
Lecture 2

Review

Univariate Normal: N (x ;µ, σ2) = 1√
2πσ2

e−
(x−µ)2

2σ2

Multivariate Normal: N (x;µ,Σ) = 1
det(2πΣ)e

− 1
2
(x−µ)TΣ−1(x−µ)

Remark

Note that N (x;µ,Σ) = N (µ; x,Σ). It is trivial but quite useful

S. Cheng (OU-Tulsa) December 5, 2017 1 / 275

Lecture 2 Warmup

Symmetric matrices

Lemma

(MT)
−1

= (M−1)T

Proof.

(M−1)TMT = (MM−1)T = I ⇒ (M−1)T is inverse of MT

Lemma

If M is symmetric, so is M−1

Proof.

(M−1)T = (MT)−1 = M−1

S. Cheng (OU-Tulsa) December 5, 2017 2 / 275

Lecture 2 Warmup

Symmetric matrices

Lemma

(MT)
−1

= (M−1)T

Proof.

(M−1)TMT = (MM−1)T = I ⇒ (M−1)T is inverse of MT

Lemma

If M is symmetric, so is M−1

Proof.

(M−1)T = (MT)−1 = M−1

S. Cheng (OU-Tulsa) December 5, 2017 2 / 275

Lecture 2 Warmup

Symmetric matrices

Lemma

(MT)
−1

= (M−1)T

Proof.

(M−1)TMT = (MM−1)T = I ⇒ (M−1)T is inverse of MT

Lemma

If M is symmetric, so is M−1

Proof.

(M−1)T = (MT)−1 = M−1

S. Cheng (OU-Tulsa) December 5, 2017 2 / 275

Lecture 2 Warmup

Hermitian matrices

An extension of transpose operation to complex matrices is the
hermitian transpose operation, which is simply the transpose and
conjugate of a matrix (vector)

We denote the hermitian transpose of M as M† , M
T
, when M is

the complex conjugate of M

A matrix is Hermitian if M† = M. Note that a real symmetric matrix
is Hermitian

S. Cheng (OU-Tulsa) December 5, 2017 3 / 275

Lecture 2 Warmup

Eigenvalues of Hermitian matrices

Lemma

If M is Hermitian (M† = M), all eigenvalues are real

Proof.

λ(x†x) = (λx)†x = (Mx)†x = x†M†x = x†Mx = x†(λx) = λ(x†x)

Lemma

If M is Hermitian, eigenvectors of different eigenvalues are orthogonal

Proof.

λ1x
†
1x2 = (Mx1)

†x2 = x†1Mx2 = λ2x
†
1x2

⇒λ1 6= λ2 ⇒ x†1x2 = 0

S. Cheng (OU-Tulsa) December 5, 2017 4 / 275

Lecture 2 Warmup

Eigenvalues of Hermitian matrices

Lemma

If M is Hermitian (M† = M), all eigenvalues are real

Proof.

λ(x†x) = (λx)†x = (Mx)†x = x†M†x = x†Mx = x†(λx) = λ(x†x)

Lemma

If M is Hermitian, eigenvectors of different eigenvalues are orthogonal

Proof.

λ1x
†
1x2 = (Mx1)

†x2 = x†1Mx2 = λ2x
†
1x2

⇒λ1 6= λ2 ⇒ x†1x2 = 0

S. Cheng (OU-Tulsa) December 5, 2017 4 / 275

Lecture 2 Warmup

Eigenvalues of Hermitian matrices

Lemma

If M is Hermitian (M† = M), all eigenvalues are real

Proof.

λ(x†x) = (λx)†x = (Mx)†x = x†M†x = x†Mx = x†(λx) = λ(x†x)

Lemma

If M is Hermitian, eigenvectors of different eigenvalues are orthogonal

Proof.

λ1x
†
1x2 = (Mx1)

†x2 = x†1Mx2 = λ2x
†
1x2

⇒λ1 6= λ2 ⇒ x†1x2 = 0

S. Cheng (OU-Tulsa) December 5, 2017 4 / 275

Lecture 2 Warmup

Hermitian matrices are diagonizable

Lemma

Hermitian matrices are diagonizable

Proof.

We will sketch the proof by construction. For any n-d Hermitian matrix M,
consider an eigenvalue λ and corresponding eigenvector u, without loss of
generality, let’s also normalize u such that ‖u‖ = 1. Consider the subspace
orthogonal to u, U⊥, and let v1, · · · , vn−1 be arbitrary orthonormal basis of U⊥.
Note that for any k, Avk will be orthogonal to u since

u†Mvk = u†M†vk = (Mu)†vk = λu†vk = 0.

Thus,
(
u, v1, · · · , vn−1

)†
M
(
u, v1, · · · , vn−1

)
=
(
λ 0
0 M′

)
. Moreover, M ′ is also a

Hermitian matrix with one less dimension. We can apply the same process on M ′

and “diagonalize” one more row/column. That is,(
1 0
0 P′

)†
P†MP

(
1 0
0 P′

)
=
(

λ 0 ···
0 λ′

M′′

)
. We can repeat this until the entire M is

diagonalized

S. Cheng (OU-Tulsa) December 5, 2017 5 / 275

Lecture 2 Warmup

Hermitian matrices are diagonalizable

Remark

A Hermitian matrix is diagonalized by its eigenvectors and the diagonalized
matrix is composed of the corresponding eigenvalues. That is,(

v1, · · · , vn
)†

M
(
v1, · · · , vn

)︸ ︷︷ ︸
V

=

(
λ1 0 ···
0 λ2

...
. . .

)
.

Moreover, V is unitary (orthogonal), i.e., V †V = I and thus V−1 = V †

Remark

The reverse is obviously true. If a matrix can be diagonalized by a unitary
matrix into a real diagonal matrix, the matrix is Hermitian

Remark

Recall that real-symmetric matrices are Hermitian, thus can be
diagonalized by its eigenvectors also

S. Cheng (OU-Tulsa) December 5, 2017 6 / 275

Lecture 2 Warmup

Positive definite matrices

Definition (Positive definite)

For a Hermitian matrix M, it is positive definite iff ∀x , x†Mx > 0

Definition (Positive semi-definite)

For a Hermitian matrix M, it is positive semi-definite iff ∀x , x†Mx ≥ 0

Remark

M is positive definite (semi-definite) iff all its eigenvalue is larger (larger or
equal to) 0

Proof.

⇒: assume positive definite but some eigenvalue < 0, WLOG, let λ1 < 0, then
v†
1Mv1 = λ1 < 0 contradicts that M is positive definite
⇐: If ∀k, λk > 0, for any x ,

x†Mx = (V †x)†
(

λ1 0

0
. . .

)
V †x =

∑
i λi (V

†x)2i > 0

S. Cheng (OU-Tulsa) December 5, 2017 7 / 275

Lecture 2 Warmup

Positive definite matrices

Definition (Positive definite)

For a Hermitian matrix M, it is positive definite iff ∀x , x†Mx > 0

Definition (Positive semi-definite)

For a Hermitian matrix M, it is positive semi-definite iff ∀x , x†Mx ≥ 0

Remark

M is positive definite (semi-definite) iff all its eigenvalue is larger (larger or
equal to) 0

Proof.

⇒: assume positive definite but some eigenvalue < 0, WLOG, let λ1 < 0, then
v†
1Mv1 = λ1 < 0 contradicts that M is positive definite
⇐: If ∀k, λk > 0, for any x ,

x†Mx = (V †x)†
(

λ1 0

0
. . .

)
V †x =

∑
i λi (V

†x)2i > 0

S. Cheng (OU-Tulsa) December 5, 2017 7 / 275

Lecture 2 More detour

Some probability basic

Probability mass function (pmf) for discrete random variable (r.v.) X
p(x) ≥ 0
p(x) ≤ 1∑

x p(x) = 1

Probability density function (pdf) for continuous r.v. X
p(x) ≥ 0
p(x) can be larger than 1

Pr(a ≤ X ≤ b) =
∫ b

a
p(x) (Area between p(x) and x-axis)∫

x
p(x) = 1

Marginalization:
∑

x p(x , y) = p(y)

Conditional probability: p(x |y) = p(x ,y)
p(y)

N.B.
∑

x p(x |y) = 1 but
∑

y p(x |y) 6= 1

Chain rule: p(x , y , z) = p(x)p(y |x)p(z |x , y)
Independence: p(x , y) = p(x)p(y), X ⊥⊥ Y
Markov property and conditional independence:
p(x , y |z) = p(x |z)p(y |z), X ⊥⊥ Y |Z ,X ↔ Z ↔ Y
Inference: ML, MAP, Bayesian

S. Cheng (OU-Tulsa) December 5, 2017 8 / 275

Lecture 2 More detour

Some probability basic

Probability mass function (pmf) for discrete random variable (r.v.) X
p(x) ≥ 0
p(x) ≤ 1∑

x p(x) = 1
Probability density function (pdf) for continuous r.v. X

p(x) ≥ 0
p(x) can be larger than 1

Pr(a ≤ X ≤ b) =
∫ b

a
p(x) (Area between p(x) and x-axis)∫

x
p(x) = 1

Marginalization:
∑

x p(x , y) = p(y)

Conditional probability: p(x |y) = p(x ,y)
p(y)

N.B.
∑

x p(x |y) = 1 but
∑

y p(x |y) 6= 1

Chain rule: p(x , y , z) = p(x)p(y |x)p(z |x , y)
Independence: p(x , y) = p(x)p(y), X ⊥⊥ Y
Markov property and conditional independence:
p(x , y |z) = p(x |z)p(y |z), X ⊥⊥ Y |Z ,X ↔ Z ↔ Y
Inference: ML, MAP, Bayesian

S. Cheng (OU-Tulsa) December 5, 2017 8 / 275

Lecture 2 More detour

Some probability basic

Probability mass function (pmf) for discrete random variable (r.v.) X
p(x) ≥ 0
p(x) ≤ 1∑

x p(x) = 1
Probability density function (pdf) for continuous r.v. X

p(x) ≥ 0
p(x) can be larger than 1

Pr(a ≤ X ≤ b) =
∫ b

a
p(x) (Area between p(x) and x-axis)∫

x
p(x) = 1

Marginalization:
∑

x p(x , y) = p(y)

Conditional probability: p(x |y) = p(x ,y)
p(y)

N.B.
∑

x p(x |y) = 1 but
∑

y p(x |y) 6= 1

Chain rule: p(x , y , z) = p(x)p(y |x)p(z |x , y)
Independence: p(x , y) = p(x)p(y), X ⊥⊥ Y
Markov property and conditional independence:
p(x , y |z) = p(x |z)p(y |z), X ⊥⊥ Y |Z ,X ↔ Z ↔ Y
Inference: ML, MAP, Bayesian

S. Cheng (OU-Tulsa) December 5, 2017 8 / 275

Lecture 2 More detour

Some probability basic

Probability mass function (pmf) for discrete random variable (r.v.) X
p(x) ≥ 0
p(x) ≤ 1∑

x p(x) = 1
Probability density function (pdf) for continuous r.v. X

p(x) ≥ 0
p(x) can be larger than 1

Pr(a ≤ X ≤ b) =
∫ b

a
p(x) (Area between p(x) and x-axis)∫

x
p(x) = 1

Marginalization:
∑

x p(x , y) = p(y)

Conditional probability: p(x |y) = p(x ,y)
p(y)

N.B.
∑

x p(x |y) = 1 but
∑

y p(x |y) 6= 1

Chain rule: p(x , y , z) = p(x)p(y |x)p(z |x , y)
Independence: p(x , y) = p(x)p(y), X ⊥⊥ Y
Markov property and conditional independence:
p(x , y |z) = p(x |z)p(y |z), X ⊥⊥ Y |Z ,X ↔ Z ↔ Y
Inference: ML, MAP, Bayesian

S. Cheng (OU-Tulsa) December 5, 2017 8 / 275

Lecture 2 More detour

Some probability basic

Probability mass function (pmf) for discrete random variable (r.v.) X
p(x) ≥ 0
p(x) ≤ 1∑

x p(x) = 1
Probability density function (pdf) for continuous r.v. X

p(x) ≥ 0
p(x) can be larger than 1

Pr(a ≤ X ≤ b) =
∫ b

a
p(x) (Area between p(x) and x-axis)∫

x
p(x) = 1

Marginalization:
∑

x p(x , y) = p(y)

Conditional probability: p(x |y) = p(x ,y)
p(y)

N.B.
∑

x p(x |y) = 1 but
∑

y p(x |y) 6= 1

Chain rule: p(x , y , z) = p(x)p(y |x)p(z |x , y)

Independence: p(x , y) = p(x)p(y), X ⊥⊥ Y
Markov property and conditional independence:
p(x , y |z) = p(x |z)p(y |z), X ⊥⊥ Y |Z ,X ↔ Z ↔ Y
Inference: ML, MAP, Bayesian

S. Cheng (OU-Tulsa) December 5, 2017 8 / 275

Lecture 2 More detour

Some probability basic

Probability mass function (pmf) for discrete random variable (r.v.) X
p(x) ≥ 0
p(x) ≤ 1∑

x p(x) = 1
Probability density function (pdf) for continuous r.v. X

p(x) ≥ 0
p(x) can be larger than 1

Pr(a ≤ X ≤ b) =
∫ b

a
p(x) (Area between p(x) and x-axis)∫

x
p(x) = 1

Marginalization:
∑

x p(x , y) = p(y)

Conditional probability: p(x |y) = p(x ,y)
p(y)

N.B.
∑

x p(x |y) = 1 but
∑

y p(x |y) 6= 1

Chain rule: p(x , y , z) = p(x)p(y |x)p(z |x , y)
Independence: p(x , y) = p(x)p(y), X ⊥⊥ Y

Markov property and conditional independence:
p(x , y |z) = p(x |z)p(y |z), X ⊥⊥ Y |Z ,X ↔ Z ↔ Y
Inference: ML, MAP, Bayesian

S. Cheng (OU-Tulsa) December 5, 2017 8 / 275

Lecture 2 More detour

Some probability basic

Probability mass function (pmf) for discrete random variable (r.v.) X
p(x) ≥ 0
p(x) ≤ 1∑

x p(x) = 1
Probability density function (pdf) for continuous r.v. X

p(x) ≥ 0
p(x) can be larger than 1

Pr(a ≤ X ≤ b) =
∫ b

a
p(x) (Area between p(x) and x-axis)∫

x
p(x) = 1

Marginalization:
∑

x p(x , y) = p(y)

Conditional probability: p(x |y) = p(x ,y)
p(y)

N.B.
∑

x p(x |y) = 1 but
∑

y p(x |y) 6= 1

Chain rule: p(x , y , z) = p(x)p(y |x)p(z |x , y)
Independence: p(x , y) = p(x)p(y), X ⊥⊥ Y
Markov property and conditional independence:
p(x , y |z) = p(x |z)p(y |z), X ⊥⊥ Y |Z ,X ↔ Z ↔ Y

Inference: ML, MAP, Bayesian

S. Cheng (OU-Tulsa) December 5, 2017 8 / 275

Lecture 2 More detour

Some probability basic

Probability mass function (pmf) for discrete random variable (r.v.) X
p(x) ≥ 0
p(x) ≤ 1∑

x p(x) = 1
Probability density function (pdf) for continuous r.v. X

p(x) ≥ 0
p(x) can be larger than 1

Pr(a ≤ X ≤ b) =
∫ b

a
p(x) (Area between p(x) and x-axis)∫

x
p(x) = 1

Marginalization:
∑

x p(x , y) = p(y)

Conditional probability: p(x |y) = p(x ,y)
p(y)

N.B.
∑

x p(x |y) = 1 but
∑

y p(x |y) 6= 1

Chain rule: p(x , y , z) = p(x)p(y |x)p(z |x , y)
Independence: p(x , y) = p(x)p(y), X ⊥⊥ Y
Markov property and conditional independence:
p(x , y |z) = p(x |z)p(y |z), X ⊥⊥ Y |Z ,X ↔ Z ↔ Y
Inference: ML, MAP, Bayesian
S. Cheng (OU-Tulsa) December 5, 2017 8 / 275

Lecture 2 More detour

Independence but not conditional independence

Consider flipping two coins with outcomes store as X and Y , say 1
represents a head and 0 represents a tail

In general the two outcomes should be independent (maybe unless if
you are some professional/magical gambler), so we have X ⊥⊥ Y

Now, let Z = X ⊕ Y , where ⊕ is the exclusive or operation
(1⊕ 0 = 0⊕ 1 = 1 and 1⊕ 1 = 0⊕ 0 = 0)

Even though X ⊥⊥ Y , X 6⊥⊥ Y |Z
Actually given Z , X “depends” very much on Y since from
X = Y ⊕ Z , we can find out X precisely given Y
We can also check the condition X ⊥⊥ Y |Z by comparing the
probability p(x |z , y) with p(x |z)

For example, pX |Z (0|0) = 0.5 6= 1 = pX |Z ,Y (0|0, 0). Thus X ⊥⊥ Y |Z
cannot be true

S. Cheng (OU-Tulsa) December 5, 2017 9 / 275

Lecture 3

Review

Univariate Normal: N (x ;µ, σ2) = 1√
2πσ2

e−
(x−µ)2

2σ2

Multivariate Normal: N (x;µ,Σ) = 1
det(2πΣ)e

− 1
2
(x−µ)TΣ−1(x−µ)

Covariance matrices are Hermitian and thus can be diagonalized by
its eigenvectors. Covariance matrices are positive semi-definite
(eigenvalues ≥ 0)

Independence: p(x , y) = p(x)p(y), X ⊥⊥ Y

Markov property and conditional independence:
p(x , y |z) = p(x |z)p(y |z), X ⊥⊥ Y |Z ,X ↔ Z ↔ Y

Remark

Note that N (x;µ,Σ) = N (µ; x,Σ). It is trivial but quite useful

S. Cheng (OU-Tulsa) December 5, 2017 10 / 275

Lecture 3

Inference

o: (Observed) evidence, θ: Parameter, x : prediction

Maximum Likelihood (ML)

x̂ = argmaxx p(x |θ̂), θ̂ = argmaxθ p(o|θ)

Maximum A Posteriori (MAP)

x̂ = argmaxx p(x |θ̂), θ̂ = argmaxθ p(θ|o)

Bayesian

x̂ =
∑

x x
∑
θ

p(x |θ)p(θ|o)︸ ︷︷ ︸
p(x |o)

where p(θ|o) = p(o|θ)p(θ)
p(o) ∝ p(o|θ)p(θ)︸︷︷︸

prior

S. Cheng (OU-Tulsa) December 5, 2017 11 / 275

Lecture 3 Multivariate normal distributions

Covariance matrices

Definition (Covariance matrices)

Recall that for a vector random variable X = [X1,X2, · · · ,Xn]
T , the

covariance matrix Σ , E [(X − µ)(X − µ)T]

Remark

Covariance matrices are always positive semi-definite since ∀u,
uTΣu = E [uT (X − µ)(X − µ)Tu] = E [‖(X − µ)Tu‖2] ≥ 0

Remark

In general, we usually would like to assume Σ to be strictly positive definite.
Because otherwise it means that some of its eigenvalues are zero and so in some
dimension, there is actually no variation and is just constant along that
dimension. Representing those dimension as random variable is troublesome since
“1/σ2” which occurs often will become infinite. Instead we can always simply
strip away those dimensions to avoid complications

S. Cheng (OU-Tulsa) December 5, 2017 12 / 275

Lecture 3 Multivariate normal distributions

Eigenvectors and eigenvalues of covariance matrices

WLOG, let’s assume X = [X1,X2, · · · ,Xn]
T is zero mean. So the

covariance matrix ΣX = E [XXT]

Covariance matrices are real symmetric (hence Hermitian) and so can
be diagonalized by its eigenvectors. That is,

PTΣXP = D, where P = [u1, u2, · · · , un] with uk being eigenvectors of
Σ and D is a diagonal matrix with eigenvalues λ1, λ2, · · · , λn as the
diagonal elements

Let Y = PTX, note that the covariance matrix of Y

ΣY = E [YYT] = E [PTXXTP] = PTE [XXT]P = PTΣXP = D

is diagonalized

So the variance of Yk is simply λk

E [YiYj] = 0 for i 6= j . That is, Yi ⊥⊥ Yj for i 6= j
Note that Y = PTX is just principal component analysis (PCA)

S. Cheng (OU-Tulsa) December 5, 2017 13 / 275

Lecture 3 Multivariate normal distributions

Eigenvectors and eigenvalues of covariance matrices

WLOG, let’s assume X = [X1,X2, · · · ,Xn]
T is zero mean. So the

covariance matrix ΣX = E [XXT]

Covariance matrices are real symmetric (hence Hermitian) and so can
be diagonalized by its eigenvectors. That is,

PTΣXP = D, where P = [u1, u2, · · · , un] with uk being eigenvectors of
Σ and D is a diagonal matrix with eigenvalues λ1, λ2, · · · , λn as the
diagonal elements

Let Y = PTX, note that the covariance matrix of Y

ΣY = E [YYT] = E [PTXXTP] = PTE [XXT]P = PTΣXP = D

is diagonalized

So the variance of Yk is simply λk

E [YiYj] = 0 for i 6= j . That is, Yi ⊥⊥ Yj for i 6= j
Note that Y = PTX is just principal component analysis (PCA)

S. Cheng (OU-Tulsa) December 5, 2017 13 / 275

Lecture 3 Multivariate normal distributions

Eigenvectors and eigenvalues of covariance matrices

WLOG, let’s assume X = [X1,X2, · · · ,Xn]
T is zero mean. So the

covariance matrix ΣX = E [XXT]

Covariance matrices are real symmetric (hence Hermitian) and so can
be diagonalized by its eigenvectors. That is,

PTΣXP = D, where P = [u1, u2, · · · , un] with uk being eigenvectors of
Σ and D is a diagonal matrix with eigenvalues λ1, λ2, · · · , λn as the
diagonal elements

Let Y = PTX, note that the covariance matrix of Y

ΣY = E [YYT] = E [PTXXTP] = PTE [XXT]P = PTΣXP = D

is diagonalized

So the variance of Yk is simply λk

E [YiYj] = 0 for i 6= j . That is, Yi ⊥⊥ Yj for i 6= j
Note that Y = PTX is just principal component analysis (PCA)

S. Cheng (OU-Tulsa) December 5, 2017 13 / 275

Lecture 3 Multivariate normal distributions

Eigenvectors and eigenvalues of covariance matrices

WLOG, let’s assume X = [X1,X2, · · · ,Xn]
T is zero mean. So the

covariance matrix ΣX = E [XXT]

Covariance matrices are real symmetric (hence Hermitian) and so can
be diagonalized by its eigenvectors. That is,

PTΣXP = D, where P = [u1, u2, · · · , un] with uk being eigenvectors of
Σ and D is a diagonal matrix with eigenvalues λ1, λ2, · · · , λn as the
diagonal elements

Let Y = PTX, note that the covariance matrix of Y

ΣY = E [YYT] = E [PTXXTP] = PTE [XXT]P = PTΣXP = D

is diagonalized

So the variance of Yk is simply λk

E [YiYj] = 0 for i 6= j . That is, Yi ⊥⊥ Yj for i 6= j
Note that Y = PTX is just principal component analysis (PCA)

S. Cheng (OU-Tulsa) December 5, 2017 13 / 275

Lecture 3 Principal component analysis

Principal component analysis (PCA)

Recall that Σ = E [XXT] (assume X is zero-mean) and Y = PTX
with E [YYT] = PTΣP = D

Assume that the diagonal of D (note that those are eigenvalues) are
arranged in descending order that λ1 ≥ λ2 ≥ · · · ≥ λn

Generate an approximate Ŷ of Y by setting all components except first
k as 0
The mean square error (mse) of1 Ŷ = E [(Y − Ŷ)T (Y − Ŷ)]
= tr(E [(Y − Ŷ)T (Y − Ŷ)]) = E [tr((Y − Ŷ)T (Y − Ŷ))]
= E [tr((Y − Ŷ)(Y − Ŷ)T)] = tr(E [(Y − Ŷ)(Y − Ŷ)T]) =

∑n
i=k+1 λi

Similarly, if we “reconstruct” X as X̂ = PŶ. The mse of
X̂ = E [(X− X̂)T (X− X̂)] = tr(E [(X− X̂)(X− X̂)T])=
tr(PE [(Y − Ŷ)(Y − Ŷ)]PT)= tr(PTPE [(Y − Ŷ)(Y − Ŷ)])
=
∑n

i=k+1 λi

Note that the eigenvectors of Σ (columns of P) are known as the
principal components

1tr(AB) =
∑

i

∑
j ai,jbj,i =

∑
j

∑
i bj,iai,j = tr(BA)

S. Cheng (OU-Tulsa) December 5, 2017 14 / 275

Lecture 3 Principal component analysis

Principal component analysis (PCA)

Recall that Σ = E [XXT] (assume X is zero-mean) and Y = PTX
with E [YYT] = PTΣP = D

Assume that the diagonal of D (note that those are eigenvalues) are
arranged in descending order that λ1 ≥ λ2 ≥ · · · ≥ λn

Generate an approximate Ŷ of Y by setting all components except first
k as 0

The mean square error (mse) of1 Ŷ = E [(Y − Ŷ)T (Y − Ŷ)]
= tr(E [(Y − Ŷ)T (Y − Ŷ)]) = E [tr((Y − Ŷ)T (Y − Ŷ))]
= E [tr((Y − Ŷ)(Y − Ŷ)T)] = tr(E [(Y − Ŷ)(Y − Ŷ)T]) =

∑n
i=k+1 λi

Similarly, if we “reconstruct” X as X̂ = PŶ. The mse of
X̂ = E [(X− X̂)T (X− X̂)] = tr(E [(X− X̂)(X− X̂)T])=
tr(PE [(Y − Ŷ)(Y − Ŷ)]PT)= tr(PTPE [(Y − Ŷ)(Y − Ŷ)])
=
∑n

i=k+1 λi

Note that the eigenvectors of Σ (columns of P) are known as the
principal components

1tr(AB) =
∑

i

∑
j ai,jbj,i =

∑
j

∑
i bj,iai,j = tr(BA)

S. Cheng (OU-Tulsa) December 5, 2017 14 / 275

Lecture 3 Principal component analysis

Principal component analysis (PCA)

Recall that Σ = E [XXT] (assume X is zero-mean) and Y = PTX
with E [YYT] = PTΣP = D

Assume that the diagonal of D (note that those are eigenvalues) are
arranged in descending order that λ1 ≥ λ2 ≥ · · · ≥ λn

Generate an approximate Ŷ of Y by setting all components except first
k as 0
The mean square error (mse) of1 Ŷ = E [(Y − Ŷ)T (Y − Ŷ)]

= tr(E [(Y − Ŷ)T (Y − Ŷ)]) = E [tr((Y − Ŷ)T (Y − Ŷ))]
= E [tr((Y − Ŷ)(Y − Ŷ)T)] = tr(E [(Y − Ŷ)(Y − Ŷ)T]) =

∑n
i=k+1 λi

Similarly, if we “reconstruct” X as X̂ = PŶ. The mse of
X̂ = E [(X− X̂)T (X− X̂)] = tr(E [(X− X̂)(X− X̂)T])=
tr(PE [(Y − Ŷ)(Y − Ŷ)]PT)= tr(PTPE [(Y − Ŷ)(Y − Ŷ)])
=
∑n

i=k+1 λi

Note that the eigenvectors of Σ (columns of P) are known as the
principal components

1tr(AB) =
∑

i

∑
j ai,jbj,i =

∑
j

∑
i bj,iai,j = tr(BA)

S. Cheng (OU-Tulsa) December 5, 2017 14 / 275

Lecture 3 Principal component analysis

Principal component analysis (PCA)

Recall that Σ = E [XXT] (assume X is zero-mean) and Y = PTX
with E [YYT] = PTΣP = D

Assume that the diagonal of D (note that those are eigenvalues) are
arranged in descending order that λ1 ≥ λ2 ≥ · · · ≥ λn

Generate an approximate Ŷ of Y by setting all components except first
k as 0
The mean square error (mse) of1 Ŷ = E [(Y − Ŷ)T (Y − Ŷ)]
= tr(E [(Y − Ŷ)T (Y − Ŷ)])

= E [tr((Y − Ŷ)T (Y − Ŷ))]
= E [tr((Y − Ŷ)(Y − Ŷ)T)] = tr(E [(Y − Ŷ)(Y − Ŷ)T]) =

∑n
i=k+1 λi

Similarly, if we “reconstruct” X as X̂ = PŶ. The mse of
X̂ = E [(X− X̂)T (X− X̂)] = tr(E [(X− X̂)(X− X̂)T])=
tr(PE [(Y − Ŷ)(Y − Ŷ)]PT)= tr(PTPE [(Y − Ŷ)(Y − Ŷ)])
=
∑n

i=k+1 λi

Note that the eigenvectors of Σ (columns of P) are known as the
principal components

1tr(AB) =
∑

i

∑
j ai,jbj,i =

∑
j

∑
i bj,iai,j = tr(BA)

S. Cheng (OU-Tulsa) December 5, 2017 14 / 275

Lecture 3 Principal component analysis

Principal component analysis (PCA)

Recall that Σ = E [XXT] (assume X is zero-mean) and Y = PTX
with E [YYT] = PTΣP = D

Assume that the diagonal of D (note that those are eigenvalues) are
arranged in descending order that λ1 ≥ λ2 ≥ · · · ≥ λn

Generate an approximate Ŷ of Y by setting all components except first
k as 0
The mean square error (mse) of1 Ŷ = E [(Y − Ŷ)T (Y − Ŷ)]
= tr(E [(Y − Ŷ)T (Y − Ŷ)]) = E [tr((Y − Ŷ)T (Y − Ŷ))]

= E [tr((Y − Ŷ)(Y − Ŷ)T)] = tr(E [(Y − Ŷ)(Y − Ŷ)T]) =
∑n

i=k+1 λi

Similarly, if we “reconstruct” X as X̂ = PŶ. The mse of
X̂ = E [(X− X̂)T (X− X̂)] = tr(E [(X− X̂)(X− X̂)T])=
tr(PE [(Y − Ŷ)(Y − Ŷ)]PT)= tr(PTPE [(Y − Ŷ)(Y − Ŷ)])
=
∑n

i=k+1 λi

Note that the eigenvectors of Σ (columns of P) are known as the
principal components

1tr(AB) =
∑

i

∑
j ai,jbj,i =

∑
j

∑
i bj,iai,j = tr(BA)

S. Cheng (OU-Tulsa) December 5, 2017 14 / 275

Lecture 3 Principal component analysis

Principal component analysis (PCA)

Recall that Σ = E [XXT] (assume X is zero-mean) and Y = PTX
with E [YYT] = PTΣP = D

Assume that the diagonal of D (note that those are eigenvalues) are
arranged in descending order that λ1 ≥ λ2 ≥ · · · ≥ λn

Generate an approximate Ŷ of Y by setting all components except first
k as 0
The mean square error (mse) of1 Ŷ = E [(Y − Ŷ)T (Y − Ŷ)]
= tr(E [(Y − Ŷ)T (Y − Ŷ)]) = E [tr((Y − Ŷ)T (Y − Ŷ))]
= E [tr((Y − Ŷ)(Y − Ŷ)T)] = tr(E [(Y − Ŷ)(Y − Ŷ)T])

=
∑n

i=k+1 λi

Similarly, if we “reconstruct” X as X̂ = PŶ. The mse of
X̂ = E [(X− X̂)T (X− X̂)] = tr(E [(X− X̂)(X− X̂)T])=
tr(PE [(Y − Ŷ)(Y − Ŷ)]PT)= tr(PTPE [(Y − Ŷ)(Y − Ŷ)])
=
∑n

i=k+1 λi

Note that the eigenvectors of Σ (columns of P) are known as the
principal components

1tr(AB) =
∑

i

∑
j ai,jbj,i =

∑
j

∑
i bj,iai,j = tr(BA)

S. Cheng (OU-Tulsa) December 5, 2017 14 / 275

Lecture 3 Principal component analysis

Principal component analysis (PCA)

Recall that Σ = E [XXT] (assume X is zero-mean) and Y = PTX
with E [YYT] = PTΣP = D

Assume that the diagonal of D (note that those are eigenvalues) are
arranged in descending order that λ1 ≥ λ2 ≥ · · · ≥ λn

Generate an approximate Ŷ of Y by setting all components except first
k as 0
The mean square error (mse) of1 Ŷ = E [(Y − Ŷ)T (Y − Ŷ)]
= tr(E [(Y − Ŷ)T (Y − Ŷ)]) = E [tr((Y − Ŷ)T (Y − Ŷ))]
= E [tr((Y − Ŷ)(Y − Ŷ)T)] = tr(E [(Y − Ŷ)(Y − Ŷ)T]) =

∑n
i=k+1 λi

Similarly, if we “reconstruct” X as X̂ = PŶ. The mse of
X̂ = E [(X− X̂)T (X− X̂)] = tr(E [(X− X̂)(X− X̂)T])

=
tr(PE [(Y − Ŷ)(Y − Ŷ)]PT)= tr(PTPE [(Y − Ŷ)(Y − Ŷ)])
=
∑n

i=k+1 λi

Note that the eigenvectors of Σ (columns of P) are known as the
principal components

1tr(AB) =
∑

i

∑
j ai,jbj,i =

∑
j

∑
i bj,iai,j = tr(BA)

S. Cheng (OU-Tulsa) December 5, 2017 14 / 275

Lecture 3 Principal component analysis

Principal component analysis (PCA)

Recall that Σ = E [XXT] (assume X is zero-mean) and Y = PTX
with E [YYT] = PTΣP = D

Assume that the diagonal of D (note that those are eigenvalues) are
arranged in descending order that λ1 ≥ λ2 ≥ · · · ≥ λn

Generate an approximate Ŷ of Y by setting all components except first
k as 0
The mean square error (mse) of1 Ŷ = E [(Y − Ŷ)T (Y − Ŷ)]
= tr(E [(Y − Ŷ)T (Y − Ŷ)]) = E [tr((Y − Ŷ)T (Y − Ŷ))]
= E [tr((Y − Ŷ)(Y − Ŷ)T)] = tr(E [(Y − Ŷ)(Y − Ŷ)T]) =

∑n
i=k+1 λi

Similarly, if we “reconstruct” X as X̂ = PŶ. The mse of
X̂ = E [(X− X̂)T (X− X̂)] = tr(E [(X− X̂)(X− X̂)T])=
tr(PE [(Y − Ŷ)(Y − Ŷ)]PT)

= tr(PTPE [(Y − Ŷ)(Y − Ŷ)])
=
∑n

i=k+1 λi

Note that the eigenvectors of Σ (columns of P) are known as the
principal components

1tr(AB) =
∑

i

∑
j ai,jbj,i =

∑
j

∑
i bj,iai,j = tr(BA)

S. Cheng (OU-Tulsa) December 5, 2017 14 / 275

Lecture 3 Principal component analysis

Principal component analysis (PCA)

Recall that Σ = E [XXT] (assume X is zero-mean) and Y = PTX
with E [YYT] = PTΣP = D

Assume that the diagonal of D (note that those are eigenvalues) are
arranged in descending order that λ1 ≥ λ2 ≥ · · · ≥ λn

Generate an approximate Ŷ of Y by setting all components except first
k as 0
The mean square error (mse) of1 Ŷ = E [(Y − Ŷ)T (Y − Ŷ)]
= tr(E [(Y − Ŷ)T (Y − Ŷ)]) = E [tr((Y − Ŷ)T (Y − Ŷ))]
= E [tr((Y − Ŷ)(Y − Ŷ)T)] = tr(E [(Y − Ŷ)(Y − Ŷ)T]) =

∑n
i=k+1 λi

Similarly, if we “reconstruct” X as X̂ = PŶ. The mse of
X̂ = E [(X− X̂)T (X− X̂)] = tr(E [(X− X̂)(X− X̂)T])=
tr(PE [(Y − Ŷ)(Y − Ŷ)]PT)= tr(PTPE [(Y − Ŷ)(Y − Ŷ)])

=
∑n

i=k+1 λi

Note that the eigenvectors of Σ (columns of P) are known as the
principal components

1tr(AB) =
∑

i

∑
j ai,jbj,i =

∑
j

∑
i bj,iai,j = tr(BA)

S. Cheng (OU-Tulsa) December 5, 2017 14 / 275

Lecture 3 Principal component analysis

Principal component analysis (PCA)

Recall that Σ = E [XXT] (assume X is zero-mean) and Y = PTX
with E [YYT] = PTΣP = D

Assume that the diagonal of D (note that those are eigenvalues) are
arranged in descending order that λ1 ≥ λ2 ≥ · · · ≥ λn

Generate an approximate Ŷ of Y by setting all components except first
k as 0
The mean square error (mse) of1 Ŷ = E [(Y − Ŷ)T (Y − Ŷ)]
= tr(E [(Y − Ŷ)T (Y − Ŷ)]) = E [tr((Y − Ŷ)T (Y − Ŷ))]
= E [tr((Y − Ŷ)(Y − Ŷ)T)] = tr(E [(Y − Ŷ)(Y − Ŷ)T]) =

∑n
i=k+1 λi

Similarly, if we “reconstruct” X as X̂ = PŶ. The mse of
X̂ = E [(X− X̂)T (X− X̂)] = tr(E [(X− X̂)(X− X̂)T])=
tr(PE [(Y − Ŷ)(Y − Ŷ)]PT)= tr(PTPE [(Y − Ŷ)(Y − Ŷ)])
=
∑n

i=k+1 λi

Note that the eigenvectors of Σ (columns of P) are known as the
principal components

1tr(AB) =
∑

i

∑
j ai,jbj,i =

∑
j

∑
i bj,iai,j = tr(BA)

S. Cheng (OU-Tulsa) December 5, 2017 14 / 275

Lecture 3 Principal component analysis

Principal component analysis (PCA)

Recall that Σ = E [XXT] (assume X is zero-mean) and Y = PTX
with E [YYT] = PTΣP = D

Assume that the diagonal of D (note that those are eigenvalues) are
arranged in descending order that λ1 ≥ λ2 ≥ · · · ≥ λn

Generate an approximate Ŷ of Y by setting all components except first
k as 0
The mean square error (mse) of1 Ŷ = E [(Y − Ŷ)T (Y − Ŷ)]
= tr(E [(Y − Ŷ)T (Y − Ŷ)]) = E [tr((Y − Ŷ)T (Y − Ŷ))]
= E [tr((Y − Ŷ)(Y − Ŷ)T)] = tr(E [(Y − Ŷ)(Y − Ŷ)T]) =

∑n
i=k+1 λi

Similarly, if we “reconstruct” X as X̂ = PŶ. The mse of
X̂ = E [(X− X̂)T (X− X̂)] = tr(E [(X− X̂)(X− X̂)T])=
tr(PE [(Y − Ŷ)(Y − Ŷ)]PT)= tr(PTPE [(Y − Ŷ)(Y − Ŷ)])
=
∑n

i=k+1 λi

Note that the eigenvectors of Σ (columns of P) are known as the
principal components

1tr(AB) =
∑

i

∑
j ai,jbj,i =

∑
j

∑
i bj,iai,j = tr(BA)

S. Cheng (OU-Tulsa) December 5, 2017 14 / 275

Lecture 3 Principal component analysis

Practical PCA

In practice, we typically are given a dataset with samples of X instead of
the distribution or covariance matrix of X. Denote the data as X with
each row is a data point and a total of m data points. Thus X is an m by
n matrix

Data are rarely zero-mean to begin with, but we can easily preprocess
it by subtracting the mean. That is2 X ← X − ones(m, 1)mean(X)
Note that Σ̂ ≈ 1

mX
TX . We could directly compute the eigenvectors

and eigenvalues of Σ̂ as discussed previously. But in many cases,
m < n making Σ̂ a bad approximate3

A more common approach is to decompose X with singular value
decomposition (SVD) instead

2I used the matlab notations for ones(·) and mean(·) here
3Note that Σ̂ won’t be full rank and positive definite as one would hope

S. Cheng (OU-Tulsa) December 5, 2017 15 / 275

Lecture 3 Principal component analysis

Practical PCA

In practice, we typically are given a dataset with samples of X instead of
the distribution or covariance matrix of X. Denote the data as X with
each row is a data point and a total of m data points. Thus X is an m by
n matrix

Data are rarely zero-mean to begin with, but we can easily preprocess
it by subtracting the mean. That is2 X ← X − ones(m, 1)mean(X)

Note that Σ̂ ≈ 1
mX

TX . We could directly compute the eigenvectors

and eigenvalues of Σ̂ as discussed previously. But in many cases,
m < n making Σ̂ a bad approximate3

A more common approach is to decompose X with singular value
decomposition (SVD) instead

2I used the matlab notations for ones(·) and mean(·) here
3Note that Σ̂ won’t be full rank and positive definite as one would hope

S. Cheng (OU-Tulsa) December 5, 2017 15 / 275

Lecture 3 Principal component analysis

Practical PCA

In practice, we typically are given a dataset with samples of X instead of
the distribution or covariance matrix of X. Denote the data as X with
each row is a data point and a total of m data points. Thus X is an m by
n matrix

Data are rarely zero-mean to begin with, but we can easily preprocess
it by subtracting the mean. That is2 X ← X − ones(m, 1)mean(X)
Note that Σ̂ ≈ 1

mX
TX . We could directly compute the eigenvectors

and eigenvalues of Σ̂ as discussed previously. But in many cases,
m < n making Σ̂ a bad approximate3

A more common approach is to decompose X with singular value
decomposition (SVD) instead

2I used the matlab notations for ones(·) and mean(·) here
3Note that Σ̂ won’t be full rank and positive definite as one would hope

S. Cheng (OU-Tulsa) December 5, 2017 15 / 275

Lecture 3 Principal component analysis

Practical PCA

In practice, we typically are given a dataset with samples of X instead of
the distribution or covariance matrix of X. Denote the data as X with
each row is a data point and a total of m data points. Thus X is an m by
n matrix

Data are rarely zero-mean to begin with, but we can easily preprocess
it by subtracting the mean. That is2 X ← X − ones(m, 1)mean(X)
Note that Σ̂ ≈ 1

mX
TX . We could directly compute the eigenvectors

and eigenvalues of Σ̂ as discussed previously. But in many cases,
m < n making Σ̂ a bad approximate3

A more common approach is to decompose X with singular value
decomposition (SVD) instead

2I used the matlab notations for ones(·) and mean(·) here
3Note that Σ̂ won’t be full rank and positive definite as one would hope

S. Cheng (OU-Tulsa) December 5, 2017 15 / 275

Lecture 3 Principal component analysis

Singular value decomposition (SVD)

Every matrix M can be decomposed as
M = UDV †, where D is diagonal and U,V
are unitary. The diagonal terms in Σ are
known to be the singular values

For real matrix M, we can write
M = UDV T instead. U,V are now “real
unitary” or orthogonal

Note that
MTM = VDTUTUDV T = VD2V T .
Therefore, V are really eigenvectors of
MTM with eigenvalues equal to the
square of the singular values
Similar, we have MMT = UD2UT

S. Cheng (OU-Tulsa) December 5, 2017 16 / 275

Lecture 3 Principal component analysis

Singular value decomposition (SVD)

Every matrix M can be decomposed as
M = UDV †, where D is diagonal and U,V
are unitary. The diagonal terms in Σ are
known to be the singular values

For real matrix M, we can write
M = UDV T instead. U,V are now “real
unitary” or orthogonal

Note that
MTM = VDTUTUDV T = VD2V T .
Therefore, V are really eigenvectors of
MTM with eigenvalues equal to the
square of the singular values
Similar, we have MMT = UD2UT

S. Cheng (OU-Tulsa) December 5, 2017 16 / 275

Lecture 3 Principal component analysis

Singular value decomposition (SVD)

Every matrix M can be decomposed as
M = UDV †, where D is diagonal and U,V
are unitary. The diagonal terms in Σ are
known to be the singular values

For real matrix M, we can write
M = UDV T instead. U,V are now “real
unitary” or orthogonal

Note that
MTM = VDTUTUDV T = VD2V T .
Therefore, V are really eigenvectors of
MTM with eigenvalues equal to the
square of the singular values

Similar, we have MMT = UD2UT

S. Cheng (OU-Tulsa) December 5, 2017 16 / 275

Lecture 3 Principal component analysis

Singular value decomposition (SVD)

Every matrix M can be decomposed as
M = UDV †, where D is diagonal and U,V
are unitary. The diagonal terms in Σ are
known to be the singular values

For real matrix M, we can write
M = UDV T instead. U,V are now “real
unitary” or orthogonal

Note that
MTM = VDTUTUDV T = VD2V T .
Therefore, V are really eigenvectors of
MTM with eigenvalues equal to the
square of the singular values
Similar, we have MMT = UD2UT

S. Cheng (OU-Tulsa) December 5, 2017 16 / 275

Lecture 3 Principal component analysis

PCA with SVD

So from previous slides, instead of first estimating the covariance matrix
and then diagonalize it. We should directly decompose the data X with
SVD instead. The process is summarized below

Estimate mean from data and subtract mean from that

Decomposed the mean subtracted data with SVD. We get
X = UDV T

Note that column of V are now the principal components, and we can
transform a data column as V T x . The entire data set can be
transformed as Y = XV

The first few columns of Y will contain most “information” regarding
the original X
For example, they can be taken as features for recognition or one can
omit other columns besides the first few for “compression” as discussed
earlier

S. Cheng (OU-Tulsa) December 5, 2017 17 / 275

Lecture 3 Principal component analysis

PCA with SVD

So from previous slides, instead of first estimating the covariance matrix
and then diagonalize it. We should directly decompose the data X with
SVD instead. The process is summarized below

Estimate mean from data and subtract mean from that

Decomposed the mean subtracted data with SVD. We get
X = UDV T

Note that column of V are now the principal components, and we can
transform a data column as V T x . The entire data set can be
transformed as Y = XV

The first few columns of Y will contain most “information” regarding
the original X
For example, they can be taken as features for recognition or one can
omit other columns besides the first few for “compression” as discussed
earlier

S. Cheng (OU-Tulsa) December 5, 2017 17 / 275

Lecture 3 Principal component analysis

PCA with SVD

So from previous slides, instead of first estimating the covariance matrix
and then diagonalize it. We should directly decompose the data X with
SVD instead. The process is summarized below

Estimate mean from data and subtract mean from that

Decomposed the mean subtracted data with SVD. We get
X = UDV T

Note that column of V are now the principal components, and we can
transform a data column as V T x . The entire data set can be
transformed as Y = XV

The first few columns of Y will contain most “information” regarding
the original X
For example, they can be taken as features for recognition or one can
omit other columns besides the first few for “compression” as discussed
earlier

S. Cheng (OU-Tulsa) December 5, 2017 17 / 275

Lecture 3 Principal component analysis

PCA with SVD

So from previous slides, instead of first estimating the covariance matrix
and then diagonalize it. We should directly decompose the data X with
SVD instead. The process is summarized below

Estimate mean from data and subtract mean from that

Decomposed the mean subtracted data with SVD. We get
X = UDV T

Note that column of V are now the principal components, and we can
transform a data column as V T x . The entire data set can be
transformed as Y = XV

The first few columns of Y will contain most “information” regarding
the original X
For example, they can be taken as features for recognition or one can
omit other columns besides the first few for “compression” as discussed
earlier

S. Cheng (OU-Tulsa) December 5, 2017 17 / 275

Lecture 3 Principal component analysis

PCA with SVD

So from previous slides, instead of first estimating the covariance matrix
and then diagonalize it. We should directly decompose the data X with
SVD instead. The process is summarized below

Estimate mean from data and subtract mean from that

Decomposed the mean subtracted data with SVD. We get
X = UDV T

Note that column of V are now the principal components, and we can
transform a data column as V T x . The entire data set can be
transformed as Y = XV

The first few columns of Y will contain most “information” regarding
the original X

For example, they can be taken as features for recognition or one can
omit other columns besides the first few for “compression” as discussed
earlier

S. Cheng (OU-Tulsa) December 5, 2017 17 / 275

Lecture 3 Principal component analysis

PCA with SVD

So from previous slides, instead of first estimating the covariance matrix
and then diagonalize it. We should directly decompose the data X with
SVD instead. The process is summarized below

Estimate mean from data and subtract mean from that

Decomposed the mean subtracted data with SVD. We get
X = UDV T

Note that column of V are now the principal components, and we can
transform a data column as V T x . The entire data set can be
transformed as Y = XV

The first few columns of Y will contain most “information” regarding
the original X
For example, they can be taken as features for recognition or one can
omit other columns besides the first few for “compression” as discussed
earlier

S. Cheng (OU-Tulsa) December 5, 2017 17 / 275

Lecture 3 Processing multivariate normal distribution

Marginalization of normal distribution

Consider Z ∼ N (µZ,ΣZ) and let say X is a segment of Z. That is,

Z =

(
X
Y

)
for some Y. Then how should X behave?

We can find the pdf of X by just marginalizing that of Z. That is

p(x) =

∫
p(x, y)dy

=
1√

det(2πΣ)

∫
exp

(
−1

2

(
x− µX

y − µY

)T

Σ−1

(
x− µX

y − µY

))
dy

S. Cheng (OU-Tulsa) December 5, 2017 18 / 275

Lecture 3 Processing multivariate normal distribution

Marginalization of normal distribution

Consider Z ∼ N (µZ,ΣZ) and let say X is a segment of Z. That is,

Z =

(
X
Y

)
for some Y. Then how should X behave?

