p(x) to denote
pX(x)1. Of course, for the above definition to be well-defined, we need to make
sure that Σ−1 exists. Since Σ is symmetric, the eigenvalues are real and the
eigenvectors can be made orthogonal. And as far as all eigenvalues are strictly
larger than 0, then Σ−1 exists. On the contrary, if there is a zero eigenvalue,

1Note that some books may also use fX(x) instead of pX(x) for pdfs.
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it means that there is no variation along the direction of the corresponding
eigenvector. That is, if we project the variable along that eigenvector, the
projected value is just a constant (instead of stochastic). So if we ignore these
degenerated cases, we can safely assume that Σ−1 exists and the pdf is well-
defined.

D.3 Marginalization

Consider Z ∼ N (µZ,ΣZ) and let say X is a segment of Z. That is, Z =

(
X
Y

)
for some Y. Then how should X behave?

We can find the pdf of X by just marginalizing that of Z. That is

p(x) =

∫
p(x,y)dy (D.2)

=
1√

det(2πΣ)

∫
exp

(
−1

2

(
x− µX

y − µY

)T
Σ−1

(
x− µX

y − µY

))
dy. (D.3)

Let us denote Σ−1 as Λ, which is usually known to be the precision matrix.

And partition both Σ and Λ into Σ =

(
ΣXX ΣXY

ΣYX ΣYY

)
and Λ =

(
ΛXX ΛXY

ΛYX ΛYY

)
.

Then we have

p(x) =
1√

det(2πΣ)

∫
exp

(
−1

2

[
(x− µX)TΛXX(x− µX) (D.4)

+ (y − µY)TΛYX(x− µX) + (x− µX)TΛXY(y − µY) (D.5)

+(y − µY)TΛYY(y − µY)
])

dy (D.6)

=
e−

(x−µX)T ΛXX(x−µX)

2√
det(2πΣ)

∫
exp

(
−1

2

[
(y − µY)TΛYX(x− µX) (D.7)

+(x− µX)TΛXY(y − µY) + (y − µY)TΛYY(y − µY)
])
dy (D.8)

To proceed, we use the “completing square” trick that probably one learns in
high school. Basically, for a quadratic expression ax2 + 2bx+ c, we may rewrite

it as a(x2 + 2 bax) + c = a(x+ b
a )2 + c− b2

a . By doing that, we immediately can

see that the minimum (assuming a is positive) of ax2 + 2bx + c is c − b2

a and

occurs when x = − b
a .

Now let’s apply the completing square trick on (y − µY)TΛYX(x − µX) +
(x−µX)TΛXY(y−µY) + (y−µY)TΛYY(y−µY). For the ease of exposition,
let us denote x̃ as x− µX and ỹ as y − µY. We have

ỹTΛYXx̃ + x̃TΛXYỹ + ỹTΛYYỹ (D.9)

=(ỹ + Λ−1
YYΛYXx̃)TΛYY(ỹ + Λ−1

YYΛYXx̃)− x̃TΛXYΛ−1
YYΛYXx̃, (D.10)
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where we use the fact that Λ = Σ−1 is symmetric and so ΛXY = ΛYX. There-
fore, we have

p(x) =
e−

x̃T (ΛXX−ΛXYΛ
−1
YY

ΛYX)x̃

2√
det(2πΣ)

∫
e−

(ỹ+Λ
−1
YY

ΛYXx̃)T ΛYY(ỹ+Λ
−1
YY

ΛYXx̃)

2 dy (D.11)

=

√
det(2πΛ−1

YY)√
det(2πΣ)

exp

(
− x̃T (ΛXX − ΛXYΛ−1

YYΛYX)x̃

2

)
(D.12)

(a)
=

√
det(2πΛ−1

YY)√
det(2πΣ)

exp

(
− x̃TΣ−1

XXx̃

2

)
(D.13)

(b)
=

1√
det(2πΣXX)

exp

(
− x̃TΣ−1

XXx̃

2

)
(D.14)

=
1√

det(2πΣXX)
exp

(
− (x− µX)TΣ−1

XX(x− µX)

2

)
, (D.15)

where (a) is due to Lemma D.1 and (b) is due to Corollary D.2. In conclusion,
X ∼ N (µX,ΣXX), which is probably what one may expect from the beginning.

Note that for illustrative purpose, we kept track of the normalization factor
1√

det(2πΣXX)
in the above deriation but it was really not necessary. Because we

know p(x) should still be a density function and thus will be normalized to one.
In the future sections, we will mostly just keep track of the exponent.

D.4 Conditioning

Consider the same Z ∼ N (µZ,ΣZ) and Z =

(
X
Y

)
. What will X be like if Y

is observed to be y? Basically, we want to find p(x|y) = p(x,y)/p(y). From
previous section, we have p(y) = N (y;µY,ΣYY). Therefore,

p(x|y) ∝ exp

(
−1

2

[(
x̃
ỹ

)T
Σ−1

(
x̃
ỹ

)
− ỹTΣ−1

YYỹ

])
(D.16)

∝ exp

(
−1

2
[x̃TΛXXx̃ + x̃TΛXYỹ + ỹTΛYXx̃]

)
, (D.17)

where we use x̃ and ỹ as shorthands of x−µX and y−µY as before. Completing
the square for x̃, we have

p(x|y) ∝ exp

(
−1

2
(x̃ + Λ−1

XXΛXYỹ)TΛXX(x̃ + Λ−1
XXΛXYỹ)

)
(D.18)

= exp

(
−1

2
(x− µX + Λ−1

XXΛXY(y − µY))TΛXX(x− µX + Λ−1
XXΛXY(y − µY))

)
(D.19)
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Therefore X|y is Gaussian distributed with mean µX − Λ−1
XXΛXY(y − µY)

and covariance Λ−1
XX. Note that since ΛXXΣXY + ΛXYΣYY = 0, Λ−1

XXΛXY =
−ΣXYΣ−1

YY and from Lemma D.1, we have

X|y ∼ N (µX + ΣXYΣ−1
YY(y − µY),ΣXX − ΣXYΣ−1

YYΣYX). (D.20)

One can make some intuitive interpretation for the conditioning result above.
Let say both X and Y are scalar1. When the observation of Y is exactly the
mean, the conditioned mean does not change. Otherwise, it needs to be modified
and the size of the adjustment decreases with ΣYY, the variance of Y for the 1-
D case. This is reasonable as the observation is less reliable with the increase of
ΣYY. The adjustment is finally scaled by ΣXY, which translates the variation of
Y to the variation of X. In particular, if X and Y are negatively correlated, the
direction of the adjustment will be shifted. As for the variance of the conditioned
variable, it always decreases and the decrease is larger if ΣYY is smaller and
ΣXY is larger (X and Y are more correlated).

Corollary D.1. Given multivariate Gaussian variables X,Y and Z, we have
X and Y are conditionally independent given Z if ρXZρY Z = ρXY , where

ρXZ = E[(X−E(X))(Z−E(Z))]√
E[(X−E(X))2]E[(Z−E(Z))2]

is the correlation coefficent between X and

Z. Similarly, ρY Z and ρXY are the correlation coefficients between Y and Z,
and X and Y , respectively.

Proof. Without loss of generality, we can assume the variables are all zero-mean

with unit variance. Thus,

XY
Z

 ∼ N (0,Σ), where Σ =

 1 ρXY ρXZ
ρXY 1 ρY Z
ρXZ ρY Z 1

.

Then from (D.20), we have

Σ(XY )|Z =

(
1 ρXY

ρXY 1

)
−
(
ρXZ ρY Z

)
σ−1
Y Y

(
ρXZ
ρY Z

)
=

(
1− ρ2

XZ ρXY − ρXZρY Z
ρXY − ρXZρY Z 1− ρ2

Y Z

)
Therefore, X and Y are uncorrelated given Z when σXY |Z = ρXY − ρXZρY Z =
0 or ρXY = ρXZρY Z . Since for Gaussian variables, uncorrelatedness implies
independence. This concludes the proof.