We can find the pdf of X by just marginalizing that of Z. That is

p(x) =

∫
p(x, y)dy

=
1√

det(2πΣ)

∫
exp

(
−1

2

(
x− µX

y − µY

)T

Σ−1

(
x− µX

y − µY

))
dy

S. Cheng (OU-Tulsa) December 5, 2017 18 / 275

Lecture 3 Processing multivariate normal distribution

Marginalization of normal distribution

Denote Σ−1 as Λ (also known as the precision matrix). And partition

both Σ and Λ into Σ =

(
ΣXX ΣXY

ΣYX ΣYY

)
and Λ =

(
ΛXX ΛXY

ΛYX ΛYY

)

Then we have

p(x) =
1√

det(2πΣ)

∫
exp

(
−1

2

[
(x− µX)

TΛXX(x− µX)

+ (y − µY)
TΛYX(x− µX) + (x− µX)

TΛXY(y − µY)

+(y − µY)
TΛYY(y − µY)

])
dy

=
e−

(x−µX)T ΛXX(x−µX)

2√
det(2πΣ)

∫
exp

(
−1

2

[
(y − µY)

TΛYX(x− µX)

+(x− µX)
TΛXY(y − µY) + (y − µY)

TΛYY(y − µY)
])

dy

S. Cheng (OU-Tulsa) December 5, 2017 19 / 275

Lecture 3 Processing multivariate normal distribution

Marginalization of normal distribution

Denote Σ−1 as Λ (also known as the precision matrix). And partition

both Σ and Λ into Σ =

(
ΣXX ΣXY

ΣYX ΣYY

)
and Λ =

(
ΛXX ΛXY

ΛYX ΛYY

)
Then we have

p(x) =
1√

det(2πΣ)

∫
exp

(
−1

2

[
(x− µX)

TΛXX(x− µX)

+ (y − µY)
TΛYX(x− µX) + (x− µX)

TΛXY(y − µY)

+(y − µY)
TΛYY(y − µY)

])
dy

=
e−

(x−µX)T ΛXX(x−µX)

2√
det(2πΣ)

∫
exp

(
−1

2

[
(y − µY)

TΛYX(x− µX)

+(x− µX)
TΛXY(y − µY) + (y − µY)

TΛYY(y − µY)
])

dy

S. Cheng (OU-Tulsa) December 5, 2017 19 / 275

Lecture 3 Processing multivariate normal distribution

Marginalization of normal distribution

To proceed, let’s apply the completing square trick on
(y−µY)

TΛYX(x−µX)+(x−µX)
TΛXY(y−µY)+(y−µY)

TΛYY(y−µY).
For the ease of exposition, let us denote x̃ as x−µX and ỹ as y−µY. We
have

ỹTΛYXx̃+ x̃TΛXYỹ + ỹTΛYYỹ

=(ỹ + Λ−1
YYΛYXx̃)

TΛYY(ỹ + Λ−1
YYΛYXx̃)− x̃TΛXYΛ

−1
YYΛYXx̃,

where we use the fact that Λ = Σ−1 is symmetric and so ΛXY = ΛYX

S. Cheng (OU-Tulsa) December 5, 2017 20 / 275

Lecture 3 Processing multivariate normal distribution

Marginalization of normal distribution

To proceed, let’s apply the completing square trick on
(y−µY)

TΛYX(x−µX)+(x−µX)
TΛXY(y−µY)+(y−µY)

TΛYY(y−µY).
For the ease of exposition, let us denote x̃ as x−µX and ỹ as y−µY. We
have

ỹTΛYXx̃+ x̃TΛXYỹ + ỹTΛYYỹ

=(ỹ + Λ−1
YYΛYXx̃)

TΛYY(ỹ + Λ−1
YYΛYXx̃)− x̃TΛXYΛ

−1
YYΛYXx̃,

where we use the fact that Λ = Σ−1 is symmetric and so ΛXY = ΛYX

S. Cheng (OU-Tulsa) December 5, 2017 20 / 275

Lecture 3 Processing multivariate normal distribution

Marginalization of normal distribution

p(x) =
e−

x̃T (ΛXX−ΛXYΛ
−1
YY

ΛYX)x̃

2√
det(2πΣ)

∫
e−

(ỹ+Λ
−1
YY

ΛYXx̃)T ΛYY (ỹ+Λ
−1
YY

ΛYXx̃)

2 dy

=

√
det(2πΛ−1

YY)√
det(2πΣ)

exp

(
−
x̃T (ΛXX − ΛXYΛ

−1
YYΛYX)x̃

2

)
(a)
=

√
det(2πΛ−1

YY)√
det(2πΣ)

exp

(
−
x̃TΣ−1

XXx̃

2

)
(b)
=

1√
det(2πΣXX)

exp

(
−
x̃TΣ−1

XXx̃

2

)
=

1√
det(2πΣXX)

exp

(
−
(x− µX)

TΣ−1
XX(x− µX)

2

)
,

where (a) and (b) will be shown next

S. Cheng (OU-Tulsa) December 5, 2017 21 / 275

Lecture 3 Processing multivariate normal distribution

Marginalization of normal distribution

p(x) =
e−

x̃T (ΛXX−ΛXYΛ
−1
YY

ΛYX)x̃

2√
det(2πΣ)

∫
e−

(ỹ+Λ
−1
YY

ΛYXx̃)T ΛYY (ỹ+Λ
−1
YY

ΛYXx̃)

2 dy

=

√
det(2πΛ−1

YY)√
det(2πΣ)

exp

(
−
x̃T (ΛXX − ΛXYΛ

−1
YYΛYX)x̃

2

)

(a)
=

√
det(2πΛ−1

YY)√
det(2πΣ)

exp

(
−
x̃TΣ−1

XXx̃

2

)
(b)
=

1√
det(2πΣXX)

exp

(
−
x̃TΣ−1

XXx̃

2

)
=

1√
det(2πΣXX)

exp

(
−
(x− µX)

TΣ−1
XX(x− µX)

2

)
,

where (a) and (b) will be shown next

S. Cheng (OU-Tulsa) December 5, 2017 21 / 275

Lecture 3 Processing multivariate normal distribution

Marginalization of normal distribution

p(x) =
e−

x̃T (ΛXX−ΛXYΛ
−1
YY

ΛYX)x̃

2√
det(2πΣ)

∫
e−

(ỹ+Λ
−1
YY

ΛYXx̃)T ΛYY (ỹ+Λ
−1
YY

ΛYXx̃)

2 dy

=

√
det(2πΛ−1

YY)√
det(2πΣ)

exp

(
−
x̃T (ΛXX − ΛXYΛ

−1
YYΛYX)x̃

2

)
(a)
=

√
det(2πΛ−1

YY)√
det(2πΣ)

exp

(
−
x̃TΣ−1

XXx̃

2

)

(b)
=

1√
det(2πΣXX)

exp

(
−
x̃TΣ−1

XXx̃

2

)
=

1√
det(2πΣXX)

exp

(
−
(x− µX)

TΣ−1
XX(x− µX)

2

)
,

where (a) and (b) will be shown next

S. Cheng (OU-Tulsa) December 5, 2017 21 / 275

Lecture 3 Processing multivariate normal distribution

Marginalization of normal distribution

p(x) =
e−

x̃T (ΛXX−ΛXYΛ
−1
YY

ΛYX)x̃

2√
det(2πΣ)

∫
e−

(ỹ+Λ
−1
YY

ΛYXx̃)T ΛYY (ỹ+Λ
−1
YY

ΛYXx̃)

2 dy

=

√
det(2πΛ−1

YY)√
det(2πΣ)

exp

(
−
x̃T (ΛXX − ΛXYΛ

−1
YYΛYX)x̃

2

)
(a)
=

√
det(2πΛ−1

YY)√
det(2πΣ)

exp

(
−
x̃TΣ−1

XXx̃

2

)
(b)
=

1√
det(2πΣXX)

exp

(
−
x̃TΣ−1

XXx̃

2

)

=
1√

det(2πΣXX)
exp

(
−
(x− µX)

TΣ−1
XX(x− µX)

2

)
,

where (a) and (b) will be shown next

S. Cheng (OU-Tulsa) December 5, 2017 21 / 275

Lecture 3 Processing multivariate normal distribution

Marginalization of normal distribution

p(x) =
e−

x̃T (ΛXX−ΛXYΛ
−1
YY

ΛYX)x̃

2√
det(2πΣ)

∫
e−

(ỹ+Λ
−1
YY

ΛYXx̃)T ΛYY (ỹ+Λ
−1
YY

ΛYXx̃)

2 dy

=

√
det(2πΛ−1

YY)√
det(2πΣ)

exp

(
−
x̃T (ΛXX − ΛXYΛ

−1
YYΛYX)x̃

2

)
(a)
=

√
det(2πΛ−1

YY)√
det(2πΣ)

exp

(
−
x̃TΣ−1

XXx̃

2

)
(b)
=

1√
det(2πΣXX)

exp

(
−
x̃TΣ−1

XXx̃

2

)
=

1√
det(2πΣXX)

exp

(
−
(x− µX)

TΣ−1
XX(x− µX)

2

)
,

where (a) and (b) will be shown next

S. Cheng (OU-Tulsa) December 5, 2017 21 / 275

Lecture 3 Processing multivariate normal distribution

(a) Σ−1XX = ΛXX − ΛXYΛ
−1
YYΛYX

Proof.

Since Λ = Σ−1, we have ΣXXΛXY +ΣXYΛYY = 0 and
ΣXXΛXX +ΣXYΛYX = I . Insert an identity into the latter equation, we
have ΣXXΛXX +ΣXY(ΛYYΛ

−1
YY)ΛYX = ΣXXΛXX − (ΣXXΛXY)Λ

−1
YYΛYX =

ΣXX(ΛXX − ΛXYΛ
−1
YYΛYX) = I .

Remark

By symmetry, we also have
Λ−1
XX = ΣXX − ΣXYΣ

−1
YYΣYX

S. Cheng (OU-Tulsa) December 5, 2017 22 / 275

Lecture 3 Processing multivariate normal distribution

(b’) det(Σ) = det(ΣYY) det(Λ
−1
XX)

Proof.

det(Σ) = det

(
ΣXX ΣXY

ΣYX ΣYY

)

= det

((
I 0
0 ΣYY

)(
ΣXX ΣXY

Σ−1
YYΣYX I

))
= det

((
I 0
0 ΣYY

)(
I ΣXY

0 I

)(
ΣXX − ΣXYΣ

−1
YYΣYX 0

Σ−1
YYΣYX I

))
= det

(
I 0
0 ΣYY

)
det

(
I ΣXY

0 I

)
det

(
ΣXX − ΣXYΣ

−1
YYΣYX 0

Σ−1
YYΣYX I

)
= detΣYY det(ΣXX − ΣXYΣ

−1
YYΣYX)

= detΣYY det Λ−1
XX,

where the last equality is from (a)

S. Cheng (OU-Tulsa) December 5, 2017 23 / 275

Lecture 3 Processing multivariate normal distribution

(b’) det(Σ) = det(ΣYY) det(Λ
−1
XX)

Proof.

det(Σ) = det

(
ΣXX ΣXY

ΣYX ΣYY

)
= det

((
I 0
0 ΣYY

)(
ΣXX ΣXY

Σ−1
YYΣYX I

))

= det

((
I 0
0 ΣYY

)(
I ΣXY

0 I

)(
ΣXX − ΣXYΣ

−1
YYΣYX 0

Σ−1
YYΣYX I

))
= det

(
I 0
0 ΣYY

)
det

(
I ΣXY

0 I

)
det

(
ΣXX − ΣXYΣ

−1
YYΣYX 0

Σ−1
YYΣYX I

)
= detΣYY det(ΣXX − ΣXYΣ

−1
YYΣYX)

= detΣYY det Λ−1
XX,

where the last equality is from (a)

S. Cheng (OU-Tulsa) December 5, 2017 23 / 275

Lecture 3 Processing multivariate normal distribution

(b’) det(Σ) = det(ΣYY) det(Λ
−1
XX)

Proof.

det(Σ) = det

(
ΣXX ΣXY

ΣYX ΣYY

)
= det

((
I 0
0 ΣYY

)(
ΣXX ΣXY

Σ−1
YYΣYX I

))
= det

((
I 0
0 ΣYY

)(
I ΣXY

0 I

)(
ΣXX − ΣXYΣ

−1
YYΣYX 0

Σ−1
YYΣYX I

))

= det

(
I 0
0 ΣYY

)
det

(
I ΣXY

0 I

)
det

(
ΣXX − ΣXYΣ

−1
YYΣYX 0

Σ−1
YYΣYX I

)
= detΣYY det(ΣXX − ΣXYΣ

−1
YYΣYX)

= detΣYY det Λ−1
XX,

where the last equality is from (a)

S. Cheng (OU-Tulsa) December 5, 2017 23 / 275

Lecture 3 Processing multivariate normal distribution

(b’) det(Σ) = det(ΣYY) det(Λ
−1
XX)

Proof.

det(Σ) = det

(
ΣXX ΣXY

ΣYX ΣYY

)
= det

((
I 0
0 ΣYY

)(
ΣXX ΣXY

Σ−1
YYΣYX I

))
= det

((
I 0
0 ΣYY

)(
I ΣXY

0 I

)(
ΣXX − ΣXYΣ

−1
YYΣYX 0

Σ−1
YYΣYX I

))
= det

(
I 0
0 ΣYY

)
det

(
I ΣXY

0 I

)
det

(
ΣXX − ΣXYΣ

−1
YYΣYX 0

Σ−1
YYΣYX I

)

= detΣYY det(ΣXX − ΣXYΣ
−1
YYΣYX)

= detΣYY det Λ−1
XX,

where the last equality is from (a)

S. Cheng (OU-Tulsa) December 5, 2017 23 / 275

Lecture 3 Processing multivariate normal distribution

(b’) det(Σ) = det(ΣYY) det(Λ
−1
XX)

Proof.

det(Σ) = det

(
ΣXX ΣXY

ΣYX ΣYY

)
= det

((
I 0
0 ΣYY

)(
ΣXX ΣXY

Σ−1
YYΣYX I

))
= det

((
I 0
0 ΣYY

)(
I ΣXY

0 I

)(
ΣXX − ΣXYΣ

−1
YYΣYX 0

Σ−1
YYΣYX I

))
= det

(
I 0
0 ΣYY

)
det

(
I ΣXY

0 I

)
det

(
ΣXX − ΣXYΣ

−1
YYΣYX 0

Σ−1
YYΣYX I

)
= detΣYY det(ΣXX − ΣXYΣ

−1
YYΣYX)

= detΣYY det Λ−1
XX,

where the last equality is from (a)

S. Cheng (OU-Tulsa) December 5, 2017 23 / 275

Lecture 3 Processing multivariate normal distribution

(b’) det(Σ) = det(ΣYY) det(Λ
−1
XX)

Proof.

det(Σ) = det

(
ΣXX ΣXY

ΣYX ΣYY

)
= det

((
I 0
0 ΣYY

)(
ΣXX ΣXY

Σ−1
YYΣYX I

))
= det

((
I 0
0 ΣYY

)(
I ΣXY

0 I

)(
ΣXX − ΣXYΣ

−1
YYΣYX 0

Σ−1
YYΣYX I

))
= det

(
I 0
0 ΣYY

)
det

(
I ΣXY

0 I

)
det

(
ΣXX − ΣXYΣ

−1
YYΣYX 0

Σ−1
YYΣYX I

)
= detΣYY det(ΣXX − ΣXYΣ

−1
YYΣYX)

= detΣYY det Λ−1
XX,

where the last equality is from (a)

S. Cheng (OU-Tulsa) December 5, 2017 23 / 275

Lecture 3 Processing multivariate normal distribution

(b) det(aΣ) = det(aΣYY) det(aΛ
−1
XX) for any constant a

Proof.

Note that since the width (height) of Σ is equal to the sum of the widths
of ΣXX and ΣYY. The equation below follows immediately

Remark

Note that by symmetry, we also have det(aΣ) = det(aΣXX) det(aΛ
−1
YY) for

any constant a. Take a = 2π and that is exactly what we need for (b)

S. Cheng (OU-Tulsa) December 5, 2017 24 / 275

Lecture 4

Review

ML: x̂ = argmaxx p(x |θ̂), θ̂ = argmaxθ p(o|θ)
MAP: x̂ = argmaxx p(x |θ̂), θ̂ = argmaxθ p(θ|o)
Bayesian: x̂ =

∑
θ p(θ|o)

∑
x xp(x |θ)

For zero-mean X, ΣX = E [XXT] and say we have PTΣXP = D. The
transformed Y = PTX are independent to each other

Note that the transform is just principal component analysis

Marginalization of a normal distribution is still a normal distribution

(a) Σ−1
XX = ΛXX − ΛXYΛ

−1
YYΛYX

(b) det(aΣ) = det(aΣYY) det(aΛ
−1
XX) for any constant a

S. Cheng (OU-Tulsa) December 5, 2017 25 / 275

Lecture 4 Principal component analysis

Principal component analysis (PCA)

Recall that Σ = E [XXT] (assume X is zero-mean) and Y = PTX
with E [YYT] = PTΣP = D

Assume that the diagonal of D (note that those are eigenvalues) are
arranged in descending order that λ1 ≥ λ2 ≥ · · · ≥ λn

Generate an approximate Ŷ of Y by setting all components except first
k as 0
The mean square error (mse) of4 Ŷ = E [(Y − Ŷ)T (Y − Ŷ)]
= tr(E [(Y − Ŷ)T (Y − Ŷ)]) = E [tr((Y − Ŷ)T (Y − Ŷ))]
= E [tr((Y − Ŷ)(Y − Ŷ)T)] = tr(E [(Y − Ŷ)(Y − Ŷ)T]) =

∑n
i=k+1 λi

Similarly, if we “reconstruct” X as X̂ = PŶ. The mse of
X̂ = E [(X− X̂)T (X− X̂)] = tr(E [(X− X̂)(X− X̂)T])=
tr(PE [(Y − Ŷ)(Y − Ŷ)T]PT)= tr(PTPE [(Y − Ŷ)(Y − Ŷ)T])
=
∑n

i=k+1 λi

Note that the eigenvectors of Σ (columns of P) are known as the
principal components

4tr(AB) =
∑

i

∑
j ai,jbj,i =

∑
j

∑
i bj,iai,j = tr(BA)

S. Cheng (OU-Tulsa) December 5, 2017 26 / 275

Lecture 4 Principal component analysis

Principal component analysis (PCA)

Recall that Σ = E [XXT] (assume X is zero-mean) and Y = PTX
with E [YYT] = PTΣP = D

Assume that the diagonal of D (note that those are eigenvalues) are
arranged in descending order that λ1 ≥ λ2 ≥ · · · ≥ λn

Generate an approximate Ŷ of Y by setting all components except first
k as 0

The mean square error (mse) of4 Ŷ = E [(Y − Ŷ)T (Y − Ŷ)]
= tr(E [(Y − Ŷ)T (Y − Ŷ)]) = E [tr((Y − Ŷ)T (Y − Ŷ))]
= E [tr((Y − Ŷ)(Y − Ŷ)T)] = tr(E [(Y − Ŷ)(Y − Ŷ)T]) =

∑n
i=k+1 λi

Similarly, if we “reconstruct” X as X̂ = PŶ. The mse of
X̂ = E [(X− X̂)T (X− X̂)] = tr(E [(X− X̂)(X− X̂)T])=
tr(PE [(Y − Ŷ)(Y − Ŷ)T]PT)= tr(PTPE [(Y − Ŷ)(Y − Ŷ)T])
=
∑n

i=k+1 λi

Note that the eigenvectors of Σ (columns of P) are known as the
principal components

4tr(AB) =
∑

i

∑
j ai,jbj,i =

∑
j

∑
i bj,iai,j = tr(BA)

S. Cheng (OU-Tulsa) December 5, 2017 26 / 275

Lecture 4 Principal component analysis

Principal component analysis (PCA)

Recall that Σ = E [XXT] (assume X is zero-mean) and Y = PTX
with E [YYT] = PTΣP = D

Assume that the diagonal of D (note that those are eigenvalues) are
arranged in descending order that λ1 ≥ λ2 ≥ · · · ≥ λn

Generate an approximate Ŷ of Y by setting all components except first
k as 0
The mean square error (mse) of4 Ŷ = E [(Y − Ŷ)T (Y − Ŷ)]

= tr(E [(Y − Ŷ)T (Y − Ŷ)]) = E [tr((Y − Ŷ)T (Y − Ŷ))]
= E [tr((Y − Ŷ)(Y − Ŷ)T)] = tr(E [(Y − Ŷ)(Y − Ŷ)T]) =

∑n
i=k+1 λi

Similarly, if we “reconstruct” X as X̂ = PŶ. The mse of
X̂ = E [(X− X̂)T (X− X̂)] = tr(E [(X− X̂)(X− X̂)T])=
tr(PE [(Y − Ŷ)(Y − Ŷ)T]PT)= tr(PTPE [(Y − Ŷ)(Y − Ŷ)T])
=
∑n

i=k+1 λi

Note that the eigenvectors of Σ (columns of P) are known as the
principal components

4tr(AB) =
∑

i

∑
j ai,jbj,i =

∑
j

∑
i bj,iai,j = tr(BA)

S. Cheng (OU-Tulsa) December 5, 2017 26 / 275

Lecture 4 Principal component analysis

Principal component analysis (PCA)

Recall that Σ = E [XXT] (assume X is zero-mean) and Y = PTX
with E [YYT] = PTΣP = D

Assume that the diagonal of D (note that those are eigenvalues) are
arranged in descending order that λ1 ≥ λ2 ≥ · · · ≥ λn

Generate an approximate Ŷ of Y by setting all components except first
k as 0
The mean square error (mse) of4 Ŷ = E [(Y − Ŷ)T (Y − Ŷ)]
= tr(E [(Y − Ŷ)T (Y − Ŷ)])

= E [tr((Y − Ŷ)T (Y − Ŷ))]
= E [tr((Y − Ŷ)(Y − Ŷ)T)] = tr(E [(Y − Ŷ)(Y − Ŷ)T]) =

∑n
i=k+1 λi

Similarly, if we “reconstruct” X as X̂ = PŶ. The mse of
X̂ = E [(X− X̂)T (X− X̂)] = tr(E [(X− X̂)(X− X̂)T])=
tr(PE [(Y − Ŷ)(Y − Ŷ)T]PT)= tr(PTPE [(Y − Ŷ)(Y − Ŷ)T])
=
∑n

i=k+1 λi

Note that the eigenvectors of Σ (columns of P) are known as the
principal components

4tr(AB) =
∑

i

∑
j ai,jbj,i =

∑
j

∑
i bj,iai,j = tr(BA)

S. Cheng (OU-Tulsa) December 5, 2017 26 / 275

Lecture 4 Principal component analysis

Principal component analysis (PCA)

Recall that Σ = E [XXT] (assume X is zero-mean) and Y = PTX
with E [YYT] = PTΣP = D

Assume that the diagonal of D (note that those are eigenvalues) are
arranged in descending order that λ1 ≥ λ2 ≥ · · · ≥ λn

Generate an approximate Ŷ of Y by setting all components except first
k as 0
The mean square error (mse) of4 Ŷ = E [(Y − Ŷ)T (Y − Ŷ)]
= tr(E [(Y − Ŷ)T (Y − Ŷ)]) = E [tr((Y − Ŷ)T (Y − Ŷ))]

= E [tr((Y − Ŷ)(Y − Ŷ)T)] = tr(E [(Y − Ŷ)(Y − Ŷ)T]) =
∑n

i=k+1 λi

Similarly, if we “reconstruct” X as X̂ = PŶ. The mse of
X̂ = E [(X− X̂)T (X− X̂)] = tr(E [(X− X̂)(X− X̂)T])=
tr(PE [(Y − Ŷ)(Y − Ŷ)T]PT)= tr(PTPE [(Y − Ŷ)(Y − Ŷ)T])
=
∑n

i=k+1 λi

Note that the eigenvectors of Σ (columns of P) are known as the
principal components

4tr(AB) =
∑

i

∑
j ai,jbj,i =

∑
j

∑
i bj,iai,j = tr(BA)

S. Cheng (OU-Tulsa) December 5, 2017 26 / 275

Lecture 4 Principal component analysis

Principal component analysis (PCA)

Recall that Σ = E [XXT] (assume X is zero-mean) and Y = PTX
with E [YYT] = PTΣP = D

Assume that the diagonal of D (note that those are eigenvalues) are
arranged in descending order that λ1 ≥ λ2 ≥ · · · ≥ λn

Generate an approximate Ŷ of Y by setting all components except first
k as 0
The mean square error (mse) of4 Ŷ = E [(Y − Ŷ)T (Y − Ŷ)]
= tr(E [(Y − Ŷ)T (Y − Ŷ)]) = E [tr((Y − Ŷ)T (Y − Ŷ))]
= E [tr((Y − Ŷ)(Y − Ŷ)T)] = tr(E [(Y − Ŷ)(Y − Ŷ)T])

=
∑n

i=k+1 λi

Similarly, if we “reconstruct” X as X̂ = PŶ. The mse of
X̂ = E [(X− X̂)T (X− X̂)] = tr(E [(X− X̂)(X− X̂)T])=
tr(PE [(Y − Ŷ)(Y − Ŷ)T]PT)= tr(PTPE [(Y − Ŷ)(Y − Ŷ)T])
=
∑n

i=k+1 λi

Note that the eigenvectors of Σ (columns of P) are known as the
principal components

4tr(AB) =
∑

i

∑
j ai,jbj,i =

∑
j

∑
i bj,iai,j = tr(BA)

S. Cheng (OU-Tulsa) December 5, 2017 26 / 275

Lecture 4 Principal component analysis

Principal component analysis (PCA)

Recall that Σ = E [XXT] (assume X is zero-mean) and Y = PTX
with E [YYT] = PTΣP = D

Assume that the diagonal of D (note that those are eigenvalues) are
arranged in descending order that λ1 ≥ λ2 ≥ · · · ≥ λn

Generate an approximate Ŷ of Y by setting all components except first
k as 0
The mean square error (mse) of4 Ŷ = E [(Y − Ŷ)T (Y − Ŷ)]
= tr(E [(Y − Ŷ)T (Y − Ŷ)]) = E [tr((Y − Ŷ)T (Y − Ŷ))]
= E [tr((Y − Ŷ)(Y − Ŷ)T)] = tr(E [(Y − Ŷ)(Y − Ŷ)T]) =

∑n
i=k+1 λi

Similarly, if we “reconstruct” X as X̂ = PŶ. The mse of
X̂ = E [(X− X̂)T (X− X̂)] = tr(E [(X− X̂)(X− X̂)T])

=
tr(PE [(Y − Ŷ)(Y − Ŷ)T]PT)= tr(PTPE [(Y − Ŷ)(Y − Ŷ)T])
=
∑n

i=k+1 λi

Note that the eigenvectors of Σ (columns of P) are known as the
principal components

4tr(AB) =
∑

i

∑
j ai,jbj,i =

∑
j

∑
i bj,iai,j = tr(BA)

S. Cheng (OU-Tulsa) December 5, 2017 26 / 275

Lecture 4 Principal component analysis

Principal component analysis (PCA)

Recall that Σ = E [XXT] (assume X is zero-mean) and Y = PTX
with E [YYT] = PTΣP = D

Assume that the diagonal of D (note that those are eigenvalues) are
arranged in descending order that λ1 ≥ λ2 ≥ · · · ≥ λn

Generate an approximate Ŷ of Y by setting all components except first
k as 0
The mean square error (mse) of4 Ŷ = E [(Y − Ŷ)T (Y − Ŷ)]
= tr(E [(Y − Ŷ)T (Y − Ŷ)]) = E [tr((Y − Ŷ)T (Y − Ŷ))]
= E [tr((Y − Ŷ)(Y − Ŷ)T)] = tr(E [(Y − Ŷ)(Y − Ŷ)T]) =

∑n
i=k+1 λi

Similarly, if we “reconstruct” X as X̂ = PŶ. The mse of
X̂ = E [(X− X̂)T (X− X̂)] = tr(E [(X− X̂)(X− X̂)T])=
tr(PE [(Y − Ŷ)(Y − Ŷ)T]PT)

= tr(PTPE [(Y − Ŷ)(Y − Ŷ)T])
=
∑n

i=k+1 λi

Note that the eigenvectors of Σ (columns of P) are known as the
principal components

4tr(AB) =
∑

i

∑
j ai,jbj,i =

∑
j

∑
i bj,iai,j = tr(BA)

S. Cheng (OU-Tulsa) December 5, 2017 26 / 275

Lecture 4 Principal component analysis

Principal component analysis (PCA)

Recall that Σ = E [XXT] (assume X is zero-mean) and Y = PTX
with E [YYT] = PTΣP = D

Assume that the diagonal of D (note that those are eigenvalues) are
arranged in descending order that λ1 ≥ λ2 ≥ · · · ≥ λn

Generate an approximate Ŷ of Y by setting all components except first
k as 0
The mean square error (mse) of4 Ŷ = E [(Y − Ŷ)T (Y − Ŷ)]
= tr(E [(Y − Ŷ)T (Y − Ŷ)]) = E [tr((Y − Ŷ)T (Y − Ŷ))]
= E [tr((Y − Ŷ)(Y − Ŷ)T)] = tr(E [(Y − Ŷ)(Y − Ŷ)T]) =

∑n
i=k+1 λi

Similarly, if we “reconstruct” X as X̂ = PŶ. The mse of
X̂ = E [(X− X̂)T (X− X̂)] = tr(E [(X− X̂)(X− X̂)T])=
tr(PE [(Y − Ŷ)(Y − Ŷ)T]PT)= tr(PTPE [(Y − Ŷ)(Y − Ŷ)T])

=
∑n

i=k+1 λi

Note that the eigenvectors of Σ (columns of P) are known as the
principal components

4tr(AB) =
∑

i

∑
j ai,jbj,i =

∑
j

∑
i bj,iai,j = tr(BA)

S. Cheng (OU-Tulsa) December 5, 2017 26 / 275

Lecture 4 Principal component analysis

Principal component analysis (PCA)

Recall that Σ = E [XXT] (assume X is zero-mean) and Y = PTX
with E [YYT] = PTΣP = D

Assume that the diagonal of D (note that those are eigenvalues) are
arranged in descending order that λ1 ≥ λ2 ≥ · · · ≥ λn

Generate an approximate Ŷ of Y by setting all components except first
k as 0
The mean square error (mse) of4 Ŷ = E [(Y − Ŷ)T (Y − Ŷ)]
= tr(E [(Y − Ŷ)T (Y − Ŷ)]) = E [tr((Y − Ŷ)T (Y − Ŷ))]
= E [tr((Y − Ŷ)(Y − Ŷ)T)] = tr(E [(Y − Ŷ)(Y − Ŷ)T]) =

∑n
i=k+1 λi

Similarly, if we “reconstruct” X as X̂ = PŶ. The mse of
X̂ = E [(X− X̂)T (X− X̂)] = tr(E [(X− X̂)(X− X̂)T])=
tr(PE [(Y − Ŷ)(Y − Ŷ)T]PT)= tr(PTPE [(Y − Ŷ)(Y − Ŷ)T])
=
∑n

i=k+1 λi

Note that the eigenvectors of Σ (columns of P) are known as the
principal components

4tr(AB) =
∑

i

∑
j ai,jbj,i =

∑
j

∑
i bj,iai,j = tr(BA)

S. Cheng (OU-Tulsa) December 5, 2017 26 / 275

Lecture 4 Principal component analysis

Principal component analysis (PCA)

Recall that Σ = E [XXT] (assume X is zero-mean) and Y = PTX
with E [YYT] = PTΣP = D

Assume that the diagonal of D (note that those are eigenvalues) are
arranged in descending order that λ1 ≥ λ2 ≥ · · · ≥ λn

Generate an approximate Ŷ of Y by setting all components except first
k as 0
The mean square error (mse) of4 Ŷ = E [(Y − Ŷ)T (Y − Ŷ)]
= tr(E [(Y − Ŷ)T (Y − Ŷ)]) = E [tr((Y − Ŷ)T (Y − Ŷ))]
= E [tr((Y − Ŷ)(Y − Ŷ)T)] = tr(E [(Y − Ŷ)(Y − Ŷ)T]) =

∑n
i=k+1 λi

Similarly, if we “reconstruct” X as X̂ = PŶ. The mse of
X̂ = E [(X− X̂)T (X− X̂)] = tr(E [(X− X̂)(X− X̂)T])=
tr(PE [(Y − Ŷ)(Y − Ŷ)T]PT)= tr(PTPE [(Y − Ŷ)(Y − Ŷ)T])
=
∑n

i=k+1 λi

Note that the eigenvectors of Σ (columns of P) are known as the
principal components

4tr(AB) =
∑

i

∑
j ai,jbj,i =

∑
j

∑
i bj,iai,j = tr(BA)

S. Cheng (OU-Tulsa) December 5, 2017 26 / 275

Lecture 4 Principal component analysis

Practical PCA

In practice, we typically are given a dataset with samples of X instead of
the distribution or covariance matrix of X. Denote the data as X with
each row is a data point and a total of m data points. Thus X is an m by
n matrix

Data are rarely zero-mean to begin with, but we can easily preprocess
it by subtracting the mean. That is5 X ← X − ones(m, 1)mean(X)
Note that Σ̂ ≈ 1

mX
TX . We could directly compute the eigenvectors

and eigenvalues of Σ̂ as discussed previously. But in many cases,
m < n making Σ̂ a bad approximate6

A more common approach is to decompose X with singular value
decomposition (SVD) instead

5I used the matlab notations for ones(·) and mean(·) here
6Note that Σ̂ won’t be full rank and positive definite as one would hope

S. Cheng (OU-Tulsa) December 5, 2017 27 / 275

Lecture 4 Principal component analysis

Practical PCA

In practice, we typically are given a dataset with samples of X instead of
the distribution or covariance matrix of X. Denote the data as X with
each row is a data point and a total of m data points. Thus X is an m by
n matrix

Data are rarely zero-mean to begin with, but we can easily preprocess
it by subtracting the mean. That is5 X ← X − ones(m, 1)mean(X)

Note that Σ̂ ≈ 1
mX

TX . We could directly compute the eigenvectors

and eigenvalues of Σ̂ as discussed previously. But in many cases,
m < n making Σ̂ a bad approximate6

A more common approach is to decompose X with singular value
decomposition (SVD) instead

5I used the matlab notations for ones(·) and mean(·) here
6Note that Σ̂ won’t be full rank and positive definite as one would hope

S. Cheng (OU-Tulsa) December 5, 2017 27 / 275

Lecture 4 Principal component analysis

Practical PCA

In practice, we typically are given a dataset with samples of X instead of
the distribution or covariance matrix of X. Denote the data as X with
each row is a data point and a total of m data points. Thus X is an m by
n matrix

Data are rarely zero-mean to begin with, but we can easily preprocess
it by subtracting the mean. That is5 X ← X − ones(m, 1)mean(X)
Note that Σ̂ ≈ 1

mX
TX . We could directly compute the eigenvectors

and eigenvalues of Σ̂ as discussed previously. But in many cases,
m < n making Σ̂ a bad approximate6

A more common approach is to decompose X with singular value
decomposition (SVD) instead

5I used the matlab notations for ones(·) and mean(·) here
6Note that Σ̂ won’t be full rank and positive definite as one would hope

S. Cheng (OU-Tulsa) December 5, 2017 27 / 275

Lecture 4 Principal component analysis

Practical PCA

In practice, we typically are given a dataset with samples of X instead of
the distribution or covariance matrix of X. Denote the data as X with
each row is a data point and a total of m data points. Thus X is an m by
n matrix

Data are rarely zero-mean to begin with, but we can easily preprocess
it by subtracting the mean. That is5 X ← X − ones(m, 1)mean(X)
Note that Σ̂ ≈ 1

mX
TX . We could directly compute the eigenvectors

and eigenvalues of Σ̂ as discussed previously. But in many cases,
m < n making Σ̂ a bad approximate6

A more common approach is to decompose X with singular value
decomposition (SVD) instead

5I used the matlab notations for ones(·) and mean(·) here
6Note that Σ̂ won’t be full rank and positive definite as one would hope

S. Cheng (OU-Tulsa) December 5, 2017 27 / 275

Lecture 4 Principal component analysis

Singular value decomposition (SVD)

Every matrix M can be decomposed as
M = UDV †, where D is diagonal and U,V
are unitary. The diagonal terms in Σ are
known to be the singular values

For real matrix M, we can write
M = UDV T instead. U,V are now “real
unitary” or orthogonal

Note that
MTM = VDTUTUDV T = VD2V T .
Therefore, V are really eigenvectors of
MTM with eigenvalues equal to the
square of the singular values
Similar, we have MMT = UD2UT

S. Cheng (OU-Tulsa) December 5, 2017 28 / 275

Lecture 4 Principal component analysis

Singular value decomposition (SVD)

Every matrix M can be decomposed as
M = UDV †, where D is diagonal and U,V
are unitary. The diagonal terms in Σ are
known to be the singular values

For real matrix M, we can write
M = UDV T instead. U,V are now “real
unitary” or orthogonal

Note that
MTM = VDTUTUDV T = VD2V T .
Therefore, V are really eigenvectors of
MTM with eigenvalues equal to the
square of the singular values
Similar, we have MMT = UD2UT

S. Cheng (OU-Tulsa) December 5, 2017 28 / 275

Lecture 4 Principal component analysis

Singular value decomposition (SVD)

Every matrix M can be decomposed as
M = UDV †, where D is diagonal and U,V
are unitary. The diagonal terms in Σ are
known to be the singular values

For real matrix M, we can write
M = UDV T instead. U,V are now “real
unitary” or orthogonal

Note that
MTM = VDTUTUDV T = VD2V T .
Therefore, V are really eigenvectors of
MTM with eigenvalues equal to the
square of the singular values

Similar, we have MMT = UD2UT

S. Cheng (OU-Tulsa) December 5, 2017 28 / 275

Lecture 4 Principal component analysis

Singular value decomposition (SVD)

Every matrix M can be decomposed as
M = UDV †, where D is diagonal and U,V
are unitary. The diagonal terms in Σ are
known to be the singular values

For real matrix M, we can write
M = UDV T instead. U,V are now “real
unitary” or orthogonal

Note that
MTM = VDTUTUDV T = VD2V T .
Therefore, V are really eigenvectors of
MTM with eigenvalues equal to the
square of the singular values
Similar, we have MMT = UD2UT

S. Cheng (OU-Tulsa) December 5, 2017 28 / 275

Lecture 4 Principal component analysis

PCA with SVD

So from previous slides, instead of first estimating the covariance matrix
and then diagonalize it. We should directly decompose the data X with
SVD instead. The process is summarized below

Estimate mean from data and subtract mean from that

Decomposed the mean subtracted data with SVD. We get
X = UDV T

Note that column of V are now the principal components, and we can
transform a data column as V T x . The entire data set can be
transformed as Y = XV

The first few columns of Y will contain most “information” regarding
the original X
For example, they can be taken as features for recognition or one can
omit other columns besides the first few for “compression” as discussed
earlier

S. Cheng (OU-Tulsa) December 5, 2017 29 / 275

Lecture 4 Principal component analysis

PCA with SVD

So from previous slides, instead of first estimating the covariance matrix
and then diagonalize it. We should directly decompose the data X with
SVD instead. The process is summarized below

Estimate mean from data and subtract mean from that

Decomposed the mean subtracted data with SVD. We get
X = UDV T

Note that column of V are now the principal components, and we can
transform a data column as V T x . The entire data set can be
transformed as Y = XV

The first few columns of Y will contain most “information” regarding
the original X
For example, they can be taken as features for recognition or one can
omit other columns besides the first few for “compression” as discussed
earlier

S. Cheng (OU-Tulsa) December 5, 2017 29 / 275

Lecture 4 Principal component analysis

PCA with SVD

So from previous slides, instead of first estimating the covariance matrix
and then diagonalize it. We should directly decompose the data X with
SVD instead. The process is summarized below

Estimate mean from data and subtract mean from that

Decomposed the mean subtracted data with SVD. We get
X = UDV T

Note that column of V are now the principal components, and we can
transform a data column as V T x . The entire data set can be
transformed as Y = XV

The first few columns of Y will contain most “information” regarding
the original X
For example, they can be taken as features for recognition or one can
omit other columns besides the first few for “compression” as discussed
earlier

S. Cheng (OU-Tulsa) December 5, 2017 29 / 275

Lecture 4 Principal component analysis

PCA with SVD

So from previous slides, instead of first estimating the covariance matrix
and then diagonalize it. We should directly decompose the data X with
SVD instead. The process is summarized below

Estimate mean from data and subtract mean from that

Decomposed the mean subtracted data with SVD. We get
X = UDV T

Note that column of V are now the principal components, and we can
transform a data column as V T x . The entire data set can be
transformed as Y = XV

The first few columns of Y will contain most “information” regarding
the original X
For example, they can be taken as features for recognition or one can
omit other columns besides the first few for “compression” as discussed
earlier

S. Cheng (OU-Tulsa) December 5, 2017 29 / 275

Lecture 4 Principal component analysis

PCA with SVD

So from previous slides, instead of first estimating the covariance matrix
and then diagonalize it. We should directly decompose the data X with
SVD instead. The process is summarized below

Estimate mean from data and subtract mean from that

Decomposed the mean subtracted data with SVD. We get
X = UDV T

Note that column of V are now the principal components, and we can
transform a data column as V T x . The entire data set can be
transformed as Y = XV

The first few columns of Y will contain most “information” regarding
the original X

For example, they can be taken as features for recognition or one can
omit other columns besides the first few for “compression” as discussed
earlier

S. Cheng (OU-Tulsa) December 5, 2017 29 / 275

Lecture 4 Principal component analysis

PCA with SVD

So from previous slides, instead of first estimating the covariance matrix
and then diagonalize it. We should directly decompose the data X with
SVD instead. The process is summarized below

Estimate mean from data and subtract mean from that

Decomposed the mean subtracted data with SVD. We get
X = UDV T

Note that column of V are now the principal components, and we can
transform a data column as V T x . The entire data set can be
transformed as Y = XV

The first few columns of Y will contain most “information” regarding
the original X
For example, they can be taken as features for recognition or one can
omit other columns besides the first few for “compression” as discussed
earlier

S. Cheng (OU-Tulsa) December 5, 2017 29 / 275

Lecture 4 Processing multivariate normal distribution

Review

ML: x̂ = argmaxx p(x |θ̂), θ̂ = argmaxθ p(o|θ)
MAP: x̂ = argmaxx p(x |θ̂), θ̂ = argmaxθ p(θ|o)
Bayesian: x̂ =

∑
θ p(θ|o)

∑
x xp(x |θ)

For zero-mean X, ΣX = E [XXT] and say we have PTΣXP = D. The
transformed Y = PTX are independent to each other

Note that the transform is just principal component analysis

Marginalization of a normal distribution is still a normal distribution

(a) Σ−1
XX = ΛXX − ΛXYΛ

−1
YYΛYX

(b) det(aΣ) = det(aΣYY) det(aΛ
−1
XX) for any constant a

S. Cheng (OU-Tulsa) December 5, 2017 30 / 275

Lecture 4 Processing multivariate normal distribution

Conditioning of normal distribution

Consider the same Z ∼ N (µZ,ΣZ) and Z =

(
X
Y

)
. What will X be

like if Y is observed to be y?

Basically, we want to find p(x|y) = p(x, y)/p(y)

From previous result, we have p(y) = N (y;µY,ΣYY). Therefore,

p(x|y) ∝ exp

(
−1

2

[(
x̃
ỹ

)T

Σ−1

(
x̃
ỹ

)
− ỹTΣ−1

YYỹ

])

∝ exp

(
−1

2
[x̃TΛXXx̃+ x̃TΛXYỹ + ỹTΛYXx̃]

)
,

where we use x̃ and ỹ as shorthands of x− µX and y − µY as before

S. Cheng (OU-Tulsa) December 5, 2017 31 / 275

Lecture 4 Processing multivariate normal distribution

Conditioning of normal distribution

Consider the same Z ∼ N (µZ,ΣZ) and Z =

(
X
Y

)
. What will X be

like if Y is observed to be y?

Basically, we want to find p(x|y) = p(x, y)/p(y)

From previous result, we have p(y) = N (y;µY,ΣYY). Therefore,

p(x|y) ∝ exp

(
−1

2

[(
x̃
ỹ

)T

Σ−1

(
x̃
ỹ

)
− ỹTΣ−1

YYỹ

])

∝ exp

(
−1

2
[x̃TΛXXx̃+ x̃TΛXYỹ + ỹTΛYXx̃]

)
,

where we use x̃ and ỹ as shorthands of x− µX and y − µY as before

S. Cheng (OU-Tulsa) December 5, 2017 31 / 275

Lecture 4 Processing multivariate normal distribution

Conditioning of normal distribution

Consider the same Z ∼ N (µZ,ΣZ) and Z =

(
X
Y

)
. What will X be

like if Y is observed to be y?

Basically, we want to find p(x|y) = p(x, y)/p(y)

From previous result, we have p(y) = N (y;µY,ΣYY). Therefore,

p(x|y) ∝ exp

(
−1

2

[(
x̃
ỹ

)T

Σ−1

(
x̃
ỹ

)
− ỹTΣ−1

YYỹ

])

∝ exp

(
−1

2
[x̃TΛXXx̃+ x̃TΛXYỹ + ỹTΛYXx̃]

)
,

where we use x̃ and ỹ as shorthands of x− µX and y − µY as before

S. Cheng (OU-Tulsa) December 5, 2017 31 / 275

Lecture 4 Processing multivariate normal distribution

Conditioning of normal distribution

Completing the square for x̃, we have

p(x|y) ∝ exp

(
−1

2
(x̃+ Λ−1

XXΛXYỹ)
TΛXX(x̃+ Λ−1

XXΛXYỹ)

)
= exp

(
−1

2
(x− µX + Λ−1

XXΛXY(y − µY))
TΛXX

(x− µX + Λ−1
XXΛXY(y − µY))

)

Therefore X|y is Gaussian distributed with mean
µX − Λ−1

XXΛXY(y − µY) and covariance Λ−1
XX

Note that since ΛXXΣXY + ΛXYΣYY = 0 ⇒Λ−1
XXΛXY = −ΣXYΣ

−1
YY

and from (a), we have

X|y ∼ N (µX +ΣXYΣ
−1
YY(y − µY),ΣXX − ΣXYΣ

−1
YYΣYX)

S. Cheng (OU-Tulsa) December 5, 2017 32 / 275

Lecture 4 Processing multivariate normal distribution

Conditioning of normal distribution

Completing the square for x̃, we have

p(x|y) ∝ exp

(
−1

2
(x̃+ Λ−1

XXΛXYỹ)
TΛXX(x̃+ Λ−1

XXΛXYỹ)

)
= exp

(
−1

2
(x− µX + Λ−1

XXΛXY(y − µY))
TΛXX

(x− µX + Λ−1
XXΛXY(y − µY))

)
Therefore X|y is Gaussian distributed with mean
µX − Λ−1

XXΛXY(y − µY) and covariance Λ−1
XX

Note that since ΛXXΣXY + ΛXYΣYY = 0 ⇒Λ−1
XXΛXY = −ΣXYΣ

−1
YY

and from (a), we have

X|y ∼ N (µX +ΣXYΣ
−1
YY(y − µY),ΣXX − ΣXYΣ

−1
YYΣYX)

S. Cheng (OU-Tulsa) December 5, 2017 32 / 275

Lecture 4 Processing multivariate normal distribution

Conditioning of normal distribution

Completing the square for x̃, we have

p(x|y) ∝ exp

(
−1

2
(x̃+ Λ−1

XXΛXYỹ)
TΛXX(x̃+ Λ−1

XXΛXYỹ)

)
= exp

(
−1

2
(x− µX + Λ−1

XXΛXY(y − µY))
TΛXX

(x− µX + Λ−1
XXΛXY(y − µY))

)
Therefore X|y is Gaussian distributed with mean
µX − Λ−1

XXΛXY(y − µY) and covariance Λ−1
XX

Note that since ΛXXΣXY + ΛXYΣYY = 0 ⇒Λ−1
XXΛXY = −ΣXYΣ

−1
YY

and from (a), we have

X|y ∼ N (µX +ΣXYΣ
−1
YY(y − µY),ΣXX − ΣXYΣ

−1
YYΣYX)

S. Cheng (OU-Tulsa) December 5, 2017 32 / 275

Lecture 4 Processing multivariate normal distribution

Interpretation of conditioning

X|y ∼ N (µX +ΣXYΣ
−1
YY(y − µY),ΣXX − ΣXYΣ

−1
YYΣYX)

When the observation of Y is exactly the mean, the conditioned mean
does not change

Otherwise, it needs to be modified and the size of the adjustment
decreases with ΣYY, the variance of Y for the 1-D case.

The observation is less reliable with the increase of ΣYY. The
adjustment is finally scaled by ΣXY, which translates the variation of Y
to the variation of X
In particular, if X and Y are negatively correlated, the sign of the
adjustment will be reversed

As for the variance of the conditioned variable, it always decreases
and the decrease is larger if ΣYY is smaller and ΣXY is larger (X and
Y are more correlated)

S. Cheng (OU-Tulsa) December 5, 2017 33 / 275

Lecture 4 Processing multivariate normal distribution

Interpretation of conditioning

X|y ∼ N (µX +ΣXYΣ
−1
YY(y − µY),ΣXX − ΣXYΣ

−1
YYΣYX)

When the observation of Y is exactly the mean, the conditioned mean
does not change

Otherwise, it needs to be modified and the size of the adjustment
decreases with ΣYY, the variance of Y for the 1-D case.

The observation is less reliable with the increase of ΣYY. The
adjustment is finally scaled by ΣXY, which translates the variation of Y
to the variation of X

In particular, if X and Y are negatively correlated, the sign of the
adjustment will be reversed

As for the variance of the conditioned variable, it always decreases
and the decrease is larger if ΣYY is smaller and ΣXY is larger (X and
Y are more correlated)

S. Cheng (OU-Tulsa) December 5, 2017 33 / 275

Lecture 4 Processing multivariate normal distribution

Interpretation of conditioning

X|y ∼ N (µX +ΣXYΣ
−1
YY(y − µY),ΣXX − ΣXYΣ

−1
YYΣYX)

When the observation of Y is exactly the mean, the conditioned mean
does not change

Otherwise, it needs to be modified and the size of the adjustment
decreases with ΣYY, the variance of Y for the 1-D case.

The observation is less reliable with the increase of ΣYY. The
adjustment is finally scaled by ΣXY, which translates the variation of Y
to the variation of X
In particular, if X and Y are negatively correlated, the sign of the
adjustment will be reversed

As for the variance of the conditioned variable, it always decreases
and the decrease is larger if ΣYY is smaller and ΣXY is larger (X and
Y are more correlated)

S. Cheng (OU-Tulsa) December 5, 2017 33 / 275

Lecture 4 Processing multivariate normal distribution

Interpretation of conditioning

X|y ∼ N (µX +ΣXYΣ
−1
YY(y − µY),ΣXX − ΣXYΣ

−1
YYΣYX)

When the observation of Y is exactly the mean, the conditioned mean
does not change

Otherwise, it needs to be modified and the size of the adjustment
decreases with ΣYY, the variance of Y for the 1-D case.

The observation is less reliable with the increase of ΣYY. The
adjustment is finally scaled by ΣXY, which translates the variation of Y
to the variation of X
In particular, if X and Y are negatively correlated, the sign of the
adjustment will be reversed

As for the variance of the conditioned variable, it always decreases
and the decrease is larger if ΣYY is smaller and ΣXY is larger (X and
Y are more correlated)

S. Cheng (OU-Tulsa) December 5, 2017 33 / 275

Lecture 4 Processing multivariate normal distribution

X ⊥⊥ Y |Z if ρXZρYZ = ρXY

Corollary

Given multivariate Gaussian variables X ,Y and Z, we have X and Y are
conditionally independent given Z if ρXZρYZ = ρXY , where
ρXZ = E [(X−E(X))(Z−E(Z))]√

E [(X−E(X))2]E [(Z−E(Z))2]
is the correlation coefficent between X

and Z. Similarly, ρYZ and ρXY are the correlation coefficients between Y
and Z, and X and Y , respectively.

S. Cheng (OU-Tulsa) December 5, 2017 34 / 275

Lecture 4 Processing multivariate normal distribution

X ⊥⊥ Y |Z if ρXZρYZ = ρXY

Proof.

Without loss of generality, we can assume the variables with mean 0

and variance 1. Thus,
(

X
Y
Z

)
∼ N (0,Σ), where Σ =

(
1 ρXY ρXZ

ρXY 1 ρYZ
ρXZ ρYZ 1

)

Then from the conditioning result, we have

Σ(
X
Y

)∣∣∣Z =

(
1 ρXY

ρXY 1

)
−
(
ρXZ ρYZ

)
σ−1
YY

(
ρXZ
ρYZ

)
=

(
1− ρ2XZ ρXY − ρXZρYZ

ρXY − ρXZρYZ 1− ρ2YZ

)

Therefore, X and Y are uncorrelated given Z when
σXY |Z = ρXY − ρXZρYZ = 0 or ρXY = ρXZρYZ . Since for Gaussian
variables, uncorrelatedness implies independence. This concludes the
proof.

S. Cheng (OU-Tulsa) December 5, 2017 35 / 275

Lecture 4 Processing multivariate normal distribution

X ⊥⊥ Y |Z if ρXZρYZ = ρXY

Proof.