D.5 Product of Gaussian pdfs

Assume that we tries to recover some vector parameter x, which is subject
to multivariate Gaussian noise. Say we made two measurements y1 and y2,
where Y1 ∼ N (x,ΣY1

) and Y2 ∼ N (x,ΣY2
). Note that even though both

measurements have mean x, they have different covariance. This variation, for

1For the consistency of notations, We will stick with the vector notation for the rest of
this section though.
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instance, can be due to environment change between the two measurements.
Now, if we want to compute the overall likelihood, p(y1,y2|x). Assuming that
Y1 and Y2 are conditionally independent given X, we have

p(y1,y2|x) = p(y1|x)p(y2|x) (D.21)

= N (y1; x,ΣY1)N (y2; x,ΣY2). (D.22)

Essentially, we just need to compute the product of two Gaussian pdfs. Such
computation is very useful and it occurs often when one needs to perform infer-
ence.

As in previous sections, the product turns out to be “Gaussian” also. How-
ever, unlike previous case, the product is not a pdf and so it does not normalize
to 1. So we have to compute both the scaling factor and the exponent explicitly.
Let us start with the exponent.

N (y1; x,ΣY1
)N (y2; x,ΣY2

) (D.23)

∝ exp

(
−1

2
[(x− y1)TΛY1(x− y1) + (x− y2)TΛY2(x− y2)]

)
(D.24)

∝ exp

(
−1

2
[xT (ΛY1

+ ΛY2
)x− (yT2 ΛY2

+ yT1 ΛY1
)x− xT (ΛY2

y2 + ΛY1
y1)]

)
(D.25)

∝e− 1
2 [(x−(ΛY1

+ΛY2
)−1(ΛY2

y2+ΛY1
y1))T (ΛY1

+ΛY2
)(x−(ΛY1

+ΛY2
)−1(ΛY2

y2+ΛY1
y1))]

(D.26)

∝N (x; (ΛY1
+ ΛY2

)−1(ΛY2
y2 + ΛY1

y1), (ΛY2
+ ΛY1

)−1). (D.27)

Therefore,

N (y1; x,ΣY1)N (y2; x,ΣY2)

=K(y1,y2,ΣY1
,ΣY2

)N (x; (ΛY1
+ ΛY2

)−1(ΛY2
y2 + ΛY1

y1), (ΛY2
+ ΛY1

)−1)
(D.28)

for some scaling factor K(y1,y2,ΣY1 ,ΣY2) independent of x. And note that
we used ΛY1 = Σ−1

Y1
and ΛY2 = Σ−1

Y2
to denote the precision matrices of Y1 and

Y2 above.
Of course, one can compute the scaling factor K(y1,y2,ΣY1

,ΣY2
) directly.

However, it is much easier to realize that

N (y1; x,ΣY1
)N (y2; x,ΣY2

) = N (y1; x,ΣY1
)N (x; y2,ΣY2

) = p(y1,x|y2)
(D.29)

for X and Y1 to be conditionally independent given Y2 with the setup as shown
in Figure D.1.

Then, marginalizing x out from p(y1,x|y2), we have p(y1|y2) =
∫
p(y1,x|y2)dx.

However, from Figure D.1,∫
p(y1,x|y2)dx = p(y1|y2) = N (y1; y2,ΣY2

+ ΣY1
) (D.30)
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Figure D.1: The conditional pdf p(y1,x|y2) = p(y1|x)p(x|y2) =
N (y1; x,ΣY1

)N (x; y2,ΣY2
) if X = U + Y2 and Y1 = V + X, where U ∼

(0,ΣY2
) is independent of Y2 and V ∼ (0,ΣY1

) is independent of X.

but from (D.28),

∫
p(y1,x|y2)dx =

∫
N (y1; x,ΣY1

)N (y2; x,ΣY2
)dx (D.31)

=

∫
K(y1,y2,ΣY1 ,ΣY2)N (x; (ΛY1 + ΛY2)−1(ΛY2y2 + ΛY1y), (ΛY2 + ΛY1)−1)dx

(D.32)