Without loss of generality, we can assume the variables with mean 0

and variance 1. Thus,
(

X
Y
Z

)
∼ N (0,Σ), where Σ =

(
1 ρXY ρXZ

ρXY 1 ρYZ
ρXZ ρYZ 1

)
Then from the conditioning result, we have

Σ(
X
Y

)∣∣∣Z =

(
1 ρXY

ρXY 1

)
−
(
ρXZ ρYZ

)
σ−1
YY

(
ρXZ
ρYZ

)
=

(
1− ρ2XZ ρXY − ρXZρYZ

ρXY − ρXZρYZ 1− ρ2YZ

)

Therefore, X and Y are uncorrelated given Z when
σXY |Z = ρXY − ρXZρYZ = 0 or ρXY = ρXZρYZ . Since for Gaussian
variables, uncorrelatedness implies independence. This concludes the
proof.

S. Cheng (OU-Tulsa) December 5, 2017 35 / 275

Lecture 4 Processing multivariate normal distribution

X ⊥⊥ Y |Z if ρXZρYZ = ρXY

Proof.

Without loss of generality, we can assume the variables with mean 0

and variance 1. Thus,
(

X
Y
Z

)
∼ N (0,Σ), where Σ =

(
1 ρXY ρXZ

ρXY 1 ρYZ
ρXZ ρYZ 1

)
Then from the conditioning result, we have

Σ(
X
Y

)∣∣∣Z =

(
1 ρXY

ρXY 1

)
−
(
ρXZ ρYZ

)
σ−1
YY

(
ρXZ
ρYZ

)
=

(
1− ρ2XZ ρXY − ρXZρYZ

ρXY − ρXZρYZ 1− ρ2YZ

)

Therefore, X and Y are uncorrelated given Z when
σXY |Z = ρXY − ρXZρYZ = 0 or ρXY = ρXZρYZ . Since for Gaussian
variables, uncorrelatedness implies independence. This concludes the
proof.

S. Cheng (OU-Tulsa) December 5, 2017 35 / 275

Lecture 4 Processing multivariate normal distribution

Product of normal distributions

Assume that we tries to recover some vector parameter x, which is
subject to multivariate Gaussian noise

Say we made two measurements y1 and y2, where Y1 ∼ N (x,ΣY1)
and Y2 ∼ N (x,ΣY2). Note that even though both measurements
have mean x, they have different covariance

This variation, for instance, can be due to environment change between
the two measurements

Now, if we want to compute the overall likelihood, p(y1, y2|x).
Assuming that Y1 and Y2 are conditionally independent given X, we
have

p(y1, y2|x) = p(y1|x)p(y2|x)
= N (y1; x,ΣY1)N (y2; x,ΣY2).

Essentially, we just need to compute the product of two Gaussian
pdfs. Such computation is very useful and it occurs often when one
needs to perform inference

S. Cheng (OU-Tulsa) December 5, 2017 36 / 275

Lecture 4 Processing multivariate normal distribution

Product of normal distributions

Assume that we tries to recover some vector parameter x, which is
subject to multivariate Gaussian noise
Say we made two measurements y1 and y2, where Y1 ∼ N (x,ΣY1)
and Y2 ∼ N (x,ΣY2). Note that even though both measurements
have mean x, they have different covariance

This variation, for instance, can be due to environment change between
the two measurements

Now, if we want to compute the overall likelihood, p(y1, y2|x).
Assuming that Y1 and Y2 are conditionally independent given X, we
have

p(y1, y2|x) = p(y1|x)p(y2|x)
= N (y1; x,ΣY1)N (y2; x,ΣY2).

Essentially, we just need to compute the product of two Gaussian
pdfs. Such computation is very useful and it occurs often when one
needs to perform inference

S. Cheng (OU-Tulsa) December 5, 2017 36 / 275

Lecture 4 Processing multivariate normal distribution

Product of normal distributions

Assume that we tries to recover some vector parameter x, which is
subject to multivariate Gaussian noise
Say we made two measurements y1 and y2, where Y1 ∼ N (x,ΣY1)
and Y2 ∼ N (x,ΣY2). Note that even though both measurements
have mean x, they have different covariance

This variation, for instance, can be due to environment change between
the two measurements

Now, if we want to compute the overall likelihood, p(y1, y2|x).
Assuming that Y1 and Y2 are conditionally independent given X, we
have

p(y1, y2|x) = p(y1|x)p(y2|x)
= N (y1; x,ΣY1)N (y2; x,ΣY2).

Essentially, we just need to compute the product of two Gaussian
pdfs. Such computation is very useful and it occurs often when one
needs to perform inference

S. Cheng (OU-Tulsa) December 5, 2017 36 / 275

Lecture 4 Processing multivariate normal distribution

Product of normal distributions

Assume that we tries to recover some vector parameter x, which is
subject to multivariate Gaussian noise
Say we made two measurements y1 and y2, where Y1 ∼ N (x,ΣY1)
and Y2 ∼ N (x,ΣY2). Note that even though both measurements
have mean x, they have different covariance

This variation, for instance, can be due to environment change between
the two measurements

Now, if we want to compute the overall likelihood, p(y1, y2|x).
Assuming that Y1 and Y2 are conditionally independent given X, we
have

p(y1, y2|x) = p(y1|x)p(y2|x)
= N (y1; x,ΣY1)N (y2; x,ΣY2).

Essentially, we just need to compute the product of two Gaussian
pdfs. Such computation is very useful and it occurs often when one
needs to perform inference
S. Cheng (OU-Tulsa) December 5, 2017 36 / 275

Lecture 4 Processing multivariate normal distribution

Product of normal distributions

As in previous cases, the product turns out to be normal also. However, unlike
them, the product is not a pdf and so it does not normalize to 1. So we have to
compute both the scaling factor and the exponent explicitly. Let us start with the
exponent.

N (y1; x,ΣY1)N (y2; x,ΣY2)

∝ exp

(
−1

2
[(x− y1)

TΛY1(x− y1) + (x− y2)
TΛY2(x− y2)]

)
∝ exp

(
−1

2
[xT (ΛY1 + ΛY2)x− (yT2 ΛY2 + yT1 ΛY1)x− xT (ΛY2y2 + ΛY1y1)]

)
∝e− 1

2 [(x−(ΛY1
+ΛY2

)−1(ΛY2
y2+ΛY1

y1))
T (ΛY1

+ΛY2
)(x−(ΛY1

+ΛY2
)−1(ΛY2

y2+ΛY1
y1))]

∝N (x; (ΛY1 + ΛY2)
−1(ΛY2y2 + ΛY1y1), (ΛY2 + ΛY1)

−1)

Therefore,

N (y1; x,ΣY1)N (y2; x,ΣY2)

=K (y1, y2,ΣY1 ,ΣY2)N (x; (ΛY1 + ΛY2)
−1(ΛY2y2 + ΛY1y1), (ΛY2 + ΛY1)

−1)

for some scaling factor K (y1, y2,ΣY1 ,ΣY2) independent of x

S. Cheng (OU-Tulsa) December 5, 2017 37 / 275

Lecture 4 Processing multivariate normal distribution

Product of normal distributions

As in previous cases, the product turns out to be normal also. However, unlike
them, the product is not a pdf and so it does not normalize to 1. So we have to
compute both the scaling factor and the exponent explicitly. Let us start with the
exponent.

N (y1; x,ΣY1)N (y2; x,ΣY2)

∝ exp

(
−1

2
[(x− y1)

TΛY1(x− y1) + (x− y2)
TΛY2(x− y2)]

)

∝ exp

(
−1

2
[xT (ΛY1 + ΛY2)x− (yT2 ΛY2 + yT1 ΛY1)x− xT (ΛY2y2 + ΛY1y1)]

)
∝e− 1

2 [(x−(ΛY1
+ΛY2

)−1(ΛY2
y2+ΛY1

y1))
T (ΛY1

+ΛY2
)(x−(ΛY1

+ΛY2
)−1(ΛY2

y2+ΛY1
y1))]

∝N (x; (ΛY1 + ΛY2)
−1(ΛY2y2 + ΛY1y1), (ΛY2 + ΛY1)

−1)

Therefore,

N (y1; x,ΣY1)N (y2; x,ΣY2)

=K (y1, y2,ΣY1 ,ΣY2)N (x; (ΛY1 + ΛY2)
−1(ΛY2y2 + ΛY1y1), (ΛY2 + ΛY1)

−1)

for some scaling factor K (y1, y2,ΣY1 ,ΣY2) independent of x

S. Cheng (OU-Tulsa) December 5, 2017 37 / 275

Lecture 4 Processing multivariate normal distribution

Product of normal distributions

As in previous cases, the product turns out to be normal also. However, unlike
them, the product is not a pdf and so it does not normalize to 1. So we have to
compute both the scaling factor and the exponent explicitly. Let us start with the
exponent.

N (y1; x,ΣY1)N (y2; x,ΣY2)

∝ exp

(
−1

2
[(x− y1)

TΛY1(x− y1) + (x− y2)
TΛY2(x− y2)]

)
∝ exp

(
−1

2
[xT (ΛY1 + ΛY2)x− (yT2 ΛY2 + yT1 ΛY1)x− xT (ΛY2y2 + ΛY1y1)]

)

∝e− 1
2 [(x−(ΛY1

+ΛY2
)−1(ΛY2

y2+ΛY1
y1))

T (ΛY1
+ΛY2

)(x−(ΛY1
+ΛY2

)−1(ΛY2
y2+ΛY1

y1))]

∝N (x; (ΛY1 + ΛY2)
−1(ΛY2y2 + ΛY1y1), (ΛY2 + ΛY1)

−1)

Therefore,

N (y1; x,ΣY1)N (y2; x,ΣY2)

=K (y1, y2,ΣY1 ,ΣY2)N (x; (ΛY1 + ΛY2)
−1(ΛY2y2 + ΛY1y1), (ΛY2 + ΛY1)

−1)

for some scaling factor K (y1, y2,ΣY1 ,ΣY2) independent of x

S. Cheng (OU-Tulsa) December 5, 2017 37 / 275

Lecture 4 Processing multivariate normal distribution

Product of normal distributions

As in previous cases, the product turns out to be normal also. However, unlike
them, the product is not a pdf and so it does not normalize to 1. So we have to
compute both the scaling factor and the exponent explicitly. Let us start with the
exponent.

N (y1; x,ΣY1)N (y2; x,ΣY2)

∝ exp

(
−1

2
[(x− y1)

TΛY1(x− y1) + (x− y2)
TΛY2(x− y2)]

)
∝ exp

(
−1

2
[xT (ΛY1 + ΛY2)x− (yT2 ΛY2 + yT1 ΛY1)x− xT (ΛY2y2 + ΛY1y1)]

)
∝e− 1

2 [(x−(ΛY1
+ΛY2

)−1(ΛY2
y2+ΛY1

y1))
T (ΛY1

+ΛY2
)(x−(ΛY1

+ΛY2
)−1(ΛY2

y2+ΛY1
y1))]

∝N (x; (ΛY1 + ΛY2)
−1(ΛY2y2 + ΛY1y1), (ΛY2 + ΛY1)

−1)

Therefore,

N (y1; x,ΣY1)N (y2; x,ΣY2)

=K (y1, y2,ΣY1 ,ΣY2)N (x; (ΛY1 + ΛY2)
−1(ΛY2y2 + ΛY1y1), (ΛY2 + ΛY1)

−1)

for some scaling factor K (y1, y2,ΣY1 ,ΣY2) independent of x

S. Cheng (OU-Tulsa) December 5, 2017 37 / 275

Lecture 4 Processing multivariate normal distribution

Product of normal distributions

As in previous cases, the product turns out to be normal also. However, unlike
them, the product is not a pdf and so it does not normalize to 1. So we have to
compute both the scaling factor and the exponent explicitly. Let us start with the
exponent.

N (y1; x,ΣY1)N (y2; x,ΣY2)

∝ exp

(
−1

2
[(x− y1)

TΛY1(x− y1) + (x− y2)
TΛY2(x− y2)]

)
∝ exp

(
−1

2
[xT (ΛY1 + ΛY2)x− (yT2 ΛY2 + yT1 ΛY1)x− xT (ΛY2y2 + ΛY1y1)]

)
∝e− 1

2 [(x−(ΛY1
+ΛY2

)−1(ΛY2
y2+ΛY1

y1))
T (ΛY1

+ΛY2
)(x−(ΛY1

+ΛY2
)−1(ΛY2

y2+ΛY1
y1))]

∝N (x; (ΛY1 + ΛY2)
−1(ΛY2y2 + ΛY1y1), (ΛY2 + ΛY1)

−1)

Therefore,

N (y1; x,ΣY1)N (y2; x,ΣY2)

=K (y1, y2,ΣY1 ,ΣY2)N (x; (ΛY1 + ΛY2)
−1(ΛY2y2 + ΛY1y1), (ΛY2 + ΛY1)

−1)

for some scaling factor K (y1, y2,ΣY1 ,ΣY2) independent of x
S. Cheng (OU-Tulsa) December 5, 2017 37 / 275

Lecture 4 Processing multivariate normal distribution

Product of normal distributions

One can compute the scaling factor K (y1, y2,ΣY1 ,ΣY2) directly

However, it is much easier to take advantage for the following setup
when Y1 ⊥⊥ Y2|X as shown below

Since N (y2; x,ΣY2) = N (x; y2,ΣY2) and Y1 ⊥⊥ Y2|X, we have

N (y1; x,ΣY1)N (y2; x,ΣY2) = N (y1; x,ΣY1)︸ ︷︷ ︸
p(y1|x)=p(y1|x,y2)

N (x; y2,ΣY2)︸ ︷︷ ︸
p(x|y2)

= p(y1, x|y2)

S. Cheng (OU-Tulsa) December 5, 2017 38 / 275

Lecture 4 Processing multivariate normal distribution

Product of normal distributions

One can compute the scaling factor K (y1, y2,ΣY1 ,ΣY2) directly

However, it is much easier to take advantage for the following setup
when Y1 ⊥⊥ Y2|X as shown below

Since N (y2; x,ΣY2) = N (x; y2,ΣY2) and Y1 ⊥⊥ Y2|X, we have

N (y1; x,ΣY1)N (y2; x,ΣY2) = N (y1; x,ΣY1)︸ ︷︷ ︸
p(y1|x)=p(y1|x,y2)

N (x; y2,ΣY2)︸ ︷︷ ︸
p(x|y2)

= p(y1, x|y2)

S. Cheng (OU-Tulsa) December 5, 2017 38 / 275

Lecture 4 Processing multivariate normal distribution

Product of normal distributions

One can compute the scaling factor K (y1, y2,ΣY1 ,ΣY2) directly

However, it is much easier to take advantage for the following setup
when Y1 ⊥⊥ Y2|X as shown below

Since N (y2; x,ΣY2) = N (x; y2,ΣY2) and Y1 ⊥⊥ Y2|X, we have

N (y1; x,ΣY1)N (y2; x,ΣY2) = N (y1; x,ΣY1)︸ ︷︷ ︸
p(y1|x)=p(y1|x,y2)

N (x; y2,ΣY2)︸ ︷︷ ︸
p(x|y2)

= p(y1, x|y2)

S. Cheng (OU-Tulsa) December 5, 2017 38 / 275

Lecture 4 Processing multivariate normal distribution

Product of normal distributions

Then, marginalizing x out from p(y1, x|y2), we have

p(y1|y2) =
∫
p(y1, x|y2)dx. However, from the figure,∫
p(y1, x|y2)dx = p(y1|y2) = N (y1; y2,ΣY2 +ΣY1)

On the other hand,∫
p(y1, x|y2)dx =

∫
N (y1; x,ΣY1)N (y2; x,ΣY2)dx

=

∫
K (y1, y2,ΣY1 ,ΣY2)N (x; (ΛY1 + ΛY2)

−1(ΛY2y2 + ΛY1y), (ΛY2 + ΛY1)
−1)dx

=K (y1, y2,ΣY1 ,ΣY2).

Thus we have K (y1, y2,ΣY1 ,ΣY2) = N (y1; y2,ΣY2 +ΣY1) and so

N (y1; x,ΣY1)N (y2; x,ΣY2)

=N (y1; y2,ΣY2 +ΣY1)N (x; (ΛY1 + ΛY2)
−1(ΛY2y2 + ΛY1y), (ΛY2 + ΛY1)

−1)

S. Cheng (OU-Tulsa) December 5, 2017 39 / 275

Lecture 4 Processing multivariate normal distribution

Product of normal distributions

Then, marginalizing x out from p(y1, x|y2), we have

p(y1|y2) =
∫
p(y1, x|y2)dx. However, from the figure,∫
p(y1, x|y2)dx = p(y1|y2) = N (y1; y2,ΣY2 +ΣY1)

On the other hand,∫
p(y1, x|y2)dx =

∫
N (y1; x,ΣY1)N (y2; x,ΣY2)dx

=

∫
K (y1, y2,ΣY1 ,ΣY2)N (x; (ΛY1 + ΛY2)

−1(ΛY2y2 + ΛY1y), (ΛY2 + ΛY1)
−1)dx

=K (y1, y2,ΣY1 ,ΣY2).

Thus we have K (y1, y2,ΣY1 ,ΣY2) = N (y1; y2,ΣY2 +ΣY1) and so

N (y1; x,ΣY1)N (y2; x,ΣY2)

=N (y1; y2,ΣY2 +ΣY1)N (x; (ΛY1 + ΛY2)
−1(ΛY2y2 + ΛY1y), (ΛY2 + ΛY1)

−1)

S. Cheng (OU-Tulsa) December 5, 2017 39 / 275

Lecture 4 Processing multivariate normal distribution

Product of normal distributions

Then, marginalizing x out from p(y1, x|y2), we have

p(y1|y2) =
∫
p(y1, x|y2)dx. However, from the figure,∫
p(y1, x|y2)dx = p(y1|y2) = N (y1; y2,ΣY2 +ΣY1)

On the other hand,∫
p(y1, x|y2)dx =

∫
N (y1; x,ΣY1)N (y2; x,ΣY2)dx

=

∫
K (y1, y2,ΣY1 ,ΣY2)N (x; (ΛY1 + ΛY2)

−1(ΛY2y2 + ΛY1y), (ΛY2 + ΛY1)
−1)dx

=K (y1, y2,ΣY1 ,ΣY2).

Thus we have K (y1, y2,ΣY1 ,ΣY2) = N (y1; y2,ΣY2 +ΣY1)

and so

N (y1; x,ΣY1)N (y2; x,ΣY2)

=N (y1; y2,ΣY2 +ΣY1)N (x; (ΛY1 + ΛY2)
−1(ΛY2y2 + ΛY1y), (ΛY2 + ΛY1)

−1)

S. Cheng (OU-Tulsa) December 5, 2017 39 / 275

Lecture 4 Processing multivariate normal distribution

Product of normal distributions

Then, marginalizing x out from p(y1, x|y2), we have

p(y1|y2) =
∫
p(y1, x|y2)dx. However, from the figure,∫
p(y1, x|y2)dx = p(y1|y2) = N (y1; y2,ΣY2 +ΣY1)

On the other hand,∫
p(y1, x|y2)dx =

∫
N (y1; x,ΣY1)N (y2; x,ΣY2)dx

=

∫
K (y1, y2,ΣY1 ,ΣY2)N (x; (ΛY1 + ΛY2)

−1(ΛY2y2 + ΛY1y), (ΛY2 + ΛY1)
−1)dx

=K (y1, y2,ΣY1 ,ΣY2).

Thus we have K (y1, y2,ΣY1 ,ΣY2) = N (y1; y2,ΣY2 +ΣY1) and so

N (y1; x,ΣY1)N (y2; x,ΣY2)

=N (y1; y2,ΣY2 +ΣY1)N (x; (ΛY1 + ΛY2)
−1(ΛY2y2 + ΛY1y), (ΛY2 + ΛY1)

−1)

S. Cheng (OU-Tulsa) December 5, 2017 39 / 275

Lecture 4 Processing multivariate normal distribution

Product of normal distributions

Let us try to interpret the product as the overall likelihood after making
two observations. Consider the simpler case when X, Y1 and Y2 are all
scaler

The mean considering both observations,
(ΛY1 + ΛY2)

−1(ΛY2y2 + ΛY1y), is essential a weighted average of
observations y2 and y1

The weight is higher when the precision ΛY2 or ΛY1 is larger

The overall variance (ΛY2 + ΛY1)
−1 is always smaller than the

individual variance ΣY2 and ΣY1

We are more certain with x after considering both y1 and y2

The scaling factor, N (y1; y2,ΣY2 +ΣY1), can be interpreted as how
much one can believe on the overall likelihood.

The value is reasonable since when the two observations are far away
with respect to the overall variance ΣY2 +ΣY1 , the likelihood will
become less reliable
The scaling factor is especially useful when we deal with mixture of
Gaussian to be discussed next

S. Cheng (OU-Tulsa) December 5, 2017 40 / 275

Lecture 4 Processing multivariate normal distribution

Product of normal distributions

Let us try to interpret the product as the overall likelihood after making
two observations. Consider the simpler case when X, Y1 and Y2 are all
scaler

The mean considering both observations,
(ΛY1 + ΛY2)

−1(ΛY2y2 + ΛY1y), is essential a weighted average of
observations y2 and y1

The weight is higher when the precision ΛY2 or ΛY1 is larger

The overall variance (ΛY2 + ΛY1)
−1 is always smaller than the

individual variance ΣY2 and ΣY1

We are more certain with x after considering both y1 and y2

The scaling factor, N (y1; y2,ΣY2 +ΣY1), can be interpreted as how
much one can believe on the overall likelihood.

The value is reasonable since when the two observations are far away
with respect to the overall variance ΣY2 +ΣY1 , the likelihood will
become less reliable
The scaling factor is especially useful when we deal with mixture of
Gaussian to be discussed next

S. Cheng (OU-Tulsa) December 5, 2017 40 / 275

Lecture 4 Processing multivariate normal distribution

Product of normal distributions

Let us try to interpret the product as the overall likelihood after making
two observations. Consider the simpler case when X, Y1 and Y2 are all
scaler

The mean considering both observations,
(ΛY1 + ΛY2)

−1(ΛY2y2 + ΛY1y), is essential a weighted average of
observations y2 and y1

The weight is higher when the precision ΛY2 or ΛY1 is larger

The overall variance (ΛY2 + ΛY1)
−1 is always smaller than the

individual variance ΣY2 and ΣY1

We are more certain with x after considering both y1 and y2

The scaling factor, N (y1; y2,ΣY2 +ΣY1), can be interpreted as how
much one can believe on the overall likelihood.

The value is reasonable since when the two observations are far away
with respect to the overall variance ΣY2 +ΣY1 , the likelihood will
become less reliable
The scaling factor is especially useful when we deal with mixture of
Gaussian to be discussed next

S. Cheng (OU-Tulsa) December 5, 2017 40 / 275

Lecture 4 Processing multivariate normal distribution

Product of normal distributions

Let us try to interpret the product as the overall likelihood after making
two observations. Consider the simpler case when X, Y1 and Y2 are all
scaler

The mean considering both observations,
(ΛY1 + ΛY2)

−1(ΛY2y2 + ΛY1y), is essential a weighted average of
observations y2 and y1

The weight is higher when the precision ΛY2 or ΛY1 is larger

The overall variance (ΛY2 + ΛY1)
−1 is always smaller than the

individual variance ΣY2 and ΣY1

We are more certain with x after considering both y1 and y2

The scaling factor, N (y1; y2,ΣY2 +ΣY1), can be interpreted as how
much one can believe on the overall likelihood.

The value is reasonable since when the two observations are far away
with respect to the overall variance ΣY2 +ΣY1 , the likelihood will
become less reliable
The scaling factor is especially useful when we deal with mixture of
Gaussian to be discussed next

S. Cheng (OU-Tulsa) December 5, 2017 40 / 275

Lecture 5

Review

PCA (assume zero mean)
Via eigen-decomposition

1 Σ ≈ 1
m
X TX

2 PTΣP = D
3 Y = PTX

Via SVD
1 UTXV = D
2 Y = V TX

Marginalization of a normal distribution is still a normal distribution

Conditioning of normal distribution:
X|y ∼ N (µX +ΣXYΣ

−1
YY(y − µY),ΣXX − ΣXYΣ

−1
YYΣYX)

Product of normal distribution:
N (y1; x,ΣY1)N (y2; x,ΣY2) =
N (y1; y2,ΣY2+ΣY1)N (x; (ΛY1+ΛY2)

−1(ΛY2y2+ΛY1y), (ΛY2+ΛY1)
−1)

S. Cheng (OU-Tulsa) December 5, 2017 41 / 275

Lecture 5

Correction: product of normal distributions

One can compute the scaling factor K (y1, y2,ΣY1 ,ΣY2) directly

However, recall that Y1 ⊥⊥ Y2|X, it is model the variables as shown
below

Since N (y2; x,ΣY2) = N (x; y2,ΣY2) and Y1 ⊥⊥ Y2|X, we have

N (y1; x,ΣY1)N (y2; x,ΣY2) = N (y1; x,ΣY1)︸ ︷︷ ︸
p(y1|x)=p(y1|x,y2)

N (x; y2,ΣY2)︸ ︷︷ ︸
p(x|y2)

= p(y1, x|y2)

S. Cheng (OU-Tulsa) December 5, 2017 42 / 275

Lecture 5

Correction: product of normal distributions

One can compute the scaling factor K (y1, y2,ΣY1 ,ΣY2) directly

However, recall that Y1 ⊥⊥ Y2|X, it is model the variables as shown
below

Since N (y2; x,ΣY2) = N (x; y2,ΣY2) and Y1 ⊥⊥ Y2|X, we have

N (y1; x,ΣY1)N (y2; x,ΣY2) = N (y1; x,ΣY1)︸ ︷︷ ︸
p(y1|x)=p(y1|x,y2)

N (x; y2,ΣY2)︸ ︷︷ ︸
p(x|y2)

= p(y1, x|y2)

S. Cheng (OU-Tulsa) December 5, 2017 42 / 275

Lecture 5

Correction: product of normal distributions

One can compute the scaling factor K (y1, y2,ΣY1 ,ΣY2) directly

However, recall that Y1 ⊥⊥ Y2|X, it is model the variables as shown
below

Since N (y2; x,ΣY2) = N (x; y2,ΣY2) and Y1 ⊥⊥ Y2|X, we have

N (y1; x,ΣY1)N (y2; x,ΣY2) = N (y1; x,ΣY1)︸ ︷︷ ︸
p(y1|x)=p(y1|x,y2)

N (x; y2,ΣY2)︸ ︷︷ ︸
p(x|y2)

= p(y1, x|y2)

S. Cheng (OU-Tulsa) December 5, 2017 42 / 275

Lecture 5

Correction: product of normal distributions

Then, marginalizing x out from p(y1, x|y2), we have

p(y1|y2) =
∫
p(y1, x|y2)dx. However, from the figure,∫
p(y1, x|y2)dx = p(y1|y2) = N (y1; y2,ΣY2 +ΣY1)

On the other hand,∫
p(y1, x|y2)dx =

∫
N (y1; x,ΣY1)N (y2; x,ΣY2)dx

=

∫
K (y1, y2,ΣY1 ,ΣY2)N (x; (ΛY1 + ΛY2)

−1(ΛY2y2 + ΛY1y), (ΛY2 + ΛY1)
−1)dx

=K (y1, y2,ΣY1 ,ΣY2).

Thus we have K (y1, y2,ΣY1 ,ΣY2) = N (y1; y2,ΣY2 +ΣY1) and so

N (y1; x,ΣY1)N (y2; x,ΣY2)

=N (y1; y2,ΣY2 +ΣY1)N (x; (ΛY1 + ΛY2)
−1(ΛY2y2 + ΛY1y), (ΛY2 + ΛY1)

−1)

S. Cheng (OU-Tulsa) December 5, 2017 43 / 275

Lecture 5

Correction: product of normal distributions

Then, marginalizing x out from p(y1, x|y2), we have

p(y1|y2) =
∫
p(y1, x|y2)dx. However, from the figure,∫
p(y1, x|y2)dx = p(y1|y2) = N (y1; y2,ΣY2 +ΣY1)

On the other hand,∫
p(y1, x|y2)dx =

∫
N (y1; x,ΣY1)N (y2; x,ΣY2)dx

=

∫
K (y1, y2,ΣY1 ,ΣY2)N (x; (ΛY1 + ΛY2)

−1(ΛY2y2 + ΛY1y), (ΛY2 + ΛY1)
−1)dx

=K (y1, y2,ΣY1 ,ΣY2).

Thus we have K (y1, y2,ΣY1 ,ΣY2) = N (y1; y2,ΣY2 +ΣY1) and so

N (y1; x,ΣY1)N (y2; x,ΣY2)

=N (y1; y2,ΣY2 +ΣY1)N (x; (ΛY1 + ΛY2)
−1(ΛY2y2 + ΛY1y), (ΛY2 + ΛY1)

−1)

S. Cheng (OU-Tulsa) December 5, 2017 43 / 275

Lecture 5

Correction: product of normal distributions

Then, marginalizing x out from p(y1, x|y2), we have

p(y1|y2) =
∫
p(y1, x|y2)dx. However, from the figure,∫
p(y1, x|y2)dx = p(y1|y2) = N (y1; y2,ΣY2 +ΣY1)

On the other hand,∫
p(y1, x|y2)dx =

∫
N (y1; x,ΣY1)N (y2; x,ΣY2)dx

=

∫
K (y1, y2,ΣY1 ,ΣY2)N (x; (ΛY1 + ΛY2)

−1(ΛY2y2 + ΛY1y), (ΛY2 + ΛY1)
−1)dx

=K (y1, y2,ΣY1 ,ΣY2).

Thus we have K (y1, y2,ΣY1 ,ΣY2) = N (y1; y2,ΣY2 +ΣY1)

and so

N (y1; x,ΣY1)N (y2; x,ΣY2)

=N (y1; y2,ΣY2 +ΣY1)N (x; (ΛY1 + ΛY2)
−1(ΛY2y2 + ΛY1y), (ΛY2 + ΛY1)

−1)

S. Cheng (OU-Tulsa) December 5, 2017 43 / 275

Lecture 5

Correction: product of normal distributions

Then, marginalizing x out from p(y1, x|y2), we have

p(y1|y2) =
∫
p(y1, x|y2)dx. However, from the figure,∫
p(y1, x|y2)dx = p(y1|y2) = N (y1; y2,ΣY2 +ΣY1)

On the other hand,∫
p(y1, x|y2)dx =

∫
N (y1; x,ΣY1)N (y2; x,ΣY2)dx

=

∫
K (y1, y2,ΣY1 ,ΣY2)N (x; (ΛY1 + ΛY2)

−1(ΛY2y2 + ΛY1y), (ΛY2 + ΛY1)
−1)dx

=K (y1, y2,ΣY1 ,ΣY2).

Thus we have K (y1, y2,ΣY1 ,ΣY2) = N (y1; y2,ΣY2 +ΣY1) and so

N (y1; x,ΣY1)N (y2; x,ΣY2)

=N (y1; y2,ΣY2 +ΣY1)N (x; (ΛY1 + ΛY2)
−1(ΛY2y2 + ΛY1y), (ΛY2 + ΛY1)

−1)

S. Cheng (OU-Tulsa) December 5, 2017 43 / 275

Lecture 5

Division of normal distributions

To compute N (x;µ1,Σ1)
N (x;µ2,Σ2)

, note that from the product formula earlier

N (x;µ2,Σ2)N (x; (Λ1 − Λ2)
−1(Λ1µ1 − Λ2µ2), (Λ1 − Λ2)

−1)

=N (µ2; (Λ1 − Λ2)
−1(Λ1µ1 − Λ2µ2),Λ

−1
2 + (Λ1 − Λ2)

−1)N (x;µ1,Σ1)

Therefore,

N (x;µ1,Σ1)

N (x;µ2,Σ2)
=

N (x; (Λ1 − Λ2)
−1(Λ1µ1 − Λ2µ2), (Λ1 − Λ2)

−1)

N (µ2; (Λ1 − Λ2)−1(Λ1µ1 − Λ2µ2),Λ
−1
2 + (Λ1 − Λ2)−1)

=
N (x;µ, (Λ1 − Λ2)

−1)

N (µ2;µ,Λ
−1
2 + (Λ1 − Λ2)−1)

,

where µ = (Λ1 − Λ2)
−1(Λ1µ1 − Λ2µ2)

Note that the final pdf will be Gaussian-like if Λ1 � Λ2. Otherwise,
one can still write out the pdf using the precision matrix. But the
covariance matrix will not be defined (Try plot some pdfs out
yourselves)

S. Cheng (OU-Tulsa) December 5, 2017 44 / 275

Lecture 5

Division of normal distributions

To compute N (x;µ1,Σ1)
N (x;µ2,Σ2)

, note that from the product formula earlier

N (x;µ2,Σ2)N (x; (Λ1 − Λ2)
−1(Λ1µ1 − Λ2µ2), (Λ1 − Λ2)

−1)

=N (µ2; (Λ1 − Λ2)
−1(Λ1µ1 − Λ2µ2),Λ

−1
2 + (Λ1 − Λ2)

−1)N (x;µ1,Σ1)

Therefore,

N (x;µ1,Σ1)

N (x;µ2,Σ2)
=

N (x; (Λ1 − Λ2)
−1(Λ1µ1 − Λ2µ2), (Λ1 − Λ2)

−1)

N (µ2; (Λ1 − Λ2)−1(Λ1µ1 − Λ2µ2),Λ
−1
2 + (Λ1 − Λ2)−1)

=
N (x;µ, (Λ1 − Λ2)

−1)

N (µ2;µ,Λ
−1
2 + (Λ1 − Λ2)−1)

,

where µ = (Λ1 − Λ2)
−1(Λ1µ1 − Λ2µ2)

Note that the final pdf will be Gaussian-like if Λ1 � Λ2. Otherwise,
one can still write out the pdf using the precision matrix. But the
covariance matrix will not be defined (Try plot some pdfs out
yourselves)

S. Cheng (OU-Tulsa) December 5, 2017 44 / 275

Lecture 5

Division of normal distributions

To compute N (x;µ1,Σ1)
N (x;µ2,Σ2)

, note that from the product formula earlier

N (x;µ2,Σ2)N (x; (Λ1 − Λ2)
−1(Λ1µ1 − Λ2µ2), (Λ1 − Λ2)

−1)

=N (µ2; (Λ1 − Λ2)
−1(Λ1µ1 − Λ2µ2),Λ

−1
2 + (Λ1 − Λ2)

−1)N (x;µ1,Σ1)

Therefore,

N (x;µ1,Σ1)

N (x;µ2,Σ2)
=

N (x; (Λ1 − Λ2)
−1(Λ1µ1 − Λ2µ2), (Λ1 − Λ2)

−1)

N (µ2; (Λ1 − Λ2)−1(Λ1µ1 − Λ2µ2),Λ
−1
2 + (Λ1 − Λ2)−1)

=
N (x;µ, (Λ1 − Λ2)

−1)

N (µ2;µ,Λ
−1
2 + (Λ1 − Λ2)−1)

,

where µ = (Λ1 − Λ2)
−1(Λ1µ1 − Λ2µ2)

Note that the final pdf will be Gaussian-like if Λ1 � Λ2. Otherwise,
one can still write out the pdf using the precision matrix. But the
covariance matrix will not be defined (Try plot some pdfs out
yourselves)

S. Cheng (OU-Tulsa) December 5, 2017 44 / 275

Lecture 5 Mixture of “Gaussians”

Mixture of Gaussians

Consider an electrical system that outputs signal of different statistics
when it is on and off

When the system is on, the output signal S behaves like N (5, 1).
When the system is off is off, S behaves like N (0, 1)

If someone measuring the signal does not know the status of the
system but only knows that the system is on 40% of the time, then to
the observer, the signal S behaves like a mixture of Gaussians
The pdf of S will be 0.4N (s; 5, 1) + 0.6N (s; 0, 1) as shown below

−4 −2 0 2 4 6 8
0

0.05

0.1

0.15

0.2

0.25

S. Cheng (OU-Tulsa) December 5, 2017 45 / 275

Lecture 5 Mixture of “Gaussians”

Mixture of Gaussians

Consider an electrical system that outputs signal of different statistics
when it is on and off

When the system is on, the output signal S behaves like N (5, 1).
When the system is off is off, S behaves like N (0, 1)
If someone measuring the signal does not know the status of the
system but only knows that the system is on 40% of the time, then to
the observer, the signal S behaves like a mixture of Gaussians

The pdf of S will be 0.4N (s; 5, 1) + 0.6N (s; 0, 1) as shown below

−4 −2 0 2 4 6 8
0

0.05

0.1

0.15

0.2

0.25

S. Cheng (OU-Tulsa) December 5, 2017 45 / 275

Lecture 5 Mixture of “Gaussians”

Mixture of Gaussians

Consider an electrical system that outputs signal of different statistics
when it is on and off

When the system is on, the output signal S behaves like N (5, 1).
When the system is off is off, S behaves like N (0, 1)
If someone measuring the signal does not know the status of the
system but only knows that the system is on 40% of the time, then to
the observer, the signal S behaves like a mixture of Gaussians
The pdf of S will be 0.4N (s; 5, 1) + 0.6N (s; 0, 1) as shown below

−4 −2 0 2 4 6 8
0

0.05

0.1

0.15

0.2

0.25

S. Cheng (OU-Tulsa) December 5, 2017 45 / 275

Lecture 5 Mixture of “Gaussians”

Mixture of Gaussians

A main limitation of normal distribution is that it is unimodal

Mixture of Gaussian distribution allows multimodal and can virtually
model any pdfs. But there is a computational cost for this gain
Let us illustrate this with the following example:

Consider two mixtures of Gaussian likelihood of x given two
observations y1 and y2 as follows:

p(y1|x) = 0.6N (x ; 0, 1) + 0.4N (x ; 5, 1);

p(y2|x) = 0.5N (x ;−2, 1) + 0.5N (x ; 4, 1).

What is the overall likelihood, p(y1, y2|x)?
As usual, it is reasonable to assume the observations to be
conditionally independent given x . Then,

p(y1, y2|x) = p(y1|x)p(y2|x)
= (0.6N (x ; 0, 1) + 0.4N (x ; 5, 1))(0.5N (x ;−2, 1) + 0.5N (x ; 4, 1))

= 0.3N (x ; 0, 1)N (x ;−2, 1) + 0.2N (x ; 5, 1)N (x ;−2, 1)
+ 0.3N (x ; 0, 1)N (x ; 4, 1) + 0.2N (x ; 5, 1)N (x ; 4, 1)

S. Cheng (OU-Tulsa) December 5, 2017 46 / 275

Lecture 5 Mixture of “Gaussians”

Mixture of Gaussians

A main limitation of normal distribution is that it is unimodal
Mixture of Gaussian distribution allows multimodal and can virtually
model any pdfs. But there is a computational cost for this gain

Let us illustrate this with the following example:

Consider two mixtures of Gaussian likelihood of x given two
observations y1 and y2 as follows:

p(y1|x) = 0.6N (x ; 0, 1) + 0.4N (x ; 5, 1);

p(y2|x) = 0.5N (x ;−2, 1) + 0.5N (x ; 4, 1).

What is the overall likelihood, p(y1, y2|x)?
As usual, it is reasonable to assume the observations to be
conditionally independent given x . Then,

p(y1, y2|x) = p(y1|x)p(y2|x)
= (0.6N (x ; 0, 1) + 0.4N (x ; 5, 1))(0.5N (x ;−2, 1) + 0.5N (x ; 4, 1))

= 0.3N (x ; 0, 1)N (x ;−2, 1) + 0.2N (x ; 5, 1)N (x ;−2, 1)
+ 0.3N (x ; 0, 1)N (x ; 4, 1) + 0.2N (x ; 5, 1)N (x ; 4, 1)

S. Cheng (OU-Tulsa) December 5, 2017 46 / 275

Lecture 5 Mixture of “Gaussians”

Mixture of Gaussians

A main limitation of normal distribution is that it is unimodal
Mixture of Gaussian distribution allows multimodal and can virtually
model any pdfs. But there is a computational cost for this gain
Let us illustrate this with the following example:

Consider two mixtures of Gaussian likelihood of x given two
observations y1 and y2 as follows:

p(y1|x) = 0.6N (x ; 0, 1) + 0.4N (x ; 5, 1);

p(y2|x) = 0.5N (x ;−2, 1) + 0.5N (x ; 4, 1).

What is the overall likelihood, p(y1, y2|x)?

As usual, it is reasonable to assume the observations to be
conditionally independent given x . Then,

p(y1, y2|x) = p(y1|x)p(y2|x)
= (0.6N (x ; 0, 1) + 0.4N (x ; 5, 1))(0.5N (x ;−2, 1) + 0.5N (x ; 4, 1))

= 0.3N (x ; 0, 1)N (x ;−2, 1) + 0.2N (x ; 5, 1)N (x ;−2, 1)
+ 0.3N (x ; 0, 1)N (x ; 4, 1) + 0.2N (x ; 5, 1)N (x ; 4, 1)

S. Cheng (OU-Tulsa) December 5, 2017 46 / 275

Lecture 5 Mixture of “Gaussians”

Mixture of Gaussians

A main limitation of normal distribution is that it is unimodal
Mixture of Gaussian distribution allows multimodal and can virtually
model any pdfs. But there is a computational cost for this gain
Let us illustrate this with the following example:

Consider two mixtures of Gaussian likelihood of x given two
observations y1 and y2 as follows:

p(y1|x) = 0.6N (x ; 0, 1) + 0.4N (x ; 5, 1);

p(y2|x) = 0.5N (x ;−2, 1) + 0.5N (x ; 4, 1).

What is the overall likelihood, p(y1, y2|x)?
As usual, it is reasonable to assume the observations to be
conditionally independent given x . Then,

p(y1, y2|x) = p(y1|x)p(y2|x)
= (0.6N (x ; 0, 1) + 0.4N (x ; 5, 1))(0.5N (x ;−2, 1) + 0.5N (x ; 4, 1))

= 0.3N (x ; 0, 1)N (x ;−2, 1) + 0.2N (x ; 5, 1)N (x ;−2, 1)
+ 0.3N (x ; 0, 1)N (x ; 4, 1) + 0.2N (x ; 5, 1)N (x ; 4, 1)

S. Cheng (OU-Tulsa) December 5, 2017 46 / 275

Lecture 5 Mixture of “Gaussians”

Explosion of Gaussians

The last step involves computing products of Gaussians but we have
learned it in previous sections. Using the previous result,

p(y1, y2|x) = 0.3N (−2; 0, 2)N (x ;−1, 0.5) + 0.2N (−2; 5, 2)N (x ; 1.5, 0.5)

+ 0.3N (4; 0, 2)N (x ; 2, 0.5) + 0.2N (4; 5, 2)N (x ; 4.5, 0.5).

So we have the overall likelihood is a mixture of four Gaussians

Let’s repeat our discussion but with n observations instead. The overall
likelihood will be a mixture of 2n Gaussians!

Therefore, the computation will quickly become intractable as the
number of observations increases
Fortunately, in reality, some of the Gaussians in the mixture tend to
have a very small weight

S. Cheng (OU-Tulsa) December 5, 2017 47 / 275

Lecture 5 Mixture of “Gaussians”

Explosion of Gaussians

The last step involves computing products of Gaussians but we have
learned it in previous sections. Using the previous result,

p(y1, y2|x) = 0.3N (−2; 0, 2)N (x ;−1, 0.5) + 0.2N (−2; 5, 2)N (x ; 1.5, 0.5)

+ 0.3N (4; 0, 2)N (x ; 2, 0.5) + 0.2N (4; 5, 2)N (x ; 4.5, 0.5).

So we have the overall likelihood is a mixture of four Gaussians

Let’s repeat our discussion but with n observations instead. The overall
likelihood will be a mixture of 2n Gaussians!

Therefore, the computation will quickly become intractable as the
number of observations increases
Fortunately, in reality, some of the Gaussians in the mixture tend to
have a very small weight

S. Cheng (OU-Tulsa) December 5, 2017 47 / 275

Lecture 5 Mixture of “Gaussians”

Explosion of Gaussians

The last step involves computing products of Gaussians but we have
learned it in previous sections. Using the previous result,

p(y1, y2|x) = 0.3N (−2; 0, 2)N (x ;−1, 0.5) + 0.2N (−2; 5, 2)N (x ; 1.5, 0.5)

+ 0.3N (4; 0, 2)N (x ; 2, 0.5) + 0.2N (4; 5, 2)N (x ; 4.5, 0.5).

So we have the overall likelihood is a mixture of four Gaussians

Let’s repeat our discussion but with n observations instead. The overall
likelihood will be a mixture of 2n Gaussians!

Therefore, the computation will quickly become intractable as the
number of observations increases

Fortunately, in reality, some of the Gaussians in the mixture tend to
have a very small weight

S. Cheng (OU-Tulsa) December 5, 2017 47 / 275

Lecture 5 Mixture of “Gaussians”

Explosion of Gaussians

The last step involves computing products of Gaussians but we have
learned it in previous sections. Using the previous result,

p(y1, y2|x) = 0.3N (−2; 0, 2)N (x ;−1, 0.5) + 0.2N (−2; 5, 2)N (x ; 1.5, 0.5)

+ 0.3N (4; 0, 2)N (x ; 2, 0.5) + 0.2N (4; 5, 2)N (x ; 4.5, 0.5).

So we have the overall likelihood is a mixture of four Gaussians

Let’s repeat our discussion but with n observations instead. The overall
likelihood will be a mixture of 2n Gaussians!

Therefore, the computation will quickly become intractable as the
number of observations increases
Fortunately, in reality, some of the Gaussians in the mixture tend to
have a very small weight

S. Cheng (OU-Tulsa) December 5, 2017 47 / 275

Lecture 5 Mixture of “Gaussians”

Reduce number of components in Gaussian mixtures

For instance, in our previous numerical example, if we continue our
numerical computation for the two observation example, we have

p(y1, y2|x) = 0.4163N (x ;−1, 0.5) + 3.5234× 10−6N (x ; 1.5, 0.5)

+ 0.0202N (x ; 2, 0.5) + 0.5734N (x ; 4.5, 0.5).

We can see that the weight for the component at mean 1.5 is very
small. And the component at mean 2 has a rather small weight also.
Even with the four Gaussian components, the overall likelihood is
essentially just a bimodal distribution as shown in the figure below

−6 −4 −2 0 2 4 6 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

p(y
1
|x)

p(y
2
|x)

p(y
1
,y

2
|x)

S. Cheng (OU-Tulsa) December 5, 2017 48 / 275

Lecture 5 Mixture of “Gaussians”

Reduce number of components in Gaussian mixtures

For instance, in our previous numerical example, if we continue our
numerical computation for the two observation example, we have

p(y1, y2|x) = 0.4163N (x ;−1, 0.5) + 3.5234× 10−6N (x ; 1.5, 0.5)

+ 0.0202N (x ; 2, 0.5) + 0.5734N (x ; 4.5, 0.5).

We can see that the weight for the component at mean 1.5 is very
small. And the component at mean 2 has a rather small weight also.

Even with the four Gaussian components, the overall likelihood is
essentially just a bimodal distribution as shown in the figure below

−6 −4 −2 0 2 4 6 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

p(y
1
|x)

p(y
2
|x)

p(y
1
,y

2
|x)

S. Cheng (OU-Tulsa) December 5, 2017 48 / 275

Lecture 5 Mixture of “Gaussians”

Reduce number of components in Gaussian mixtures

For instance, in our previous numerical example, if we continue our
numerical computation for the two observation example, we have

p(y1, y2|x) = 0.4163N (x ;−1, 0.5) + 3.5234× 10−6N (x ; 1.5, 0.5)

+ 0.0202N (x ; 2, 0.5) + 0.5734N (x ; 4.5, 0.5).

We can see that the weight for the component at mean 1.5 is very
small. And the component at mean 2 has a rather small weight also.
Even with the four Gaussian components, the overall likelihood is
essentially just a bimodal distribution as shown in the figure below

−6 −4 −2 0 2 4 6 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

p(y
1
|x)

p(y
2
|x)

p(y
1
,y

2
|x)

S. Cheng (OU-Tulsa) December 5, 2017 48 / 275

Lecture 5 Mixture of “Gaussians”

Reduce number of components in Gaussian mixtures

Therefore, we may approximate p(y1, y2|x) with only two of its original
component as 0.4163/(0.4163 + 0.5734)N (x ;−1, 0.5) + 0.5734/(0.4163 +
0.5734)N (x ; 4.5, 0.5) = 0.4206N (x ;−1, 0.5) + 0.5794N (x ; 4.5, 0.5)

However, it is not always a good approximation strategy just to dump away
the small components in a Gaussian mixture

S. Cheng (OU-Tulsa) December 5, 2017 49 / 275

Lecture 5 Mixture of “Gaussians”

Reduce number of components in Gaussian mixtures

Therefore, we may approximate p(y1, y2|x) with only two of its original
component as 0.4163/(0.4163 + 0.5734)N (x ;−1, 0.5) + 0.5734/(0.4163 +
0.5734)N (x ; 4.5, 0.5) = 0.4206N (x ;−1, 0.5) + 0.5794N (x ; 4.5, 0.5)

However, it is not always a good approximation strategy just to dump away
the small components in a Gaussian mixture

S. Cheng (OU-Tulsa) December 5, 2017 49 / 275

Lecture 5 Mixture of “Gaussians”

Another example

Consider

p(x) = 0.1N (x ;−0.2, 1) + 0.1N (x ;−0.1, 1) + 0.1N (x ; 0, 1) + 0.1N (x ; 0.1, 1)

+ 0.1N (x ; 0.2, 1) + 0.5N (x ; 5, 1).

Let say we want to reduce p(x) to only a mixture of two Gaussians. It is
tempting to just dumping four smallest one and renormalized the weight.
For example, if we choose to remove the first four components, we have

p̂(x) = 1/6N (x ; 0.2, 1) + 5/6N (x ; 5, 1)

The approximation p̂(x) is significantly different from p(x) as shown below

−4 −2 0 2 4 6 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
p(x)
p̂(x)
p̃(x)

S. Cheng (OU-Tulsa) December 5, 2017 50 / 275

Lecture 5 Mixture of “Gaussians”

Another example

Consider

p(x) = 0.1N (x ;−0.2, 1) + 0.1N (x ;−0.1, 1) + 0.1N (x ; 0, 1) + 0.1N (x ; 0.1, 1)

+ 0.1N (x ; 0.2, 1) + 0.5N (x ; 5, 1).

Let say we want to reduce p(x) to only a mixture of two Gaussians. It is
tempting to just dumping four smallest one and renormalized the weight.
For example, if we choose to remove the first four components, we have

p̂(x) = 1/6N (x ; 0.2, 1) + 5/6N (x ; 5, 1)

The approximation p̂(x) is significantly different from p(x) as shown below

−4 −2 0 2 4 6 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
p(x)
p̂(x)
p̃(x)

S. Cheng (OU-Tulsa) December 5, 2017 50 / 275

Lecture 5 Mixture of “Gaussians”

Another example

Consider

p(x) = 0.1N (x ;−0.2, 1) + 0.1N (x ;−0.1, 1) + 0.1N (x ; 0, 1) + 0.1N (x ; 0.1, 1)

+ 0.1N (x ; 0.2, 1) + 0.5N (x ; 5, 1).