=K(y1,y2,ΣY1
,ΣY2

). (D.33)

In summary,

N (y1; x,ΣY1)N (y2; x,ΣY2)

=N (y1; y2,ΣY2
+ ΣY1

)N (x; (ΛY1
+ ΛY2

)−1(ΛY2
y2 + ΛY1

y), (ΛY2
+ ΛY1

)−1).
(D.34)

Let us try to interpret the product as the overall likelihood after making two
observations. For simplicity, let us also assume that X, Y1 and Y2 are all
scaler1. The mean considering both observations, (ΛY1

+ ΛY2
)−1(ΛY2

y2 +
ΛY1

y), is essential a weigthed average of observations y2 and y1. And the
weight is higher when the precision ΛY2 or ΛY1 is larger. And the overall
variance (ΛY2 + ΛY1)−1 is always smaller than the individual variance ΣY2 and
ΣY1

. This can be understood since we are more certain with x after considering
both y1 and y2. Finally, the scaling factor, N (y1; y2,ΣY2

+ ΣY1
), can be

interpreted as how much one can believe on the overall likelihood. The value
is reasonable since when the two observations are far away with respect to the
overall variance ΣY2 +ΣY1 , the likelihood will become less reliable. The scaling
factor is especially important when we deal with mixture of Gaussian in Section
D.7.

1Again, for the consistency of notation, we will keep using the vector convention for the
rest of this section.
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D.6 Division of Gaussian pdfs

To compute N (x;µ1,Σ1)
N (x;µ2,Σ2) , note that from the product formula (D.34)

N (x;µ2,Σ2)N (x; (Λ1 − Λ2)−1(Λ1µ1 − Λ2µ2), (Λ1 − Λ2)−1)

=N (µ1; (Λ1 − Λ2)−1(Λ1µ1 − Λ2µ2),Λ−1
2 + (Λ1 − Λ2)−1)N (x;µ1,Σ1).

(D.35)

Therefore,

N (x;µ1,Σ1)

N (x;µ2,Σ2)
=

N (x; (Λ1 − Λ2)−1(Λ1µ1 − Λ2µ2), (Λ1 − Λ2)−1)

N (µ1, (Λ1 − Λ2)−1(Λ1µ1 − Λ2µ2); Λ−1
2 + (Λ1 − Λ2)−1)

(D.36)

=
N (x;µ, (Λ1 − Λ2)−1)

N (µ1;µ,Λ−1
2 + (Λ1 − Λ2)−1)

, (D.37)

where µ = (Λ1−Λ2)−1(Λ1µ1−Λ2µ2). Note that the final pdf will be Gaussian-
like if Λ1 � Λ2. Otherwise, one can still write out the pdf using the precision
matrix. But the covariance matrix will not be defined.

D.7 Mixture of Gaussians

Consider an electrical system that outputs signal of different statistics when it
is on and off. When the system is on, the output signal S behaves like N (5, 1).
When the system is off is off, S behaves like N (0, 1). If someone measuring the
signal does not know the status of the system but only knows that the system is
on 40% of the time. Then, to the observer, the signal S behaves like a mixture
of Gaussians. And the pdf of S will be 0.4N (s; 5, 1) + 0.6N (s; 0, 1) as shown in
Figure D.2.

The main limitation of Gaussian distribution is that it is unimodal. By mix-
ing Gaussian pdfs of different means, mixture of Gaussian pdfs are multimodal
and can virtually model any pdfs. But there is a computational cost for this
extra power. Let us illustrate this with the following example.

Consider two mixtures of Gaussian likelihood of x given two observations y1

and y2 as follows:

p(y1|x) = 0.6N (x; 0, 1) + 0.4N (x; 5, 1); (D.38)

p(y2|x) = 0.5N (x;−2, 1) + 0.5N (x; 4, 1). (D.39)

What is the overall likelihood, p(y1, y2|x)?

As usual, it is reasonable to assume the observations to be conditionally
independent given x. Then, the overall likelihood p(y1, y2|x) just equal to the
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Figure D.2: The pdf of a mixture of Gaussians (0.4N (5, 1) + 0.6N (0, 1))

product of likelihoods p(y1|x)p(y2|x). That is,

p(y1, y2|x) = (0.6N (x; 0, 1) + 0.4N (x; 5, 1))(0.5N (x;−2, 1) + 0.5N (x; 4, 1))
(D.40)

= 0.3N (x; 0, 1)N (x;−2, 1) + 0.2N (x; 5, 1)N (x;−2, 1)

+ 0.3N (x; 0, 1)N (x; 4, 1) + 0.2N (x; 5, 1)N (x; 4, 1). (D.41)

This involves computing products of Gaussians but we have learned it in previ-
ous sections. Using (D.34),

p(y1, y2|x) = 0.3N (−2; 0, 2)N (x;−1, 0.5) + 0.2N (−2; 5, 2)N (x; 1.5, 0.5)

+ 0.3N (4; 0, 2)N (x; 2, 0.5) + 0.2N (4; 5, 2)N (x; 4.5, 0.5). (D.42)

So we have the overall likelihood is a mixture of four Gaussians.

D.7.1 Reduce Number of Components in Gaussian Mix-
tures

Let say we have a likelihood of x given an observation is a mixture of two
Gaussians as just discussed. And we have n such similar observations. The
overall likelihood will be a mixture of 2n Gassians! Therefore, the computation
will quickly become intractable as the number of observations increases. For-
tunately, in reality, some of the Gaussians in the mixture tend to have a very
small weight. For instance, in our previous numerical example, if we continue
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p(y1jx)
p̂(y2jx)
~p(y1; y2jx)

Figure D.3: Likelihood functions: p(y1|x) = 0.6N (x; 0, 1) +
0.4N (x; 5, 1), p(y2|x) = 0.5N (x;−2, 1) + 0.5N (x; 4, 1), p(y1, y2|x) =
p(y1|x)p(y2|x) = 0.4163N (x;−1, 0.5) + 3.5234 × 10−6N (x; 1.5, 0.5) +
0.0202N (x; 2, 0.5) + 0.5734N (x; 4.5, 0.5).

our numerical computation in (D.42), we have

p(y1, y2|x) = 0.4163N (x;−1, 0.5) + 3.5234× 10−6N (x; 1.5, 0.5)

+ 0.0202N (x; 2, 0.5) + 0.5734N (x; 4.5, 0.5). (D.43)

We can see that the weight for the component at mean 1.5 is very small. And
the component at mean 2 has a rather small weight also. Even with the four
Gaussian components, the overall likelihood is essentially just a bimodal distri-
bution as shown in Figure D.3. Therefore, we may approximate p(y1, y2|x) with
only two of its original component as 0.4163/(0.4163 + 0.5734)N (x;−1, 0.5) +
0.5734/(0.4163+0.5734)N (x; 4.5, 0.5) = 0.4206N (x;−1, 0.5)+0.5794N (x; 4.5, 0.5).

However, it is not always a good approximation strategy just to dump away
the small components in a Gaussian mixture. For example, consider

p(x) = 0.1N (x;−0.2, 1) + 0.1N (x;−0.1, 1) + 0.1N (x; 0, 1) + 0.1N (x; 0.1, 1)

+ 0.1N (x; 0.2, 1) + 0.5N (x; 5, 1). (D.44)

Let say we want to reduce p(x) to only a mixture of two Gaussians. It is
tempting to just dumping four smallest one and renormalized the weight. For
example, if we choose to remove the first four components, we have

p̂(x) = 1/6N (x; 0.2, 1) + 5/6N (x; 5, 1), (D.45)
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Figure D.4: Approximate p(x) = 0.1N (x;−0.2, 1) + 0.1N (x;−0.1, 1) +
0.1N (x; 0, 1) + 0.1N (x; 0.1, 1) + 0.1N (x; 0.2, 1) + 0.5N (x; 5, 1) by discarding
smallest weight components (p̂(x) = 1/6N (x; 0.2, 1) + 5/6N (x; 5, 1)) and by
merging similar components (p̃(x) = 0.5N (x; 0, 1.02) + 0.5N (x; 5, 1)). The lat-
ter approximation does so well that p(x) and p̃(x) essentially overlap each other.

which is significantly different from p(x) as shown in Figure D.4.