Let say we want to reduce p(x) to only a mixture of two Gaussians. It is
tempting to just dumping four smallest one and renormalized the weight.
For example, if we choose to remove the first four components, we have

p̂(x) = 1/6N (x ; 0.2, 1) + 5/6N (x ; 5, 1)

The approximation p̂(x) is significantly different from p(x) as shown below

−4 −2 0 2 4 6 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
p(x)
p̂(x)
p̃(x)

S. Cheng (OU-Tulsa) December 5, 2017 50 / 275

Lecture 5 Mixture of “Gaussians”

Merging components

The problem is that while the first five components are all relatively
small compared to the last one, they are all quite similar and their
combined contribution is comparable to the latter

Actually the first five components are so similar that their combined
contribution can be accurately modeled as one Gaussian

So rather than discarding the components, one can get a much more
accurate approximation by merging them. The approximation is
illustrated as p̃(x) in the figure below

−4 −2 0 2 4 6 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
p(x)
p̂(x)
p̃(x)

S. Cheng (OU-Tulsa) December 5, 2017 51 / 275

Lecture 5 Mixture of “Gaussians”

Merging components

The problem is that while the first five components are all relatively
small compared to the last one, they are all quite similar and their
combined contribution is comparable to the latter

Actually the first five components are so similar that their combined
contribution can be accurately modeled as one Gaussian

So rather than discarding the components, one can get a much more
accurate approximation by merging them. The approximation is
illustrated as p̃(x) in the figure below

−4 −2 0 2 4 6 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
p(x)
p̂(x)
p̃(x)

S. Cheng (OU-Tulsa) December 5, 2017 51 / 275

Lecture 5 Mixture of “Gaussians”

Merging components

The problem is that while the first five components are all relatively
small compared to the last one, they are all quite similar and their
combined contribution is comparable to the latter

Actually the first five components are so similar that their combined
contribution can be accurately modeled as one Gaussian

So rather than discarding the components, one can get a much more
accurate approximation by merging them. The approximation is
illustrated as p̃(x) in the figure below

−4 −2 0 2 4 6 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
p(x)
p̂(x)
p̃(x)

S. Cheng (OU-Tulsa) December 5, 2017 51 / 275

Lecture 5 Mixture of “Gaussians”

Merging components

To successfully obtain such approximation p̃(x), we have to answer two
questions:

which components to merge?

how to merge them?

S. Cheng (OU-Tulsa) December 5, 2017 52 / 275

Lecture 5 Mixture of “Gaussians”

Which Components to Merge?

It is reasonable to pick similar components to merge. The question is how
do will gauge the similarity between two components.

Consider two pdfs p(x) and q(x), note that we can define an inner
product of p(x) and q(x) by

〈p(x), q(x)〉 =
∫

p(x)q(x)dx

Note that the inner product is well defined and 〈p(x), p(x)〉 ≥ 0

By Cauchy-Schwartz inequality,

〈p(x), q(x)〉√
〈p(x), p(x)〉〈q(x), q(x)〉

=

∫
p(x)q(x)dx√∫

p(x)2dx
∫
q(x)2dx

≤ 1

The inner product maximizes (= 1) when p(x) = q(x). This suggests
a very reasonable similarity measure between two pdfs

S. Cheng (OU-Tulsa) December 5, 2017 53 / 275

Lecture 5 Mixture of “Gaussians”

Which Components to Merge?

It is reasonable to pick similar components to merge. The question is how
do will gauge the similarity between two components.

Consider two pdfs p(x) and q(x), note that we can define an inner
product of p(x) and q(x) by

〈p(x), q(x)〉 =
∫

p(x)q(x)dx

Note that the inner product is well defined and 〈p(x), p(x)〉 ≥ 0

By Cauchy-Schwartz inequality,

〈p(x), q(x)〉√
〈p(x), p(x)〉〈q(x), q(x)〉

=

∫
p(x)q(x)dx√∫

p(x)2dx
∫
q(x)2dx

≤ 1

The inner product maximizes (= 1) when p(x) = q(x). This suggests
a very reasonable similarity measure between two pdfs

S. Cheng (OU-Tulsa) December 5, 2017 53 / 275

Lecture 5 Mixture of “Gaussians”

Which Components to Merge?

It is reasonable to pick similar components to merge. The question is how
do will gauge the similarity between two components.

Consider two pdfs p(x) and q(x), note that we can define an inner
product of p(x) and q(x) by

〈p(x), q(x)〉 =
∫

p(x)q(x)dx

Note that the inner product is well defined and 〈p(x), p(x)〉 ≥ 0

By Cauchy-Schwartz inequality,

〈p(x), q(x)〉√
〈p(x), p(x)〉〈q(x), q(x)〉

=

∫
p(x)q(x)dx√∫

p(x)2dx
∫
q(x)2dx

≤ 1

The inner product maximizes (= 1) when p(x) = q(x). This suggests
a very reasonable similarity measure between two pdfs

S. Cheng (OU-Tulsa) December 5, 2017 53 / 275

Lecture 5 Mixture of “Gaussians”

Which Components to Merge?

It is reasonable to pick similar components to merge. The question is how
do will gauge the similarity between two components.

Consider two pdfs p(x) and q(x), note that we can define an inner
product of p(x) and q(x) by

〈p(x), q(x)〉 =
∫

p(x)q(x)dx

Note that the inner product is well defined and 〈p(x), p(x)〉 ≥ 0

By Cauchy-Schwartz inequality,

〈p(x), q(x)〉√
〈p(x), p(x)〉〈q(x), q(x)〉

=

∫
p(x)q(x)dx√∫

p(x)2dx
∫
q(x)2dx

≤ 1

The inner product maximizes (= 1) when p(x) = q(x). This suggests
a very reasonable similarity measure between two pdfs

S. Cheng (OU-Tulsa) December 5, 2017 53 / 275

Lecture 5 Mixture of “Gaussians”

Which Components to Merge?

It is reasonable to pick similar components to merge. The question is how
do will gauge the similarity between two components.

Consider two pdfs p(x) and q(x), note that we can define an inner
product of p(x) and q(x) by

〈p(x), q(x)〉 =
∫

p(x)q(x)dx

Note that the inner product is well defined and 〈p(x), p(x)〉 ≥ 0

By Cauchy-Schwartz inequality,

〈p(x), q(x)〉√
〈p(x), p(x)〉〈q(x), q(x)〉

=

∫
p(x)q(x)dx√∫

p(x)2dx
∫
q(x)2dx

≤ 1

The inner product maximizes (= 1) when p(x) = q(x). This suggests
a very reasonable similarity measure between two pdfs

S. Cheng (OU-Tulsa) December 5, 2017 53 / 275

Lecture 5 Mixture of “Gaussians”

Similarity measure

Let’s define

Sim(p(x), q(x)) ,

∫
p(x)q(x)dx√∫

p(x)2dx
∫
q(x)2dx

In particular, if p(x) = N (x;µp,Σp) and q(x) = N (x;µq,Σq), we
have (please verify)

Sim(N (µp,Σp),N (µq,Σq)) =
N (µp;µq,Σp +Σq)√
N (0; 0, 2Σp)N (0; 0, 2Σq)

,

which can be computed very easily and is equal to one only when
means and covariances are the same

S. Cheng (OU-Tulsa) December 5, 2017 54 / 275

Lecture 5 Mixture of “Gaussians”

Similarity measure

Let’s define

Sim(p(x), q(x)) ,

∫
p(x)q(x)dx√∫

p(x)2dx
∫
q(x)2dx

In particular, if p(x) = N (x;µp,Σp) and q(x) = N (x;µq,Σq), we
have (please verify)

Sim(N (µp,Σp),N (µq,Σq)) =
N (µp;µq,Σp +Σq)√
N (0; 0, 2Σp)N (0; 0, 2Σq)

,

which can be computed very easily and is equal to one only when
means and covariances are the same

S. Cheng (OU-Tulsa) December 5, 2017 54 / 275

Lecture 5 Mixture of “Gaussians”

How to Merge Components?

Say we have n components N (µ1,Σ1), N (µ2,Σ2), · · · , N (µn,Σn) with
weights w1,w2, · · · ,wn. What should the combined component be like?

Combined component weight should equal to total weight
∑n

i=1 wi

Combined mean will simply be
∑n

i=1 ŵiµi , where ŵi =
wi∑n
i=1 wi

For combined covariance, it may be tempting to approximate it as∑n
i=1 ŵiΣi .

However, it is an underestimate
Because the weighted sum only counted the contribution of variation
among each component, it did not take into account the variation due
to different means across components.
Instead, let’s denote X as the variable sampled from the mixture. That
is, X ∼ N (µi ,Σi) with probability ŵi . Then, we have (please verify)

Σ = E [XXT]− E [X]E [X]T

=
n∑

i=1

ŵi (Σi + µiµ
T
i)−

n∑
i=1

n∑
j=1

ŵi ŵjµiµ
T
j .

S. Cheng (OU-Tulsa) December 5, 2017 55 / 275

Lecture 5 Mixture of “Gaussians”

How to Merge Components?

Say we have n components N (µ1,Σ1), N (µ2,Σ2), · · · , N (µn,Σn) with
weights w1,w2, · · · ,wn. What should the combined component be like?

Combined component weight should equal to total weight
∑n

i=1 wi

Combined mean will simply be
∑n

i=1 ŵiµi , where ŵi =
wi∑n
i=1 wi

For combined covariance, it may be tempting to approximate it as∑n
i=1 ŵiΣi .

However, it is an underestimate
Because the weighted sum only counted the contribution of variation
among each component, it did not take into account the variation due
to different means across components.
Instead, let’s denote X as the variable sampled from the mixture. That
is, X ∼ N (µi ,Σi) with probability ŵi . Then, we have (please verify)

Σ = E [XXT]− E [X]E [X]T

=
n∑

i=1

ŵi (Σi + µiµ
T
i)−

n∑
i=1

n∑
j=1

ŵi ŵjµiµ
T
j .

S. Cheng (OU-Tulsa) December 5, 2017 55 / 275

Lecture 5 Mixture of “Gaussians”

How to Merge Components?

Say we have n components N (µ1,Σ1), N (µ2,Σ2), · · · , N (µn,Σn) with
weights w1,w2, · · · ,wn. What should the combined component be like?

Combined component weight should equal to total weight
∑n

i=1 wi

Combined mean will simply be
∑n

i=1 ŵiµi , where ŵi =
wi∑n
i=1 wi

For combined covariance, it may be tempting to approximate it as∑n
i=1 ŵiΣi .

However, it is an underestimate
Because the weighted sum only counted the contribution of variation
among each component, it did not take into account the variation due
to different means across components.
Instead, let’s denote X as the variable sampled from the mixture. That
is, X ∼ N (µi ,Σi) with probability ŵi . Then, we have (please verify)

Σ = E [XXT]− E [X]E [X]T

=
n∑

i=1

ŵi (Σi + µiµ
T
i)−

n∑
i=1

n∑
j=1

ŵi ŵjµiµ
T
j .

S. Cheng (OU-Tulsa) December 5, 2017 55 / 275

Lecture 5 Mixture of “Gaussians”

How to Merge Components?

Say we have n components N (µ1,Σ1), N (µ2,Σ2), · · · , N (µn,Σn) with
weights w1,w2, · · · ,wn. What should the combined component be like?

Combined component weight should equal to total weight
∑n

i=1 wi

Combined mean will simply be
∑n

i=1 ŵiµi , where ŵi =
wi∑n
i=1 wi

For combined covariance, it may be tempting to approximate it as∑n
i=1 ŵiΣi .

However, it is an underestimate
Because the weighted sum only counted the contribution of variation
among each component, it did not take into account the variation due
to different means across components.
Instead, let’s denote X as the variable sampled from the mixture. That
is, X ∼ N (µi ,Σi) with probability ŵi . Then, we have (please verify)

Σ = E [XXT]− E [X]E [X]T

=
n∑

i=1

ŵi (Σi + µiµ
T
i)−

n∑
i=1

n∑
j=1

ŵi ŵjµiµ
T
j .

S. Cheng (OU-Tulsa) December 5, 2017 55 / 275

Lecture 5 Mixture of “Gaussians”

How to Merge Components?

Say we have n components N (µ1,Σ1), N (µ2,Σ2), · · · , N (µn,Σn) with
weights w1,w2, · · · ,wn. What should the combined component be like?

Combined component weight should equal to total weight
∑n

i=1 wi

Combined mean will simply be
∑n

i=1 ŵiµi , where ŵi =
wi∑n
i=1 wi

For combined covariance, it may be tempting to approximate it as∑n
i=1 ŵiΣi .

However, it is an underestimate

Because the weighted sum only counted the contribution of variation
among each component, it did not take into account the variation due
to different means across components.
Instead, let’s denote X as the variable sampled from the mixture. That
is, X ∼ N (µi ,Σi) with probability ŵi . Then, we have (please verify)

Σ = E [XXT]− E [X]E [X]T

=
n∑

i=1

ŵi (Σi + µiµ
T
i)−

n∑
i=1

n∑
j=1

ŵi ŵjµiµ
T
j .

S. Cheng (OU-Tulsa) December 5, 2017 55 / 275

Lecture 5 Mixture of “Gaussians”

How to Merge Components?

Say we have n components N (µ1,Σ1), N (µ2,Σ2), · · · , N (µn,Σn) with
weights w1,w2, · · · ,wn. What should the combined component be like?

Combined component weight should equal to total weight
∑n

i=1 wi

Combined mean will simply be
∑n

i=1 ŵiµi , where ŵi =
wi∑n
i=1 wi

For combined covariance, it may be tempting to approximate it as∑n
i=1 ŵiΣi .

However, it is an underestimate
Because the weighted sum only counted the contribution of variation
among each component, it did not take into account the variation due
to different means across components.

Instead, let’s denote X as the variable sampled from the mixture. That
is, X ∼ N (µi ,Σi) with probability ŵi . Then, we have (please verify)

Σ = E [XXT]− E [X]E [X]T

=
n∑

i=1

ŵi (Σi + µiµ
T
i)−

n∑
i=1

n∑
j=1

ŵi ŵjµiµ
T
j .

S. Cheng (OU-Tulsa) December 5, 2017 55 / 275

Lecture 5 Mixture of “Gaussians”

How to Merge Components?

Say we have n components N (µ1,Σ1), N (µ2,Σ2), · · · , N (µn,Σn) with
weights w1,w2, · · · ,wn. What should the combined component be like?

Combined component weight should equal to total weight
∑n

i=1 wi

Combined mean will simply be
∑n

i=1 ŵiµi , where ŵi =
wi∑n
i=1 wi

For combined covariance, it may be tempting to approximate it as∑n
i=1 ŵiΣi .

However, it is an underestimate
Because the weighted sum only counted the contribution of variation
among each component, it did not take into account the variation due
to different means across components.
Instead, let’s denote X as the variable sampled from the mixture. That
is, X ∼ N (µi ,Σi) with probability ŵi . Then, we have (please verify)

Σ = E [XXT]− E [X]E [X]T

=
n∑

i=1

ŵi (Σi + µiµ
T
i)−

n∑
i=1

n∑
j=1

ŵi ŵjµiµ
T
j .

S. Cheng (OU-Tulsa) December 5, 2017 55 / 275

Lecture 5 Mixture of “Gaussians”

Now, go back to our previous numerical example

Recall that p(x) = 0.1N (x ;−0.2, 1) + 0.1N (x ;−0.1, 1) +
0.1N (x ; 0, 1) + 0.1N (x ; 0.1, 1) + 0.1N (x ; 0.2, 1) + 0.5N (x ; 5, 1)

If we merge the five smallest components (one can easily check that
they are also more similar to each other than to the last component),
we have p̃(x) = 0.5N (x ; 0, 1.02) + 0.5N (x ; 5, 1) as shown again
below. The approximate pdf is virtually indistinguishable from the
original

−4 −2 0 2 4 6 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
p(x)
p̂(x)
p̃(x)

S. Cheng (OU-Tulsa) December 5, 2017 56 / 275

Lecture 5 Mixture of “Gaussians”

Now, go back to our previous numerical example

Recall that p(x) = 0.1N (x ;−0.2, 1) + 0.1N (x ;−0.1, 1) +
0.1N (x ; 0, 1) + 0.1N (x ; 0.1, 1) + 0.1N (x ; 0.2, 1) + 0.5N (x ; 5, 1)

If we merge the five smallest components (one can easily check that
they are also more similar to each other than to the last component),
we have p̃(x) = 0.5N (x ; 0, 1.02) + 0.5N (x ; 5, 1) as shown again
below. The approximate pdf is virtually indistinguishable from the
original

−4 −2 0 2 4 6 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
p(x)
p̂(x)
p̃(x)

S. Cheng (OU-Tulsa) December 5, 2017 56 / 275

Lecture 5 Mixture of “Gaussians”

Review multivariate normal

Marginalization of a normal distribution is still a normal distribution

Conditioning of normal distribution:
X|y ∼ N (µX +ΣXYΣ

−1
YY(y − µY),ΣXX − ΣXYΣ

−1
YYΣYX)

Product of normal distribution:
N (y1; x,ΣY1)N (y2; x,ΣY2) =
N (y1; y2,ΣY2+ΣY1)N (x; (ΛY1+ΛY2)

−1(ΛY2y2+ΛY1y), (ΛY2+ΛY1)
−1)

Division of normal distribution:

N (x;µ1,Σ1)

N (x;µ2,Σ2)
=

N (x;µ, (Λ1 − Λ2)
−1)

N (µ2;µ,Λ
−1
2 + (Λ1 − Λ2)−1)

,

where µ = (Λ1 − Λ2)
−1(Λ1µ1 − Λ2µ2)

Similarity measure

Sim(N (µp,Σp),N (µq,Σq)) =
N (µp;µq,Σp +Σq)√
N (0; 0, 2Σp)N (0; 0, 2Σq)

,

S. Cheng (OU-Tulsa) December 5, 2017 57 / 275

Lecture 5 More distributions

Bernoulli distribution

Consider someone flips a biased coin. The probability of the outcome
is described by the Bernoulli distribution. Denote X = 1 for a head
and X = 0 for a tail. Let Pr(X = 1) = p.

Then the Bernoulli
distribution is simply

Bern(x |p) =

{
p, x = 1

1− p, x = 0

More concisely, we can write it as

Bern(x |p) = px(1− p)1−x ,

The mean and variance are

E [X] = p · 1 + (1− p) · 0 = p

Var [X] = p · (1− p)2 + (1− p) · p2 = p(1− p)

S. Cheng (OU-Tulsa) December 5, 2017 58 / 275

Lecture 5 More distributions

Bernoulli distribution

Consider someone flips a biased coin. The probability of the outcome
is described by the Bernoulli distribution. Denote X = 1 for a head
and X = 0 for a tail. Let Pr(X = 1) = p. Then the Bernoulli
distribution is simply

Bern(x |p) =

{
p, x = 1

1− p, x = 0

More concisely, we can write it as

Bern(x |p) = px(1− p)1−x ,

The mean and variance are

E [X] = p · 1 + (1− p) · 0 = p

Var [X] = p · (1− p)2 + (1− p) · p2 = p(1− p)

S. Cheng (OU-Tulsa) December 5, 2017 58 / 275

Lecture 5 More distributions

Bernoulli distribution

Consider someone flips a biased coin. The probability of the outcome
is described by the Bernoulli distribution. Denote X = 1 for a head
and X = 0 for a tail. Let Pr(X = 1) = p. Then the Bernoulli
distribution is simply

Bern(x |p) =

{
p, x = 1

1− p, x = 0

More concisely, we can write it as

Bern(x |p) = px(1− p)1−x ,

The mean and variance are

E [X] = p · 1 + (1− p) · 0 = p

Var [X] = p · (1− p)2 + (1− p) · p2 = p(1− p)

S. Cheng (OU-Tulsa) December 5, 2017 58 / 275

Lecture 5 More distributions

Bernoulli distribution

Consider someone flips a biased coin. The probability of the outcome
is described by the Bernoulli distribution. Denote X = 1 for a head
and X = 0 for a tail. Let Pr(X = 1) = p. Then the Bernoulli
distribution is simply

Bern(x |p) =

{
p, x = 1

1− p, x = 0

More concisely, we can write it as

Bern(x |p) = px(1− p)1−x ,

The mean and variance are

E [X] = p · 1 + (1− p) · 0 = p

Var [X] = p · (1− p)2 + (1− p) · p2 = p(1− p)

S. Cheng (OU-Tulsa) December 5, 2017 58 / 275

Lecture 5 More distributions

Binomial distribution (N trials)

Repeat the experiment for N times, the probability of the outcome
will now be described by the binomial distribution. Note that x is now
the number of obtained heads, we have

Bin(x |p,N) =

(
N

x

)
px(1− p)N−x ,

Mean and variances are given by

E [X] =
∑N

x=0 Bin(x |p)x =
∑N

x=1
N!

(x−1)!(N−x)!p
x(1− p)N−x

= Np
∑N

x=1
(N−1)!

(x−1)!(N−x)!p
x−1(1− p)N−x= Np

∑N−1
x=0 Bin(x |p,N − 1)

= Np
Similar, E [X (X − 1)] =

∑N
x=2

N!
(x−2)!(N−x)!p

x(1− p)N−x

= N(N − 1)p2
∑N−2

x=0 Bin(x |p,N − 2) = N(N − 1)p2

Therefore, Var [X] = E [X 2]− E [X]2= E [X (X − 1)] + E [X]− E [X]2 =
N(N − 1)p2 + Np − (Np)2 = Np(1− p)

S. Cheng (OU-Tulsa) December 5, 2017 59 / 275

Lecture 5 More distributions

Binomial distribution (N trials)

Repeat the experiment for N times, the probability of the outcome
will now be described by the binomial distribution. Note that x is now
the number of obtained heads, we have

Bin(x |p,N) =

(
N

x

)
px(1− p)N−x ,

Mean and variances are given by

E [X] =
∑N

x=0 Bin(x |p)x

=
∑N

x=1
N!

(x−1)!(N−x)!p
x(1− p)N−x

= Np
∑N

x=1
(N−1)!

(x−1)!(N−x)!p
x−1(1− p)N−x= Np

∑N−1
x=0 Bin(x |p,N − 1)

= Np
Similar, E [X (X − 1)] =

∑N
x=2

N!
(x−2)!(N−x)!p

x(1− p)N−x

= N(N − 1)p2
∑N−2

x=0 Bin(x |p,N − 2) = N(N − 1)p2

Therefore, Var [X] = E [X 2]− E [X]2= E [X (X − 1)] + E [X]− E [X]2 =
N(N − 1)p2 + Np − (Np)2 = Np(1− p)

S. Cheng (OU-Tulsa) December 5, 2017 59 / 275

Lecture 5 More distributions

Binomial distribution (N trials)

Repeat the experiment for N times, the probability of the outcome
will now be described by the binomial distribution. Note that x is now
the number of obtained heads, we have

Bin(x |p,N) =

(
N

x

)
px(1− p)N−x ,

Mean and variances are given by

E [X] =
∑N

x=0 Bin(x |p)x =
∑N

x=1
N!

(x−1)!(N−x)!p
x(1− p)N−x

= Np
∑N

x=1
(N−1)!

(x−1)!(N−x)!p
x−1(1− p)N−x= Np

∑N−1
x=0 Bin(x |p,N − 1)

= Np
Similar, E [X (X − 1)] =

∑N
x=2

N!
(x−2)!(N−x)!p

x(1− p)N−x

= N(N − 1)p2
∑N−2

x=0 Bin(x |p,N − 2) = N(N − 1)p2

Therefore, Var [X] = E [X 2]− E [X]2= E [X (X − 1)] + E [X]− E [X]2 =
N(N − 1)p2 + Np − (Np)2 = Np(1− p)

S. Cheng (OU-Tulsa) December 5, 2017 59 / 275

Lecture 5 More distributions

Binomial distribution (N trials)

Repeat the experiment for N times, the probability of the outcome
will now be described by the binomial distribution. Note that x is now
the number of obtained heads, we have

Bin(x |p,N) =

(
N

x

)
px(1− p)N−x ,

Mean and variances are given by

E [X] =
∑N

x=0 Bin(x |p)x =
∑N

x=1
N!

(x−1)!(N−x)!p
x(1− p)N−x

= Np
∑N

x=1
(N−1)!

(x−1)!(N−x)!p
x−1(1− p)N−x

= Np
∑N−1

x=0 Bin(x |p,N − 1)

= Np
Similar, E [X (X − 1)] =

∑N
x=2

N!
(x−2)!(N−x)!p

x(1− p)N−x

= N(N − 1)p2
∑N−2

x=0 Bin(x |p,N − 2) = N(N − 1)p2

Therefore, Var [X] = E [X 2]− E [X]2= E [X (X − 1)] + E [X]− E [X]2 =
N(N − 1)p2 + Np − (Np)2 = Np(1− p)

S. Cheng (OU-Tulsa) December 5, 2017 59 / 275

Lecture 5 More distributions

Binomial distribution (N trials)

Repeat the experiment for N times, the probability of the outcome
will now be described by the binomial distribution. Note that x is now
the number of obtained heads, we have

Bin(x |p,N) =

(
N

x

)
px(1− p)N−x ,

Mean and variances are given by

E [X] =
∑N

x=0 Bin(x |p)x =
∑N

x=1
N!

(x−1)!(N−x)!p
x(1− p)N−x

= Np
∑N

x=1
(N−1)!

(x−1)!(N−x)!p
x−1(1− p)N−x= Np

∑N−1
x=0 Bin(x |p,N − 1)

= Np
Similar, E [X (X − 1)] =

∑N
x=2

N!
(x−2)!(N−x)!p

x(1− p)N−x

= N(N − 1)p2
∑N−2

x=0 Bin(x |p,N − 2) = N(N − 1)p2

Therefore, Var [X] = E [X 2]− E [X]2= E [X (X − 1)] + E [X]− E [X]2 =
N(N − 1)p2 + Np − (Np)2 = Np(1− p)

S. Cheng (OU-Tulsa) December 5, 2017 59 / 275

Lecture 5 More distributions

Binomial distribution (N trials)

Repeat the experiment for N times, the probability of the outcome
will now be described by the binomial distribution. Note that x is now
the number of obtained heads, we have

Bin(x |p,N) =

(
N

x

)
px(1− p)N−x ,

Mean and variances are given by

E [X] =
∑N

x=0 Bin(x |p)x =
∑N

x=1
N!

(x−1)!(N−x)!p
x(1− p)N−x

= Np
∑N

x=1
(N−1)!

(x−1)!(N−x)!p
x−1(1− p)N−x= Np

∑N−1
x=0 Bin(x |p,N − 1)

= Np

Similar, E [X (X − 1)] =
∑N

x=2
N!

(x−2)!(N−x)!p
x(1− p)N−x

= N(N − 1)p2
∑N−2

x=0 Bin(x |p,N − 2) = N(N − 1)p2

Therefore, Var [X] = E [X 2]− E [X]2= E [X (X − 1)] + E [X]− E [X]2 =
N(N − 1)p2 + Np − (Np)2 = Np(1− p)

S. Cheng (OU-Tulsa) December 5, 2017 59 / 275

Lecture 5 More distributions

Binomial distribution (N trials)

Repeat the experiment for N times, the probability of the outcome
will now be described by the binomial distribution. Note that x is now
the number of obtained heads, we have

Bin(x |p,N) =

(
N

x

)
px(1− p)N−x ,

Mean and variances are given by

E [X] =
∑N

x=0 Bin(x |p)x =
∑N

x=1
N!

(x−1)!(N−x)!p
x(1− p)N−x

= Np
∑N

x=1
(N−1)!

(x−1)!(N−x)!p
x−1(1− p)N−x= Np

∑N−1
x=0 Bin(x |p,N − 1)

= Np
Similar, E [X (X − 1)] =

∑N
x=2

N!
(x−2)!(N−x)!p

x(1− p)N−x

= N(N − 1)p2
∑N−2

x=0 Bin(x |p,N − 2) = N(N − 1)p2

Therefore, Var [X] = E [X 2]− E [X]2= E [X (X − 1)] + E [X]− E [X]2 =
N(N − 1)p2 + Np − (Np)2 = Np(1− p)

S. Cheng (OU-Tulsa) December 5, 2017 59 / 275

Lecture 5 More distributions

Binomial distribution (N trials)

Repeat the experiment for N times, the probability of the outcome
will now be described by the binomial distribution. Note that x is now
the number of obtained heads, we have

Bin(x |p,N) =

(
N

x

)
px(1− p)N−x ,

Mean and variances are given by

E [X] =
∑N

x=0 Bin(x |p)x =
∑N

x=1
N!

(x−1)!(N−x)!p
x(1− p)N−x

= Np
∑N

x=1
(N−1)!

(x−1)!(N−x)!p
x−1(1− p)N−x= Np

∑N−1
x=0 Bin(x |p,N − 1)

= Np
Similar, E [X (X − 1)] =

∑N
x=2

N!
(x−2)!(N−x)!p

x(1− p)N−x

= N(N − 1)p2
∑N−2

x=0 Bin(x |p,N − 2) = N(N − 1)p2

Therefore, Var [X] = E [X 2]− E [X]2= E [X (X − 1)] + E [X]− E [X]2 =
N(N − 1)p2 + Np − (Np)2 = Np(1− p)

S. Cheng (OU-Tulsa) December 5, 2017 59 / 275

Lecture 5 More distributions

Binomial distribution (N trials)

Repeat the experiment for N times, the probability of the outcome
will now be described by the binomial distribution. Note that x is now
the number of obtained heads, we have

Bin(x |p,N) =

(
N

x

)
px(1− p)N−x ,

Mean and variances are given by

E [X] =
∑N

x=0 Bin(x |p)x =
∑N

x=1
N!

(x−1)!(N−x)!p
x(1− p)N−x

= Np
∑N

x=1
(N−1)!

(x−1)!(N−x)!p
x−1(1− p)N−x= Np

∑N−1
x=0 Bin(x |p,N − 1)

= Np
Similar, E [X (X − 1)] =

∑N
x=2

N!
(x−2)!(N−x)!p

x(1− p)N−x

= N(N − 1)p2
∑N−2

x=0 Bin(x |p,N − 2) = N(N − 1)p2

Therefore, Var [X] = E [X 2]− E [X]2

= E [X (X − 1)] + E [X]− E [X]2 =
N(N − 1)p2 + Np − (Np)2 = Np(1− p)

S. Cheng (OU-Tulsa) December 5, 2017 59 / 275

Lecture 5 More distributions

Binomial distribution (N trials)

Repeat the experiment for N times, the probability of the outcome
will now be described by the binomial distribution. Note that x is now
the number of obtained heads, we have

Bin(x |p,N) =

(
N

x

)
px(1− p)N−x ,

Mean and variances are given by

E [X] =
∑N

x=0 Bin(x |p)x =
∑N

x=1
N!

(x−1)!(N−x)!p
x(1− p)N−x

= Np
∑N

x=1
(N−1)!

(x−1)!(N−x)!p
x−1(1− p)N−x= Np

∑N−1
x=0 Bin(x |p,N − 1)

= Np
Similar, E [X (X − 1)] =

∑N
x=2

N!
(x−2)!(N−x)!p

x(1− p)N−x

= N(N − 1)p2
∑N−2

x=0 Bin(x |p,N − 2) = N(N − 1)p2

Therefore, Var [X] = E [X 2]− E [X]2= E [X (X − 1)] + E [X]− E [X]2 =
N(N − 1)p2 + Np − (Np)2 = Np(1− p)

S. Cheng (OU-Tulsa) December 5, 2017 59 / 275

Lecture 5 More distributions

Binomial distribution

As shown below, the binomial distribution can be model well with a
normal distribution N (Np,Np(1− p)) for large N

The binomial distribution is shown in blue and an approximation by normal
distribution is shown in red

S. Cheng (OU-Tulsa) December 5, 2017 60 / 275

Lecture 5 More distributions

Conjugate prior

Note that both Bernoulli and binomial distributions have the form
pu(1− p)v

To estimate p, recall that the ML estimator will try to compute

p̂ = argmax
p

p(u, v |p) = argmax
p

pu(1− p)v

Now if we would like to use the MAP estimator instead, we need to
introduce a prior p(p) and solve instead

p̂ = argmax
p

p(u, v |p)p(p) = argmax
p

pu(1− p)vp(p)

It is very difficult to determine the prior unanimously. Actually it can
be controversial just to determine the form of it
However, if we select p(p) of a form p(p) ∝ pa(1− p)b, then the
resulting posterior distribution with the same form as before. This
choice is often chosen for practical purposes, and a prior with same
“form” as its likelihood (and thus posterior) is known as the
conjugate prior

S. Cheng (OU-Tulsa) December 5, 2017 61 / 275

Lecture 5 More distributions

Conjugate prior

Note that both Bernoulli and binomial distributions have the form
pu(1− p)v

To estimate p, recall that the ML estimator will try to compute

p̂ = argmax
p

p(u, v |p) = argmax
p

pu(1− p)v

Now if we would like to use the MAP estimator instead, we need to
introduce a prior p(p) and solve instead

p̂ = argmax
p

p(u, v |p)p(p) = argmax
p

pu(1− p)vp(p)

It is very difficult to determine the prior unanimously. Actually it can
be controversial just to determine the form of it
However, if we select p(p) of a form p(p) ∝ pa(1− p)b, then the
resulting posterior distribution with the same form as before. This
choice is often chosen for practical purposes, and a prior with same
“form” as its likelihood (and thus posterior) is known as the
conjugate prior

S. Cheng (OU-Tulsa) December 5, 2017 61 / 275

Lecture 5 More distributions

Conjugate prior

Note that both Bernoulli and binomial distributions have the form
pu(1− p)v

To estimate p, recall that the ML estimator will try to compute

p̂ = argmax
p

p(u, v |p) = argmax
p

pu(1− p)v

Now if we would like to use the MAP estimator instead, we need to
introduce a prior p(p) and solve instead

p̂ = argmax
p

p(u, v |p)p(p) = argmax
p

pu(1− p)vp(p)

It is very difficult to determine the prior unanimously. Actually it can
be controversial just to determine the form of it
However, if we select p(p) of a form p(p) ∝ pa(1− p)b, then the
resulting posterior distribution with the same form as before. This
choice is often chosen for practical purposes, and a prior with same
“form” as its likelihood (and thus posterior) is known as the
conjugate prior

S. Cheng (OU-Tulsa) December 5, 2017 61 / 275

Lecture 5 More distributions

Conjugate prior

Note that both Bernoulli and binomial distributions have the form
pu(1− p)v

To estimate p, recall that the ML estimator will try to compute

p̂ = argmax
p

p(u, v |p) = argmax
p

pu(1− p)v

Now if we would like to use the MAP estimator instead, we need to
introduce a prior p(p) and solve instead

p̂ = argmax
p

p(u, v |p)p(p) = argmax
p

pu(1− p)vp(p)

It is very difficult to determine the prior unanimously. Actually it can
be controversial just to determine the form of it

However, if we select p(p) of a form p(p) ∝ pa(1− p)b, then the
resulting posterior distribution with the same form as before. This
choice is often chosen for practical purposes, and a prior with same
“form” as its likelihood (and thus posterior) is known as the
conjugate prior

S. Cheng (OU-Tulsa) December 5, 2017 61 / 275

Lecture 5 More distributions

Conjugate prior

Note that both Bernoulli and binomial distributions have the form
pu(1− p)v

To estimate p, recall that the ML estimator will try to compute

p̂ = argmax
p

p(u, v |p) = argmax
p

pu(1− p)v

Now if we would like to use the MAP estimator instead, we need to
introduce a prior p(p) and solve instead

p̂ = argmax
p

p(u, v |p)p(p) = argmax
p

pu(1− p)vp(p)

It is very difficult to determine the prior unanimously. Actually it can
be controversial just to determine the form of it
However, if we select p(p) of a form p(p) ∝ pa(1− p)b, then the
resulting posterior distribution with the same form as before. This
choice is often chosen for practical purposes, and a prior with same
“form” as its likelihood (and thus posterior) is known as the
conjugate prior

S. Cheng (OU-Tulsa) December 5, 2017 61 / 275

Lecture 5 More distributions

Beta distribution

The conjugate prior of both Bernoulli and binomial distributions is the
beta distribution. Its pdf is given by

Beta(x |a, b) = xa−1(1− x)b−1

B(a, b)
,

where X ∈ [0, 1] and B(a, b) = Γ(a)Γ(b)
Γ(a+b)

Note that with a = b = 1, Beta(x |1, 1) = 1. It is the same as no prior

S. Cheng (OU-Tulsa) December 5, 2017 62 / 275

Lecture 5 More distributions

Beta distribution

The conjugate prior of both Bernoulli and binomial distributions is the
beta distribution. Its pdf is given by

Beta(x |a, b) = xa−1(1− x)b−1

B(a, b)
,

where X ∈ [0, 1] and B(a, b) = Γ(a)Γ(b)
Γ(a+b)

Note that with a = b = 1, Beta(x |1, 1) = 1. It is the same as no prior

S. Cheng (OU-Tulsa) December 5, 2017 62 / 275

Lecture 5 More distributions

Gamma function

Note that Γ(z) =

∫ ∞

0
xz−1e−x dx

Γ(1) =

∫ ∞

0
e−x dx = −e−x |∞0 = 1

For z > 1, we have Γ(z) = (z − 1)Γ(z − 1)

Proof.

Γ(z) =

∫ ∞

0
xz−1e−x dx= −

∫ ∞

0
xz−1de−x

= −xz−1e−x |∞0 + (z − 1)

∫ ∞

0
xz−2e−x dx

= (z − 1)

∫ ∞

0
xz−2e−x dx = (z − 1)Γ(z − 1)

Therefore, for integer z > 1, Γ(z) = (z − 1)!

S. Cheng (OU-Tulsa) December 5, 2017 63 / 275

Lecture 5 More distributions

Gamma function

Note that Γ(z) =

∫ ∞

0
xz−1e−x dx

Γ(1) =

∫ ∞

0
e−x dx = −e−x |∞0 = 1

For z > 1, we have Γ(z) = (z − 1)Γ(z − 1)

Proof.

Γ(z) =

∫ ∞

0
xz−1e−x dx= −

∫ ∞

0
xz−1de−x

= −xz−1e−x |∞0 + (z − 1)

∫ ∞

0
xz−2e−x dx

= (z − 1)

∫ ∞

0
xz−2e−x dx = (z − 1)Γ(z − 1)

Therefore, for integer z > 1, Γ(z) = (z − 1)!

S. Cheng (OU-Tulsa) December 5, 2017 63 / 275

Lecture 5 More distributions

Gamma function

Note that Γ(z) =

∫ ∞

0
xz−1e−x dx

Γ(1) =

∫ ∞

0
e−x dx = −e−x |∞0 = 1

For z > 1, we have Γ(z) = (z − 1)Γ(z − 1)

Proof.

Γ(z) =

∫ ∞

0
xz−1e−x dx

= −
∫ ∞

0
xz−1de−x

= −xz−1e−x |∞0 + (z − 1)

∫ ∞

0
xz−2e−x dx

= (z − 1)

∫ ∞

0
xz−2e−x dx = (z − 1)Γ(z − 1)

Therefore, for integer z > 1, Γ(z) = (z − 1)!

S. Cheng (OU-Tulsa) December 5, 2017 63 / 275

Lecture 5 More distributions

Gamma function

Note that Γ(z) =

∫ ∞

0
xz−1e−x dx

Γ(1) =

∫ ∞

0
e−x dx = −e−x |∞0 = 1

For z > 1, we have Γ(z) = (z − 1)Γ(z − 1)

Proof.

Γ(z) =

∫ ∞

0
xz−1e−x dx= −

∫ ∞

0
xz−1de−x

= −xz−1e−x |∞0 + (z − 1)

∫ ∞

0
xz−2e−x dx

= (z − 1)

∫ ∞

0
xz−2e−x dx = (z − 1)Γ(z − 1)

Therefore, for integer z > 1, Γ(z) = (z − 1)!

S. Cheng (OU-Tulsa) December 5, 2017 63 / 275

Lecture 5 More distributions

Gamma function

Note that Γ(z) =

∫ ∞

0
xz−1e−x dx

Γ(1) =

∫ ∞

0
e−x dx = −e−x |∞0 = 1

For z > 1, we have Γ(z) = (z − 1)Γ(z − 1)

Proof.

Γ(z) =

∫ ∞

0
xz−1e−x dx= −

∫ ∞

0
xz−1de−x

= −xz−1e−x |∞0 + (z − 1)

∫ ∞

0
xz−2e−x dx

= (z − 1)

∫ ∞

0
xz−2e−x dx = (z − 1)Γ(z − 1)

Therefore, for integer z > 1, Γ(z) = (z − 1)!

S. Cheng (OU-Tulsa) December 5, 2017 63 / 275

Lecture 5 More distributions

Gamma function

Note that Γ(z) =

∫ ∞

0
xz−1e−x dx

Γ(1) =

∫ ∞

0
e−x dx = −e−x |∞0 = 1

For z > 1, we have Γ(z) = (z − 1)Γ(z − 1)

Proof.

Γ(z) =

∫ ∞

0
xz−1e−x dx= −

∫ ∞

0
xz−1de−x

= −xz−1e−x |∞0 + (z − 1)

∫ ∞

0
xz−2e−x dx

= (z − 1)

∫ ∞

0
xz−2e−x dx = (z − 1)Γ(z − 1)

Therefore, for integer z > 1, Γ(z) = (z − 1)!

S. Cheng (OU-Tulsa) December 5, 2017 63 / 275

Lecture 5 More distributions

Gamma function

Note that Γ(z) =

∫ ∞

0
xz−1e−x dx

Γ(1) =

∫ ∞

0
e−x dx = −e−x |∞0 = 1

For z > 1, we have Γ(z) = (z − 1)Γ(z − 1)

Proof.

Γ(z) =

∫ ∞

0
xz−1e−x dx= −

∫ ∞

0
xz−1de−x

= −xz−1e−x |∞0 + (z − 1)

∫ ∞

0
xz−2e−x dx

= (z − 1)

∫ ∞

0
xz−2e−x dx = (z − 1)Γ(z − 1)

Therefore, for integer z > 1, Γ(z) = (z − 1)!

S. Cheng (OU-Tulsa) December 5, 2017 63 / 275

Lecture 5 More distributions

Mode of beta distribution

The mode is the peak of a distribution. Recall that

Beta(x |a, b) = xa−1(1−x)b−1

B(a,b) . Set

∂Beta(x |a, b)
∂x

=
(a− 1)xa−2(1− x)b−1 − (b − 1)xa−1(1− x)b−2

B(a, b)
= 0,

we have (a− 1)(1− x) = (b − 1)x ⇒ x = a−1
a+b−2

S. Cheng (OU-Tulsa) December 5, 2017 64 / 275

Lecture 5 More distributions

Mean and variance of Beta distribution

Note that
∫ 1
x=0 p(x |a, b) = 1⇒

∫ 1
x=0 x

a−1(1− x)b−1 = B(a, b) = Γ(a)Γ(b)
Γ(a+b) .

This gives us a handy trick to manipulate beta distribution

E [X] =

∫ 1

x=0
xBeta(x |a, b)dx =

Γ(a+ b)

Γ(a)Γ(b)

∫ 1

x=0
xa(1− x)b−1dx

=
Γ(a+ b)

Γ(a)Γ(b)

Γ(a+ 1)Γ(b)

Γ(a+ b + 1)
=

a

a+ b

Similarly, E [X 2] = Γ(a+b)
Γ(a)Γ(b)

∫ 1
x=0 x

a+1(1− x)b−1dx= Γ(a+b)
Γ(a)Γ(b)

Γ(a+2)Γ(b)
Γ(a+b+2) =

a(a+1)
(a+b)(a+b+1) . Thus,

Var [X] =E [X 2]− E [X]2 =
a(a+ 1)

(a+ b)(a+ b + 1)
− a2

(a+ b)2

=
a(a+ 1)(a+ b)− a2(a+ b + 1)

(a+ b)2(a+ b + 1)
=

ab

(a+ b)2(a+ b + 1)

S. Cheng (OU-Tulsa) December 5, 2017 65 / 275

Lecture 5 More distributions

Mean and variance of Beta distribution

Note that
∫ 1
x=0 p(x |a, b) = 1⇒

∫ 1
x=0 x

a−1(1− x)b−1 = B(a, b) = Γ(a)Γ(b)
Γ(a+b) .

This gives us a handy trick to manipulate beta distribution

E [X] =

∫ 1

x=0
xBeta(x |a, b)dx =

Γ(a+ b)

Γ(a)Γ(b)

∫ 1

x=0
xa(1− x)b−1dx

=
Γ(a+ b)

Γ(a)Γ(b)

Γ(a+ 1)Γ(b)

Γ(a+ b + 1)
=

a

a+ b

Similarly, E [X 2] = Γ(a+b)
Γ(a)Γ(b)

∫ 1
x=0 x

a+1(1− x)b−1dx= Γ(a+b)
Γ(a)Γ(b)

Γ(a+2)Γ(b)
Γ(a+b+2) =

a(a+1)
(a+b)(a+b+1) . Thus,

Var [X] =E [X 2]− E [X]2 =
a(a+ 1)

(a+ b)(a+ b + 1)
− a2

(a+ b)2

=
a(a+ 1)(a+ b)− a2(a+ b + 1)

(a+ b)2(a+ b + 1)
=

ab

(a+ b)2(a+ b + 1)

S. Cheng (OU-Tulsa) December 5, 2017 65 / 275

Lecture 5 More distributions

Mean and variance of Beta distribution

Note that
∫ 1
x=0 p(x |a, b) = 1⇒

∫ 1
x=0 x

a−1(1− x)b−1 = B(a, b) = Γ(a)Γ(b)
Γ(a+b) .

This gives us a handy trick to manipulate beta distribution

E [X] =

∫ 1

x=0
xBeta(x |a, b)dx =

Γ(a+ b)

Γ(a)Γ(b)

∫ 1

x=0
xa(1− x)b−1dx

=
Γ(a+ b)

Γ(a)Γ(b)

Γ(a+ 1)Γ(b)

Γ(a+ b + 1)
=

a

a+ b

Similarly, E [X 2] = Γ(a+b)
Γ(a)Γ(b)

∫ 1
x=0 x

a+1(1− x)b−1dx

= Γ(a+b)
Γ(a)Γ(b)

Γ(a+2)Γ(b)
Γ(a+b+2) =

a(a+1)
(a+b)(a+b+1) . Thus,

Var [X] =E [X 2]− E [X]2 =
a(a+ 1)

(a+ b)(a+ b + 1)
− a2

(a+ b)2

=
a(a+ 1)(a+ b)− a2(a+ b + 1)

(a+ b)2(a+ b + 1)
=

ab

(a+ b)2(a+ b + 1)

S. Cheng (OU-Tulsa) December 5, 2017 65 / 275

Lecture 5 More distributions

Mean and variance of Beta distribution

Note that
∫ 1
x=0 p(x |a, b) = 1⇒

∫ 1
x=0 x

a−1(1− x)b−1 = B(a, b) = Γ(a)Γ(b)
Γ(a+b) .

This gives us a handy trick to manipulate beta distribution

E [X] =

∫ 1

x=0
xBeta(x |a, b)dx =

Γ(a+ b)

Γ(a)Γ(b)

∫ 1

x=0
xa(1− x)b−1dx

=
Γ(a+ b)

Γ(a)Γ(b)

Γ(a+ 1)Γ(b)

Γ(a+ b + 1)
=

a

a+ b

Similarly, E [X 2] = Γ(a+b)
Γ(a)Γ(b)

∫ 1
x=0 x

a+1(1− x)b−1dx= Γ(a+b)
Γ(a)Γ(b)

Γ(a+2)Γ(b)
Γ(a+b+2) =

a(a+1)
(a+b)(a+b+1) .

Thus,

Var [X] =E [X 2]− E [X]2 =
a(a+ 1)

(a+ b)(a+ b + 1)
− a2

(a+ b)2

=
a(a+ 1)(a+ b)− a2(a+ b + 1)

(a+ b)2(a+ b + 1)
=

ab

(a+ b)2(a+ b + 1)

S. Cheng (OU-Tulsa) December 5, 2017 65 / 275

Lecture 5 More distributions

Mean and variance of Beta distribution

Note that
∫ 1
x=0 p(x |a, b) = 1⇒

∫ 1
x=0 x

a−1(1− x)b−1 = B(a, b) = Γ(a)Γ(b)
Γ(a+b) .

This gives us a handy trick to manipulate beta distribution

E [X] =

∫ 1

x=0
xBeta(x |a, b)dx =

Γ(a+ b)

Γ(a)Γ(b)

∫ 1

x=0
xa(1− x)b−1dx

=
Γ(a+ b)

Γ(a)Γ(b)

Γ(a+ 1)Γ(b)

Γ(a+ b + 1)
=

a

a+ b

Similarly, E [X 2] = Γ(a+b)
Γ(a)Γ(b)

∫ 1
x=0 x

a+1(1− x)b−1dx= Γ(a+b)
Γ(a)Γ(b)

Γ(a+2)Γ(b)
Γ(a+b+2) =

a(a+1)
(a+b)(a+b+1) . Thus,

Var [X] =E [X 2]− E [X]2 =
a(a+ 1)

(a+ b)(a+ b + 1)
− a2

(a+ b)2

=
a(a+ 1)(a+ b)− a2(a+ b + 1)

(a+ b)2(a+ b + 1)
=

ab

(a+ b)2(a+ b + 1)

S. Cheng (OU-Tulsa) December 5, 2017 65 / 275

Lecture 6 Review

Review multivariate normal

Marginalization of a normal distribution is still a normal distribution

Conditioning of normal distribution:
X|y ∼ N (µX +ΣXYΣ

−1
YY(y − µY),ΣXX − ΣXYΣ

−1
YYΣYX)

Product of normal distribution:
N (y1; x,ΣY1)N (y2; x,ΣY2) =
N (y1; y2,ΣY2+ΣY1)N (x; (ΛY1+ΛY2)

−1(ΛY2y2+ΛY1y), (ΛY2+ΛY1)
−1)

Mixture of Gaussian
Merge components:

w ←
∑
i

wi , ŵi =
wi∑
j wj

, µi ←
∑
i

wiµi ,

Σ←
n∑

i=1

ŵi (Σi + µiµ
T
i)−

n∑
i=1

n∑
j=1

ŵi ŵjµiµj

Similarity measure

Sim(N (µp,Σp),N (µq,Σq)) =
N (µp;µq,Σp +Σq)√
N (0; 0, 2Σp)N (0; 0, 2Σq)

S. Cheng (OU-Tulsa) December 5, 2017 66 / 275

Lecture 6 Review

More from last week...

Bernoulli pdf: Bern(x |p) = px(1− p)1−x

Binomial pdf: Bin(x |p,N) ∝ px(1− p)N−x

Beta pdf: Beta(x |a, b) = xa−1(1−x)b−1

B(a,b) , where B(a, b) = Γ(a)Γ(b)
Γ(a+b)

Gamma function Γ(z)

Γ(z) = (z − 1)Γ(z − 1)
Γ(n) = (n − 1)! if n is an integer ≥ 1

Conjugate prior: a prior with same “form” as its posterior distribution

Beta distribution is conjugate prior of Bernoulli and binomial
distributions

S. Cheng (OU-Tulsa) December 5, 2017 67 / 275

Lecture 6 Review

Summary of Beta distribution

Pdf:

Beta(x |a, b) = xa−1(1− x)b−1

B(a, b)

with B(a, b) = Γ(a)Γ(b)
Γ(a+b)

Mean:
a

a+ b

Variance:
ab

(a+ b)2(a+ b + 1)

Mode:
a− 1

a+ b − 2

S. Cheng (OU-Tulsa) December 5, 2017 68 / 275

Lecture 6 More distributions

Posterior estimate of probability p

Consider the coin flipping example again. Let say the prior probability7 of
the coin is beta distributed with parameters a and b. And we flip the coin
once to get outcome x .