The problem is that while the first five components are all relatively small
compared to the last one, they are all quite similar and their combined contri-
bution is comparable to the latter. Actually, as one can see from Figure D.4,
the first five components are so similar that their combined contribution can
be accurately modeled as one Gaussian. So one can get a much more accu-
rate approximation by merging these components rather than discarding them.
Such approximation p̃(x) is also illustrated in Figure D.4. However, to success-
fully obtain such approximation p̃(x), we have to answer two questions: which
components to merge? And how to merge them? We will address these in the
following [106].

Which Components to Merge?

It is reasonable to pick similar components to merge. The question is how do
will gauge the similarity between two components. Consider two pdfs p(x) and
q(x), note that we can define an inner product of p(x) and q(x) by

〈p(x), q(x)〉 =

∫
p(x)q(x)dx. (D.46)
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Such inner product is well defined, in particular 〈p(x), p(x)〉 ≥ 0. Therefore, by
Cauchy-Schwartz inequality,

〈p(x), q(x)〉√
〈p(x), p(x)〉〈q(x), q(x)〉

=

∫
p(x)q(x)dx√∫

p(x)2dx
∫
q(x)2dx

≤ 1. (D.47)

Moreover, the latter equality holds only when p(x) = q(x). This suggests a very
reasonable similarity measure between two pdfs. Let’s define

Sim(p(x), q(x)) ,

∫
p(x)q(x)dx√∫

p(x)2dx
∫
q(x)2dx

. (D.48)

In particular, if p(x) = N (x;µp,Σp) and q(x) = N (x;µq,Σq), we have

Sim(N (µp,Σp),N (µq,Σq)) =
N (µp;µq,Σp + Σq)√
N (0; 0, 2Σp)N (0; 0, 2Σq)

, (D.49)

which can be computed very easily and is equal to one only when means and
covariances are the same.

How to Merge Components?

Say we have n components N (µ1,Σ1), N (µ2,Σ2), · · · , N (µn,Σn) with weights
w1, w2, · · · , wn. What should the combined component be like? First of all, the
combined component obviously will have weight equal to the combined weight∑n
i=1 wi. And its mean will simply be

∑n
i=1 ŵiµi, where ŵi = wi∑n

i=1 wi
.

It is tempting to write the combined covariance as
∑n
i=1 ŵiΣi. However, the

covariance is more than that. Because the sum only count the contribution of
variation among each component, it did not take into account the variation due
to different means across components. Instead, let’s denote X as the variable
sampled from the mixture. That is, X ∼ N (µi,Σi) with probability ŵi. Then,
we have the combined covariance Σ given by

Σ = E[XXT ]− E[X]E[X]T (D.50)

=

n∑
i=1

ŵi(Σi + µiµ
T
i )−

n∑
i=1

n∑
j=1

ŵiŵjµiµ
T
j . (D.51)

Now, go back to our previous numerical example. Recall that p(x) =
0.1N (x;−0.2, 1)+0.1N (x;−0.1, 1)+0.1N (x; 0, 1)+0.1N (x; 0.1, 1)+0.1N (x; 0.2, 1)+
0.5N (x; 5, 1). If we merge the five smallest components (one can easily check
that they are also more similar to each other than to the last component), we
have p̃(x) = 0.5N (x; 0, 1.02) + 0.5N (x; 5, 1) as shown in Figure D.4, where the
approximate pdf is virtually indistinguishable from the original.

[43, 44, 42, 129, 41]
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D.8 Summary

Below we assume Y2 ∼ N (µ,Σ), Y2 =

(
X
Y

)
, µ =

(
µX

µY

)
, Σ =

(
ΣXX ΣXY

ΣYX ΣYY

)
,

Σ−1 = Λ =

(
ΛXX ΛXY

ΛYX ΛYY

)
.