Upon observing x , we can estimate p by

p(p|x , a, b)

=Const1 · Beta(p|a, b)Bern(x |p)
=Const2 · pa−1+x(1− p)b−1+1−x

=Beta(p|ã, b̃)

So the posterior probability distribution is also beta distributed and the
parameters just changed to ã← a+ x and b̃ ← b + 1− x

7Note that this can be very confusing at the beginning. Beware that we are talking
about the distribution of the probability of some outcome

S. Cheng (OU-Tulsa) December 5, 2017 69 / 275

Lecture 6 More distributions

Posterior estimate of probability p

Consider the coin flipping example again. Let say the prior probability7 of
the coin is beta distributed with parameters a and b. And we flip the coin
once to get outcome x . Upon observing x , we can estimate p by

p(p|x , a, b)

=Const1 · Beta(p|a, b)Bern(x |p)
=Const2 · pa−1+x(1− p)b−1+1−x

=Beta(p|ã, b̃)

So the posterior probability distribution is also beta distributed and the
parameters just changed to ã← a+ x and b̃ ← b + 1− x

7Note that this can be very confusing at the beginning. Beware that we are talking
about the distribution of the probability of some outcome

S. Cheng (OU-Tulsa) December 5, 2017 69 / 275

Lecture 6 More distributions

Posterior estimate of probability p

Consider the coin flipping example again. Let say the prior probability7 of
the coin is beta distributed with parameters a and b. And we flip the coin
once to get outcome x . Upon observing x , we can estimate p by

p(p|x , a, b) =Const1 · Beta(p|a, b)Bern(x |p)

=Const2 · pa−1+x(1− p)b−1+1−x

=Beta(p|ã, b̃)

So the posterior probability distribution is also beta distributed and the
parameters just changed to ã← a+ x and b̃ ← b + 1− x

7Note that this can be very confusing at the beginning. Beware that we are talking
about the distribution of the probability of some outcome

S. Cheng (OU-Tulsa) December 5, 2017 69 / 275

Lecture 6 More distributions

Posterior estimate of probability p

Consider the coin flipping example again. Let say the prior probability7 of
the coin is beta distributed with parameters a and b. And we flip the coin
once to get outcome x . Upon observing x , we can estimate p by

p(p|x , a, b) =Const1 · Beta(p|a, b)Bern(x |p)
=Const2 · pa−1+x(1− p)b−1+1−x

=Beta(p|ã, b̃)

So the posterior probability distribution is also beta distributed and the
parameters just changed to ã← a+ x and b̃ ← b + 1− x

7Note that this can be very confusing at the beginning. Beware that we are talking
about the distribution of the probability of some outcome

S. Cheng (OU-Tulsa) December 5, 2017 69 / 275

Lecture 6 More distributions

Posterior estimate of probability p

Let say we continue our example and we flip the coin by N times and
obtain x head. So instead of the Bernoulli likelihood, we have a binomial
likelihood. Like the last slide, we have the same beta prior with parameters
a and b.

After the experiment x , we can update the distribution of our
estimated p by

p(p|x , a, b) =Const1 · Beta(p|a, b)Bin(x |p,N)

=Const2 · pa−1+x(1− p)b−1+N−x

=Beta(p|ã, b̃)

Again, the posterior distribution is still beta but with parameters updated
to ã← a+ x and b̃ ← b + N − x

S. Cheng (OU-Tulsa) December 5, 2017 70 / 275

Lecture 6 More distributions

Posterior estimate of probability p

Let say we continue our example and we flip the coin by N times and
obtain x head. So instead of the Bernoulli likelihood, we have a binomial
likelihood. Like the last slide, we have the same beta prior with parameters
a and b. After the experiment x , we can update the distribution of our
estimated p by

p(p|x , a, b) =Const1 · Beta(p|a, b)Bin(x |p,N)

=Const2 · pa−1+x(1− p)b−1+N−x

=Beta(p|ã, b̃)

Again, the posterior distribution is still beta but with parameters updated
to ã← a+ x and b̃ ← b + N − x

S. Cheng (OU-Tulsa) December 5, 2017 70 / 275

Lecture 6 More distributions

Posterior estimate of probability p

Let say we continue our example and we flip the coin by N times and
obtain x head. So instead of the Bernoulli likelihood, we have a binomial
likelihood. Like the last slide, we have the same beta prior with parameters
a and b. After the experiment x , we can update the distribution of our
estimated p by

p(p|x , a, b) =Const1 · Beta(p|a, b)Bin(x |p,N)

=Const2 · pa−1+x(1− p)b−1+N−x

=Beta(p|ã, b̃)

Again, the posterior distribution is still beta but with parameters updated
to ã← a+ x and b̃ ← b + N − x

S. Cheng (OU-Tulsa) December 5, 2017 70 / 275

Lecture 6 More distributions

Prior and regularization

One major reason of introducing prior is for the sake of “regularizing”
the answer

Another coin example

Fall back to high school, assume that we flip a coin for 10 times and
got 3 heads. We want to estimate the chance of getting heads

3/10, right?
And if I asked you chance of getting another head in the future, you
will say the chance of getting another head is 3/10
Now, if I actually flip the coin for 10 times and got no head, what do
you expect the chance of getting a head next time?
0? Okay, the estimate is a bit extreme. We know that it is very
difficult to make a coin that always gives a tail
How about we first assumed that we actually flipped two times and got
1 head before we did experiment? We will estimate 1/12 instead of
0/10

S. Cheng (OU-Tulsa) December 5, 2017 71 / 275

Lecture 6 More distributions

Prior and regularization

One major reason of introducing prior is for the sake of “regularizing”
the answer

Another coin example

Fall back to high school, assume that we flip a coin for 10 times and
got 3 heads. We want to estimate the chance of getting heads
3/10, right?
And if I asked you chance of getting another head in the future, you
will say the chance of getting another head is 3/10

Now, if I actually flip the coin for 10 times and got no head, what do
you expect the chance of getting a head next time?
0? Okay, the estimate is a bit extreme. We know that it is very
difficult to make a coin that always gives a tail
How about we first assumed that we actually flipped two times and got
1 head before we did experiment? We will estimate 1/12 instead of
0/10

S. Cheng (OU-Tulsa) December 5, 2017 71 / 275

Lecture 6 More distributions

Prior and regularization

One major reason of introducing prior is for the sake of “regularizing”
the answer

Another coin example

Fall back to high school, assume that we flip a coin for 10 times and
got 3 heads. We want to estimate the chance of getting heads
3/10, right?
And if I asked you chance of getting another head in the future, you
will say the chance of getting another head is 3/10
Now, if I actually flip the coin for 10 times and got no head, what do
you expect the chance of getting a head next time?

0? Okay, the estimate is a bit extreme. We know that it is very
difficult to make a coin that always gives a tail
How about we first assumed that we actually flipped two times and got
1 head before we did experiment? We will estimate 1/12 instead of
0/10

S. Cheng (OU-Tulsa) December 5, 2017 71 / 275

Lecture 6 More distributions

Prior and regularization

One major reason of introducing prior is for the sake of “regularizing”
the answer

Another coin example

Fall back to high school, assume that we flip a coin for 10 times and
got 3 heads. We want to estimate the chance of getting heads
3/10, right?
And if I asked you chance of getting another head in the future, you
will say the chance of getting another head is 3/10
Now, if I actually flip the coin for 10 times and got no head, what do
you expect the chance of getting a head next time?
0? Okay, the estimate is a bit extreme. We know that it is very
difficult to make a coin that always gives a tail

How about we first assumed that we actually flipped two times and got
1 head before we did experiment? We will estimate 1/12 instead of
0/10

S. Cheng (OU-Tulsa) December 5, 2017 71 / 275

Lecture 6 More distributions

Prior and regularization

One major reason of introducing prior is for the sake of “regularizing”
the answer

Another coin example

Fall back to high school, assume that we flip a coin for 10 times and
got 3 heads. We want to estimate the chance of getting heads
3/10, right?
And if I asked you chance of getting another head in the future, you
will say the chance of getting another head is 3/10
Now, if I actually flip the coin for 10 times and got no head, what do
you expect the chance of getting a head next time?
0? Okay, the estimate is a bit extreme. We know that it is very
difficult to make a coin that always gives a tail
How about we first assumed that we actually flipped two times and got
1 head before we did experiment? We will estimate 1/12 instead of
0/10

S. Cheng (OU-Tulsa) December 5, 2017 71 / 275

Lecture 6 More distributions

Prior and regularization

We can verify that this is exactly what we got for a Beta prior with
a = 2 and b = 2.

Note that the posterior distribution is

Beta(p|2, 2)Bin(x = 0|p,N = 10) ∼ Beta(0+ a, 10+b) = Beta(2, 12)

Now, what is the MAP estimate? It should be the p that maximize
the posterior probability. That is the mode of Beta(2, 12). Thus,

p
(MAP)
Head =

a− 1

a+ b − 2
=

1

12

Recall that Beta(1, 1) = 1 and so likelihood function is equivalent to
Beta(p|1, 1)Bin(0|p, 10) ∼ Beta(1, 11). Thus the ML estimate is the

mode of Beta(1, 11)⇒ p
(ML)
Head = 1−1

1+11−2 = 0
10 = 0

This indeed is the same as our high school näıve estimate

S. Cheng (OU-Tulsa) December 5, 2017 72 / 275

Lecture 6 More distributions

Prior and regularization

We can verify that this is exactly what we got for a Beta prior with
a = 2 and b = 2. Note that the posterior distribution is

Beta(p|2, 2)Bin(x = 0|p,N = 10) ∼ Beta(0+ a, 10+b) = Beta(2, 12)

Now, what is the MAP estimate?

It should be the p that maximize
the posterior probability. That is the mode of Beta(2, 12). Thus,

p
(MAP)
Head =

a− 1

a+ b − 2
=

1

12

Recall that Beta(1, 1) = 1 and so likelihood function is equivalent to
Beta(p|1, 1)Bin(0|p, 10) ∼ Beta(1, 11). Thus the ML estimate is the

mode of Beta(1, 11)⇒ p
(ML)
Head = 1−1

1+11−2 = 0
10 = 0

This indeed is the same as our high school näıve estimate

S. Cheng (OU-Tulsa) December 5, 2017 72 / 275

Lecture 6 More distributions

Prior and regularization

We can verify that this is exactly what we got for a Beta prior with
a = 2 and b = 2. Note that the posterior distribution is

Beta(p|2, 2)Bin(x = 0|p,N = 10) ∼ Beta(0+ a, 10+b) = Beta(2, 12)

Now, what is the MAP estimate? It should be the p that maximize
the posterior probability. That is the mode of Beta(2, 12).

Thus,

p
(MAP)
Head =

a− 1

a+ b − 2
=

1

12

Recall that Beta(1, 1) = 1 and so likelihood function is equivalent to
Beta(p|1, 1)Bin(0|p, 10) ∼ Beta(1, 11). Thus the ML estimate is the

mode of Beta(1, 11)⇒ p
(ML)
Head = 1−1

1+11−2 = 0
10 = 0

This indeed is the same as our high school näıve estimate

S. Cheng (OU-Tulsa) December 5, 2017 72 / 275

Lecture 6 More distributions

Prior and regularization

We can verify that this is exactly what we got for a Beta prior with
a = 2 and b = 2. Note that the posterior distribution is

Beta(p|2, 2)Bin(x = 0|p,N = 10) ∼ Beta(0+ a, 10+b) = Beta(2, 12)

Now, what is the MAP estimate? It should be the p that maximize
the posterior probability. That is the mode of Beta(2, 12). Thus,

p
(MAP)
Head =

a− 1

a+ b − 2
=

1

12

Recall that Beta(1, 1) = 1 and so likelihood function is equivalent to
Beta(p|1, 1)Bin(0|p, 10) ∼ Beta(1, 11). Thus the ML estimate is the

mode of Beta(1, 11)⇒ p
(ML)
Head = 1−1

1+11−2 = 0
10 = 0

This indeed is the same as our high school näıve estimate

S. Cheng (OU-Tulsa) December 5, 2017 72 / 275

Lecture 6 More distributions

Prior and regularization

We can verify that this is exactly what we got for a Beta prior with
a = 2 and b = 2. Note that the posterior distribution is

Beta(p|2, 2)Bin(x = 0|p,N = 10) ∼ Beta(0+ a, 10+b) = Beta(2, 12)

Now, what is the MAP estimate? It should be the p that maximize
the posterior probability. That is the mode of Beta(2, 12). Thus,

p
(MAP)
Head =

a− 1

a+ b − 2
=

1

12

Recall that Beta(1, 1) = 1 and so likelihood function is equivalent to
Beta(p|1, 1)Bin(0|p, 10) ∼ Beta(1, 11).

Thus the ML estimate is the

mode of Beta(1, 11)⇒ p
(ML)
Head = 1−1

1+11−2 = 0
10 = 0

This indeed is the same as our high school näıve estimate

S. Cheng (OU-Tulsa) December 5, 2017 72 / 275

Lecture 6 More distributions

Prior and regularization

We can verify that this is exactly what we got for a Beta prior with
a = 2 and b = 2. Note that the posterior distribution is

Beta(p|2, 2)Bin(x = 0|p,N = 10) ∼ Beta(0+ a, 10+b) = Beta(2, 12)

Now, what is the MAP estimate? It should be the p that maximize
the posterior probability. That is the mode of Beta(2, 12). Thus,

p
(MAP)
Head =

a− 1

a+ b − 2
=

1

12

Recall that Beta(1, 1) = 1 and so likelihood function is equivalent to
Beta(p|1, 1)Bin(0|p, 10) ∼ Beta(1, 11). Thus the ML estimate is the

mode of Beta(1, 11)⇒ p
(ML)
Head = 1−1

1+11−2 = 0
10 = 0

This indeed is the same as our high school näıve estimate

S. Cheng (OU-Tulsa) December 5, 2017 72 / 275

Lecture 6 More distributions

Bayesian estimation and regularization

Now let’s consider the Bayesian estimate. Even for the case with no
prior (equivalently an uniform prior or Beta prior with a = 1 and
b = 1), recall that the “posterior distribution” is Beta(1, 11)

The Bayesian estimate should be the average p summing all
possibility of p, which is essentially just,

∫
pBeta(p|1, 11)dp = E [p],

i.e., the mean. Thus

p
(Bayesian)
Head =

a

a+ b
=

1

11

Note that Bayesian estimation is “self-regularized” (i.e., giving less
extreme results) since it inherently averages out all possible cases

S. Cheng (OU-Tulsa) December 5, 2017 73 / 275

Lecture 6 More distributions

Bayesian estimation and regularization

Now let’s consider the Bayesian estimate. Even for the case with no
prior (equivalently an uniform prior or Beta prior with a = 1 and
b = 1), recall that the “posterior distribution” is Beta(1, 11)

The Bayesian estimate should be the average p summing all
possibility of p,

which is essentially just,
∫
pBeta(p|1, 11)dp = E [p],

i.e., the mean. Thus

p
(Bayesian)
Head =

a

a+ b
=

1

11

Note that Bayesian estimation is “self-regularized” (i.e., giving less
extreme results) since it inherently averages out all possible cases

S. Cheng (OU-Tulsa) December 5, 2017 73 / 275

Lecture 6 More distributions

Bayesian estimation and regularization

Now let’s consider the Bayesian estimate. Even for the case with no
prior (equivalently an uniform prior or Beta prior with a = 1 and
b = 1), recall that the “posterior distribution” is Beta(1, 11)

The Bayesian estimate should be the average p summing all
possibility of p, which is essentially just,

∫
pBeta(p|1, 11)dp = E [p],

i.e., the mean.

Thus

p
(Bayesian)
Head =

a

a+ b
=

1

11

Note that Bayesian estimation is “self-regularized” (i.e., giving less
extreme results) since it inherently averages out all possible cases

S. Cheng (OU-Tulsa) December 5, 2017 73 / 275

Lecture 6 More distributions

Bayesian estimation and regularization

Now let’s consider the Bayesian estimate. Even for the case with no
prior (equivalently an uniform prior or Beta prior with a = 1 and
b = 1), recall that the “posterior distribution” is Beta(1, 11)

The Bayesian estimate should be the average p summing all
possibility of p, which is essentially just,

∫
pBeta(p|1, 11)dp = E [p],

i.e., the mean. Thus

p
(Bayesian)
Head =

a

a+ b
=

1

11

Note that Bayesian estimation is “self-regularized” (i.e., giving less
extreme results) since it inherently averages out all possible cases

S. Cheng (OU-Tulsa) December 5, 2017 73 / 275

Lecture 6 More distributions

Bayesian estimation and regularization

Now let’s consider the Bayesian estimate. Even for the case with no
prior (equivalently an uniform prior or Beta prior with a = 1 and
b = 1), recall that the “posterior distribution” is Beta(1, 11)

The Bayesian estimate should be the average p summing all
possibility of p, which is essentially just,

∫
pBeta(p|1, 11)dp = E [p],

i.e., the mean. Thus

p
(Bayesian)
Head =

a

a+ b
=

1

11

Note that Bayesian estimation is “self-regularized” (i.e., giving less
extreme results) since it inherently averages out all possible cases

S. Cheng (OU-Tulsa) December 5, 2017 73 / 275

Lecture 6 More distributions

Multinomial distribution

Binomial distribution models the probability of a binary outcome. For
a random event with discrete but non-binary (more than two)
outcomes, we can model the event with a multinomial distribution

Let say the probability of each possible outcome i is pi . And we have
conducted N different experiments, let say xi is the number of times
we obtain outcome i . Then the probability of such even is given by

Mult(x1, · · · , xn|p1, · · · , pn) =
(

N

x1x2 · · · xn

)
px11 px22 · · · p

xn
n ,

Just make sure we are in the same pace. Note that
p1 + p2 + · · ·+ pn = 1 and x1 + x2 + · · ·+ xn = N

S. Cheng (OU-Tulsa) December 5, 2017 74 / 275

Lecture 6 More distributions

Multinomial distribution

Binomial distribution models the probability of a binary outcome. For
a random event with discrete but non-binary (more than two)
outcomes, we can model the event with a multinomial distribution

Let say the probability of each possible outcome i is pi . And we have
conducted N different experiments, let say xi is the number of times
we obtain outcome i . Then the probability of such even is given by

Mult(x1, · · · , xn|p1, · · · , pn) =
(

N

x1x2 · · · xn

)
px11 px22 · · · p

xn
n ,

Just make sure we are in the same pace. Note that
p1 + p2 + · · ·+ pn = 1 and x1 + x2 + · · ·+ xn = N

S. Cheng (OU-Tulsa) December 5, 2017 74 / 275

Lecture 6 More distributions

Multinomial distribution

Binomial distribution models the probability of a binary outcome. For
a random event with discrete but non-binary (more than two)
outcomes, we can model the event with a multinomial distribution

Let say the probability of each possible outcome i is pi . And we have
conducted N different experiments, let say xi is the number of times
we obtain outcome i . Then the probability of such even is given by

Mult(x1, · · · , xn|p1, · · · , pn) =
(

N

x1x2 · · · xn

)
px11 px22 · · · p

xn
n ,

Just make sure we are in the same pace. Note that
p1 + p2 + · · ·+ pn = 1 and x1 + x2 + · · ·+ xn = N

S. Cheng (OU-Tulsa) December 5, 2017 74 / 275

Lecture 6 More distributions

Multinomial distribution

Binomial distribution models the probability of a binary outcome. For
a random event with discrete but non-binary (more than two)
outcomes, we can model the event with a multinomial distribution

Let say the probability of each possible outcome i is pi . And we have
conducted N different experiments, let say xi is the number of times
we obtain outcome i . Then the probability of such even is given by

Mult(x1, · · · , xn|p1, · · · , pn) =
(

N

x1x2 · · · xn

)
px11 px22 · · · p

xn
n ,

Just make sure we are in the same pace. Note that
p1 + p2 + · · ·+ pn = 1 and x1 + x2 + · · ·+ xn = N

S. Cheng (OU-Tulsa) December 5, 2017 74 / 275

Lecture 6 More distributions

Dirichlet distribution

Note that the conjugate prior of multinomial distribution should take
the form xα1−1

1 xα2−1
2 · · · xαn−1

n

It turns out that the distribution is the so-called Dirichlet distribution.
Its pdf is given by

Dir(x1, · · · , xn|α1, · · · , αn)

=
Γ(α1 + · · ·+ αn)

Γ(α1)Γ(α2) · · · Γ(αn)
xα1−1
1 xα2−1

2 · · · xαn−1
n

As usual since pdf should be normalized to 1, we have∫
xα1−1
1 xα2−1

2 · · · xαn−1
n =

Γ(α1)Γ(α2) · · · Γ(αn)

Γ(α1 + · · ·+ αn)

S. Cheng (OU-Tulsa) December 5, 2017 75 / 275

Lecture 6 More distributions

Dirichlet distribution

Note that the conjugate prior of multinomial distribution should take
the form xα1−1

1 xα2−1
2 · · · xαn−1

n

It turns out that the distribution is the so-called Dirichlet distribution.
Its pdf is given by

Dir(x1, · · · , xn|α1, · · · , αn)

=
Γ(α1 + · · ·+ αn)

Γ(α1)Γ(α2) · · · Γ(αn)
xα1−1
1 xα2−1

2 · · · xαn−1
n

As usual since pdf should be normalized to 1, we have∫
xα1−1
1 xα2−1

2 · · · xαn−1
n =

Γ(α1)Γ(α2) · · · Γ(αn)

Γ(α1 + · · ·+ αn)

S. Cheng (OU-Tulsa) December 5, 2017 75 / 275

Lecture 6 More distributions

Dirichlet distribution

Note that the conjugate prior of multinomial distribution should take
the form xα1−1

1 xα2−1
2 · · · xαn−1

n

It turns out that the distribution is the so-called Dirichlet distribution.
Its pdf is given by

Dir(x1, · · · , xn|α1, · · · , αn)

=
Γ(α1 + · · ·+ αn)

Γ(α1)Γ(α2) · · · Γ(αn)
xα1−1
1 xα2−1

2 · · · xαn−1
n

As usual since pdf should be normalized to 1, we have∫
xα1−1
1 xα2−1

2 · · · xαn−1
n =

Γ(α1)Γ(α2) · · · Γ(αn)

Γ(α1 + · · ·+ αn)

S. Cheng (OU-Tulsa) December 5, 2017 75 / 275

Lecture 6 More distributions

Mean, mode, variance of Dirichlet distribution

Mean:

E [X1] =
Γ(α1 + · · ·+ αn)

Γ(α1) · · · Γ(αn)

∫
xα1
1 xα2−1

2 · · · xαn−1
n

=
Γ(α1 + · · ·+ αn)

Γ(α1) · · · Γ(αn)

Γ(α1 + 1) · · · Γ(αn)

Γ(α1 + · · ·+ αn + 1)
=

α1

α1 + · · ·+ αn

Similarly, E [X 2
1] =

Γ(α1+···+αn)
Γ(α1)···Γ(αn)

∫
xα1+1
1 xα2−1

2 · · · xαn−1
n =

Γ(α1+···+αn)
Γ(α1)···Γ(αn)

Γ(α1+2)···Γ(αn)
Γ(α1+···+αn+2) =

(α1+1)α1

(α1+···+αn+1)(α1+···+αn)
. Thus,

Var(X1) = E [X 2
1]− E [X 2

1] =
(α1+1)α1

(α1+···+αn+1)(α1+···+αn)
− α2

1
(α1+···+αn)2

=
α1(α0−α1)
α2
0(α0+1)

, where α0 = α1 + · · ·+ αn

Mode: one can show that the mode of Dir(α1, · · · , αn) is

αi − 1

α1 + · · ·+ αn − n
.

We will not show it now but will leave as an exercise

S. Cheng (OU-Tulsa) December 5, 2017 76 / 275

Lecture 6 More distributions

Mean, mode, variance of Dirichlet distribution

Mean:

E [X1] =
Γ(α1 + · · ·+ αn)

Γ(α1) · · · Γ(αn)

∫
xα1
1 xα2−1

2 · · · xαn−1
n

=
Γ(α1 + · · ·+ αn)

Γ(α1) · · · Γ(αn)

Γ(α1 + 1) · · · Γ(αn)

Γ(α1 + · · ·+ αn + 1)
=

α1

α1 + · · ·+ αn

Similarly, E [X 2
1] =

Γ(α1+···+αn)
Γ(α1)···Γ(αn)

∫
xα1+1
1 xα2−1

2 · · · xαn−1
n =

Γ(α1+···+αn)
Γ(α1)···Γ(αn)

Γ(α1+2)···Γ(αn)
Γ(α1+···+αn+2) =

(α1+1)α1

(α1+···+αn+1)(α1+···+αn)
.

Thus,

Var(X1) = E [X 2
1]− E [X 2

1] =
(α1+1)α1

(α1+···+αn+1)(α1+···+αn)
− α2

1
(α1+···+αn)2

=
α1(α0−α1)
α2
0(α0+1)

, where α0 = α1 + · · ·+ αn

Mode: one can show that the mode of Dir(α1, · · · , αn) is

αi − 1

α1 + · · ·+ αn − n
.

We will not show it now but will leave as an exercise

S. Cheng (OU-Tulsa) December 5, 2017 76 / 275

Lecture 6 More distributions

Mean, mode, variance of Dirichlet distribution

Mean:

E [X1] =
Γ(α1 + · · ·+ αn)

Γ(α1) · · · Γ(αn)

∫
xα1
1 xα2−1

2 · · · xαn−1
n

=
Γ(α1 + · · ·+ αn)

Γ(α1) · · · Γ(αn)

Γ(α1 + 1) · · · Γ(αn)

Γ(α1 + · · ·+ αn + 1)
=

α1

α1 + · · ·+ αn

Similarly, E [X 2
1] =

Γ(α1+···+αn)
Γ(α1)···Γ(αn)

∫
xα1+1
1 xα2−1

2 · · · xαn−1
n =

Γ(α1+···+αn)
Γ(α1)···Γ(αn)

Γ(α1+2)···Γ(αn)
Γ(α1+···+αn+2) =

(α1+1)α1

(α1+···+αn+1)(α1+···+αn)
. Thus,

Var(X1) = E [X 2
1]− E [X 2

1] =
(α1+1)α1

(α1+···+αn+1)(α1+···+αn)
− α2

1
(α1+···+αn)2

=
α1(α0−α1)
α2
0(α0+1)

, where α0 = α1 + · · ·+ αn

Mode: one can show that the mode of Dir(α1, · · · , αn) is

αi − 1

α1 + · · ·+ αn − n
.

We will not show it now but will leave as an exercise

S. Cheng (OU-Tulsa) December 5, 2017 76 / 275

Lecture 6 More distributions

Mean, mode, variance of Dirichlet distribution

Mean:

E [X1] =
Γ(α1 + · · ·+ αn)

Γ(α1) · · · Γ(αn)

∫
xα1
1 xα2−1

2 · · · xαn−1
n

=
Γ(α1 + · · ·+ αn)

Γ(α1) · · · Γ(αn)

Γ(α1 + 1) · · · Γ(αn)

Γ(α1 + · · ·+ αn + 1)
=

α1

α1 + · · ·+ αn

Similarly, E [X 2
1] =

Γ(α1+···+αn)
Γ(α1)···Γ(αn)

∫
xα1+1
1 xα2−1

2 · · · xαn−1
n =

Γ(α1+···+αn)
Γ(α1)···Γ(αn)

Γ(α1+2)···Γ(αn)
Γ(α1+···+αn+2) =

(α1+1)α1

(α1+···+αn+1)(α1+···+αn)
. Thus,

Var(X1) = E [X 2
1]− E [X 2

1] =
(α1+1)α1

(α1+···+αn+1)(α1+···+αn)
− α2

1
(α1+···+αn)2

=
α1(α0−α1)
α2
0(α0+1)

, where α0 = α1 + · · ·+ αn

Mode: one can show that the mode of Dir(α1, · · · , αn) is

αi − 1

α1 + · · ·+ αn − n
.

We will not show it now but will leave as an exercise
S. Cheng (OU-Tulsa) December 5, 2017 76 / 275

Lecture 6 More distributions

Summary of Dirichlet distribution

Pdf:

Dir(x|α) =
Γ(α1 + · · ·+ αn)

Γ(α1)Γ(α2) · · · Γ(αn)
xα1−1
1 xα2−1

2 · · · xαn−1
n

Mean:
αi

α1 + · · ·+ αn

Variance:
αi (α0 − αi)

α2
0(α0 + 1)

Mode:
αi − 1

α1 + · · ·+ αn − n

S. Cheng (OU-Tulsa) December 5, 2017 77 / 275

Lecture 6 More distributions

Posterior probability given Multinomial likelihood and
Dirichlet prior

Upon observing x1, · · · , xn, the posterior distribution of p1, · · · , pn
becomes

p(p1, · · · , pn|x1, · · · , xn, α1, · · · , αn)

=Const1 · Dir(p1, · · · , pn|α1, · · · , αn)Mult(x1, · · · , xn|p1, · · · , pn)
=Const2 · px1+α1

1 · · · pxn+αn
n

=Dir(p1, · · · , pn|α̃1, · · · , α̃n)

So the posterior distribution is Dirichlet with parameters updated to
α̃1 ← x1 + α1, · · · , α̃n ← xn + αn

S. Cheng (OU-Tulsa) December 5, 2017 78 / 275

Lecture 6 More distributions

Posterior probability given Multinomial likelihood and
Dirichlet prior

Upon observing x1, · · · , xn, the posterior distribution of p1, · · · , pn
becomes

p(p1, · · · , pn|x1, · · · , xn, α1, · · · , αn)

=Const1 · Dir(p1, · · · , pn|α1, · · · , αn)Mult(x1, · · · , xn|p1, · · · , pn)

=Const2 · px1+α1
1 · · · pxn+αn

n

=Dir(p1, · · · , pn|α̃1, · · · , α̃n)

So the posterior distribution is Dirichlet with parameters updated to
α̃1 ← x1 + α1, · · · , α̃n ← xn + αn

S. Cheng (OU-Tulsa) December 5, 2017 78 / 275

Lecture 6 More distributions

Posterior probability given Multinomial likelihood and
Dirichlet prior

Upon observing x1, · · · , xn, the posterior distribution of p1, · · · , pn
becomes

p(p1, · · · , pn|x1, · · · , xn, α1, · · · , αn)

=Const1 · Dir(p1, · · · , pn|α1, · · · , αn)Mult(x1, · · · , xn|p1, · · · , pn)
=Const2 · px1+α1

1 · · · pxn+αn
n

=Dir(p1, · · · , pn|α̃1, · · · , α̃n)

So the posterior distribution is Dirichlet with parameters updated to
α̃1 ← x1 + α1, · · · , α̃n ← xn + αn

S. Cheng (OU-Tulsa) December 5, 2017 78 / 275

Lecture 6 More distributions

Poisson distribution

Poisson distribution describes the number of arrival K within some period.
For example, one can use Poisson distribution to model the arrival process
(Poisson process) of customers into a store.

Its pdf is given by

Poisson(k|λT) =
e−λT (λT)k

k!
,

where k is a non-negative integer, λ is rate of arrival and T is the length
of the observed period. It is easy to check that (please verify)

Mean = λT

Variance = λT

N.B. the parameters λT comes as a group and so we can consider it as a
single parameter

S. Cheng (OU-Tulsa) December 5, 2017 79 / 275

Lecture 6 More distributions

Poisson distribution

Poisson distribution describes the number of arrival K within some period.
For example, one can use Poisson distribution to model the arrival process
(Poisson process) of customers into a store. Its pdf is given by

Poisson(k|λT) =
e−λT (λT)k

k!
,

where k is a non-negative integer, λ is rate of arrival and T is the length
of the observed period.

It is easy to check that (please verify)

Mean = λT

Variance = λT

N.B. the parameters λT comes as a group and so we can consider it as a
single parameter

S. Cheng (OU-Tulsa) December 5, 2017 79 / 275

Lecture 6 More distributions

Poisson distribution

Poisson distribution describes the number of arrival K within some period.
For example, one can use Poisson distribution to model the arrival process
(Poisson process) of customers into a store. Its pdf is given by

Poisson(k|λT) =
e−λT (λT)k

k!
,

where k is a non-negative integer, λ is rate of arrival and T is the length
of the observed period. It is easy to check that (please verify)

Mean = λT

Variance = λT

N.B. the parameters λT comes as a group and so we can consider it as a
single parameter

S. Cheng (OU-Tulsa) December 5, 2017 79 / 275

Lecture 6 More distributions

Poisson process

Poisson process is probably the simplest random process to model event
arrivals. It is based on two simple assumptions

1 Arrival rate is invariant over time

That is, λ is a constant that does not change with time

2 Each arrival is independent of the other

For example, even though we just have one customer coming in, the
probability that the next customer to come in immediately should not
decrease
It makes sense to model say customers to a department store
It can be less perfect to model the times my car broke down. The
events are likely to be related

S. Cheng (OU-Tulsa) December 5, 2017 80 / 275

Lecture 6 More distributions

Poisson process

Poisson process is probably the simplest random process to model event
arrivals. It is based on two simple assumptions

1 Arrival rate is invariant over time

That is, λ is a constant that does not change with time

2 Each arrival is independent of the other

For example, even though we just have one customer coming in, the
probability that the next customer to come in immediately should not
decrease
It makes sense to model say customers to a department store
It can be less perfect to model the times my car broke down. The
events are likely to be related

S. Cheng (OU-Tulsa) December 5, 2017 80 / 275

Lecture 6 More distributions

Poisson process

Poisson process is probably the simplest random process to model event
arrivals. It is based on two simple assumptions

1 Arrival rate is invariant over time

That is, λ is a constant that does not change with time

2 Each arrival is independent of the other

For example, even though we just have one customer coming in, the
probability that the next customer to come in immediately should not
decrease
It makes sense to model say customers to a department store
It can be less perfect to model the times my car broke down. The
events are likely to be related

S. Cheng (OU-Tulsa) December 5, 2017 80 / 275

Lecture 6 More distributions

Poisson process

Poisson process is probably the simplest random process to model event
arrivals. It is based on two simple assumptions

1 Arrival rate is invariant over time

That is, λ is a constant that does not change with time

2 Each arrival is independent of the other

For example, even though we just have one customer coming in, the
probability that the next customer to come in immediately should not
decrease

It makes sense to model say customers to a department store
It can be less perfect to model the times my car broke down. The
events are likely to be related

S. Cheng (OU-Tulsa) December 5, 2017 80 / 275

Lecture 6 More distributions

Poisson process

Poisson process is probably the simplest random process to model event
arrivals. It is based on two simple assumptions

1 Arrival rate is invariant over time

That is, λ is a constant that does not change with time

2 Each arrival is independent of the other

For example, even though we just have one customer coming in, the
probability that the next customer to come in immediately should not
decrease
It makes sense to model say customers to a department store

It can be less perfect to model the times my car broke down. The
events are likely to be related

S. Cheng (OU-Tulsa) December 5, 2017 80 / 275

Lecture 6 More distributions

Poisson process

Poisson process is probably the simplest random process to model event
arrivals. It is based on two simple assumptions

1 Arrival rate is invariant over time

That is, λ is a constant that does not change with time

2 Each arrival is independent of the other

For example, even though we just have one customer coming in, the
probability that the next customer to come in immediately should not
decrease
It makes sense to model say customers to a department store
It can be less perfect to model the times my car broke down. The
events are likely to be related

S. Cheng (OU-Tulsa) December 5, 2017 80 / 275

Lecture 6 More distributions

Poisson process and Poisson distribution

Consider a period T and let’s the arrival rate be λ as before. Let’s
partition T into N different very short intervals of length ∆.

Hence,
T = N∆. We will also assume N →∞ and thus ∆→ 0. The
probability of getting an arrival in any interval ∆ is thus λ∆.
Moreover, since ∆→ 0, the probability of getting two arrivals ∝ ∆2

and is negligible compared to λ∆

Then, the probability of k arrivals
Pr(k arrivals in T) =

(N
k

)
(λ∆)k(1− λ∆)N−k

= N(N−1)···(N−k+1)
k! (λ∆)k(1− λ∆)N−k ≈ Nk

k! λ
k T k

Nk (1− λ∆)N−k

= (λT)k

k! (1− λT
N)N−k≈ (λT)k

k! (1− λT
N)N= (λT)k

k! exp(−λT),
where we use (1 + a/N)N = exp(a) for the last equality

Note that indeed Pr(k arrivals in T) = Poisson(k |λT)

S. Cheng (OU-Tulsa) December 5, 2017 81 / 275

Lecture 6 More distributions

Poisson process and Poisson distribution

Consider a period T and let’s the arrival rate be λ as before. Let’s
partition T into N different very short intervals of length ∆. Hence,
T = N∆. We will also assume N →∞ and thus ∆→ 0.

The
probability of getting an arrival in any interval ∆ is thus λ∆.
Moreover, since ∆→ 0, the probability of getting two arrivals ∝ ∆2

and is negligible compared to λ∆

Then, the probability of k arrivals
Pr(k arrivals in T) =

(N
k

)
(λ∆)k(1− λ∆)N−k

= N(N−1)···(N−k+1)
k! (λ∆)k(1− λ∆)N−k ≈ Nk

k! λ
k T k

Nk (1− λ∆)N−k

= (λT)k

k! (1− λT
N)N−k≈ (λT)k

k! (1− λT
N)N= (λT)k

k! exp(−λT),
where we use (1 + a/N)N = exp(a) for the last equality

Note that indeed Pr(k arrivals in T) = Poisson(k |λT)

S. Cheng (OU-Tulsa) December 5, 2017 81 / 275

Lecture 6 More distributions

Poisson process and Poisson distribution

Consider a period T and let’s the arrival rate be λ as before. Let’s
partition T into N different very short intervals of length ∆. Hence,
T = N∆. We will also assume N →∞ and thus ∆→ 0. The
probability of getting an arrival in any interval ∆ is thus λ∆.

Moreover, since ∆→ 0, the probability of getting two arrivals ∝ ∆2

and is negligible compared to λ∆

Then, the probability of k arrivals
Pr(k arrivals in T) =

(N
k

)
(λ∆)k(1− λ∆)N−k

= N(N−1)···(N−k+1)
k! (λ∆)k(1− λ∆)N−k ≈ Nk

k! λ
k T k

Nk (1− λ∆)N−k

= (λT)k

k! (1− λT
N)N−k≈ (λT)k

k! (1− λT
N)N= (λT)k

k! exp(−λT),
where we use (1 + a/N)N = exp(a) for the last equality

Note that indeed Pr(k arrivals in T) = Poisson(k |λT)

S. Cheng (OU-Tulsa) December 5, 2017 81 / 275

Lecture 6 More distributions

Poisson process and Poisson distribution

Consider a period T and let’s the arrival rate be λ as before. Let’s
partition T into N different very short intervals of length ∆. Hence,
T = N∆. We will also assume N →∞ and thus ∆→ 0. The
probability of getting an arrival in any interval ∆ is thus λ∆.
Moreover, since ∆→ 0, the probability of getting two arrivals ∝ ∆2

and is negligible compared to λ∆

Then, the probability of k arrivals
Pr(k arrivals in T) =

(N
k

)
(λ∆)k(1− λ∆)N−k

= N(N−1)···(N−k+1)
k! (λ∆)k(1− λ∆)N−k ≈ Nk

k! λ
k T k

Nk (1− λ∆)N−k

= (λT)k

k! (1− λT
N)N−k≈ (λT)k

k! (1− λT
N)N= (λT)k

k! exp(−λT),
where we use (1 + a/N)N = exp(a) for the last equality

Note that indeed Pr(k arrivals in T) = Poisson(k |λT)

S. Cheng (OU-Tulsa) December 5, 2017 81 / 275

Lecture 6 More distributions

Poisson process and Poisson distribution

Consider a period T and let’s the arrival rate be λ as before. Let’s
partition T into N different very short intervals of length ∆. Hence,
T = N∆. We will also assume N →∞ and thus ∆→ 0. The
probability of getting an arrival in any interval ∆ is thus λ∆.
Moreover, since ∆→ 0, the probability of getting two arrivals ∝ ∆2

and is negligible compared to λ∆

Then, the probability of k arrivals
Pr(k arrivals in T)

=
(N
k

)
(λ∆)k(1− λ∆)N−k

= N(N−1)···(N−k+1)
k! (λ∆)k(1− λ∆)N−k ≈ Nk

k! λ
k T k

Nk (1− λ∆)N−k

= (λT)k

k! (1− λT
N)N−k≈ (λT)k

k! (1− λT
N)N= (λT)k

k! exp(−λT),
where we use (1 + a/N)N = exp(a) for the last equality

Note that indeed Pr(k arrivals in T) = Poisson(k |λT)

S. Cheng (OU-Tulsa) December 5, 2017 81 / 275

Lecture 6 More distributions

Poisson process and Poisson distribution

Consider a period T and let’s the arrival rate be λ as before. Let’s
partition T into N different very short intervals of length ∆. Hence,
T = N∆. We will also assume N →∞ and thus ∆→ 0. The
probability of getting an arrival in any interval ∆ is thus λ∆.
Moreover, since ∆→ 0, the probability of getting two arrivals ∝ ∆2

and is negligible compared to λ∆

Then, the probability of k arrivals
Pr(k arrivals in T) =

(N
k

)
(λ∆)k(1− λ∆)N−k

= N(N−1)···(N−k+1)
k! (λ∆)k(1− λ∆)N−k ≈ Nk

k! λ
k T k

Nk (1− λ∆)N−k

= (λT)k

k! (1− λT
N)N−k≈ (λT)k

k! (1− λT
N)N= (λT)k

k! exp(−λT),
where we use (1 + a/N)N = exp(a) for the last equality

Note that indeed Pr(k arrivals in T) = Poisson(k |λT)

S. Cheng (OU-Tulsa) December 5, 2017 81 / 275

Lecture 6 More distributions

Poisson process and Poisson distribution

Consider a period T and let’s the arrival rate be λ as before. Let’s
partition T into N different very short intervals of length ∆. Hence,
T = N∆. We will also assume N →∞ and thus ∆→ 0. The
probability of getting an arrival in any interval ∆ is thus λ∆.
Moreover, since ∆→ 0, the probability of getting two arrivals ∝ ∆2

and is negligible compared to λ∆

Then, the probability of k arrivals
Pr(k arrivals in T) =

(N
k

)
(λ∆)k(1− λ∆)N−k

= N(N−1)···(N−k+1)
k! (λ∆)k(1− λ∆)N−k

≈ Nk

k! λ
k T k

Nk (1− λ∆)N−k

= (λT)k

k! (1− λT
N)N−k≈ (λT)k

k! (1− λT
N)N= (λT)k

k! exp(−λT),
where we use (1 + a/N)N = exp(a) for the last equality

Note that indeed Pr(k arrivals in T) = Poisson(k |λT)

S. Cheng (OU-Tulsa) December 5, 2017 81 / 275

Lecture 6 More distributions

Poisson process and Poisson distribution

Consider a period T and let’s the arrival rate be λ as before. Let’s
partition T into N different very short intervals of length ∆. Hence,
T = N∆. We will also assume N →∞ and thus ∆→ 0. The
probability of getting an arrival in any interval ∆ is thus λ∆.
Moreover, since ∆→ 0, the probability of getting two arrivals ∝ ∆2

and is negligible compared to λ∆

Then, the probability of k arrivals
Pr(k arrivals in T) =

(N
k

)
(λ∆)k(1− λ∆)N−k

= N(N−1)···(N−k+1)
k! (λ∆)k(1− λ∆)N−k ≈ Nk

k! λ
k T k

Nk (1− λ∆)N−k

= (λT)k

k! (1− λT
N)N−k≈ (λT)k

k! (1− λT
N)N= (λT)k

k! exp(−λT),
where we use (1 + a/N)N = exp(a) for the last equality

Note that indeed Pr(k arrivals in T) = Poisson(k |λT)

S. Cheng (OU-Tulsa) December 5, 2017 81 / 275

Lecture 6 More distributions

Poisson process and Poisson distribution

Consider a period T and let’s the arrival rate be λ as before. Let’s
partition T into N different very short intervals of length ∆. Hence,
T = N∆. We will also assume N →∞ and thus ∆→ 0. The
probability of getting an arrival in any interval ∆ is thus λ∆.
Moreover, since ∆→ 0, the probability of getting two arrivals ∝ ∆2

and is negligible compared to λ∆

Then, the probability of k arrivals
Pr(k arrivals in T) =

(N
k

)
(λ∆)k(1− λ∆)N−k

= N(N−1)···(N−k+1)
k! (λ∆)k(1− λ∆)N−k ≈ Nk

k! λ
k T k

Nk (1− λ∆)N−k

= (λT)k

k! (1− λT
N)N−k

≈ (λT)k

k! (1− λT
N)N= (λT)k

k! exp(−λT),
where we use (1 + a/N)N = exp(a) for the last equality

Note that indeed Pr(k arrivals in T) = Poisson(k |λT)

S. Cheng (OU-Tulsa) December 5, 2017 81 / 275

Lecture 6 More distributions

Poisson process and Poisson distribution

Consider a period T and let’s the arrival rate be λ as before. Let’s
partition T into N different very short intervals of length ∆. Hence,
T = N∆. We will also assume N →∞ and thus ∆→ 0. The
probability of getting an arrival in any interval ∆ is thus λ∆.
Moreover, since ∆→ 0, the probability of getting two arrivals ∝ ∆2

and is negligible compared to λ∆

Then, the probability of k arrivals
Pr(k arrivals in T) =

(N
k

)
(λ∆)k(1− λ∆)N−k

= N(N−1)···(N−k+1)
k! (λ∆)k(1− λ∆)N−k ≈ Nk

k! λ
k T k

Nk (1− λ∆)N−k

= (λT)k

k! (1− λT
N)N−k≈ (λT)k

k! (1− λT
N)N

= (λT)k

k! exp(−λT),
where we use (1 + a/N)N = exp(a) for the last equality

Note that indeed Pr(k arrivals in T) = Poisson(k |λT)

S. Cheng (OU-Tulsa) December 5, 2017 81 / 275

Lecture 6 More distributions

Poisson process and Poisson distribution

Consider a period T and let’s the arrival rate be λ as before. Let’s
partition T into N different very short intervals of length ∆. Hence,
T = N∆. We will also assume N →∞ and thus ∆→ 0. The
probability of getting an arrival in any interval ∆ is thus λ∆.
Moreover, since ∆→ 0, the probability of getting two arrivals ∝ ∆2

and is negligible compared to λ∆

Then, the probability of k arrivals
Pr(k arrivals in T) =

(N
k

)
(λ∆)k(1− λ∆)N−k

= N(N−1)···(N−k+1)
k! (λ∆)k(1− λ∆)N−k ≈ Nk

k! λ
k T k

Nk (1− λ∆)N−k

= (λT)k

k! (1− λT
N)N−k≈ (λT)k

k! (1− λT
N)N= (λT)k

k! exp(−λT),
where we use (1 + a/N)N = exp(a) for the last equality

Note that indeed Pr(k arrivals in T) = Poisson(k |λT)

S. Cheng (OU-Tulsa) December 5, 2017 81 / 275

Lecture 6 More distributions

Poisson process and Poisson distribution

Consider a period T and let’s the arrival rate be λ as before. Let’s
partition T into N different very short intervals of length ∆. Hence,
T = N∆. We will also assume N →∞ and thus ∆→ 0. The
probability of getting an arrival in any interval ∆ is thus λ∆.
Moreover, since ∆→ 0, the probability of getting two arrivals ∝ ∆2

and is negligible compared to λ∆

Then, the probability of k arrivals
Pr(k arrivals in T) =

(N
k

)
(λ∆)k(1− λ∆)N−k

= N(N−1)···(N−k+1)
k! (λ∆)k(1− λ∆)N−k ≈ Nk

k! λ
k T k

Nk (1− λ∆)N−k

= (λT)k

k! (1− λT
N)N−k≈ (λT)k

k! (1− λT
N)N= (λT)k

k! exp(−λT),
where we use (1 + a/N)N = exp(a) for the last equality

Note that indeed Pr(k arrivals in T) = Poisson(k |λT)

S. Cheng (OU-Tulsa) December 5, 2017 81 / 275

Lecture 6 More distributions

Interarrival time of Poisson process

Using the similar analysis, we can also easily evaluate the distribution of
interarrival time, the time that the next event will happen given that an
event just happened. Let t = n∆ and use the same notation as before

Note that t > 0 and ∆→ 0 and so n→∞. Now,
Pr(next event happened within in time [t, t +∆])
= Pr(next event happened within in time [n∆, (n + 1)∆])
= Pr(no event in first n intervals)Pr(event happened in n + 1 interval)
= (1− λ∆)n(λ∆)
Let fT (t) be the pdf of the interval time. Then,

fT (t) =
(1−λ∆)n(λ∆)

∆ = λ(1− λ t
n)

n = λ exp(−λt), where we use
(1 + a/n)n = exp(a) again for n→∞

Exponential distribution

fT (t) = λ exp(−λt) , Exp(t|λ) is the pdf of the exponential distribution
with parameter λ. It is easy to verify that (as exercise)

E [T] = 1/λ

Var(T) = 1/λ2

S. Cheng (OU-Tulsa) December 5, 2017 82 / 275

Lecture 6 More distributions

Interarrival time of Poisson process

Using the similar analysis, we can also easily evaluate the distribution of
interarrival time, the time that the next event will happen given that an
event just happened. Let t = n∆ and use the same notation as before

Note that t > 0 and ∆→ 0 and so n→∞.

Now,
Pr(next event happened within in time [t, t +∆])
= Pr(next event happened within in time [n∆, (n + 1)∆])
= Pr(no event in first n intervals)Pr(event happened in n + 1 interval)
= (1− λ∆)n(λ∆)
Let fT (t) be the pdf of the interval time. Then,

fT (t) =
(1−λ∆)n(λ∆)

∆ = λ(1− λ t
n)

n = λ exp(−λt), where we use
(1 + a/n)n = exp(a) again for n→∞

Exponential distribution

fT (t) = λ exp(−λt) , Exp(t|λ) is the pdf of the exponential distribution
with parameter λ. It is easy to verify that (as exercise)

E [T] = 1/λ

Var(T) = 1/λ2

S. Cheng (OU-Tulsa) December 5, 2017 82 / 275

Lecture 6 More distributions

Interarrival time of Poisson process

Using the similar analysis, we can also easily evaluate the distribution of
interarrival time, the time that the next event will happen given that an
event just happened. Let t = n∆ and use the same notation as before

Note that t > 0 and ∆→ 0 and so n→∞. Now,
Pr(next event happened within in time [t, t +∆])
= Pr(next event happened within in time [n∆, (n + 1)∆])

= Pr(no event in first n intervals)Pr(event happened in n + 1 interval)
= (1− λ∆)n(λ∆)
Let fT (t) be the pdf of the interval time. Then,

fT (t) =
(1−λ∆)n(λ∆)

∆ = λ(1− λ t
n)

n = λ exp(−λt), where we use
(1 + a/n)n = exp(a) again for n→∞

Exponential distribution

fT (t) = λ exp(−λt) , Exp(t|λ) is the pdf of the exponential distribution
with parameter λ. It is easy to verify that (as exercise)

E [T] = 1/λ

Var(T) = 1/λ2

S. Cheng (OU-Tulsa) December 5, 2017 82 / 275

Lecture 6 More distributions

Interarrival time of Poisson process

Using the similar analysis, we can also easily evaluate the distribution of
interarrival time, the time that the next event will happen given that an
event just happened. Let t = n∆ and use the same notation as before

Note that t > 0 and ∆→ 0 and so n→∞. Now,
Pr(next event happened within in time [t, t +∆])
= Pr(next event happened within in time [n∆, (n + 1)∆])
= Pr(no event in first n intervals)Pr(event happened in n + 1 interval)

= (1− λ∆)n(λ∆)
Let fT (t) be the pdf of the interval time. Then,

fT (t) =
(1−λ∆)n(λ∆)

∆ = λ(1− λ t
n)

n = λ exp(−λt), where we use
(1 + a/n)n = exp(a) again for n→∞

Exponential distribution

fT (t) = λ exp(−λt) , Exp(t|λ) is the pdf of the exponential distribution
with parameter λ. It is easy to verify that (as exercise)

E [T] = 1/λ

Var(T) = 1/λ2

S. Cheng (OU-Tulsa) December 5, 2017 82 / 275

Lecture 6 More distributions

Interarrival time of Poisson process

Using the similar analysis, we can also easily evaluate the distribution of
interarrival time, the time that the next event will happen given that an
event just happened. Let t = n∆ and use the same notation as before

Note that t > 0 and ∆→ 0 and so n→∞. Now,
Pr(next event happened within in time [t, t +∆])
= Pr(next event happened within in time [n∆, (n + 1)∆])
= Pr(no event in first n intervals)Pr(event happened in n + 1 interval)
= (1− λ∆)n(λ∆)

Let fT (t) be the pdf of the interval time. Then,

fT (t) =
(1−λ∆)n(λ∆)

∆ = λ(1− λ t
n)

n = λ exp(−λt), where we use
(1 + a/n)n = exp(a) again for n→∞

Exponential distribution

fT (t) = λ exp(−λt) , Exp(t|λ) is the pdf of the exponential distribution
with parameter λ. It is easy to verify that (as exercise)

E [T] = 1/λ

Var(T) = 1/λ2

S. Cheng (OU-Tulsa) December 5, 2017 82 / 275

Lecture 6 More distributions

Interarrival time of Poisson process

Using the similar analysis, we can also easily evaluate the distribution of
interarrival time, the time that the next event will happen given that an
event just happened. Let t = n∆ and use the same notation as before

Note that t > 0 and ∆→ 0 and so n→∞. Now,
Pr(next event happened within in time [t, t +∆])
= Pr(next event happened within in time [n∆, (n + 1)∆])
= Pr(no event in first n intervals)Pr(event happened in n + 1 interval)
= (1− λ∆)n(λ∆)
Let fT (t) be the pdf of the interval time. Then,

fT (t) =
(1−λ∆)n(λ∆)

∆

= λ(1− λ t
n)

n = λ exp(−λt), where we use
(1 + a/n)n = exp(a) again for n→∞

Exponential distribution

fT (t) = λ exp(−λt) , Exp(t|λ) is the pdf of the exponential distribution
with parameter λ. It is easy to verify that (as exercise)

E [T] = 1/λ

Var(T) = 1/λ2

S. Cheng (OU-Tulsa) December 5, 2017 82 / 275

Lecture 6 More distributions

Interarrival time of Poisson process

Using the similar analysis, we can also easily evaluate the distribution of
interarrival time, the time that the next event will happen given that an
event just happened. Let t = n∆ and use the same notation as before

Note that t > 0 and ∆→ 0 and so n→∞. Now,
Pr(next event happened within in time [t, t +∆])
= Pr(next event happened within in time [n∆, (n + 1)∆])
= Pr(no event in first n intervals)Pr(event happened in n + 1 interval)
= (1− λ∆)n(λ∆)
Let fT (t) be the pdf of the interval time. Then,

fT (t) =
(1−λ∆)n(λ∆)

∆ = λ(1− λ t
n)

n

= λ exp(−λt), where we use
(1 + a/n)n = exp(a) again for n→∞

Exponential distribution

fT (t) = λ exp(−λt) , Exp(t|λ) is the pdf of the exponential distribution
with parameter λ. It is easy to verify that (as exercise)

E [T] = 1/λ

Var(T) = 1/λ2

S. Cheng (OU-Tulsa) December 5, 2017 82 / 275

Lecture 6 More distributions

Interarrival time of Poisson process

Using the similar analysis, we can also easily evaluate the distribution of
interarrival time, the time that the next event will happen given that an
event just happened. Let t = n∆ and use the same notation as before

Note that t > 0 and ∆→ 0 and so n→∞. Now,
Pr(next event happened within in time [t, t +∆])
= Pr(next event happened within in time [n∆, (n + 1)∆])
= Pr(no event in first n intervals)Pr(event happened in n + 1 interval)
= (1− λ∆)n(λ∆)
Let fT (t) be the pdf of the interval time. Then,

fT (t) =
(1−λ∆)n(λ∆)

∆ = λ(1− λ t
n)

n = λ exp(−λt), where we use
(1 + a/n)n = exp(a) again for n→∞

Exponential distribution

fT (t) = λ exp(−λt) , Exp(t|λ) is the pdf of the exponential distribution
with parameter λ. It is easy to verify that (as exercise)

E [T] = 1/λ

Var(T) = 1/λ2

S. Cheng (OU-Tulsa) December 5, 2017 82 / 275

Lecture 6 More distributions

Interarrival time of Poisson process

Using the similar analysis, we can also easily evaluate the distribution of
interarrival time, the time that the next event will happen given that an
event just happened. Let t = n∆ and use the same notation as before

Note that t > 0 and ∆→ 0 and so n→∞. Now,
Pr(next event happened within in time [t, t +∆])
= Pr(next event happened within in time [n∆, (n + 1)∆])
= Pr(no event in first n intervals)Pr(event happened in n + 1 interval)
= (1− λ∆)n(λ∆)
Let fT (t) be the pdf of the interval time. Then,

fT (t) =
(1−λ∆)n(λ∆)

∆ = λ(1− λ t
n)

n = λ exp(−λt), where we use
(1 + a/n)n = exp(a) again for n→∞

Exponential distribution

fT (t) = λ exp(−λt) , Exp(t|λ) is the pdf of the exponential distribution
with parameter λ. It is easy to verify that (as exercise)

E [T] = 1/λ

Var(T) = 1/λ2

S. Cheng (OU-Tulsa) December 5, 2017 82 / 275

Lecture 6 More distributions

Normal distribution revisit

For a univariate normal random variable, the pdf is given by

Norm(x |µ, σ2) =
1√
2πσ2

exp

(
−(x − µ)2

2σ2

)
=

√
λ

2π
exp

(
−λ(x − µ)2

2

)
with

E [X |µ, σ2] = µ,

E [(X − µ)2|µ, σ2] = σ2,

Recall that λ = 1
σ2 is the precision parameter that simplifies computations

in many cases

S. Cheng (OU-Tulsa) December 5, 2017 83 / 275

Lecture 6 More distributions

Conjugate prior of normal distribution for fixed σ2

Consider σ2 fixed and µ as the model parameter, then the posterior
probability is given by

p(µ|x ;σ2) ∝ p(µ, x ;σ2)

=p(µ)Norm(x |µ;σ2)

∝p(µ)exp
(
−(x − µ)2

2σ2

)
It is apparent that the posterior will keep the same form if p(µ) is also
normal. Therefore, normal distribution is the conjugate prior of itself for
fixed variance

S. Cheng (OU-Tulsa) December 5, 2017 84 / 275

Lecture 6 More distributions

Conjugate prior of normal distribution for fixed σ2

Consider σ2 fixed and µ as the model parameter, then the posterior
probability is given by

p(µ|x ;σ2) ∝ p(µ, x ;σ2)

=p(µ)Norm(x |µ;σ2)

∝p(µ)exp
(
−(x − µ)2

2σ2

)
It is apparent that the posterior will keep the same form if p(µ) is also
normal. Therefore, normal distribution is the conjugate prior of itself for
fixed variance

S. Cheng (OU-Tulsa) December 5, 2017 84 / 275

Lecture 6 More distributions

Conjugate prior of normal distribution for fixed σ2

Consider σ2 fixed and µ as the model parameter, then the posterior
probability is given by

p(µ|x ;σ2) ∝ p(µ, x ;σ2)

=p(µ)Norm(x |µ;σ2)

∝p(µ)exp
(
−(x − µ)2

2σ2

)

It is apparent that the posterior will keep the same form if p(µ) is also
normal. Therefore, normal distribution is the conjugate prior of itself for
fixed variance

S. Cheng (OU-Tulsa) December 5, 2017 84 / 275

Lecture 6 More distributions

Conjugate prior of normal distribution for fixed σ2

Consider σ2 fixed and µ as the model parameter, then the posterior
probability is given by

p(µ|x ;σ2) ∝ p(µ, x ;σ2)

=p(µ)Norm(x |µ;σ2)

∝p(µ)exp
(
−(x − µ)2

2σ2

)
It is apparent that the posterior will keep the same form if p(µ) is also
normal. Therefore, normal distribution is the conjugate prior of itself for
fixed variance

S. Cheng (OU-Tulsa) December 5, 2017 84 / 275

Lecture 6 More distributions

Posterior distribution of normal variable for fixed σ2

Given prior p(µ) = Norm(µ|µ0, σ
2
0) and likelihood Norm(x |µ;σ2). Let’s

find the posterior probability,

p(µ|x ;σ2, µ0, σ
2
0)

=Const · Norm(µ|µ0, σ
2
0)Norm(x |µ;σ2)

=Const2 · exp
(
−(x − µ)2

2σ2
− (µ− µ0)

2

2σ2
0

)
=Norm

(
µ; µ̃, σ̃2

)
,

where µ̃ =
σ2
0x+µ0σ

2

σ2
0+σ2 and σ̃2 =

σ2
0σ

2

σ2
0+σ2 . Alternatively, λ̃ = λ0 + λ and

µ̃ = λ
λ̃
x + λ0

λ̃
µ0. Note that we have already came across the more general

expression when we studied product of multivariate normal distribution

S. Cheng (OU-Tulsa) December 5, 2017 85 / 275

Lecture 6 More distributions

Posterior distribution of normal variable for fixed σ2

Given prior p(µ) = Norm(µ|µ0, σ
2
0) and likelihood Norm(x |µ;σ2). Let’s

find the posterior probability,

p(µ|x ;σ2, µ0, σ
2
0)

=Const · Norm(µ|µ0, σ
2
0)Norm(x |µ;σ2)

=Const2 · exp
(
−(x − µ)2

2σ2
− (µ− µ0)

2

2σ2
0

)
=Norm

(
µ; µ̃, σ̃2

)
,

where µ̃ =
σ2
0x+µ0σ

2

σ2
0+σ2 and σ̃2 =

σ2
0σ

2

σ2
0+σ2 . Alternatively, λ̃ = λ0 + λ and

µ̃ = λ
λ̃
x + λ0

λ̃
µ0. Note that we have already came across the more general

expression when we studied product of multivariate normal distribution

S. Cheng (OU-Tulsa) December 5, 2017 85 / 275

Lecture 6 More distributions

Posterior distribution of normal variable for fixed σ2

Given prior p(µ) = Norm(µ|µ0, σ
2
0) and likelihood Norm(x |µ;σ2). Let’s

find the posterior probability,

p(µ|x ;σ2, µ0, σ
2
0)

=Const · Norm(µ|µ0, σ
2
0)Norm(x |µ;σ2)

=Const2 · exp
(
−(x − µ)2

2σ2
− (µ− µ0)

2

2σ2
0

)
=Norm

(
µ; µ̃, σ̃2

)
,

where µ̃ =
σ2
0x+µ0σ

2

σ2
0+σ2 and σ̃2 =

σ2
0σ

2

σ2
0+σ2 . Alternatively, λ̃ = λ0 + λ and

µ̃ = λ
λ̃
x + λ0

λ̃
µ0. Note that we have already came across the more general

expression when we studied product of multivariate normal distribution

S. Cheng (OU-Tulsa) December 5, 2017 85 / 275

Lecture 6 More distributions

Conjugate prior of normal distribution for fixed µ

Consider µ fixed and λ as the model parameter

p(x |λ;µ) ∝p(x , λ;µ) = p(λ)Norm(x |λ;µ)

∝p(λ)
√
λ exp

(
−λ(x − µ)2

2

)
More generally, when we have N observations from the same source,

p(x1, · · · , xN , λ;µ) =p(λ)
N∏
i=1

Norm(xi |λ;µ)

∝p(λ)λ
N
2 exp

(
−λ

N∑
i=1

(xi − µ)2

2

)

From inspection, the conjugate prior should have a form λa exp(−bλ)

S. Cheng (OU-Tulsa) December 5, 2017 86 / 275

Lecture 6 More distributions

Conjugate prior of normal distribution for fixed µ

Consider µ fixed and λ as the model parameter

p(x |λ;µ) ∝p(x , λ;µ) = p(λ)Norm(x |λ;µ)

∝p(λ)
√
λ exp

(
−λ(x − µ)2

2

)

More generally, when we have N observations from the same source,

p(x1, · · · , xN , λ;µ) =p(λ)
N∏
i=1

Norm(xi |λ;µ)

∝p(λ)λ
N
2 exp

(
−λ

N∑
i=1

(xi − µ)2

2

)

From inspection, the conjugate prior should have a form λa exp(−bλ)

S. Cheng (OU-Tulsa) December 5, 2017 86 / 275

Lecture 6 More distributions

Conjugate prior of normal distribution for fixed µ

Consider µ fixed and λ as the model parameter

p(x |λ;µ) ∝p(x , λ;µ) = p(λ)Norm(x |λ;µ)

∝p(λ)
√
λ exp

(
−λ(x − µ)2

2

)
More generally, when we have N observations from the same source,

p(x1, · · · , xN , λ;µ) =p(λ)
N∏
i=1

Norm(xi |λ;µ)

∝p(λ)λ
N
2 exp

(
−λ

N∑
i=1

(xi − µ)2

2

)

From inspection, the conjugate prior should have a form λa exp(−bλ)

S. Cheng (OU-Tulsa) December 5, 2017 86 / 275

Lecture 6 More distributions

Conjugate prior of normal distribution for fixed µ

Consider µ fixed and λ as the model parameter

p(x |λ;µ) ∝p(x , λ;µ) = p(λ)Norm(x |λ;µ)

∝p(λ)
√
λ exp

(
−λ(x − µ)2

2

)
More generally, when we have N observations from the same source,

p(x1, · · · , xN , λ;µ) =p(λ)
N∏
i=1

Norm(xi |λ;µ)

∝p(λ)λ
N
2 exp

(
−λ

N∑
i=1

(xi − µ)2

2

)

From inspection, the conjugate prior should have a form λa exp(−bλ)
S. Cheng (OU-Tulsa) December 5, 2017 86 / 275

Lecture 6 More distributions

Gamma distribution

The distribution with the desired form described in previous slide turns out
to be the Gamma distribution. Its pdf, mean, and variance (please verify
the mean and variance) are given by

Gamma(λ|a, b) = 1

Γ(a)
baλa−1exp(−bλ)

E [λ] =
a

b

Var [λ] =
a

b2
,

where a, b > 0 and λ ≥ 0

N.B. when a = 1, Gamma reduces to the exponential distribution. When a
is integer, it reduces to Erlang distribution

S. Cheng (OU-Tulsa) December 5, 2017 87 / 275

Lecture 6 More distributions

Gamma distribution

The distribution with the desired form described in previous slide turns out
to be the Gamma distribution. Its pdf, mean, and variance (please verify
the mean and variance) are given by

Gamma(λ|a, b) = 1

Γ(a)
baλa−1exp(−bλ)

E [λ] =
a

b

Var [λ] =
a

b2
,

where a, b > 0 and λ ≥ 0
N.B. when a = 1, Gamma reduces to the exponential distribution. When a
is integer, it reduces to Erlang distribution

S. Cheng (OU-Tulsa) December 5, 2017 87 / 275

Lecture 6 More distributions

Posterior distribution of normal variable for fixed µ

Posterior probability given Normal likelihood (fixed mean) and Gamma
prior

p(λ|x , a, b;µ) =Const1 · Gamma(λ|a, b)Norm(x |λ;µ)

=Const2 · λa−1 exp(−bλ)
√
λ exp

(
−λ(x − µ)2

2

)
=Gamma

(
λ; ã, b̃

)
,

where ã← a+ 1
2 and b̃ ← b + (x−µ)2

2

S. Cheng (OU-Tulsa) December 5, 2017 88 / 275

Lecture 6 More distributions

Posterior distribution of normal variable for fixed µ

Posterior probability given Normal likelihood (fixed mean) and Gamma
prior

p(λ|x , a, b;µ) =Const1 · Gamma(λ|a, b)Norm(x |λ;µ)

=Const2 · λa−1 exp(−bλ)
√
λ exp

(
−λ(x − µ)2

2

)
=Gamma

(
λ; ã, b̃

)
,

where ã← a+ 1
2 and b̃ ← b + (x−µ)2

2

S. Cheng (OU-Tulsa) December 5, 2017 88 / 275

Lecture 6 More distributions

Conjugate prior summary

Distribution Likelihood p(x|θ) Prior p(θ) Distribution

Bernoulli (1− θ)(1−x)θx ∝ (1− θ)(a−1)θ(b−1) Beta

Binomial ∝ (1− θ)(N−x)θx ∝ (1− θ)(a−1)θ(b−1) Beta

Multinomial ∝ θx11 θx22 θx33 ∝ θα1−1
1 θα2−1

2 θα3−1
3 Dirichlet

Normal
(fixed σ2)

∝ exp
(
− (x−θ)2

2σ2

)
∝ exp

(
− (θ−µ0)2

2σ2
0

)
Normal

Normal
(fixed µ)

∝
√
θ exp

(
− θ(x−µ)2

2

)
∝ θa−1exp(−bθ) Gamma

Poisson ∝ θx exp(−θ) ∝ θa−1exp(−bθ) Gamma

S. Cheng (OU-Tulsa) December 5, 2017 89 / 275

Lecture 7 Constraint optimization

An example

Simple economy: m prosumers, n different goods8

Each individual: production pi ∈ Rn , consumption ci ∈ Rn

Expense of producing “p” for agent i = ei (p)

Utility (happiness) of consuming “c” units for agent i = ui (c)

Maximize happiness

max
pi ,ci

∑
i

(ui (ci)− ei (pi)) s.t.
∑
i

ci =
∑
i

pi

8Example borrowed from the first lecture of Prof Gordon’s CMU CS 10-725
S. Cheng (OU-Tulsa) December 5, 2017 90 / 275

Lecture 7 Constraint optimization

Walrasian equilibrium

max
pi ,ci

∑
i

(ui (ci)− ei (pi)) s.t.
∑
i

ci =
∑
i

pi

Idea: introduce price λj to each good j . Let the market decide

Price λj ↑ : consumption of good j ↓, production of good j ↑
Price λj ↓ : consumption of good j ↑, production of good j ↓
Can adjust price until consumption = production for each good

S. Cheng (OU-Tulsa) December 5, 2017 91 / 275

Lecture 7 Constraint optimization

Algorithm: tâtonnement

Assume that the appropriate prices are found, we can ignore the equality
constraint, then the problem becomes

max
pi ,ci

∑
i

(ui (ci)− ei (pi)) ⇒
∑
i

max
pi ,ci

(ui (ci)− ei (pi))

So we can simply optimize production and consumption of each individual
independently

Algorithm 1 tâtonnement

1: procedure FindBestPrices
2: λ← [0, 0, · · · , 0]
3: for k = 1, 2, · · · do
4: Each individual solves for its ci and pi for the given λ
5: λ← λ+ δk

∑
i (ci − pi)

S. Cheng (OU-Tulsa) December 5, 2017 92 / 275

Lecture 7 Constraint optimization

Lagrange multiplier

Problem

max
x

f (x)

g(x) = 0

Consider L(x, λ) = f (x)− λg(x) and let f̃ (x) = minλ L(x, λ).

Note that

f̃ (x) =

{
f (x) if g(x) = 0

−∞ otherwise

Therefore, the problem is identical to maxx f̃ (x) or

max
x

min
λ

(f (x)− λg(x)),

where λ is known to be the Lagrange multiplier.

S. Cheng (OU-Tulsa) December 5, 2017 93 / 275

Lecture 7 Constraint optimization

Lagrange multiplier

Problem

max
x

f (x)

g(x) = 0

Consider L(x, λ) = f (x)− λg(x) and let f̃ (x) = minλ L(x, λ). Note that

f̃ (x) =

{
f (x) if g(x) = 0

−∞ otherwise

Therefore, the problem is identical to maxx f̃ (x) or

max
x

min
λ

(f (x)− λg(x)),

where λ is known to be the Lagrange multiplier.

S. Cheng (OU-Tulsa) December 5, 2017 93 / 275

Lecture 7 Constraint optimization

Lagrange multiplier

Problem

max
x

f (x)

g(x) = 0

Consider L(x, λ) = f (x)− λg(x) and let f̃ (x) = minλ L(x, λ). Note that

f̃ (x) =

{
f (x) if g(x) = 0

−∞ otherwise

Therefore, the problem is identical to maxx f̃ (x) or

max
x

min
λ

(f (x)− λg(x)),

where λ is known to be the Lagrange multiplier.

S. Cheng (OU-Tulsa) December 5, 2017 93 / 275

Lecture 7 Constraint optimization

Lagrange multiplier (con’t)

Assume the optimum is a saddle point,

max
x

min
λ

(f (x)− λg(x)) = min
λ

max
x

(f (x)− λg(x)),

the R.H.S. implies

∇f (x) = λ∇g(x)

S. Cheng (OU-Tulsa) December 5, 2017 94 / 275

Lecture 7 Constraint optimization

Inequality constraint

Problem

max
x

f (x)

g(x) ≤ 0

Consider f̃ (x) = minλ≥0(f (x)− λg(x)),

note that

f̃ (x) =

{
f (x) if g(x) ≤ 0

−∞ otherwise

Therefore, we can rewrite the problem as

max
x

min
λ≥0

(f (x)− λg(x))

S. Cheng (OU-Tulsa) December 5, 2017 95 / 275

Lecture 7 Constraint optimization

Inequality constraint

Problem

max
x

f (x)

g(x) ≤ 0

Consider f̃ (x) = minλ≥0(f (x)− λg(x)), note that

f̃ (x) =

{
f (x) if g(x) ≤ 0

−∞ otherwise

Therefore, we can rewrite the problem as

max
x

min
λ≥0

(f (x)− λg(x))

S. Cheng (OU-Tulsa) December 5, 2017 95 / 275

Lecture 7 Constraint optimization

Inequality constraint

Problem

max
x

f (x)

g(x) ≤ 0

Consider f̃ (x) = minλ≥0(f (x)− λg(x)), note that

f̃ (x) =

{
f (x) if g(x) ≤ 0

−∞ otherwise

Therefore, we can rewrite the problem as

max
x

min
λ≥0

(f (x)− λg(x))

S. Cheng (OU-Tulsa) December 5, 2017 95 / 275

Lecture 7 Constraint optimization

Inequality constraint (con’t)

Assume

max
x

min
λ≥0

(f (x)− λg(x)) = min
λ≥0

max
x

(f (x)− λg(x))

The R.H.S. implies

∇f (x) = λ∇g(x)

Moreover, at the optimum point (x∗, λ∗), we should have the so-called
“complementary slackness” condition

λ∗g(x∗) = 0

since

max
x

f (x)

g(x)≤0

≡ max
x

min
λ≥0

(f (x)− λg(x))

S. Cheng (OU-Tulsa) December 5, 2017 96 / 275

Lecture 7 Constraint optimization

Inequality constraint (con’t)

Assume

max
x

min
λ≥0

(f (x)− λg(x)) = min
λ≥0

max
x

(f (x)− λg(x))

The R.H.S. implies

∇f (x) = λ∇g(x)

Moreover, at the optimum point (x∗, λ∗), we should have the so-called
“complementary slackness” condition

λ∗g(x∗) = 0

since

max
x

f (x)

g(x)≤0

≡ max
x

min
λ≥0

(f (x)− λg(x))

S. Cheng (OU-Tulsa) December 5, 2017 96 / 275

Lecture 7 Constraint optimization

Karush-Kuhn-Tucker conditions

Problem

max
x

f (x)

g(x) ≤ 0, h(x) = 0

Conditions

∇f (x∗)− µ∗∇g(x∗)− λ∗∇h(x∗) = 0

g(x∗) ≤ 0

h(x∗) = 0

µ∗ ≥ 0

µ∗g(x∗) = 0

S. Cheng (OU-Tulsa) December 5, 2017 97 / 275

Lecture 7 Overview of source coding

Overview of source coding

The objective of “source coding” is to compress some source

We can think of compression as “coding”. Meaning that we replace
each input by a corresponding coded sequence. So encoding is just a
mapping/function process

Without loss of generality, we can use binary domain for our coded
sequence. So for each input message, it is converted to a sequence of
1s and 0s

Consider encoding (compressing) a sequence x1, x2, · · · one symbol at
a time, resulting c(x1), c(x2), · · ·
Denote the lengths of x1, x2, · · · as l(x1), l(x2), · · · , one of the major
goal is to have E [l(X)] to be as small as possible

However, we want to make sure that we can losslessly decode the
message also!

S. Cheng (OU-Tulsa) December 5, 2017 98 / 275

Lecture 7 Overview of source coding

Overview of source coding

The objective of “source coding” is to compress some source

We can think of compression as “coding”. Meaning that we replace
each input by a corresponding coded sequence. So encoding is just a
mapping/function process

Without loss of generality, we can use binary domain for our coded
sequence. So for each input message, it is converted to a sequence of
1s and 0s

Consider encoding (compressing) a sequence x1, x2, · · · one symbol at
a time, resulting c(x1), c(x2), · · ·
Denote the lengths of x1, x2, · · · as l(x1), l(x2), · · · , one of the major
goal is to have E [l(X)] to be as small as possible

However, we want to make sure that we can losslessly decode the
message also!

S. Cheng (OU-Tulsa) December 5, 2017 98 / 275

Lecture 7 Overview of source coding

Overview of source coding

The objective of “source coding” is to compress some source

We can think of compression as “coding”. Meaning that we replace
each input by a corresponding coded sequence. So encoding is just a
mapping/function process

Without loss of generality, we can use binary domain for our coded
sequence. So for each input message, it is converted to a sequence of
1s and 0s

Consider encoding (compressing) a sequence x1, x2, · · · one symbol at
a time, resulting c(x1), c(x2), · · ·
Denote the lengths of x1, x2, · · · as l(x1), l(x2), · · · , one of the major
goal is to have E [l(X)] to be as small as possible

However, we want to make sure that we can losslessly decode the
message also!

S. Cheng (OU-Tulsa) December 5, 2017 98 / 275

Lecture 7 Overview of source coding

Overview of source coding

The objective of “source coding” is to compress some source

We can think of compression as “coding”. Meaning that we replace
each input by a corresponding coded sequence. So encoding is just a
mapping/function process

Without loss of generality, we can use binary domain for our coded
sequence. So for each input message, it is converted to a sequence of
1s and 0s

Consider encoding (compressing) a sequence x1, x2, · · · one symbol at
a time, resulting c(x1), c(x2), · · ·

Denote the lengths of x1, x2, · · · as l(x1), l(x2), · · · , one of the major
goal is to have E [l(X)] to be as small as possible

However, we want to make sure that we can losslessly decode the
message also!

S. Cheng (OU-Tulsa) December 5, 2017 98 / 275

Lecture 7 Overview of source coding

Overview of source coding

The objective of “source coding” is to compress some source

We can think of compression as “coding”. Meaning that we replace
each input by a corresponding coded sequence. So encoding is just a
mapping/function process

Without loss of generality, we can use binary domain for our coded
sequence. So for each input message, it is converted to a sequence of
1s and 0s

Consider encoding (compressing) a sequence x1, x2, · · · one symbol at
a time, resulting c(x1), c(x2), · · ·
Denote the lengths of x1, x2, · · · as l(x1), l(x2), · · · , one of the major
goal is to have E [l(X)] to be as small as possible

However, we want to make sure that we can losslessly decode the
message also!

S. Cheng (OU-Tulsa) December 5, 2017 98 / 275

Lecture 7 Overview of source coding

Overview of source coding

The objective of “source coding” is to compress some source

We can think of compression as “coding”. Meaning that we replace
each input by a corresponding coded sequence. So encoding is just a
mapping/function process

Without loss of generality, we can use binary domain for our coded
sequence. So for each input message, it is converted to a sequence of
1s and 0s

Consider encoding (compressing) a sequence x1, x2, · · · one symbol at
a time, resulting c(x1), c(x2), · · ·
Denote the lengths of x1, x2, · · · as l(x1), l(x2), · · · , one of the major
goal is to have E [l(X)] to be as small as possible

However, we want to make sure that we can losslessly decode the
message also!

S. Cheng (OU-Tulsa) December 5, 2017 98 / 275

Lecture 7 Overview of source coding

Uniquely decodable code

To ensure that we can recover message without loss, we must make
sure that no message share the same codeword

We say a code is “singular” (broken) if c(x1) = c(x2) for some
different x1 and x2
Even when a code is not “singular”, we still cannot guarantee that we
can always recover the original message losslessly, consider 4 different
possible input symbols a, b, c , d and an encoding map c(·) :

a 7→ 0, b 7→ 1, c 7→ 10, d 7→ 11
What should be the message for 1110?

dba? Or bbba?

So it is not sufficient to just have c(·) to map to different output for
each input. Let’s overload the notation c(·) a little bit and for any
message sequence x = x1, x2, · · · , xn, encode sequence x1, x2, · · · , xn
to c(x) = c(x1, x2, · · · , xn) = c(x1)c(x2) · · · c(xn)

We say c(x) is uniquely decodable if all input sequences map to
different outputs

S. Cheng (OU-Tulsa) December 5, 2017 99 / 275

Lecture 7 Overview of source coding

Uniquely decodable code

To ensure that we can recover message without loss, we must make
sure that no message share the same codeword

We say a code is “singular” (broken) if c(x1) = c(x2) for some
different x1 and x2

Even when a code is not “singular”, we still cannot guarantee that we
can always recover the original message losslessly, consider 4 different
possible input symbols a, b, c , d and an encoding map c(·) :

a 7→ 0, b 7→ 1, c 7→ 10, d 7→ 11
What should be the message for 1110?

dba? Or bbba?

So it is not sufficient to just have c(·) to map to different output for
each input. Let’s overload the notation c(·) a little bit and for any
message sequence x = x1, x2, · · · , xn, encode sequence x1, x2, · · · , xn
to c(x) = c(x1, x2, · · · , xn) = c(x1)c(x2) · · · c(xn)

We say c(x) is uniquely decodable if all input sequences map to
different outputs

S. Cheng (OU-Tulsa) December 5, 2017 99 / 275

Lecture 7 Overview of source coding

Uniquely decodable code

To ensure that we can recover message without loss, we must make
sure that no message share the same codeword

We say a code is “singular” (broken) if c(x1) = c(x2) for some
different x1 and x2
Even when a code is not “singular”, we still cannot guarantee that we
can always recover the original message losslessly, consider 4 different
possible input symbols a, b, c , d and an encoding map c(·) :

a 7→ 0, b 7→ 1, c 7→ 10, d 7→ 11
What should be the message for 1110?

dba? Or bbba?

So it is not sufficient to just have c(·) to map to different output for
each input. Let’s overload the notation c(·) a little bit and for any
message sequence x = x1, x2, · · · , xn, encode sequence x1, x2, · · · , xn
to c(x) = c(x1, x2, · · · , xn) = c(x1)c(x2) · · · c(xn)

We say c(x) is uniquely decodable if all input sequences map to
different outputs

S. Cheng (OU-Tulsa) December 5, 2017 99 / 275

Lecture 7 Overview of source coding

Uniquely decodable code

To ensure that we can recover message without loss, we must make
sure that no message share the same codeword

We say a code is “singular” (broken) if c(x1) = c(x2) for some
different x1 and x2
Even when a code is not “singular”, we still cannot guarantee that we
can always recover the original message losslessly, consider 4 different
possible input symbols a, b, c , d and an encoding map c(·) :

a 7→ 0, b 7→ 1, c 7→ 10, d 7→ 11
What should be the message for 1110?

dba? Or bbba?

So it is not sufficient to just have c(·) to map to different output for
each input. Let’s overload the notation c(·) a little bit and for any
message sequence x = x1, x2, · · · , xn, encode sequence x1, x2, · · · , xn
to c(x) = c(x1, x2, · · · , xn) = c(x1)c(x2) · · · c(xn)

We say c(x) is uniquely decodable if all input sequences map to
different outputs

S. Cheng (OU-Tulsa) December 5, 2017 99 / 275

Lecture 7 Overview of source coding

Uniquely decodable code

To ensure that we can recover message without loss, we must make
sure that no message share the same codeword

We say a code is “singular” (broken) if c(x1) = c(x2) for some
different x1 and x2
Even when a code is not “singular”, we still cannot guarantee that we
can always recover the original message losslessly, consider 4 different
possible input symbols a, b, c , d and an encoding map c(·) :

a 7→ 0, b 7→ 1, c 7→ 10, d 7→ 11
What should be the message for 1110?

dba? Or bbba?

So it is not sufficient to just have c(·) to map to different output for
each input. Let’s overload the notation c(·) a little bit and for any
message sequence x = x1, x2, · · · , xn, encode sequence x1, x2, · · · , xn
to c(x) = c(x1, x2, · · · , xn) = c(x1)c(x2) · · · c(xn)

We say c(x) is uniquely decodable if all input sequences map to
different outputs

S. Cheng (OU-Tulsa) December 5, 2017 99 / 275

Lecture 7 Overview of source coding

Uniquely decodable code

To ensure that we can recover message without loss, we must make
sure that no message share the same codeword

We say a code is “singular” (broken) if c(x1) = c(x2) for some
different x1 and x2
Even when a code is not “singular”, we still cannot guarantee that we
can always recover the original message losslessly, consider 4 different
possible input symbols a, b, c , d and an encoding map c(·) :

a 7→ 0, b 7→ 1, c 7→ 10, d 7→ 11
What should be the message for 1110?

dba? Or bbba?

So it is not sufficient to just have c(·) to map to different output for
each input. Let’s overload the notation c(·) a little bit and for any
message sequence x = x1, x2, · · · , xn, encode sequence x1, x2, · · · , xn
to c(x) = c(x1, x2, · · · , xn) = c(x1)c(x2) · · · c(xn)

We say c(x) is uniquely decodable if all input sequences map to
different outputs

S. Cheng (OU-Tulsa) December 5, 2017 99 / 275

Lecture 7 Overview of source coding

Prefix-free code

For practical purpose, we would like to be able to decode a symbol
“once it is available”. Consider a code with map

a 7→ 10, b 7→ 00, c 7→ 11, d 7→ 110

One can show that it is uniquely decodable. However, consider an
input sequence cbbb 7→ 11000000
When the decoder read the first 3 bits, it is not able to determine if the
first input symbol is c or d
Actually, it will be until the decoder read the last bit that it will be able
to confirm that the first input symbol is c . It is definitely not
something very desirable

Instead, for a mapping a 7→ 1, b 7→ 01, c 7→ 001, d 7→ 0001, I will
argue that we can always decode a symbol “once it is available”

Note that the catch is that there is no codeword being the “prefix” of
another codeword
We call such code a prefix-free code or an instantaneous code

S. Cheng (OU-Tulsa) December 5, 2017 100 / 275

Lecture 7 Overview of source coding

Prefix-free code

For practical purpose, we would like to be able to decode a symbol
“once it is available”. Consider a code with map

a 7→ 10, b 7→ 00, c 7→ 11, d 7→ 110
One can show that it is uniquely decodable. However, consider an
input sequence cbbb 7→ 11000000

When the decoder read the first 3 bits, it is not able to determine if the
first input symbol is c or d
Actually, it will be until the decoder read the last bit that it will be able
to confirm that the first input symbol is c . It is definitely not
something very desirable

Instead, for a mapping a 7→ 1, b 7→ 01, c 7→ 001, d 7→ 0001, I will
argue that we can always decode a symbol “once it is available”

Note that the catch is that there is no codeword being the “prefix” of
another codeword
We call such code a prefix-free code or an instantaneous code

S. Cheng (OU-Tulsa) December 5, 2017 100 / 275

Lecture 7 Overview of source coding

Prefix-free code

For practical purpose, we would like to be able to decode a symbol
“once it is available”. Consider a code with map

a 7→ 10, b 7→ 00, c 7→ 11, d 7→ 110
One can show that it is uniquely decodable. However, consider an
input sequence cbbb 7→ 11000000
When the decoder read the first 3 bits, it is not able to determine if the
first input symbol is c or d

Actually, it will be until the decoder read the last bit that it will be able
to confirm that the first input symbol is c . It is definitely not
something very desirable

Instead, for a mapping a 7→ 1, b 7→ 01, c 7→ 001, d 7→ 0001, I will
argue that we can always decode a symbol “once it is available”

Note that the catch is that there is no codeword being the “prefix” of
another codeword
We call such code a prefix-free code or an instantaneous code

S. Cheng (OU-Tulsa) December 5, 2017 100 / 275

Lecture 7 Overview of source coding

Prefix-free code

For practical purpose, we would like to be able to decode a symbol
“once it is available”. Consider a code with map

a 7→ 10, b 7→ 00, c 7→ 11, d 7→ 110
One can show that it is uniquely decodable. However, consider an
input sequence cbbb 7→ 11000000
When the decoder read the first 3 bits, it is not able to determine if the
first input symbol is c or d
Actually, it will be until the decoder read the last bit that it will be able
to confirm that the first input symbol is c . It is definitely not
something very desirable

Instead, for a mapping a 7→ 1, b 7→ 01, c 7→ 001, d 7→ 0001, I will
argue that we can always decode a symbol “once it is available”

Note that the catch is that there is no codeword being the “prefix” of
another codeword
We call such code a prefix-free code or an instantaneous code

S. Cheng (OU-Tulsa) December 5, 2017 100 / 275

Lecture 7 Overview of source coding

Prefix-free code

For practical purpose, we would like to be able to decode a symbol
“once it is available”. Consider a code with map

a 7→ 10, b 7→ 00, c 7→ 11, d 7→ 110
One can show that it is uniquely decodable. However, consider an
input sequence cbbb 7→ 11000000
When the decoder read the first 3 bits, it is not able to determine if the
first input symbol is c or d
Actually, it will be until the decoder read the last bit that it will be able
to confirm that the first input symbol is c . It is definitely not
something very desirable

Instead, for a mapping a 7→ 1, b 7→ 01, c 7→ 001, d 7→ 0001, I will
argue that we can always decode a symbol “once it is available”

Note that the catch is that there is no codeword being the “prefix” of
another codeword
We call such code a prefix-free code or an instantaneous code

S. Cheng (OU-Tulsa) December 5, 2017 100 / 275

Lecture 7 Overview of source coding

Prefix-free code

For practical purpose, we would like to be able to decode a symbol
“once it is available”. Consider a code with map

a 7→ 10, b 7→ 00, c 7→ 11, d 7→ 110
One can show that it is uniquely decodable. However, consider an
input sequence cbbb 7→ 11000000
When the decoder read the first 3 bits, it is not able to determine if the
first input symbol is c or d
Actually, it will be until the decoder read the last bit that it will be able
to confirm that the first input symbol is c . It is definitely not
something very desirable

Instead, for a mapping a 7→ 1, b 7→ 01, c 7→ 001, d 7→ 0001, I will
argue that we can always decode a symbol “once it is available”

Note that the catch is that there is no codeword being the “prefix” of
another codeword
We call such code a prefix-free code or an instantaneous code

S. Cheng (OU-Tulsa) December 5, 2017 100 / 275

Lecture 7 Kraft’s Inequality

Kraft’s Inequality

Let l1, l2, · · · , lK satisfy
∑K

k=1 2
−lk ≤ 1. Then, there exists a uniquely

decodable code for symbols x1, x2, · · · , xK such that l(x1) = l1,
l(x2) = l2, · · · , l(xK) = lK .

Intuition

Consider # “descendants” of each codeword at the “lmax”-level, then for
prefix-free code, we have

K∑
k=1

2lmax−l ≤ 2lmax

⇒
K∑

k=1

2−lk ≤ 1 a

S. Cheng (OU-Tulsa) December 5, 2017 101 / 275

Lecture 7 Kraft’s Inequality

Kraft’s Inequality

Let l1, l2, · · · , lK satisfy
∑K

k=1 2
−lk ≤ 1. Then, there exists a uniquely

decodable code for symbols x1, x2, · · · , xK such that l(x1) = l1,
l(x2) = l2, · · · , l(xK) = lK .

Intuition

Consider # “descendants” of each codeword at the “lmax”-level, then for
prefix-free code, we have

K∑
k=1

2lmax−l ≤ 2lmax

⇒
K∑

k=1

2−lk ≤ 1 a

S. Cheng (OU-Tulsa) December 5, 2017 101 / 275

Lecture 7 Kraft’s Inequality

Kraft’s Inequality

Let l1, l2, · · · , lK satisfy
∑K

k=1 2
−lk ≤ 1. Then, there exists a uniquely

decodable code for symbols x1, x2, · · · , xK such that l(x1) = l1,
l(x2) = l2, · · · , l(xK) = lK .

Intuition

Consider # “descendants” of each codeword at the “lmax”-level, then for
prefix-free code, we have

K∑
k=1

2lmax−l ≤ 2lmax

⇒
K∑

k=1

2−lk ≤ 1 a

S. Cheng (OU-Tulsa) December 5, 2017 101 / 275

Lecture 7 Kraft’s Inequality

Forward Proof

Given l1, l2, · · · , lK satisfy
∑K

k=1 2
−lk ≤ 1, we can assign nodes on a tree

as previous slides. More precisely,

Assign i-th node as a node at level li , then cross out all its
descendants

Repeat the procedure for i from 1 to K

We know that there are sufficient tree nodes to be assigned since the
Kraft’s inequaltiy is satisfied

The corresponding code is apparently prefix-free and thus is uniquely
decodable

S. Cheng (OU-Tulsa) December 5, 2017 102 / 275

Lecture 7 Kraft’s Inequality

Converse Proof

Consider message from coding k symbols x = x1, x2, · · · , xk(∑
x∈X

2−l(x)

)k

=

(∑
x1∈X

2−l(x1)

)(∑
x2∈X

2−l(x2)

)
· · ·

(∑
xk∈X

2−l(xk)

)
=

∑
x1,x2,··· ,xk∈X k

2−(l(x1)+l(x2)+···+l(xk))

=
∑
x∈X k

2−l(x)

=
klmax∑
m=1

a(m)2−m,

where a(m) is the number of codeword with length m. However, for the
code to be uniquely decodable, a(m) ≤ 2m, where 2m is the number of
available codewords with length m. Therefore,∑

x∈X
2−l(x) ≤ (klmax)

1/k ≈ 1 as k →∞

S. Cheng (OU-Tulsa) December 5, 2017 103 / 275

Lecture 7 Kraft’s Inequality

Converse Proof

Consider message from coding k symbols x = x1, x2, · · · , xk(∑
x∈X

2−l(x)

)k

=

(∑
x1∈X

2−l(x1)

)(∑
x2∈X

2−l(x2)

)
· · ·

(∑
xk∈X

2−l(xk)

)
=

∑
x1,x2,··· ,xk∈X k

2−(l(x1)+l(x2)+···+l(xk))

=
∑
x∈X k

2−l(x) =
klmax∑
m=1

a(m)2−m,

where a(m) is the number of codeword with length m. However, for the
code to be uniquely decodable, a(m) ≤ 2m, where 2m is the number of
available codewords with length m.

Therefore,∑
x∈X

2−l(x) ≤ (klmax)
1/k ≈ 1 as k →∞

S. Cheng (OU-Tulsa) December 5, 2017 103 / 275

Lecture 7 Kraft’s Inequality

Converse Proof

Consider message from coding k symbols x = x1, x2, · · · , xk(∑
x∈X

2−l(x)

)k

=

(∑
x1∈X

2−l(x1)

)(∑
x2∈X

2−l(x2)

)
· · ·

(∑
xk∈X

2−l(xk)

)
=

∑
x1,x2,··· ,xk∈X k

2−(l(x1)+l(x2)+···+l(xk))

=
∑
x∈X k

2−l(x) =
klmax∑
m=1

a(m)2−m,

where a(m) is the number of codeword with length m. However, for the
code to be uniquely decodable, a(m) ≤ 2m, where 2m is the number of
available codewords with length m. Therefore,∑

x∈X
2−l(x) ≤ (klmax)

1/k

≈ 1 as k →∞

S. Cheng (OU-Tulsa) December 5, 2017 103 / 275

Lecture 7 Kraft’s Inequality

Converse Proof

Consider message from coding k symbols x = x1, x2, · · · , xk(∑
x∈X

2−l(x)

)k

=

(∑
x1∈X

2−l(x1)

)(∑
x2∈X

2−l(x2)

)
· · ·

(∑
xk∈X

2−l(xk)

)
=

∑
x1,x2,··· ,xk∈X k

2−(l(x1)+l(x2)+···+l(xk))

=
∑
x∈X k

2−l(x) =
klmax∑
m=1

a(m)2−m,

where a(m) is the number of codeword with length m. However, for the
code to be uniquely decodable, a(m) ≤ 2m, where 2m is the number of
available codewords with length m. Therefore,∑

x∈X
2−l(x) ≤ (klmax)

1/k ≈ 1 as k →∞

S. Cheng (OU-Tulsa) December 5, 2017 103 / 275

Lecture 7 Converse proof of Source Coding Theorem

Minimum rate required to compress a source

minl1,l2,··· ,lK

K∑
k=1

pk lk subject to
K∑

k=1

2−lk ≤ 1 and l1, · · · , lK ≥ 0

≡maxl1,l2,··· ,lK −
K∑

k=1

pk lk subject to
K∑

k=1

2−lk − 1 ≤ 0 and − l1, · · · ,−lK ≤ 0

KKT conditions

−∇

(
K∑

k=1

pk lk

)
− µ0∇

(
K∑

k=1

2−lk − 1

)
+

K∑
k=1

µk∇lk = 0

K∑
k=1

2−lk − 1 ≤ 0, l1, · · · , lK ≥ 0, µ0, µ1, · · · , µK ≥ 0

µ0

(
K∑

k=1

2−lk − 1

)
= 0, µk lk = 0

S. Cheng (OU-Tulsa) December 5, 2017 104 / 275

Lecture 7 Converse proof of Source Coding Theorem

Minimum rate required to compress a source

minl1,l2,··· ,lK

K∑
k=1

pk lk subject to
K∑

k=1

2−lk ≤ 1 and l1, · · · , lK ≥ 0

≡maxl1,l2,··· ,lK −
K∑

k=1

pk lk subject to
K∑

k=1

2−lk − 1 ≤ 0 and − l1, · · · ,−lK ≤ 0

KKT conditions

−∇

(
K∑

k=1

pk lk

)
− µ0∇

(
K∑

k=1

2−lk − 1

)
+

K∑
k=1

µk∇lk = 0

K∑
k=1

2−lk − 1 ≤ 0, l1, · · · , lK ≥ 0, µ0, µ1, · · · , µK ≥ 0

µ0

(
K∑

k=1

2−lk − 1

)
= 0, µk lk = 0

S. Cheng (OU-Tulsa) December 5, 2017 104 / 275

Lecture 7 Converse proof of Source Coding Theorem

Minimum rate required to compress a source

minl1,l2,··· ,lK

K∑
k=1

pk lk subject to
K∑

k=1

2−lk ≤ 1 and l1, · · · , lK ≥ 0

≡maxl1,l2,··· ,lK −
K∑

k=1

pk lk subject to
K∑

k=1

2−lk − 1 ≤ 0 and − l1, · · · ,−lK ≤ 0

KKT conditions

−∇

(
K∑

k=1

pk lk

)
− µ0∇

(
K∑

k=1

2−lk − 1

)
+

K∑
k=1

µk∇lk = 0

K∑
k=1

2−lk − 1 ≤ 0, l1, · · · , lK ≥ 0, µ0, µ1, · · · , µK ≥ 0

µ0

(
K∑

k=1

2−lk − 1

)
= 0, µk lk = 0

S. Cheng (OU-Tulsa) December 5, 2017 104 / 275

Lecture 7 Converse proof of Source Coding Theorem

Minimum rate required to compress a source

Since we expect lk > 0, µk = 0.

Expand the first equation, we get

−pj + µ02
−lj log 2 = 0⇒ 2−lj =

pj
µ0 log 2

And by
∑K

k=1 2
−lk ≤ 1, we have

K∑
k=1

pj
µ0 log 2

=
1

µ0 log 2
≤ 1⇒ µ0 ≥

1

log 2

Note that as µ0 ↓,
pj

µ0 log 2 ↑ and lj ↓. Therefore, if we want to decrease

code rate, we should reduce µ0 as much as possible. Thus, take µ0 =
1

log 2 .

Then 2−lj = pj ⇒ lj = − log2 pj . Thus, the minimum rate becomes

K∑
k=1

pk lk = −
K∑

k=1

pk log2 pk , H(p1, · · · , pK)

S. Cheng (OU-Tulsa) December 5, 2017 105 / 275

Lecture 7 Converse proof of Source Coding Theorem

Minimum rate required to compress a source

Since we expect lk > 0, µk = 0. Expand the first equation, we get

−pj + µ02
−lj log 2 = 0⇒ 2−lj =

pj
µ0 log 2

And by
∑K

k=1 2
−lk ≤ 1, we have

K∑
k=1

pj
µ0 log 2

=
1

µ0 log 2
≤ 1⇒ µ0 ≥

1

log 2

Note that as µ0 ↓,
pj

µ0 log 2 ↑ and lj ↓. Therefore, if we want to decrease

code rate, we should reduce µ0 as much as possible. Thus, take µ0 =
1

log 2 .

Then 2−lj = pj ⇒ lj = − log2 pj . Thus, the minimum rate becomes

K∑
k=1

pk lk = −
K∑

k=1

pk log2 pk , H(p1, · · · , pK)

S. Cheng (OU-Tulsa) December 5, 2017 105 / 275

Lecture 7 Converse proof of Source Coding Theorem

Minimum rate required to compress a source

Since we expect lk > 0, µk = 0. Expand the first equation, we get

−pj + µ02
−lj log 2 = 0⇒ 2−lj =

pj
µ0 log 2

And by
∑K

k=1 2
−lk ≤ 1, we have

K∑
k=1

pj
µ0 log 2

=
1

µ0 log 2
≤ 1⇒ µ0 ≥

1

log 2

Note that as µ0 ↓,
pj

µ0 log 2 ↑ and lj ↓. Therefore, if we want to decrease

code rate, we should reduce µ0 as much as possible. Thus, take µ0 =
1

log 2 .