Marginal pdf of X:

X ∼ N (µX,ΣXX) (D.52)

Conditional pdf of X given observation y:

X|y ∼ N (µX + ΣXYΣ−1
YY(y − µY),ΣXX − ΣXYΣ−1

YYΣYX)

(D.53)
Product of Gaussian pdfs:

N (x; y1,ΣY1)N (x; y2,ΣY2)

=N (y1; y2,ΣY2
+ ΣY1

)N (x; (ΛY1
+ ΛY2

)−1(ΛY2
y2 + ΛY1

y1), (ΛY2
+ ΛY1

)−1)

(D.54)
Division of Gaussian pdfs:

N (x;µ1,Σ1)

N (x;µ2,Σ2)
=

N (x; (Λ1 − Λ2)−1(Λ1µ1 − Λ2µ2), (Λ1 − Λ2)−1)

N (µ1, (Λ1 − Λ2)−1(Λ1µ1 − Λ2µ2); Λ−1
2 + (Λ1 − Λ2)−1)

(D.55)

Measure Similarity between Two Gaussian pdfs:

Sim(N (µp,Σp),N (µq,Σq)) =
N (µp;µq,Σp + Σq)√
N (0; 0, 2Σp)N (0; 0, 2Σq)

(D.56)

Merging n Gaussian Components in a Mixture:
Merging n components N (µ1,Σ1), N (µ2,Σ2), · · · , N (µn,Σn) with weights

w1, w2, · · · , wn. And let the combined weight and combined component be w
and N (µ,Σ). Then, w, µ, and Σ are given by the following:

w =

n∑
i=1

wi

µ =

n∑
i=1

wi
w
µi

Σ =
1

w

n∑
i=1

wi(Σi + µiµ
T
i )− 1

w2

n∑
i=1

n∑
j=1

wiwjµiµ
T
j

(D.57)

(D.58)

(D.59)
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Appendix: Matrix Equations

Throughout this section, we assume Σ−1 = Λ, Σ =

(
ΣXX ΣXY

ΣYX ΣYY

)
, and Λ =(

ΛXX ΛXY

ΛYX ΛYY

)
. And note that many of the equations have “symmetry” and

other similar forms hold as well. For example, apparently we also have ΣYY =
ΛYY − ΛYXΛ−1

XXΛXY from Lemma D.1. Without loss of generality, we simply
pick one arbritary form for each lemma in this section.

Lemma D.1. Σ−1
XX = ΛXX − ΛXYΛ−1

YYΛYX

Proof. Since Λ = Σ−1, we have ΣXXΛXY + ΣXYΛYY = 0 and ΣXXΛXX +
ΣXYΛYX = I. Insert an identity into the latter equation, we have ΣXXΛXX +
ΣXY(ΛYYΛ−1

YY)ΛYX = ΣXXΛXX−(ΣXXΛXY)Λ−1
YYΛYX = ΣXX(ΛXX−ΛXYΛ−1

YYΛYX) =
I.

Lemma D.2. det(Σ) = det(ΣYY) det(Λ−1
XX)

Proof.

det(Σ) = det

(
ΣXX ΣXY

ΣYX ΣYY

)
(D.60)

= det

((
I 0
0 ΣYY

)(
ΣXX ΣXY

Σ−1
YYΣYX I

))
(D.61)

= det

((
I 0
0 ΣYY

)(
I ΣXY

0 I

)(
ΣXX − ΣXYΣ−1

YYΣYX 0
Σ−1

YYΣYX I

))
(D.62)

= det

(
I 0
0 ΣYY

)
det

(
I ΣXY

0 I

)
det

(
ΣXX − ΣXYΣ−1

YYΣYX 0
Σ−1

YYΣYX I

)
(D.63)

= det ΣYY det(ΣXX − ΣXYΣ−1
YYΣYX) (D.64)

= det ΣYY det Λ−1
XX, (D.65)

where the last equality is from Lemma D.1.

Note that since the width (height) of Σ is equal to the sum of the widths of
ΣXX and ΣYY. The equation below follows immediately.

Corollary D.2. det(aΣ) = det(aΣYY) det(aΛ−1
XX) for any constant a.