Then 2−lj = pj ⇒ lj = − log2 pj . Thus, the minimum rate becomes

K∑
k=1

pk lk = −
K∑

k=1

pk log2 pk , H(p1, · · · , pK)

S. Cheng (OU-Tulsa) December 5, 2017 105 / 275

Lecture 7 Converse proof of Source Coding Theorem

Minimum rate required to compress a source

Since we expect lk > 0, µk = 0. Expand the first equation, we get

−pj + µ02
−lj log 2 = 0⇒ 2−lj =

pj
µ0 log 2

And by
∑K

k=1 2
−lk ≤ 1, we have

K∑
k=1

pj
µ0 log 2

=
1

µ0 log 2
≤ 1⇒ µ0 ≥

1

log 2

Note that as µ0 ↓,
pj

µ0 log 2 ↑ and lj ↓.

Therefore, if we want to decrease

code rate, we should reduce µ0 as much as possible. Thus, take µ0 =
1

log 2 .

Then 2−lj = pj ⇒ lj = − log2 pj . Thus, the minimum rate becomes

K∑
k=1

pk lk = −
K∑

k=1

pk log2 pk , H(p1, · · · , pK)

S. Cheng (OU-Tulsa) December 5, 2017 105 / 275

Lecture 7 Converse proof of Source Coding Theorem

Minimum rate required to compress a source

Since we expect lk > 0, µk = 0. Expand the first equation, we get

−pj + µ02
−lj log 2 = 0⇒ 2−lj =

pj
µ0 log 2

And by
∑K

k=1 2
−lk ≤ 1, we have

K∑
k=1

pj
µ0 log 2

=
1

µ0 log 2
≤ 1⇒ µ0 ≥

1

log 2

Note that as µ0 ↓,
pj

µ0 log 2 ↑ and lj ↓. Therefore, if we want to decrease

code rate, we should reduce µ0 as much as possible. Thus, take µ0 =
1

log 2 .

Then 2−lj = pj ⇒ lj = − log2 pj . Thus, the minimum rate becomes

K∑
k=1

pk lk = −
K∑

k=1

pk log2 pk , H(p1, · · · , pK)

S. Cheng (OU-Tulsa) December 5, 2017 105 / 275

Lecture 8

Review

Kraft’s inequality:
∑K

k=1 2
−lk ≤ 1

We showed that given a code “length-profile”, we can always find a
prefix-free code if the profile satisfies Kraft’s inequality
Conversely, if Kraft’s inequality is not satisfies, any code with that
profile is not uniquely decodable ⇒ trash

Converse proof of Source Coding Theorem: if we minimize the
expected code length subject to the Kraft’s inequality, the minimum
“code rate” is equal to the entropy of the source.

In other words, we cannot compress a source losslessly below its entropy

Forward proof of Source Coding Theorem: the obvious question now
is can we compress any source arbitrary close to its entropy?

Absolutely! And we will show it today

S. Cheng (OU-Tulsa) December 5, 2017 106 / 275

Lecture 8

Review

Kraft’s inequality:
∑K

k=1 2
−lk ≤ 1

We showed that given a code “length-profile”, we can always find a
prefix-free code if the profile satisfies Kraft’s inequality

Conversely, if Kraft’s inequality is not satisfies, any code with that
profile is not uniquely decodable ⇒ trash

Converse proof of Source Coding Theorem: if we minimize the
expected code length subject to the Kraft’s inequality, the minimum
“code rate” is equal to the entropy of the source.

In other words, we cannot compress a source losslessly below its entropy

Forward proof of Source Coding Theorem: the obvious question now
is can we compress any source arbitrary close to its entropy?

Absolutely! And we will show it today

S. Cheng (OU-Tulsa) December 5, 2017 106 / 275

Lecture 8

Review

Kraft’s inequality:
∑K

k=1 2
−lk ≤ 1

We showed that given a code “length-profile”, we can always find a
prefix-free code if the profile satisfies Kraft’s inequality
Conversely, if Kraft’s inequality is not satisfies, any code with that
profile is not uniquely decodable ⇒ trash

Converse proof of Source Coding Theorem: if we minimize the
expected code length subject to the Kraft’s inequality, the minimum
“code rate” is equal to the entropy of the source.

In other words, we cannot compress a source losslessly below its entropy

Forward proof of Source Coding Theorem: the obvious question now
is can we compress any source arbitrary close to its entropy?

Absolutely! And we will show it today

S. Cheng (OU-Tulsa) December 5, 2017 106 / 275

Lecture 8

Review

Kraft’s inequality:
∑K

k=1 2
−lk ≤ 1

We showed that given a code “length-profile”, we can always find a
prefix-free code if the profile satisfies Kraft’s inequality
Conversely, if Kraft’s inequality is not satisfies, any code with that
profile is not uniquely decodable ⇒ trash

Converse proof of Source Coding Theorem: if we minimize the
expected code length subject to the Kraft’s inequality, the minimum
“code rate” is equal to the entropy of the source.

In other words, we cannot compress a source losslessly below its entropy

Forward proof of Source Coding Theorem: the obvious question now
is can we compress any source arbitrary close to its entropy?

Absolutely! And we will show it today

S. Cheng (OU-Tulsa) December 5, 2017 106 / 275

Lecture 8

Review

Kraft’s inequality:
∑K

k=1 2
−lk ≤ 1

We showed that given a code “length-profile”, we can always find a
prefix-free code if the profile satisfies Kraft’s inequality
Conversely, if Kraft’s inequality is not satisfies, any code with that
profile is not uniquely decodable ⇒ trash

Converse proof of Source Coding Theorem: if we minimize the
expected code length subject to the Kraft’s inequality, the minimum
“code rate” is equal to the entropy of the source.

In other words, we cannot compress a source losslessly below its entropy

Forward proof of Source Coding Theorem: the obvious question now
is can we compress any source arbitrary close to its entropy?

Absolutely! And we will show it today

S. Cheng (OU-Tulsa) December 5, 2017 106 / 275

Lecture 8

Review

Kraft’s inequality:
∑K

k=1 2
−lk ≤ 1

We showed that given a code “length-profile”, we can always find a
prefix-free code if the profile satisfies Kraft’s inequality
Conversely, if Kraft’s inequality is not satisfies, any code with that
profile is not uniquely decodable ⇒ trash

Converse proof of Source Coding Theorem: if we minimize the
expected code length subject to the Kraft’s inequality, the minimum
“code rate” is equal to the entropy of the source.

In other words, we cannot compress a source losslessly below its entropy

Forward proof of Source Coding Theorem: the obvious question now
is can we compress any source arbitrary close to its entropy?

Absolutely! And we will show it today

S. Cheng (OU-Tulsa) December 5, 2017 106 / 275

Lecture 8

Review

Kraft’s inequality:
∑K

k=1 2
−lk ≤ 1

We showed that given a code “length-profile”, we can always find a
prefix-free code if the profile satisfies Kraft’s inequality
Conversely, if Kraft’s inequality is not satisfies, any code with that
profile is not uniquely decodable ⇒ trash

Converse proof of Source Coding Theorem: if we minimize the
expected code length subject to the Kraft’s inequality, the minimum
“code rate” is equal to the entropy of the source.

In other words, we cannot compress a source losslessly below its entropy

Forward proof of Source Coding Theorem: the obvious question now
is can we compress any source arbitrary close to its entropy?

Absolutely! And we will show it today

S. Cheng (OU-Tulsa) December 5, 2017 106 / 275

Lecture 8 SFE code

Shannon-Fano-Elias code

Key idea

Each codeword corresponds to an intervel of [0, 1]

Example

110 corresponds to [0.110, 0.1101·] = [0.11, 0.111) = [0.75, 0.875)

011 corresponds to [0.011, 0.0111·] = [0.011, 0.1) = [0.375, 0.5)

S. Cheng (OU-Tulsa) December 5, 2017 107 / 275

Lecture 8 SFE code

Shannon-Fano-Elias code

Key idea

Each codeword corresponds to an intervel of [0, 1]

Example

110 corresponds to [0.110, 0.1101·] = [0.11, 0.111) = [0.75, 0.875)

011 corresponds to [0.011, 0.0111·] = [0.011, 0.1) = [0.375, 0.5)

S. Cheng (OU-Tulsa) December 5, 2017 107 / 275

Lecture 8 SFE code

Observations

Remark (Observation 1)

Let l(x) = |c(x)| be the length of the SFE codeword, and let u(x) be the
corresponding interval. Then, the length of the interval |u(x)| = 2−l(x)

Remark (Observation 2)

If u(x1) and u(x2) do not overlap, then c(x1) and c(x2) cannot be prefix of
one another

Proof of Observation 2.

WLOG, assume c(x1) is a prefix of c(x2), the lower boundary of u(x1) is
below the lower boundary of u(x2) and yet the upper boundary of u(x1) is
above the upper boundary of u(x2). Thus, u(x2) ⊆ u(x1) and hence u(x1)
and u(x2) overlap each other

S. Cheng (OU-Tulsa) December 5, 2017 108 / 275

Lecture 8 SFE code

Observations

Remark (Observation 1)

Let l(x) = |c(x)| be the length of the SFE codeword, and let u(x) be the
corresponding interval. Then, the length of the interval |u(x)| = 2−l(x)

Remark (Observation 2)

If u(x1) and u(x2) do not overlap, then c(x1) and c(x2) cannot be prefix of
one another

Proof of Observation 2.

WLOG, assume c(x1) is a prefix of c(x2), the lower boundary of u(x1) is
below the lower boundary of u(x2) and yet the upper boundary of u(x1) is
above the upper boundary of u(x2). Thus, u(x2) ⊆ u(x1) and hence u(x1)
and u(x2) overlap each other

S. Cheng (OU-Tulsa) December 5, 2017 108 / 275

Lecture 8 SFE code

Observations

Remark (Observation 1)

Let l(x) = |c(x)| be the length of the SFE codeword, and let u(x) be the
corresponding interval. Then, the length of the interval |u(x)| = 2−l(x)

Remark (Observation 2)

If u(x1) and u(x2) do not overlap, then c(x1) and c(x2) cannot be prefix of
one another

Proof of Observation 2.

WLOG, assume c(x1) is a prefix of c(x2), the lower boundary of u(x1) is
below the lower boundary of u(x2) and yet the upper boundary of u(x1) is
above the upper boundary of u(x2). Thus, u(x2) ⊆ u(x1) and hence u(x1)
and u(x2) overlap each other

S. Cheng (OU-Tulsa) December 5, 2017 108 / 275

Lecture 8 SFE code

Example

Consider a source that
p(x1) = 0.25, p(x2) = 0.25, p(x3) = 0.2, p(x4) = 0.15, p(x5) = 0.15

S. Cheng (OU-Tulsa) December 5, 2017 109 / 275

Lecture 8 SFE code

Property

The length of the codeword of x is dlog2 1
p(x)e+ 1. This ensures that

the “code interval” of each codeword does not overlap

Recall from observation 1, SFE code is prefix-free → uniquely
decodable

If a codeword is prefix of another (say 10 and 1010), the corresponding
intervals must overlap each other (consider [0.10, 0.11) and
[0.101, 0.11))
Since no codeword can overlap in SFE, no code word can be prefix of
another

Average code rate is upper bounded by H(X) + 2∑
x∈X

p(x)l(x) =
∑
x∈X

p(x)

(⌈
log2

1

p(x)

⌉
+ 1

)
≤
∑
x∈X

p(x)

(
log2

1

p(x)
+ 2

)
= H(X) + 2

S. Cheng (OU-Tulsa) December 5, 2017 110 / 275

Lecture 8 SFE code

Property

The length of the codeword of x is dlog2 1
p(x)e+ 1. This ensures that

the “code interval” of each codeword does not overlap
Recall from observation 1, SFE code is prefix-free → uniquely
decodable

If a codeword is prefix of another (say 10 and 1010), the corresponding
intervals must overlap each other (consider [0.10, 0.11) and
[0.101, 0.11))
Since no codeword can overlap in SFE, no code word can be prefix of
another

Average code rate is upper bounded by H(X) + 2∑
x∈X

p(x)l(x) =
∑
x∈X

p(x)

(⌈
log2

1

p(x)

⌉
+ 1

)
≤
∑
x∈X

p(x)

(
log2

1

p(x)
+ 2

)
= H(X) + 2

S. Cheng (OU-Tulsa) December 5, 2017 110 / 275

Lecture 8 SFE code

Property

The length of the codeword of x is dlog2 1
p(x)e+ 1. This ensures that

the “code interval” of each codeword does not overlap
Recall from observation 1, SFE code is prefix-free → uniquely
decodable

If a codeword is prefix of another (say 10 and 1010), the corresponding
intervals must overlap each other (consider [0.10, 0.11) and
[0.101, 0.11))

Since no codeword can overlap in SFE, no code word can be prefix of
another

Average code rate is upper bounded by H(X) + 2∑
x∈X

p(x)l(x) =
∑
x∈X

p(x)

(⌈
log2

1

p(x)

⌉
+ 1

)
≤
∑
x∈X

p(x)

(
log2

1

p(x)
+ 2

)
= H(X) + 2

S. Cheng (OU-Tulsa) December 5, 2017 110 / 275

Lecture 8 SFE code

Property

The length of the codeword of x is dlog2 1
p(x)e+ 1. This ensures that

the “code interval” of each codeword does not overlap
Recall from observation 1, SFE code is prefix-free → uniquely
decodable

If a codeword is prefix of another (say 10 and 1010), the corresponding
intervals must overlap each other (consider [0.10, 0.11) and
[0.101, 0.11))
Since no codeword can overlap in SFE, no code word can be prefix of
another

Average code rate is upper bounded by H(X) + 2∑
x∈X

p(x)l(x) =
∑
x∈X

p(x)

(⌈
log2

1

p(x)

⌉
+ 1

)
≤
∑
x∈X

p(x)

(
log2

1

p(x)
+ 2

)
= H(X) + 2

S. Cheng (OU-Tulsa) December 5, 2017 110 / 275

Lecture 8 SFE code

Property

The length of the codeword of x is dlog2 1
p(x)e+ 1. This ensures that

the “code interval” of each codeword does not overlap
Recall from observation 1, SFE code is prefix-free → uniquely
decodable

If a codeword is prefix of another (say 10 and 1010), the corresponding
intervals must overlap each other (consider [0.10, 0.11) and
[0.101, 0.11))
Since no codeword can overlap in SFE, no code word can be prefix of
another

Average code rate is upper bounded by H(X) + 2∑
x∈X

p(x)l(x) =
∑
x∈X

p(x)

(⌈
log2

1

p(x)

⌉
+ 1

)
≤
∑
x∈X

p(x)

(
log2

1

p(x)
+ 2

)
= H(X) + 2

S. Cheng (OU-Tulsa) December 5, 2017 110 / 275

Lecture 8 Forward proof of Source Coding Theorem

“Symbol grouping” trick

Let’s consider two symbols as a super-symbol and compress the pair
at each time with SFE code
The code rate is bounded by H(XS) + 2, where

H(XS) = −
∑

x1,x2∈X 2

p(x1, x2) log2 p(x1, x2)

= −
∑

x1,x2∈X 2

p(x1, x2) log2(p(x1)p(x2))

= −
∑

x1,x2∈X 2

p(x1, x2) log2 p(x1)−
∑

x1,x2∈X 2

p(x1, x2) log2 p(x2)

= −
∑
x1∈X

p(x1) log2 p(x1)−
∑
x2∈X

p(x2) log2 p(x2)

= 2H(X)

Therefore, the code rate per original symbol is upper bounded by

1

2
(H(XS) + 2) = H(X) + 1

S. Cheng (OU-Tulsa) December 5, 2017 111 / 275

Lecture 8 Forward proof of Source Coding Theorem

“Symbol grouping” trick

Let’s consider two symbols as a super-symbol and compress the pair
at each time with SFE code
The code rate is bounded by H(XS) + 2, where

H(XS) = −
∑

x1,x2∈X 2

p(x1, x2) log2 p(x1, x2)

= −
∑

x1,x2∈X 2

p(x1, x2) log2(p(x1)p(x2))

= −
∑

x1,x2∈X 2

p(x1, x2) log2 p(x1)−
∑

x1,x2∈X 2

p(x1, x2) log2 p(x2)

= −
∑
x1∈X

p(x1) log2 p(x1)−
∑
x2∈X

p(x2) log2 p(x2)

= 2H(X)

Therefore, the code rate per original symbol is upper bounded by

1

2
(H(XS) + 2) = H(X) + 1

S. Cheng (OU-Tulsa) December 5, 2017 111 / 275

Lecture 8 Forward proof of Source Coding Theorem

“Symbol grouping” trick

Let’s consider two symbols as a super-symbol and compress the pair
at each time with SFE code
The code rate is bounded by H(XS) + 2, where

H(XS) = −
∑

x1,x2∈X 2

p(x1, x2) log2 p(x1, x2)

= −
∑

x1,x2∈X 2

p(x1, x2) log2(p(x1)p(x2))

= −
∑

x1,x2∈X 2

p(x1, x2) log2 p(x1)−
∑

x1,x2∈X 2

p(x1, x2) log2 p(x2)

= −
∑
x1∈X

p(x1) log2 p(x1)−
∑
x2∈X

p(x2) log2 p(x2)

= 2H(X)

Therefore, the code rate per original symbol is upper bounded by

1

2
(H(XS) + 2) = H(X) + 1

S. Cheng (OU-Tulsa) December 5, 2017 111 / 275

Lecture 8 Forward proof of Source Coding Theorem

“Symbol grouping” trick

Let’s consider two symbols as a super-symbol and compress the pair
at each time with SFE code
The code rate is bounded by H(XS) + 2, where

H(XS) = −
∑

x1,x2∈X 2

p(x1, x2) log2 p(x1, x2)

= −
∑

x1,x2∈X 2

p(x1, x2) log2(p(x1)p(x2))

= −
∑

x1,x2∈X 2

p(x1, x2) log2 p(x1)−
∑

x1,x2∈X 2

p(x1, x2) log2 p(x2)

= −
∑
x1∈X

p(x1) log2 p(x1)−
∑
x2∈X

p(x2) log2 p(x2)

= 2H(X)

Therefore, the code rate per original symbol is upper bounded by

1

2
(H(XS) + 2) = H(X) + 1

S. Cheng (OU-Tulsa) December 5, 2017 111 / 275

Lecture 8 Forward proof of Source Coding Theorem

“Symbol grouping” trick

Let’s consider two symbols as a super-symbol and compress the pair
at each time with SFE code
The code rate is bounded by H(XS) + 2, where

H(XS) = −
∑

x1,x2∈X 2

p(x1, x2) log2 p(x1, x2)

= −
∑

x1,x2∈X 2

p(x1, x2) log2(p(x1)p(x2))

= −
∑

x1,x2∈X 2

p(x1, x2) log2 p(x1)−
∑

x1,x2∈X 2

p(x1, x2) log2 p(x2)

= −
∑
x1∈X

p(x1) log2 p(x1)−
∑
x2∈X

p(x2) log2 p(x2)

= 2H(X)

Therefore, the code rate per original symbol is upper bounded by

1

2
(H(XS) + 2) = H(X) + 1

S. Cheng (OU-Tulsa) December 5, 2017 111 / 275

Lecture 8 Forward proof of Source Coding Theorem

Forward proof of Source Coding Theorem

In theory, we can group as many symbols as we want (we want do it in
practice, why?), say we group N symbols at a time and compress it using
SFE code.

The code rate per original symbol is upper bounded by

1

N
(H(XS) + 2) =

1

N
(NH(X) + 2) = H(X) +

2

N

Therefore as long as a given rate R > H(X), we can always find a large
enough N such that the code rate using the “grouping trick” and SFE
code is below R. This concludes the forward proof

S. Cheng (OU-Tulsa) December 5, 2017 112 / 275

Lecture 8 Forward proof of Source Coding Theorem

Forward proof of Source Coding Theorem

In theory, we can group as many symbols as we want (we want do it in
practice, why?), say we group N symbols at a time and compress it using
SFE code. The code rate per original symbol is upper bounded by

1

N
(H(XS) + 2) =

1

N
(NH(X) + 2) = H(X) +

2

N

Therefore as long as a given rate R > H(X), we can always find a large
enough N such that the code rate using the “grouping trick” and SFE
code is below R. This concludes the forward proof

S. Cheng (OU-Tulsa) December 5, 2017 112 / 275

Lecture 8 Forward proof of Source Coding Theorem

Forward proof of Source Coding Theorem

In theory, we can group as many symbols as we want (we want do it in
practice, why?), say we group N symbols at a time and compress it using
SFE code. The code rate per original symbol is upper bounded by

1

N
(H(XS) + 2) =

1

N
(NH(X) + 2) = H(X) +

2

N

Therefore as long as a given rate R > H(X), we can always find a large
enough N such that the code rate using the “grouping trick” and SFE
code is below R. This concludes the forward proof

S. Cheng (OU-Tulsa) December 5, 2017 112 / 275

Lecture 8 Entropy: another peek

Entropy for discrete random variable

Von Neumman to Shannon

”You should call it entropy for two reasons: first because that is what the formula
is in statistical mechanics but second and more important, as nobody knows what
entropy is, whenever you use the term you will always be at an advantage!” -John
von Neumman

H(X) = −
∑
x∈X

p(x) log p(x) = E [− log p(X)]

From the expression, it suggests that there is log 1
p(x) bits of

information for the outcome x
This actually comes with no surprise! Consider a uniform random
variable with 4 outcomes, each outcome will have probalility
1/4 = 0.25 of happening it. And to represent each outcome, we need
log 4 = log 1

0.25 bits
A less likely event has “more” information and requires more bits to
store. H(X) is just the average number of bits required

S. Cheng (OU-Tulsa) December 5, 2017 113 / 275

Lecture 8 Entropy: another peek

Entropy for discrete random variable

Von Neumman to Shannon

”You should call it entropy for two reasons: first because that is what the formula
is in statistical mechanics but second and more important, as nobody knows what
entropy is, whenever you use the term you will always be at an advantage!” -John
von Neumman

H(X) = −
∑
x∈X

p(x) log p(x) = E [− log p(X)]

From the expression, it suggests that there is log 1
p(x) bits of

information for the outcome x

This actually comes with no surprise! Consider a uniform random
variable with 4 outcomes, each outcome will have probalility
1/4 = 0.25 of happening it. And to represent each outcome, we need
log 4 = log 1

0.25 bits
A less likely event has “more” information and requires more bits to
store. H(X) is just the average number of bits required

S. Cheng (OU-Tulsa) December 5, 2017 113 / 275

Lecture 8 Entropy: another peek

Entropy for discrete random variable

Von Neumman to Shannon

”You should call it entropy for two reasons: first because that is what the formula
is in statistical mechanics but second and more important, as nobody knows what
entropy is, whenever you use the term you will always be at an advantage!” -John
von Neumman

H(X) = −
∑
x∈X

p(x) log p(x) = E [− log p(X)]

From the expression, it suggests that there is log 1
p(x) bits of

information for the outcome x
This actually comes with no surprise! Consider a uniform random
variable with 4 outcomes, each outcome will have probalility
1/4 = 0.25 of happening it. And to represent each outcome, we need
log 4 = log 1

0.25 bits

A less likely event has “more” information and requires more bits to
store. H(X) is just the average number of bits required

S. Cheng (OU-Tulsa) December 5, 2017 113 / 275

Lecture 8 Entropy: another peek

Entropy for discrete random variable

Von Neumman to Shannon

”You should call it entropy for two reasons: first because that is what the formula
is in statistical mechanics but second and more important, as nobody knows what
entropy is, whenever you use the term you will always be at an advantage!” -John
von Neumman

H(X) = −
∑
x∈X

p(x) log p(x) = E [− log p(X)]

From the expression, it suggests that there is log 1
p(x) bits of

information for the outcome x
This actually comes with no surprise! Consider a uniform random
variable with 4 outcomes, each outcome will have probalility
1/4 = 0.25 of happening it. And to represent each outcome, we need
log 4 = log 1

0.25 bits
A less likely event has “more” information and requires more bits to
store. H(X) is just the average number of bits required
S. Cheng (OU-Tulsa) December 5, 2017 113 / 275

Lecture 8 Entropy: another peek

Biased coin with Pr(Head) = p

S. Cheng (OU-Tulsa) December 5, 2017 114 / 275

H(X) = −Pr(Head) logPr(Head)− Pr(Tail) logPr(Tail)

= −p log p − (1− p) log(1− p)

Entropy is largest (=1)
when p = 0.5

Entropy is 0 when p = 0
or p = 1

Entropy can be
interpreted as the average
uncertainty of the
outcome or the amount of
information “gained” after
the outcome is revealed

0 0.2 0.4 0.6 0.8 1

Pr(Head)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

E
nt

ro
py

Lecture 8 Entropy: another peek

Biased coin with Pr(Head) = p

S. Cheng (OU-Tulsa) December 5, 2017 114 / 275

H(X) = −Pr(Head) logPr(Head)− Pr(Tail) logPr(Tail)

= −p log p − (1− p) log(1− p)

Entropy is largest (=1)
when p = 0.5

Entropy is 0 when p = 0
or p = 1

Entropy can be
interpreted as the average
uncertainty of the
outcome or the amount of
information “gained” after
the outcome is revealed

0 0.2 0.4 0.6 0.8 1

Pr(Head)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

E
nt

ro
py

Lecture 8 Differential entropy

Differential entropy

H(X) = −
∑
x∈X

p(x) log p(x) = E [− log p(X)]

The definition makes little sense for a continuous X . Since the probability
of an outcome x is always 0, we may define instead the differential entropy
for X as

h(X) = −
∫
x∈X

p(x) log p(x)dx

= E [− log p(x)],

where p(x) is now the pdf rather than the pmf

S. Cheng (OU-Tulsa) December 5, 2017 115 / 275

Lecture 8 Differential entropy

Differential entropy

H(X) = −
∑
x∈X

p(x) log p(x) = E [− log p(X)]

The definition makes little sense for a continuous X . Since the probability
of an outcome x is always 0, we may define instead the differential entropy
for X as

h(X) = −
∫
x∈X

p(x) log p(x)dx = E [− log p(x)],

where p(x) is now the pdf rather than the pmf

S. Cheng (OU-Tulsa) December 5, 2017 115 / 275

Lecture 8 Differential entropy

Differential entropy of common distributions

Uniform Distribution

If p(X) =

{
1/a 0 ≤ x ≤ a

0 otherwise

h(X) = −
∫ a

x=0

1

a
log

1

a
dx = log a

Exponential distribution

For exponentially distributed T ∼ Exp(λ),
h(T) = E [− log p(T)]

= E [− log (λ exp(−λT))]

= E [λT − log λ]

= 1− log λ

S. Cheng (OU-Tulsa) December 5, 2017 116 / 275

Lecture 8 Differential entropy

Differential entropy of common distributions

Uniform Distribution

If p(X) =

{
1/a 0 ≤ x ≤ a

0 otherwise

h(X) = −
∫ a

x=0

1

a
log

1

a
dx = log a

Exponential distribution

For exponentially distributed T ∼ Exp(λ),
h(T) = E [− log p(T)] = E [− log (λ exp(−λT))]

= E [λT − log λ]

= 1− log λ

S. Cheng (OU-Tulsa) December 5, 2017 116 / 275

Lecture 8 Differential entropy

Differential entropy of common distributions

Uniform Distribution

If p(X) =

{
1/a 0 ≤ x ≤ a

0 otherwise

h(X) = −
∫ a

x=0

1

a
log

1

a
dx = log a

Exponential distribution

For exponentially distributed T ∼ Exp(λ),
h(T) = E [− log p(T)] = E [− log (λ exp(−λT))]

= E [λT − log λ]

= 1− log λ

S. Cheng (OU-Tulsa) December 5, 2017 116 / 275

Lecture 8 Differential entropy

Differential entropy of common distributions

Uniform Distribution

If p(X) =

{
1/a 0 ≤ x ≤ a

0 otherwise

h(X) = −
∫ a

x=0

1

a
log

1

a
dx = log a

Exponential distribution

For exponentially distributed T ∼ Exp(λ),
h(T) = E [− log p(T)] = E [− log (λ exp(−λT))]

= E [λT − log λ]

= 1− log λ

S. Cheng (OU-Tulsa) December 5, 2017 116 / 275

Lecture 8 Differential entropy

Differential entropy of common distributions

Univariate Normal distribution

For univariate normally distributed X ∼ N (µ, σ2),

h(X) = E [− log p(X)]

= E

[
− log

(
1√
2πσ2

exp
−(X − µ)2

2σ2

)]
= E

[
log
√
2πσ2 +

(X − µ)2

2σ2
log e

]
= log

√
2πσ2 +

1

2
log e

= log
√
2πeσ2

N.B. h(X) only depends on σ2 and is independent of µ as one would
expect

S. Cheng (OU-Tulsa) December 5, 2017 117 / 275

Lecture 8 Differential entropy

Differential entropy of common distributions

Univariate Normal distribution

For univariate normally distributed X ∼ N (µ, σ2),

h(X) = E [− log p(X)] = E

[
− log

(
1√
2πσ2

exp
−(X − µ)2

2σ2

)]

= E

[
log
√
2πσ2 +

(X − µ)2

2σ2
log e

]
= log

√
2πσ2 +

1

2
log e

= log
√
2πeσ2

N.B. h(X) only depends on σ2 and is independent of µ as one would
expect

S. Cheng (OU-Tulsa) December 5, 2017 117 / 275

Lecture 8 Differential entropy

Differential entropy of common distributions

Univariate Normal distribution

For univariate normally distributed X ∼ N (µ, σ2),

h(X) = E [− log p(X)] = E

[
− log

(
1√
2πσ2

exp
−(X − µ)2

2σ2

)]
= E

[
log
√
2πσ2 +

(X − µ)2

2σ2
log e

]

= log
√
2πσ2 +

1

2
log e

= log
√
2πeσ2

N.B. h(X) only depends on σ2 and is independent of µ as one would
expect

S. Cheng (OU-Tulsa) December 5, 2017 117 / 275

Lecture 8 Differential entropy

Differential entropy of common distributions

Univariate Normal distribution

For univariate normally distributed X ∼ N (µ, σ2),

h(X) = E [− log p(X)] = E

[
− log

(
1√
2πσ2

exp
−(X − µ)2

2σ2

)]
= E

[
log
√
2πσ2 +

(X − µ)2

2σ2
log e

]
= log

√
2πσ2 +

1

2
log e

= log
√
2πeσ2

N.B. h(X) only depends on σ2 and is independent of µ as one would
expect

S. Cheng (OU-Tulsa) December 5, 2017 117 / 275

Lecture 8 Differential entropy

Multivariate Normal distribution

For N-dim multivariate normal distributed X ∼ N (µ,Σ),

h(X) = E [− log p(X)]

= −E

[
log

(
1√

det (2πΣ)
exp

(
−1

2
(X − µ)TΣ−1(X − µ)

))]

= log
√

det (2πΣ) +
log e

2
E

∑
i ,j

(Xi − µi)
[
Σ−1

]
i ,j
(Xj − µj)


= log

√
det (2πΣ) +

log e

2

∑
i ,j

[
Σ−1

]
i ,j
E [(Xj − µj)(Xi − µi)]

= log
√

det (2πΣ) +
log e

2

∑
i ,j

[
Σ−1

]
i ,j
Σj ,i

= log
√

det (2πΣ) +
N log e

2
= log

√
eN det (2πΣ) = log

√
det (2πeΣ)

S. Cheng (OU-Tulsa) December 5, 2017 118 / 275

Lecture 8 Differential entropy

Multivariate Normal distribution

For N-dim multivariate normal distributed X ∼ N (µ,Σ),

h(X) = E [− log p(X)]

= −E

[
log

(
1√

det (2πΣ)
exp

(
−1

2
(X − µ)TΣ−1(X − µ)

))]

= log
√
det (2πΣ) +

log e

2
E

∑
i ,j

(Xi − µi)
[
Σ−1

]
i ,j
(Xj − µj)



= log
√

det (2πΣ) +
log e

2

∑
i ,j

[
Σ−1

]
i ,j
E [(Xj − µj)(Xi − µi)]

= log
√

det (2πΣ) +
log e

2

∑
i ,j

[
Σ−1

]
i ,j
Σj ,i

= log
√

det (2πΣ) +
N log e

2
= log

√
eN det (2πΣ) = log

√
det (2πeΣ)

S. Cheng (OU-Tulsa) December 5, 2017 118 / 275

Lecture 8 Differential entropy

Multivariate Normal distribution

For N-dim multivariate normal distributed X ∼ N (µ,Σ),

h(X) = E [− log p(X)]

= −E

[
log

(
1√

det (2πΣ)
exp

(
−1

2
(X − µ)TΣ−1(X − µ)

))]

= log
√
det (2πΣ) +

log e

2
E

∑
i ,j

(Xi − µi)
[
Σ−1

]
i ,j
(Xj − µj)


= log

√
det (2πΣ) +

log e

2

∑
i ,j

[
Σ−1

]
i ,j
E [(Xj − µj)(Xi − µi)]

= log
√

det (2πΣ) +
log e

2

∑
i ,j

[
Σ−1

]
i ,j
Σj ,i

= log
√

det (2πΣ) +
N log e

2
= log

√
eN det (2πΣ) = log

√
det (2πeΣ)

S. Cheng (OU-Tulsa) December 5, 2017 118 / 275

Lecture 8 Differential entropy

Multivariate Normal distribution

For N-dim multivariate normal distributed X ∼ N (µ,Σ),

h(X) = E [− log p(X)]

= −E

[
log

(
1√

det (2πΣ)
exp

(
−1

2
(X − µ)TΣ−1(X − µ)

))]

= log
√
det (2πΣ) +

log e

2
E

∑
i ,j

(Xi − µi)
[
Σ−1

]
i ,j
(Xj − µj)


= log

√
det (2πΣ) +

log e

2

∑
i ,j

[
Σ−1

]
i ,j
E [(Xj − µj)(Xi − µi)]

= log
√
det (2πΣ) +

log e

2

∑
i ,j

[
Σ−1

]
i ,j
Σj ,i

= log
√

det (2πΣ) +
N log e

2
= log

√
eN det (2πΣ) = log

√
det (2πeΣ)

S. Cheng (OU-Tulsa) December 5, 2017 118 / 275

Lecture 8 Differential entropy

Multivariate Normal distribution

For N-dim multivariate normal distributed X ∼ N (µ,Σ),

h(X) = E [− log p(X)]

= −E

[
log

(
1√

det (2πΣ)
exp

(
−1

2
(X − µ)TΣ−1(X − µ)

))]

= log
√
det (2πΣ) +

log e

2
E

∑
i ,j

(Xi − µi)
[
Σ−1

]
i ,j
(Xj − µj)


= log

√
det (2πΣ) +

log e

2

∑
i ,j

[
Σ−1

]
i ,j
E [(Xj − µj)(Xi − µi)]

= log
√
det (2πΣ) +

log e

2

∑
i ,j

[
Σ−1

]
i ,j
Σj ,i

= log
√
det (2πΣ) +

N log e

2
= log

√
eN det (2πΣ)

= log
√
det (2πeΣ)

S. Cheng (OU-Tulsa) December 5, 2017 118 / 275

Lecture 8 Differential entropy

Multivariate Normal distribution

For N-dim multivariate normal distributed X ∼ N (µ,Σ),

h(X) = E [− log p(X)]

= −E

[
log

(
1√

det (2πΣ)
exp

(
−1

2
(X − µ)TΣ−1(X − µ)

))]

= log
√
det (2πΣ) +

log e

2
E

∑
i ,j

(Xi − µi)
[
Σ−1

]
i ,j
(Xj − µj)


= log

√
det (2πΣ) +

log e

2

∑
i ,j

[
Σ−1

]
i ,j
E [(Xj − µj)(Xi − µi)]

= log
√
det (2πΣ) +

log e

2

∑
i ,j

[
Σ−1

]
i ,j
Σj ,i

= log
√
det (2πΣ) +

N log e

2
= log

√
eN det (2πΣ) = log

√
det (2πeΣ)

S. Cheng (OU-Tulsa) December 5, 2017 118 / 275

Lecture 8 Differential entropy

Differential entropy and entropy

How differential entropy is related to its discrete counterpart?

Consider a continuous random variable X

Let X∆ is a “quantized” version of it with quantization stepsize of ∆

H(X∆) =
∑
−pX∆(x∆) log pX∆(x∆)

≈
∑
−pX (x∆)∆ log(pX (x

∆)∆)

≈
∫
−pX (x) log(pX (x)∆)dx

=

∫
−pX (x) log pX (x)−

∫
pX (x) log∆dx

= h(X)− log∆

S. Cheng (OU-Tulsa) December 5, 2017 119 / 275

Lecture 8 Differential entropy

Differential entropy and entropy

How differential entropy is related to its discrete counterpart?

Consider a continuous random variable X

Let X∆ is a “quantized” version of it with quantization stepsize of ∆

H(X∆) =
∑
−pX∆(x∆) log pX∆(x∆) ≈

∑
−pX (x∆)∆ log(pX (x

∆)∆)

≈
∫
−pX (x) log(pX (x)∆)dx

=

∫
−pX (x) log pX (x)−

∫
pX (x) log∆dx

= h(X)− log∆

S. Cheng (OU-Tulsa) December 5, 2017 119 / 275

Lecture 8 Differential entropy

Differential entropy and entropy

How differential entropy is related to its discrete counterpart?

Consider a continuous random variable X

Let X∆ is a “quantized” version of it with quantization stepsize of ∆

H(X∆) =
∑
−pX∆(x∆) log pX∆(x∆) ≈

∑
−pX (x∆)∆ log(pX (x

∆)∆)

≈
∫
−pX (x) log(pX (x)∆)dx

=

∫
−pX (x) log pX (x)−

∫
pX (x) log∆dx

= h(X)− log∆

S. Cheng (OU-Tulsa) December 5, 2017 119 / 275

Lecture 8 Differential entropy

Differential entropy and entropy

How differential entropy is related to its discrete counterpart?

Consider a continuous random variable X

Let X∆ is a “quantized” version of it with quantization stepsize of ∆

H(X∆) =
∑
−pX∆(x∆) log pX∆(x∆) ≈

∑
−pX (x∆)∆ log(pX (x

∆)∆)

≈
∫
−pX (x) log(pX (x)∆)dx

=

∫
−pX (x) log pX (x)−

∫
pX (x) log∆dx

= h(X)− log∆

S. Cheng (OU-Tulsa) December 5, 2017 119 / 275

Lecture 8 Differential entropy

Example

Consider the processing time of a packet follow an exponential distribution
with an average of 1 ms. If we want to store the time with the precision of
0.01 ms, about how many bits are needed to store the result?

Answer

The processing time T follows an exponential distribution with
parameter λ = 1/1 = 1ms−1

The corresponding differential entropy h(T) = 1− log(λ) = 1

If we want to store with precision of 0.01 ms, we need
h(T)− log 0.01 ≈ 7.64bits

S. Cheng (OU-Tulsa) December 5, 2017 120 / 275

Lecture 8 Differential entropy

Example

Consider the processing time of a packet follow an exponential distribution
with an average of 1 ms. If we want to store the time with the precision of
0.01 ms, about how many bits are needed to store the result?

Answer

The processing time T follows an exponential distribution with
parameter λ = 1/1 = 1ms−1

The corresponding differential entropy h(T) = 1− log(λ) = 1

If we want to store with precision of 0.01 ms, we need
h(T)− log 0.01 ≈ 7.64bits

S. Cheng (OU-Tulsa) December 5, 2017 120 / 275

Lecture 8 Differential entropy

Example

Consider the processing time of a packet follow an exponential distribution
with an average of 1 ms. If we want to store the time with the precision of
0.01 ms, about how many bits are needed to store the result?

Answer

The processing time T follows an exponential distribution with
parameter λ = 1/1 = 1ms−1

The corresponding differential entropy h(T) = 1− log(λ) = 1

If we want to store with precision of 0.01 ms, we need
h(T)− log 0.01 ≈ 7.64bits

S. Cheng (OU-Tulsa) December 5, 2017 120 / 275

Lecture 8 Differential entropy

Example

Consider the processing time of a packet follow an exponential distribution
with an average of 1 ms. If we want to store the time with the precision of
0.01 ms, about how many bits are needed to store the result?

Answer

The processing time T follows an exponential distribution with
parameter λ = 1/1 = 1ms−1

The corresponding differential entropy h(T) = 1− log(λ) = 1

If we want to store with precision of 0.01 ms, we need
h(T)− log 0.01 ≈ 7.64bits

S. Cheng (OU-Tulsa) December 5, 2017 120 / 275

Lecture 8 Properties of entropy and differential entropy

Lower bound of entropy

H(X) ≥ 0

Since p(X) ≤ 1, − log p(X) ≥ 0, therefore
H(X) = E [− log p(X)] ≥ 0

After all, H(X) represents the required bits to compress the source X

Caveat

It does NOT need to be true for differential entropy. It is possible that
h(X) < 0

For example, for a uniformly distributed X from 0 to 0.5,
h(X) = log 0.5 = −1

S. Cheng (OU-Tulsa) December 5, 2017 121 / 275

Lecture 8 Properties of entropy and differential entropy

Lower bound of entropy

H(X) ≥ 0

Since p(X) ≤ 1, − log p(X) ≥ 0, therefore
H(X) = E [− log p(X)] ≥ 0

After all, H(X) represents the required bits to compress the source X

Caveat

It does NOT need to be true for differential entropy. It is possible that
h(X) < 0

For example, for a uniformly distributed X from 0 to 0.5,
h(X) = log 0.5 = −1

S. Cheng (OU-Tulsa) December 5, 2017 121 / 275

Lecture 8 Properties of entropy and differential entropy

Jensen’s Inequality

For a convex (bowl-shape) function f

E [f (X)] ≥ f (E [X])

Let us consider X with only two outcomes x1 and x2 with probabilities p
and 1− p. Easy to see that

E [f (X)] = pf (x1) + (1− p)f (x2) ≥ f (px1 + (1− p)x2) = f (E [X])

Result can be extended to variables with more than two outcomes easily

S. Cheng (OU-Tulsa) December 5, 2017 122 / 275

Lecture 8 Properties of entropy and differential entropy

Jensen’s Inequality

For a convex (bowl-shape) function f

E [f (X)] ≥ f (E [X])

Let us consider X with only two outcomes x1 and x2 with probabilities p
and 1− p. Easy to see that

E [f (X)] = pf (x1) + (1− p)f (x2) ≥ f (px1 + (1− p)x2) = f (E [X])

Result can be extended to variables with more than two outcomes easily

S. Cheng (OU-Tulsa) December 5, 2017 122 / 275

Lecture 8 Properties of entropy and differential entropy

Jensen’s Inequality

For a convex (bowl-shape) function f

E [f (X)] ≥ f (E [X])

Let us consider X with only two outcomes x1 and x2 with probabilities p
and 1− p. Easy to see that

E [f (X)] = pf (x1) + (1− p)f (x2) ≥ f (px1 + (1− p)x2) = f (E [X])

Result can be extended to variables with more than two outcomes easily

S. Cheng (OU-Tulsa) December 5, 2017 122 / 275

Lecture 8 Properties of entropy and differential entropy

Upper bound of entropy

H(X) ≤ log |X |

H(X) = E [− log p(X)] = E

[
log

1

p(X)

]

≤ log E

[
1

p(X)

]
(by Jensen’s inequality)

= log
∑
x∈X

p(x)
1

p(x)
= log |X |

N.B. The upper bound is attained when the distribution is uniform

Examples

You should know this bound long alone. Think of the maximum number of
bits needed:

to store the outcome of flipping a coin: log 2 = 1 bit

to store the outcome of throwing a dice: log 6 ≤ 3 bits

S. Cheng (OU-Tulsa) December 5, 2017 123 / 275

Lecture 8 Properties of entropy and differential entropy

Upper bound of entropy

H(X) ≤ log |X |

H(X) = E [− log p(X)] = E

[
log

1

p(X)

]
≤ log E

[
1

p(X)

]
(by Jensen’s inequality)

= log
∑
x∈X

p(x)
1

p(x)
= log |X |

N.B. The upper bound is attained when the distribution is uniform

Examples

You should know this bound long alone. Think of the maximum number of
bits needed:

to store the outcome of flipping a coin: log 2 = 1 bit

to store the outcome of throwing a dice: log 6 ≤ 3 bits

S. Cheng (OU-Tulsa) December 5, 2017 123 / 275

Lecture 8 Properties of entropy and differential entropy

Upper bound of entropy

H(X) ≤ log |X |

H(X) = E [− log p(X)] = E

[
log

1

p(X)

]
≤ log E

[
1

p(X)

]
(by Jensen’s inequality)

= log
∑
x∈X

p(x)
1

p(x)
= log |X |

N.B. The upper bound is attained when the distribution is uniform

Examples

You should know this bound long alone. Think of the maximum number of
bits needed:

to store the outcome of flipping a coin: log 2 = 1 bit

to store the outcome of throwing a dice: log 6 ≤ 3 bits

S. Cheng (OU-Tulsa) December 5, 2017 123 / 275

Lecture 8 Properties of entropy and differential entropy

Upper bound of entropy

H(X) ≤ log |X |

H(X) = E [− log p(X)] = E

[
log

1

p(X)

]
≤ log E

[
1

p(X)

]
(by Jensen’s inequality)

= log
∑
x∈X

p(x)
1

p(x)
= log |X |

N.B. The upper bound is attained when the distribution is uniform

Examples

You should know this bound long alone. Think of the maximum number of
bits needed:

to store the outcome of flipping a coin: log 2 = 1 bit

to store the outcome of throwing a dice: log 6 ≤ 3 bits
S. Cheng (OU-Tulsa) December 5, 2017 123 / 275

Lecture 9

Review

Source coding theorem: For an independent and identically
distributed (i.i.d.) discrete memoryless source (DMS) X , we can
always compress it with no less than H(X) bits per input symbol,
where H(X) = −

∑
x∈X p(x) log p(x) = E [− log p(X)]

Jensen’s inequality: For a convex (bowl-shape) function f
E [f (X)] ≥ f (E [X]). Similarly E [g(X)] ≤ g(E [X]) for a concave g

For continuous random variable X , the differential entropy is given by
h(X) = −

∫
x∈X p(x) log p(x)dx= E [− log p(x)]

For a quantized version of continuous X , H(X∆) = h(X)− log∆

For multivariate normal X ∼ N (µ,Σ),

h(X) = log
√

det (2πeΣ)

S. Cheng (OU-Tulsa) December 5, 2017 124 / 275

Lecture 9

Review

Source coding theorem: For an independent and identically
distributed (i.i.d.) discrete memoryless source (DMS) X , we can
always compress it with no less than H(X) bits per input symbol,
where H(X) = −

∑
x∈X p(x) log p(x) = E [− log p(X)]

Jensen’s inequality: For a convex (bowl-shape) function f
E [f (X)] ≥ f (E [X]). Similarly E [g(X)] ≤ g(E [X]) for a concave g

For continuous random variable X , the differential entropy is given by
h(X) = −

∫
x∈X p(x) log p(x)dx= E [− log p(x)]

For a quantized version of continuous X , H(X∆) = h(X)− log∆

For multivariate normal X ∼ N (µ,Σ),

h(X) = log
√

det (2πeΣ)

S. Cheng (OU-Tulsa) December 5, 2017 124 / 275

Lecture 9

Review

Source coding theorem: For an independent and identically
distributed (i.i.d.) discrete memoryless source (DMS) X , we can
always compress it with no less than H(X) bits per input symbol,
where H(X) = −

∑
x∈X p(x) log p(x) = E [− log p(X)]

Jensen’s inequality: For a convex (bowl-shape) function f
E [f (X)] ≥ f (E [X]). Similarly E [g(X)] ≤ g(E [X]) for a concave g

For continuous random variable X , the differential entropy is given by
h(X) = −

∫
x∈X p(x) log p(x)dx= E [− log p(x)]

For a quantized version of continuous X , H(X∆) = h(X)− log∆

For multivariate normal X ∼ N (µ,Σ),

h(X) = log
√

det (2πeΣ)

S. Cheng (OU-Tulsa) December 5, 2017 124 / 275

Lecture 9

Review

Source coding theorem: For an independent and identically
distributed (i.i.d.) discrete memoryless source (DMS) X , we can
always compress it with no less than H(X) bits per input symbol,
where H(X) = −

∑
x∈X p(x) log p(x) = E [− log p(X)]

Jensen’s inequality: For a convex (bowl-shape) function f
E [f (X)] ≥ f (E [X]). Similarly E [g(X)] ≤ g(E [X]) for a concave g

For continuous random variable X , the differential entropy is given by
h(X) = −

∫
x∈X p(x) log p(x)dx= E [− log p(x)]

For a quantized version of continuous X , H(X∆) = h(X)− log∆

For multivariate normal X ∼ N (µ,Σ),

h(X) = log
√

det (2πeΣ)

S. Cheng (OU-Tulsa) December 5, 2017 124 / 275

Lecture 9

Review

Source coding theorem: For an independent and identically
distributed (i.i.d.) discrete memoryless source (DMS) X , we can
always compress it with no less than H(X) bits per input symbol,
where H(X) = −

∑
x∈X p(x) log p(x) = E [− log p(X)]

Jensen’s inequality: For a convex (bowl-shape) function f
E [f (X)] ≥ f (E [X]). Similarly E [g(X)] ≤ g(E [X]) for a concave g

For continuous random variable X , the differential entropy is given by
h(X) = −

∫
x∈X p(x) log p(x)dx= E [− log p(x)]

For a quantized version of continuous X , H(X∆) = h(X)− log∆

For multivariate normal X ∼ N (µ,Σ),

h(X) = log
√
det (2πeΣ)

S. Cheng (OU-Tulsa) December 5, 2017 124 / 275

Lecture 9

Upper bound of differential entropy

h(X) ≤ log E

[
1

p(X)

]
= log

∫
x∈X

p(x)
1

p(x)
dx = log |X |

The expression still makes sense but it is not useful usually since the
sampling space can be unbounded |X | =∞ (for example, normally
distributed X)

Thus it makes much more sense to consider upper bound of a
differential entropy constrained on the variance of the variable (why
not constrained on mean?)

It turns out that for a fixed variance σ2, the variable will have largest
differential entropy if it is normally distributed (will show later). Thus

h(X) ≤ log
√
2πeσ2

S. Cheng (OU-Tulsa) December 5, 2017 125 / 275

Lecture 9

Upper bound of differential entropy

h(X) ≤ log E

[
1

p(X)

]
= log

∫
x∈X

p(x)
1

p(x)
dx = log |X |

The expression still makes sense but it is not useful usually since the
sampling space can be unbounded |X | =∞ (for example, normally
distributed X)

Thus it makes much more sense to consider upper bound of a
differential entropy constrained on the variance of the variable (why
not constrained on mean?)

It turns out that for a fixed variance σ2, the variable will have largest
differential entropy if it is normally distributed (will show later). Thus

h(X) ≤ log
√
2πeσ2

S. Cheng (OU-Tulsa) December 5, 2017 125 / 275

Lecture 9

Upper bound of differential entropy

h(X) ≤ log E

[
1

p(X)

]
= log

∫
x∈X

p(x)
1

p(x)
dx = log |X |

The expression still makes sense but it is not useful usually since the
sampling space can be unbounded |X | =∞ (for example, normally
distributed X)

Thus it makes much more sense to consider upper bound of a
differential entropy constrained on the variance of the variable (why
not constrained on mean?)

It turns out that for a fixed variance σ2, the variable will have largest
differential entropy if it is normally distributed (will show later). Thus

h(X) ≤ log
√
2πeσ2

S. Cheng (OU-Tulsa) December 5, 2017 125 / 275

Lecture 9 Joint entropy and conditional entropy

Joint entropy

For multivariate random variable, we can extend the definition of entropy
naturally as follows:

Entropy

H(X ,Y) = E [− log p(X ,Y)]

and
H(X1,X2, · · · ,XN) = E [− log p(X1, · · · ,XN)]

Differential entropy

h(X ,Y) = E [− log p(X ,Y)]

and
h(X1,X2, · · · ,XN) = E [− log p(X1, · · · ,XN)]

S. Cheng (OU-Tulsa) December 5, 2017 126 / 275

Lecture 9 Joint entropy and conditional entropy

Joint entropy

For multivariate random variable, we can extend the definition of entropy
naturally as follows:

Entropy

H(X ,Y) = E [− log p(X ,Y)]

and
H(X1,X2, · · · ,XN) = E [− log p(X1, · · · ,XN)]

Differential entropy

h(X ,Y) = E [− log p(X ,Y)]

and
h(X1,X2, · · · ,XN) = E [− log p(X1, · · · ,XN)]

S. Cheng (OU-Tulsa) December 5, 2017 126 / 275

Lecture 9 Joint entropy and conditional entropy

Conditional entropy

H(X ,Y) = E [− log p(X ,Y)] = E [− log p(X)− log p(Y |X)]

= H(X) + E [− log p(Y |X)]︸ ︷︷ ︸
H(Y |X)

Entropy

H(Y |X) , H(X ,Y)− H(X)

Differential entropy

h(Y |X) , h(X ,Y)− h(X)

Interpretation

Total Info. of X and Y = Info. of X + Info. of Y knowing X

S. Cheng (OU-Tulsa) December 5, 2017 127 / 275

Lecture 9 Joint entropy and conditional entropy

Conditional entropy

H(X ,Y) = E [− log p(X ,Y)] = E [− log p(X)− log p(Y |X)]

= H(X) + E [− log p(Y |X)]︸ ︷︷ ︸
H(Y |X)

Entropy

H(Y |X) , H(X ,Y)− H(X)

Differential entropy

h(Y |X) , h(X ,Y)− h(X)

Interpretation

Total Info. of X and Y = Info. of X + Info. of Y knowing X

S. Cheng (OU-Tulsa) December 5, 2017 127 / 275

Lecture 9 Joint entropy and conditional entropy

Conditional entropy

H(X ,Y) = E [− log p(X ,Y)] = E [− log p(X)− log p(Y |X)]

= H(X) + E [− log p(Y |X)]︸ ︷︷ ︸
H(Y |X)

Entropy

H(Y |X) , H(X ,Y)− H(X)

Differential entropy

h(Y |X) , h(X ,Y)− h(X)

Interpretation

Total Info. of X and Y = Info. of X + Info. of Y knowing X

S. Cheng (OU-Tulsa) December 5, 2017 127 / 275

Lecture 9 Joint entropy and conditional entropy

Expanding conditional entropy

H(Y |X) = E [− log p(Y |X)]

=
∑
x ,y

−p(x , y) log p(y |x)

=
∑
x

p(x)
∑
y

−p(y |x) log p(y |x)

=
∑
x

p(x)H(Y |x)

The conditional entropy H(Y |X) is essentially the average of H(Y |x) over
all possible value of x

S. Cheng (OU-Tulsa) December 5, 2017 128 / 275

Lecture 9 Joint entropy and conditional entropy

Expanding conditional entropy

H(Y |X) = E [− log p(Y |X)]

=
∑
x ,y

−p(x , y) log p(y |x)

=
∑
x

p(x)
∑
y

−p(y |x) log p(y |x)

=
∑
x

p(x)H(Y |x)

The conditional entropy H(Y |X) is essentially the average of H(Y |x) over
all possible value of x

S. Cheng (OU-Tulsa) December 5, 2017 128 / 275

Lecture 9 Joint entropy and conditional entropy

Expanding conditional entropy

H(Y |X) = E [− log p(Y |X)]

=
∑
x ,y

−p(x , y) log p(y |x)

=
∑
x

p(x)
∑
y

−p(y |x) log p(y |x)

=
∑
x

p(x)H(Y |x)

The conditional entropy H(Y |X) is essentially the average of H(Y |x) over
all possible value of x

S. Cheng (OU-Tulsa) December 5, 2017 128 / 275

Lecture 9 Joint entropy and conditional entropy

Expanding conditional entropy

H(Y |X) = E [− log p(Y |X)]

=
∑
x ,y

−p(x , y) log p(y |x)

=
∑
x

p(x)
∑
y

−p(y |x) log p(y |x)

=
∑
x

p(x)H(Y |x)

The conditional entropy H(Y |X) is essentially the average of H(Y |x) over
all possible value of x

S. Cheng (OU-Tulsa) December 5, 2017 128 / 275

Lecture 9 Joint entropy and conditional entropy

Expanding conditional entropy

H(Y |X) = E [− log p(Y |X)]

=
∑
x ,y

−p(x , y) log p(y |x)

=
∑
x

p(x)
∑
y

−p(y |x) log p(y |x)

=
∑
x

p(x)H(Y |x)

The conditional entropy H(Y |X) is essentially the average of H(Y |x) over
all possible value of x

S. Cheng (OU-Tulsa) December 5, 2017 128 / 275

Lecture 9 Joint entropy and conditional entropy

Chain rule

Entropy

H(X1,X2, · · · ,XN) =H(X1) + H(X2|X1) + H(X3|X1,X2) + · · ·
+ H(XN |X1,X2, · · · ,XN−1).

Differential entropy

h(X1,X2, · · · ,XN) =h(X1) + h(X2|X1) + h(X3|X1,X2) + · · ·
+ h(XN |X1,X2, · · · ,XN−1).

S. Cheng (OU-Tulsa) December 5, 2017 129 / 275

Lecture 9 Joint entropy and conditional entropy

Chain rule

Entropy

H(X1,X2, · · · ,XN) =H(X1) + H(X2|X1) + H(X3|X1,X2) + · · ·
+ H(XN |X1,X2, · · · ,XN−1).

Differential entropy

h(X1,X2, · · · ,XN) =h(X1) + h(X2|X1) + h(X3|X1,X2) + · · ·
+ h(XN |X1,X2, · · · ,XN−1).

S. Cheng (OU-Tulsa) December 5, 2017 129 / 275

Lecture 9 Joint entropy and conditional entropy

Example

Pr(Rain,With umbrella) = 0.2 Pr(Rain,No umbrella) = 0.1

Pr(Sunny ,With umbrella) = 0.2 Pr(Sunny ,No umbrella) = 0.5

W ∈ {Rain, Sunny} U ∈ {With umbrella,No umbrella}

Entropies

H(W ,U) = −0.2 log 0.2− 0.1 log 0.1− 0.2 log 0.2− 0.5 log 0.5 = 1.76 bits

H(W) = −0.3 log 0.3− 0.7 log 0.7 = 0.88 bits

H(U) = −0.4 log 0.4− 0.6 log 0.6 = 0.97 bits

H(W |U) = H(W ,U)− H(U) = 0.79 bits

H(U|W) = H(W ,U)− H(W) = 0.88 bits

S. Cheng (OU-Tulsa) December 5, 2017 130 / 275

Lecture 9 KL-divergence

Definition

It is often useful to gauge the difference between two distributions.
KL-divergence is also known to be relative entropy. It is a way to measure
the difference between two distributions. For two distributions of X , p(x)
and p(y),

KL(p(x)‖q(x)) ,
∑
x∈X

p(x) log2
p(x)

q(x)
.

N.B. If p(x) = q(x) for all x , KL(p(x)‖q(x)) = 0 as desired

N.B. KL(p(x)‖q(x)) 6= KL(q(x)‖p(x)) in general

S. Cheng (OU-Tulsa) December 5, 2017 131 / 275

Lecture 9 KL-divergence

Definition

It is often useful to gauge the difference between two distributions.
KL-divergence is also known to be relative entropy. It is a way to measure
the difference between two distributions. For two distributions of X , p(x)
and p(y),

KL(p(x)‖q(x)) ,
∑
x∈X

p(x) log2
p(x)

q(x)
.

N.B. If p(x) = q(x) for all x , KL(p(x)‖q(x)) = 0 as desired

N.B. KL(p(x)‖q(x)) 6= KL(q(x)‖p(x)) in general

S. Cheng (OU-Tulsa) December 5, 2017 131 / 275

Lecture 9 KL-divergence

Definition

It is often useful to gauge the difference between two distributions.
KL-divergence is also known to be relative entropy. It is a way to measure
the difference between two distributions. For two distributions of X , p(x)
and p(y),

KL(p(x)‖q(x)) ,
∑
x∈X

p(x) log2
p(x)

q(x)
.

N.B. If p(x) = q(x) for all x , KL(p(x)‖q(x)) = 0 as desired

N.B. KL(p(x)‖q(x)) 6= KL(q(x)‖p(x)) in general

S. Cheng (OU-Tulsa) December 5, 2017 131 / 275

Lecture 9 KL-divergence

KL-divergence is non-negative

KL(p(x)‖q(x)) =
∑
x∈X

p(x) log2
p(x)

q(x)

= −
∑
x∈X

p(x) log2
q(x)

p(x)

= −
∑
x∈X

p(x)

ln 2
ln

q(x)

p(x)

≥ −
∑
x∈X

p(x)

ln 2

(
q(x)

p(x)
− 1

)

=
1

ln 2

(∑
x∈X

p(x)−
∑
x∈X

q(x)

)
= 0

Fact

For any real x , ln(x) ≤ x − 1. Moreover, the equality only holds when
x = 1

S. Cheng (OU-Tulsa) December 5, 2017 132 / 275

0 0.5 1 1.5 2
-2

-1

0

1

y = lnx
y = x! 1

Lecture 9 KL-divergence

KL-divergence is non-negative

KL(p(x)‖q(x)) =
∑
x∈X

p(x) log2
p(x)

q(x)

= −
∑
x∈X

p(x) log2
q(x)

p(x)

= −
∑
x∈X

p(x)

ln 2
ln

q(x)

p(x)

≥ −
∑
x∈X

p(x)

ln 2

(
q(x)

p(x)
− 1

)

=
1

ln 2

(∑
x∈X

p(x)−
∑
x∈X

q(x)

)
= 0

Fact

For any real x , ln(x) ≤ x − 1. Moreover, the equality only holds when
x = 1

S. Cheng (OU-Tulsa) December 5, 2017 132 / 275

0 0.5 1 1.5 2
-2

-1

0

1

y = lnx
y = x! 1

Lecture 9 KL-divergence

KL-divergence is non-negative

KL(p(x)‖q(x)) =
∑
x∈X

p(x) log2
p(x)

q(x)

= −
∑
x∈X

p(x) log2
q(x)

p(x)

= −
∑
x∈X

p(x)

ln 2
ln

q(x)

p(x)

≥ −
∑
x∈X

p(x)

ln 2

(
q(x)

p(x)
− 1

)

=
1

ln 2

(∑
x∈X

p(x)−
∑
x∈X

q(x)

)
= 0

Fact

For any real x , ln(x) ≤ x − 1. Moreover, the equality only holds when
x = 1

S. Cheng (OU-Tulsa) December 5, 2017 132 / 275

0 0.5 1 1.5 2
-2

-1

0

1

y = lnx
y = x! 1

Lecture 9 KL-divergence

KL-divergence is non-negative

KL(p(x)‖q(x)) =
∑
x∈X

p(x) log2
p(x)

q(x)

= −
∑
x∈X

p(x) log2
q(x)

p(x)

= −
∑
x∈X

p(x)

ln 2
ln

q(x)

p(x)

≥ −
∑
x∈X

p(x)

ln 2

(
q(x)

p(x)
− 1

)

=
1

ln 2

(∑
x∈X

p(x)−
∑
x∈X

q(x)

)
= 0

Fact

For any real x , ln(x) ≤ x − 1. Moreover, the equality only holds when
x = 1

S. Cheng (OU-Tulsa) December 5, 2017 132 / 275

0 0.5 1 1.5 2
-2

-1

0

1

y = lnx
y = x! 1

Lecture 9 KL-divergence

KL-divergence is non-negative

KL(p(x)‖q(x)) =
∑
x∈X

p(x) log2
p(x)

q(x)

= −
∑
x∈X

p(x) log2
q(x)

p(x)

= −
∑
x∈X

p(x)

ln 2
ln

q(x)

p(x)

≥ −
∑
x∈X

p(x)

ln 2

(
q(x)

p(x)
− 1

)

=
1

ln 2

(∑
x∈X

p(x)−
∑
x∈X

q(x)

)
= 0

Fact

For any real x , ln(x) ≤ x − 1. Moreover, the equality only holds when
x = 1

S. Cheng (OU-Tulsa) December 5, 2017 132 / 275

0 0.5 1 1.5 2
-2

-1

0

1

y = lnx
y = x! 1

Lecture 9 KL-divergence

Continuous variables

We can define KL-divergence for continuous variables in a similar manner

KL(p(x)‖q(x)) ,
∫
x∈X

p(x) log2
p(x)

q(x)
dx

= −
∫
x∈X

p(x) log2
q(x)

p(x)
dx

= −
∫
x∈X

p(x)

ln 2
ln

q(x)

p(x)
dx

≥ −
∫
x∈X

p(x)

ln 2

(
q(x)

p(x)
− 1

)
dx

= − 1

ln 2

(∫
x∈X

q(x)dx −
∫
x∈X

p(x)dx

)
= 0

S. Cheng (OU-Tulsa) December 5, 2017 133 / 275

Lecture 9 KL-divergence

Continuous variables

We can define KL-divergence for continuous variables in a similar manner

KL(p(x)‖q(x)) ,
∫
x∈X

p(x) log2
p(x)

q(x)
dx

= −
∫
x∈X

p(x) log2
q(x)

p(x)
dx

= −
∫
x∈X

p(x)

ln 2
ln

q(x)

p(x)
dx

≥ −
∫
x∈X

p(x)

ln 2

(
q(x)

p(x)
− 1

)
dx

= − 1

ln 2

(∫
x∈X

q(x)dx −
∫
x∈X

p(x)dx

)
= 0

S. Cheng (OU-Tulsa) December 5, 2017 133 / 275

Lecture 9 KL-divergence

Continuous variables

We can define KL-divergence for continuous variables in a similar manner

KL(p(x)‖q(x)) ,
∫
x∈X

p(x) log2
p(x)

q(x)
dx

= −
∫
x∈X

p(x) log2
q(x)

p(x)
dx

= −
∫
x∈X

p(x)

ln 2
ln

q(x)

p(x)
dx

≥ −
∫
x∈X

p(x)

ln 2

(
q(x)

p(x)
− 1

)
dx

= − 1

ln 2

(∫
x∈X

q(x)dx −
∫
x∈X

p(x)dx

)
= 0

S. Cheng (OU-Tulsa) December 5, 2017 133 / 275

Lecture 9 KL-divergence

Normal distribution has highest entropy

For fixed variance (covariance matrix), normal distribution has highest
entropy

Proof

Let’s consider the multivariate case with a fixed covariance matrix Σ, the
univariate (scalar) case is a special case thus automatically taken care of.

Without loss of generality, let’s consider zero mean. Denote
N (x; 0,Σ) = φ(x). For any other distribution f (x) with the same
covariance matrix Σ, first note that

∫
x f (x) log φ(x)dx =

∫
x φ(x) log φ(x)dx

(to be show in the next slide). Then,

0 ≤KL(f ‖φ) =
∫
x
f (x) log

f (x)

φ(x)
dx = −h(f)−

∫
x
f (x) log φ(x)dx

=− h(f)−
∫
x
φ(x) log φ(x)dx = −h(f) + h(φ)

S. Cheng (OU-Tulsa) December 5, 2017 134 / 275

Lecture 9 KL-divergence

Normal distribution has highest entropy

For fixed variance (covariance matrix), normal distribution has highest
entropy

Proof

Let’s consider the multivariate case with a fixed covariance matrix Σ, the
univariate (scalar) case is a special case thus automatically taken care of.

Without loss of generality, let’s consider zero mean. Denote
N (x; 0,Σ) = φ(x). For any other distribution f (x) with the same
covariance matrix Σ, first note that

∫
x f (x) log φ(x)dx =

∫
x φ(x) log φ(x)dx

(to be show in the next slide). Then,

0 ≤KL(f ‖φ) =
∫
x
f (x) log

f (x)

φ(x)
dx = −h(f)−

∫
x
f (x) log φ(x)dx

=− h(f)−
∫
x
φ(x) log φ(x)dx = −h(f) + h(φ)

S. Cheng (OU-Tulsa) December 5, 2017 134 / 275

Lecture 9 KL-divergence

Normal distribution has highest entropy

For fixed variance (covariance matrix), normal distribution has highest
entropy

Proof

Let’s consider the multivariate case with a fixed covariance matrix Σ, the
univariate (scalar) case is a special case thus automatically taken care of.
Without loss of generality, let’s consider zero mean. Denote
N (x; 0,Σ) = φ(x).

For any other distribution f (x) with the same
covariance matrix Σ, first note that

∫
x f (x) log φ(x)dx =

∫
x φ(x) log φ(x)dx

(to be show in the next slide). Then,

0 ≤KL(f ‖φ) =
∫
x
f (x) log

f (x)

φ(x)
dx = −h(f)−

∫
x
f (x) log φ(x)dx

=− h(f)−
∫
x
φ(x) log φ(x)dx = −h(f) + h(φ)

S. Cheng (OU-Tulsa) December 5, 2017 134 / 275

Lecture 9 KL-divergence

Normal distribution has highest entropy

For fixed variance (covariance matrix), normal distribution has highest
entropy

Proof

Let’s consider the multivariate case with a fixed covariance matrix Σ, the
univariate (scalar) case is a special case thus automatically taken care of.
Without loss of generality, let’s consider zero mean. Denote
N (x; 0,Σ) = φ(x). For any other distribution f (x) with the same
covariance matrix Σ, first note that

∫
x f (x) log φ(x)dx =

∫
x φ(x) log φ(x)dx

(to be show in the next slide).

Then,

0 ≤KL(f ‖φ) =
∫
x
f (x) log

f (x)

φ(x)
dx = −h(f)−

∫
x
f (x) log φ(x)dx

=− h(f)−
∫
x
φ(x) log φ(x)dx = −h(f) + h(φ)

S. Cheng (OU-Tulsa) December 5, 2017 134 / 275

Lecture 9 KL-divergence

Normal distribution has highest entropy

For fixed variance (covariance matrix), normal distribution has highest
entropy

Proof

Let’s consider the multivariate case with a fixed covariance matrix Σ, the
univariate (scalar) case is a special case thus automatically taken care of.
Without loss of generality, let’s consider zero mean. Denote
N (x; 0,Σ) = φ(x). For any other distribution f (x) with the same
covariance matrix Σ, first note that

∫
x f (x) log φ(x)dx =

∫
x φ(x) log φ(x)dx

(to be show in the next slide). Then,

0 ≤KL(f ‖φ) =
∫
x
f (x) log

f (x)

φ(x)
dx

= −h(f)−
∫
x
f (x) log φ(x)dx

=− h(f)−
∫
x
φ(x) log φ(x)dx = −h(f) + h(φ)

S. Cheng (OU-Tulsa) December 5, 2017 134 / 275

Lecture 9 KL-divergence

Normal distribution has highest entropy

For fixed variance (covariance matrix), normal distribution has highest
entropy

Proof

Let’s consider the multivariate case with a fixed covariance matrix Σ, the
univariate (scalar) case is a special case thus automatically taken care of.
Without loss of generality, let’s consider zero mean. Denote
N (x; 0,Σ) = φ(x). For any other distribution f (x) with the same
covariance matrix Σ, first note that

∫
x f (x) log φ(x)dx =

∫
x φ(x) log φ(x)dx

(to be show in the next slide). Then,

0 ≤KL(f ‖φ) =
∫
x
f (x) log

f (x)

φ(x)
dx = −h(f)−

∫
x
f (x) log φ(x)dx

=− h(f)−
∫
x
φ(x) log φ(x)dx = −h(f) + h(φ)

S. Cheng (OU-Tulsa) December 5, 2017 134 / 275

Lecture 9 KL-divergence

Normal distribution has highest entropy

For fixed variance (covariance matrix), normal distribution has highest
entropy

Proof

Let’s consider the multivariate case with a fixed covariance matrix Σ, the
univariate (scalar) case is a special case thus automatically taken care of.
Without loss of generality, let’s consider zero mean. Denote
N (x; 0,Σ) = φ(x). For any other distribution f (x) with the same
covariance matrix Σ, first note that

∫
x f (x) log φ(x)dx =

∫
x φ(x) log φ(x)dx

(to be show in the next slide). Then,

0 ≤KL(f ‖φ) =
∫
x
f (x) log

f (x)

φ(x)
dx = −h(f)−

∫
x
f (x) log φ(x)dx

=− h(f)−
∫
x
φ(x) log φ(x)dx = −h(f) + h(φ)

S. Cheng (OU-Tulsa) December 5, 2017 134 / 275

Lecture 9 KL-divergence∫
x f (x) log φ(x)dx =

∫
x φ(x) log φ(x)dx

∫
x
φ(x) log φ(x)dx =

∫
x
φ(x)

[
− log

√
det(2πΣ)− 1

2
xTΣ−1x

]
dx

=

∫
x
φ(x)

− log
√

det(2πΣ)− 1

2

∑
i ,j

xi
[
Σ−1

]
i ,j
xj

 dx

=

∫
x
φ(x)

− log
√

det(2πΣ)− 1

2

∑
i ,j

[
Σ−1

]
i ,j
xixj

 dx

=

∫
x
f (x)

− log
√
det(2πΣ)− 1

2

∑
i ,j

[
Σ−1

]
i ,j
xixj

 dx

=

∫
x
f (x) log φ(x)dx

S. Cheng (OU-Tulsa) December 5, 2017 135 / 275

Lecture 9 KL-divergence∫
x f (x) log φ(x)dx =

∫
x φ(x) log φ(x)dx

∫
x
φ(x) log φ(x)dx =

∫
x
φ(x)

[
− log

√
det(2πΣ)− 1

2
xTΣ−1x

]
dx

=

∫
x
φ(x)

− log
√
det(2πΣ)− 1

2

∑
i ,j

xi
[
Σ−1

]
i ,j
xj

 dx

=

∫
x
φ(x)

− log
√

det(2πΣ)− 1

2

∑
i ,j

[
Σ−1

]
i ,j
xixj

 dx

=

∫
x
f (x)

− log
√
det(2πΣ)− 1

2

∑
i ,j

[
Σ−1

]
i ,j
xixj

 dx

=

∫
x
f (x) log φ(x)dx

S. Cheng (OU-Tulsa) December 5, 2017 135 / 275

Lecture 9 KL-divergence∫
x f (x) log φ(x)dx =

∫
x φ(x) log φ(x)dx

∫
x
φ(x) log φ(x)dx =

∫
x
φ(x)

[
− log

√
det(2πΣ)− 1

2
xTΣ−1x

]
dx

=

∫
x
φ(x)

− log
√
det(2πΣ)− 1

2

∑
i ,j

xi
[
Σ−1

]
i ,j
xj

 dx

=

∫
x
φ(x)

− log
√

det(2πΣ)− 1

2

∑
i ,j

[
Σ−1

]
i ,j
xixj

 dx

=

∫
x
f (x)

− log
√
det(2πΣ)− 1

2

∑
i ,j

[
Σ−1

]
i ,j
xixj

 dx

=

∫
x
f (x) log φ(x)dx

S. Cheng (OU-Tulsa) December 5, 2017 135 / 275

Lecture 9 KL-divergence∫
x f (x) log φ(x)dx =

∫
x φ(x) log φ(x)dx

∫
x
φ(x) log φ(x)dx =

∫
x
φ(x)

[
− log

√
det(2πΣ)− 1

2
xTΣ−1x

]
dx

=

∫
x
φ(x)

− log
√
det(2πΣ)− 1

2

∑
i ,j

xi
[
Σ−1

]
i ,j
xj

 dx

=

∫
x
φ(x)

− log
√

det(2πΣ)− 1

2

∑
i ,j

[
Σ−1

]
i ,j
xixj

 dx

=

∫
x
f (x)

− log
√
det(2πΣ)− 1

2

∑
i ,j

[
Σ−1

]
i ,j
xixj

 dx

=

∫
x
f (x) log φ(x)dx

S. Cheng (OU-Tulsa) December 5, 2017 135 / 275

Lecture 9 KL-divergence∫
x f (x) log φ(x)dx =

∫
x φ(x) log φ(x)dx

∫
x
φ(x) log φ(x)dx =

∫
x
φ(x)

[
− log

√
det(2πΣ)− 1

2
xTΣ−1x

]
dx

=

∫
x
φ(x)

− log
√
det(2πΣ)− 1

2

∑
i ,j

xi
[
Σ−1

]
i ,j
xj

 dx

=

∫
x
φ(x)

− log
√

det(2πΣ)− 1

2

∑
i ,j

[
Σ−1

]
i ,j
xixj

 dx

=

∫
x
f (x)

− log
√
det(2πΣ)− 1

2

∑
i ,j

[
Σ−1

]
i ,j
xixj

 dx

=

∫
x
f (x) log φ(x)dx

S. Cheng (OU-Tulsa) December 5, 2017 135 / 275

Lecture 9 KL-divergence

Application: Cross-entropy and cross-entropy error

In machine learning, it is often needed to assess the quality of a trained system.
Consider the example of classifying an the political affliation of an individual

In a first glance, both examples appear to work equally well (or bad). Both have
one classification error. However, a closer look will suggest the prediction of LHS
is worse than RHS (why?)

For a better assessment, we can treat both the
computed result and the target result as distribution and compare them with
KL-divergence. Namely

KL(ptarget‖pcomputed) =
∑
group

ptarget(group) log
ptarget(group)

pcomputed(group)

=− H(ptarget)−
∑
group

ptarget(group) log pcomputed(group)︸ ︷︷ ︸
cross entropy

(https://jamesmccaffrey.wordpress.com/2013/11/05/why-you-should-use-cross-entropy-error-instead-of-classification-error-or-
mean-squared-error-for-neural-network-classifier-training/)

S. Cheng (OU-Tulsa) December 5, 2017 136 / 275

Lecture 9 KL-divergence

Application: Cross-entropy and cross-entropy error

In machine learning, it is often needed to assess the quality of a trained system.
Consider the example of classifying an the political affliation of an individual

In a first glance, both examples appear to work equally well (or bad). Both have
one classification error. However, a closer look will suggest the prediction of LHS
is worse than RHS (why?) For a better assessment, we can treat both the
computed result and the target result as distribution and compare them with
KL-divergence. Namely

KL(ptarget‖pcomputed) =
∑
group

ptarget(group) log
ptarget(group)

pcomputed(group)

=− H(ptarget)−
∑
group

ptarget(group) log pcomputed(group)︸ ︷︷ ︸
cross entropy

(https://jamesmccaffrey.wordpress.com/2013/11/05/why-you-should-use-cross-entropy-error-instead-of-classification-error-or-
mean-squared-error-for-neural-network-classifier-training/)

S. Cheng (OU-Tulsa) December 5, 2017 136 / 275

Lecture 9 KL-divergence

Application: Cross-entropy and cross-entropy error

Cross entropy(p‖q) ,
∑
x

p(x) log
1

q(x)
= Ep[− log q(X)]

= H(p) + KL(p‖q)

To compute KL-divergence, one needs to find H(ptarget), which is
independent of the machine learning system and thus does not reflect
the performance of the system

Thus in practice, cross-entropy is commonly used instead of
KL-divergence to measure the performance of a machine learning
system

S. Cheng (OU-Tulsa) December 5, 2017 137 / 275

Lecture 9 KL-divergence

Application: Cross-entropy and cross-entropy error

Cross entropy(p‖q) ,
∑
x

p(x) log
1

q(x)
= Ep[− log q(X)]

= H(p) + KL(p‖q)

To compute KL-divergence, one needs to find H(ptarget), which is
independent of the machine learning system and thus does not reflect
the performance of the system

Thus in practice, cross-entropy is commonly used instead of
KL-divergence to measure the performance of a machine learning
system

S. Cheng (OU-Tulsa) December 5, 2017 137 / 275

Lecture 9 KL-divergence

Application: Cross-entropy and cross-entropy error

Cross entropy(p‖q) ,
∑
x

p(x) log
1

q(x)
= Ep[− log q(X)]

= H(p) + KL(p‖q)

To compute KL-divergence, one needs to find H(ptarget), which is
independent of the machine learning system and thus does not reflect
the performance of the system

Thus in practice, cross-entropy is commonly used instead of
KL-divergence to measure the performance of a machine learning
system

S. Cheng (OU-Tulsa) December 5, 2017 137 / 275

Lecture 9 KL-divergence

Example: Text processing

In text processing, it is common that one may need to measure the
similiarity between two documents D1 and D2.

How to represent documents? One may use the “bag of words”. That
is, to convert document into a vector of numbers. Each number is the
count of a corresponding word

One can then compares two documents using cross entropy

Cross entropy(p1‖p2) =
∑
w

p1(w) log
1

p2(w)
,

where p1 and p2 are the word distributions of documents D1 and D2,
respectively

S. Cheng (OU-Tulsa) December 5, 2017 138 / 275

Lecture 9 KL-divergence

Example: Text processing

In text processing, it is common that one may need to measure the
similiarity between two documents D1 and D2.

How to represent documents? One may use the “bag of words”. That
is, to convert document into a vector of numbers. Each number is the
count of a corresponding word

One can then compares two documents using cross entropy

Cross entropy(p1‖p2) =
∑
w

p1(w) log
1

p2(w)
,

where p1 and p2 are the word distributions of documents D1 and D2,
respectively

S. Cheng (OU-Tulsa) December 5, 2017 138 / 275

Lecture 9 KL-divergence

Example: Text processing

In text processing, it is common that one may need to measure the
similiarity between two documents D1 and D2.

How to represent documents? One may use the “bag of words”. That
is, to convert document into a vector of numbers. Each number is the
count of a corresponding word

One can then compares two documents using cross entropy

Cross entropy(p1‖p2) =
∑
w

p1(w) log
1

p2(w)
,

where p1 and p2 are the word distributions of documents D1 and D2,
respectively

S. Cheng (OU-Tulsa) December 5, 2017 138 / 275

Lecture 9 KL-divergence

TF-IDF and cross entropy

It may be also interesting of comparing word distribution of a document to
the word distribution across all documents That is, let q be the word
distribution across all documents,

Cross entropy(p1‖q) =
∑
w

p1(w) log
1

q(w)

=
∑
w

w in D1

total # words in D1
log

total # docs

doc with w︸ ︷︷ ︸
TF-IDF (w)

,

where TF -IDF (w), short for term frequency-inverse document frequency,
can reflect how important of the word w to the target document and can
be used in search engine

S. Cheng (OU-Tulsa) December 5, 2017 139 / 275

Lecture 9 Mutual information

Definition

As H(X) is equivalent to the information revealed by X and H(X |Y) the
remaining information of X knowing Y , we expect that H(X)− H(X |Y)
is the information of X shared by Y ⇒ “mutual information”

I (X ;Y) , H(X)− H(X |Y)

Similarly, we can define the “conditional mutual information” shared
between X and Y given Z as

I (X ;Y |Z) , H(X |Z)− H(X |Y ,Z)

S. Cheng (OU-Tulsa) December 5, 2017 140 / 275

Lecture 9 Mutual information

Definition

As H(X) is equivalent to the information revealed by X and H(X |Y) the
remaining information of X knowing Y , we expect that H(X)− H(X |Y)
is the information of X shared by Y ⇒ “mutual information”

I (X ;Y) , H(X)− H(X |Y)

Similarly, we can define the “conditional mutual information” shared
between X and Y given Z as

I (X ;Y |Z) , H(X |Z)− H(X |Y ,Z)

S. Cheng (OU-Tulsa) December 5, 2017 140 / 275

Lecture 9 Mutual information

Property of mutual information

I (X ;Y) = I (Y ;X) ≥ 0

The definition is symmetric and non-negative as desired.

I (X ;Y) =H(X)− H(X |Y) = E [− log p(X)]− E [− log p(X |Y)]

=−
∑
x

p(x) log p(x) +
∑
x,y

p(x , y) log p(x |y)

=−
∑
x,y

p(x , y) log p(x) +
∑
x,y

p(x , y) log p(x |y) =
∑
x,y

p(x , y) log
p(x |y)
p(x)

=
∑
x,y

p(x , y) log
p(x , y)

p(x)p(y)
= KL(p(x , y)‖p(x)p(y)) ≥ 0

S. Cheng (OU-Tulsa) December 5, 2017 141 / 275

Lecture 9 Mutual information

Property of mutual information

I (X ;Y) = I (Y ;X) ≥ 0

The definition is symmetric and non-negative as desired.

I (X ;Y) =H(X)− H(X |Y) = E [− log p(X)]− E [− log p(X |Y)]

=−
∑
x

p(x) log p(x) +
∑
x,y

p(x , y) log p(x |y)

=−
∑
x,y

p(x , y) log p(x) +
∑
x,y

p(x , y) log p(x |y) =
∑
x,y

p(x , y) log
p(x |y)
p(x)

=
∑
x,y

p(x , y) log
p(x , y)

p(x)p(y)
= KL(p(x , y)‖p(x)p(y)) ≥ 0

S. Cheng (OU-Tulsa) December 5, 2017 141 / 275

Lecture 9 Mutual information

Property of mutual information

I (X ;Y) = I (Y ;X) ≥ 0

The definition is symmetric and non-negative as desired.

I (X ;Y) =H(X)− H(X |Y) = E [− log p(X)]− E [− log p(X |Y)]

=−
∑
x

p(x) log p(x) +
∑
x,y

p(x , y) log p(x |y)

=−
∑
x,y

p(x , y) log p(x) +
∑
x,y

p(x , y) log p(x |y) =
∑
x,y

p(x , y) log
p(x |y)
p(x)

=
∑
x,y

p(x , y) log
p(x , y)

p(x)p(y)
= KL(p(x , y)‖p(x)p(y)) ≥ 0

S. Cheng (OU-Tulsa) December 5, 2017 141 / 275

Lecture 9 Mutual information

Property of mutual information

I (X ;Y) = I (Y ;X) ≥ 0

The definition is symmetric and non-negative as desired.

I (X ;Y) =H(X)− H(X |Y) = E [− log p(X)]− E [− log p(X |Y)]

=−
∑
x

p(x) log p(x) +
∑
x,y

p(x , y) log p(x |y)

=−
∑
x,y

p(x , y) log p(x) +
∑
x,y

p(x , y) log p(x |y) =
∑
x,y

p(x , y) log
p(x |y)
p(x)

=
∑
x,y

p(x , y) log
p(x , y)

p(x)p(y)

= KL(p(x , y)‖p(x)p(y)) ≥ 0

S. Cheng (OU-Tulsa) December 5, 2017 141 / 275

Lecture 9 Mutual information

Property of mutual information

I (X ;Y) = I (Y ;X) ≥ 0

The definition is symmetric and non-negative as desired.

I (X ;Y) =H(X)− H(X |Y) = E [− log p(X)]− E [− log p(X |Y)]

=−
∑
x

p(x) log p(x) +
∑
x,y

p(x , y) log p(x |y)

=−
∑
x,y

p(x , y) log p(x) +
∑
x,y

p(x , y) log p(x |y) =
∑
x,y

p(x , y) log
p(x |y)
p(x)

=
∑
x,y

p(x , y) log
p(x , y)

p(x)p(y)
= KL(p(x , y)‖p(x)p(y)) ≥ 0

S. Cheng (OU-Tulsa) December 5, 2017 141 / 275

Lecture 9 Mutual information

Property of conditional mutual information

I (X ;Y |Z) = I (Y ;X |Z) ≥ 0

The definition is symmetric and non-negative as desired.

I (X ;Y |Z) =H(X |Z)− H(X |Y ,Z) = E [− log p(X |Z)]− E [− log p(X |Y ,Z)]

=−
∑
x,z

p(x , z) log p(x |z) +
∑
x,y ,z

p(x , y , z) log p(x |y , z)

=−
∑
x,y ,z

p(x , y , z) log p(x |z) +
∑
x,y ,z

p(x , y , z) log p(x |y , z)

=
∑
x,y ,z

p(x , y , z) log
p(x |y , z)
p(x |z)

=
∑
z

p(z)
∑
x,y

p(x , y |z) log p(x , y |z)
p(x |z)p(y |z)

=
∑
z

p(z)KL(p(x , y |z)‖p(x |z)p(y |z)) ≥ 0

S. Cheng (OU-Tulsa) December 5, 2017 142 / 275

Lecture 9 Mutual information

Property of conditional mutual information

I (X ;Y |Z) = I (Y ;X |Z) ≥ 0

The definition is symmetric and non-negative as desired.

I (X ;Y |Z) =H(X |Z)− H(X |Y ,Z) = E [− log p(X |Z)]− E [− log p(X |Y ,Z)]

=−
∑
x,z

p(x , z) log p(x |z) +
∑
x,y ,z

p(x , y , z) log p(x |y , z)

=−
∑
x,y ,z

p(x , y , z) log p(x |z) +
∑
x,y ,z

p(x , y , z) log p(x |y , z)

=
∑
x,y ,z

p(x , y , z) log
p(x |y , z)
p(x |z)

=
∑
z

p(z)
∑
x,y

p(x , y |z) log p(x , y |z)
p(x |z)p(y |z)

=
∑
z

p(z)KL(p(x , y |z)‖p(x |z)p(y |z)) ≥ 0

S. Cheng (OU-Tulsa) December 5, 2017 142 / 275

Lecture 9 Mutual information

Property of conditional mutual information

I (X ;Y |Z) = I (Y ;X |Z) ≥ 0

The definition is symmetric and non-negative as desired.

I (X ;Y |Z) =H(X |Z)− H(X |Y ,Z) = E [− log p(X |Z)]− E [− log p(X |Y ,Z)]

=−
∑
x,z

p(x , z) log p(x |z) +
∑
x,y ,z

p(x , y , z) log p(x |y , z)

=−
∑
x,y ,z

p(x , y , z) log p(x |z) +
∑
x,y ,z

p(x , y , z) log p(x |y , z)

=
∑
x,y ,z

p(x , y , z) log
p(x |y , z)
p(x |z)

=
∑
z

p(z)
∑
x,y

p(x , y |z) log p(x , y |z)
p(x |z)p(y |z)

=
∑
z

p(z)KL(p(x , y |z)‖p(x |z)p(y |z)) ≥ 0

S. Cheng (OU-Tulsa) December 5, 2017 142 / 275

Lecture 9 Mutual information

Property of conditional mutual information

I (X ;Y |Z) = I (Y ;X |Z) ≥ 0

The definition is symmetric and non-negative as desired.

I (X ;Y |Z) =H(X |Z)− H(X |Y ,Z) = E [− log p(X |Z)]− E [− log p(X |Y ,Z)]

=−
∑
x,z

p(x , z) log p(x |z) +
∑
x,y ,z

p(x , y , z) log p(x |y , z)

=−
∑
x,y ,z

p(x , y , z) log p(x |z) +
∑
x,y ,z

p(x , y , z) log p(x |y , z)

=
∑
x,y ,z

p(x , y , z) log
p(x |y , z)
p(x |z)

=
∑
z

p(z)
∑
x,y

p(x , y |z) log p(x , y |z)
p(x |z)p(y |z)

=
∑
z

p(z)KL(p(x , y |z)‖p(x |z)p(y |z)) ≥ 0

S. Cheng (OU-Tulsa) December 5, 2017 142 / 275

Lecture 9 Mutual information

Independence and mutual information

I (X ;Y) = 0⇔ X⊥Y

I (X ;Y) = KL(p(x , y)‖p(x)p(y)) = 0

implies p(x , y) = p(x)p(y). Therefore X⊥Y

I (X ;Y |Z) = 0⇔ X⊥Y |Z

I (X ;Y |Z) =
∑
z

p(z)KL(p(x , y |z)‖p(x |z)p(y |z)) = 0

implies p(x , y |z) = p(x |z)p(y |z) for all z s.t. p(z) > 0. Therefore X⊥Y |Z

Remark

This is just as what we expect. If there is no share information between X
and Y , they should be indepedent!

S. Cheng (OU-Tulsa) December 5, 2017 143 / 275

Lecture 9 Mutual information

Independence and mutual information

I (X ;Y) = 0⇔ X⊥Y

I (X ;Y) = KL(p(x , y)‖p(x)p(y)) = 0

implies p(x , y) = p(x)p(y). Therefore X⊥Y

I (X ;Y |Z) = 0⇔ X⊥Y |Z

I (X ;Y |Z) =
∑
z

p(z)KL(p(x , y |z)‖p(x |z)p(y |z)) = 0

implies p(x , y |z) = p(x |z)p(y |z) for all z s.t. p(z) > 0. Therefore X⊥Y |Z

Remark

This is just as what we expect. If there is no share information between X
and Y , they should be indepedent!

S. Cheng (OU-Tulsa) December 5, 2017 143 / 275

Lecture 9 Mutual information

Chain rule for mutual information

I (X1,X2, · · · ,XN |Y)

=H(X1,X2, · · · ,XN)− H(X1,X2, · · · ,XN |Y)

=
N∑
i=1

H(Xi |X i−1)− H(Xi |X i−1,Y)

=
N∑
i=1

I (Xi ;Y |X i−1)

N.B. XN = X1,X2, · · · ,XN

S. Cheng (OU-Tulsa) December 5, 2017 144 / 275

Lecture 9 Mutual information

Chain rule for mutual information

I (X1,X2, · · · ,XN |Y)

=H(X1,X2, · · · ,XN)− H(X1,X2, · · · ,XN |Y)

=
N∑
i=1

H(Xi |X i−1)− H(Xi |X i−1,Y)

=
N∑
i=1

I (Xi ;Y |X i−1)

N.B. XN = X1,X2, · · · ,XN

S. Cheng (OU-Tulsa) December 5, 2017 144 / 275

Lecture 9 Mutual information

Chain rule for mutual information

I (X1,X2, · · · ,XN |Y)

=H(X1,X2, · · · ,XN)− H(X1,X2, · · · ,XN |Y)

=
N∑
i=1

H(Xi |X i−1)− H(Xi |X i−1,Y)

=
N∑
i=1

I (Xi ;Y |X i−1)

N.B. XN = X1,X2, · · · ,XN

S. Cheng (OU-Tulsa) December 5, 2017 144 / 275

Lecture 9 Mutual information

Chain rule for mutual information

I (X1,X2, · · · ,XN |Y)

=H(X1,X2, · · · ,XN)− H(X1,X2, · · · ,XN |Y)

=
N∑
i=1

H(Xi |X i−1)− H(Xi |X i−1,Y)

=
N∑
i=1

I (Xi ;Y |X i−1)

N.B. XN = X1,X2, · · · ,XN

S. Cheng (OU-Tulsa) December 5, 2017 144 / 275

Lecture 9 Mutual information

Mutual information for continuous variables

For continuous X ,Y ,Z , we can define I (X ;Y) = h(X)− h(X |Y) and
I (X ;Y |Z) = h(X)− h(X |Y ,Z)
Then, the followings still hold true

I (X ;Y) = KL(p(x , y)‖p(x)p(y)) = I (Y ;X) ≥ 0

I (X ;Y |Z) =
∫
z p(z)KL(p(x , y |z)‖p(x |z)p(y |z))dz = I (Y ;X |Z) ≥ 0

I (X ;Y) = 0⇔ X⊥Y
I (X ;Y |Z) = 0⇔ X⊥Y |Z
I (X1,X2, · · · ,XN |Y) =

∑N
i=1 I (Xi ;Y |X i−1)

S. Cheng (OU-Tulsa) December 5, 2017 145 / 275

Lecture 9 Mutual information

Mutual information for continuous variables

For continuous X ,Y ,Z , we can define I (X ;Y) = h(X)− h(X |Y) and
I (X ;Y |Z) = h(X)− h(X |Y ,Z)
Then, the followings still hold true

I (X ;Y) = KL(p(x , y)‖p(x)p(y)) = I (Y ;X) ≥ 0

I (X ;Y |Z) =
∫
z p(z)KL(p(x , y |z)‖p(x |z)p(y |z))dz = I (Y ;X |Z) ≥ 0

I (X ;Y) = 0⇔ X⊥Y
I (X ;Y |Z) = 0⇔ X⊥Y |Z
I (X1,X2, · · · ,XN |Y) =

∑N
i=1 I (Xi ;Y |X i−1)

S. Cheng (OU-Tulsa) December 5, 2017 145 / 275

Lecture 9 Mutual information

Mutual information for continuous variables

For continuous X ,Y ,Z , we can define I (X ;Y) = h(X)− h(X |Y) and
I (X ;Y |Z) = h(X)− h(X |Y ,Z)
Then, the followings still hold true

I (X ;Y) = KL(p(x , y)‖p(x)p(y)) = I (Y ;X) ≥ 0

I (X ;Y |Z) =
∫
z p(z)KL(p(x , y |z)‖p(x |z)p(y |z))dz = I (Y ;X |Z) ≥ 0

I (X ;Y) = 0⇔ X⊥Y
I (X ;Y |Z) = 0⇔ X⊥Y |Z
I (X1,X2, · · · ,XN |Y) =

∑N
i=1 I (Xi ;Y |X i−1)

S. Cheng (OU-Tulsa) December 5, 2017 145 / 275

Lecture 9 Mutual information

Mutual information for continuous variables

For continuous X ,Y ,Z , we can define I (X ;Y) = h(X)− h(X |Y) and
I (X ;Y |Z) = h(X)− h(X |Y ,Z)
Then, the followings still hold true

I (X ;Y) = KL(p(x , y)‖p(x)p(y)) = I (Y ;X) ≥ 0

I (X ;Y |Z) =
∫
z p(z)KL(p(x , y |z)‖p(x |z)p(y |z))dz = I (Y ;X |Z) ≥ 0

I (X ;Y) = 0⇔ X⊥Y

I (X ;Y |Z) = 0⇔ X⊥Y |Z
I (X1,X2, · · · ,XN |Y) =

∑N
i=1 I (Xi ;Y |X i−1)

S. Cheng (OU-Tulsa) December 5, 2017 145 / 275

Lecture 9 Mutual information

Mutual information for continuous variables

For continuous X ,Y ,Z , we can define I (X ;Y) = h(X)− h(X |Y) and
I (X ;Y |Z) = h(X)− h(X |Y ,Z)
Then, the followings still hold true

I (X ;Y) = KL(p(x , y)‖p(x)p(y)) = I (Y ;X) ≥ 0

I (X ;Y |Z) =
∫
z p(z)KL(p(x , y |z)‖p(x |z)p(y |z))dz = I (Y ;X |Z) ≥ 0

I (X ;Y) = 0⇔ X⊥Y
I (X ;Y |Z) = 0⇔ X⊥Y |Z

I (X1,X2, · · · ,XN |Y) =
∑N

i=1 I (Xi ;Y |X i−1)

S. Cheng (OU-Tulsa) December 5, 2017 145 / 275

Lecture 9 Mutual information

Mutual information for continuous variables

For continuous X ,Y ,Z , we can define I (X ;Y) = h(X)− h(X |Y) and
I (X ;Y |Z) = h(X)− h(X |Y ,Z)
Then, the followings still hold true

I (X ;Y) = KL(p(x , y)‖p(x)p(y)) = I (Y ;X) ≥ 0

I (X ;Y |Z) =
∫
z p(z)KL(p(x , y |z)‖p(x |z)p(y |z))dz = I (Y ;X |Z) ≥ 0

I (X ;Y) = 0⇔ X⊥Y
I (X ;Y |Z) = 0⇔ X⊥Y |Z
I (X1,X2, · · · ,XN |Y) =

∑N
i=1 I (Xi ;Y |X i−1)

S. Cheng (OU-Tulsa) December 5, 2017 145 / 275

Lecture 9 More inequalities

Conditioning reduces entropy

Given more information, the residual information (uncertainty) should
decrease.

More precisely,

H(X) ≥ H(X |Y) H(X |Y) ≥ H(X |Y ,Z)

This is obvious from our previous discussion since
H(X)− H(X |Y) = I (X ;Y) ≥ 0 and
H(X |Y)− H(X |Y ,Z) = I (X ;Z |Y) ≥ 0

Of course, we also have

h(X) ≥ h(X |Y) h(X |Y) ≥ h(X |Y ,Z)

since h(X)− h(X |Y) = I (X ;Y) ≥ 0 and
h(X |Y)− h(X |Y) = I (X ;Z |Y) ≥ 0

S. Cheng (OU-Tulsa) December 5, 2017 146 / 275

Lecture 9 More inequalities

Conditioning reduces entropy

Given more information, the residual information (uncertainty) should
decrease. More precisely,

H(X) ≥ H(X |Y) H(X |Y) ≥ H(X |Y ,Z)

This is obvious from our previous discussion since
H(X)− H(X |Y) = I (X ;Y) ≥ 0 and
H(X |Y)− H(X |Y ,Z) = I (X ;Z |Y) ≥ 0

Of course, we also have

h(X) ≥ h(X |Y) h(X |Y) ≥ h(X |Y ,Z)

since h(X)− h(X |Y) = I (X ;Y) ≥ 0 and
h(X |Y)− h(X |Y) = I (X ;Z |Y) ≥ 0

S. Cheng (OU-Tulsa) December 5, 2017 146 / 275

Lecture 9 More inequalities

Conditioning reduces entropy

Given more information, the residual information (uncertainty) should
decrease. More precisely,

H(X) ≥ H(X |Y) H(X |Y) ≥ H(X |Y ,Z)

This is obvious from our previous discussion since
H(X)− H(X |Y) = I (X ;Y) ≥ 0 and
H(X |Y)− H(X |Y ,Z) = I (X ;Z |Y) ≥ 0

Of course, we also have

h(X) ≥ h(X |Y) h(X |Y) ≥ h(X |Y ,Z)

since h(X)− h(X |Y) = I (X ;Y) ≥ 0 and
h(X |Y)− h(X |Y) = I (X ;Z |Y) ≥ 0

S. Cheng (OU-Tulsa) December 5, 2017 146 / 275

Lecture 9 More inequalities

Data processing inequality

If random variables X ,Y ,Z satisfy X ↔ Y ↔ Z , then

I (X ;Y) ≥ I (X ;Z).

Proof

I (X ;Y) = I (X ;Y ,Z)− I (X ;Z |Y)

= I (X ;Y ,Z) (since X ↔ Y ↔ Z)

= I (X ;Z) + I (X ;Y |Z)
≥ I (X ;Z)

S. Cheng (OU-Tulsa) December 5, 2017 147 / 275

Lecture 9 More inequalities

Data processing inequality

If random variables X ,Y ,Z satisfy X ↔ Y ↔ Z , then

I (X ;Y) ≥ I (X ;Z).

Proof

I (X ;Y) = I (X ;Y ,Z)− I (X ;Z |Y)

= I (X ;Y ,Z) (since X ↔ Y ↔ Z)

= I (X ;Z) + I (X ;Y |Z)
≥ I (X ;Z)

S. Cheng (OU-Tulsa) December 5, 2017 147 / 275

Lecture 9 More inequalities

Data processing inequality

If random variables X ,Y ,Z satisfy X ↔ Y ↔ Z , then

I (X ;Y) ≥ I (X ;Z).

Proof

I (X ;Y) = I (X ;Y ,Z)− I (X ;Z |Y)

= I (X ;Y ,Z) (since X ↔ Y ↔ Z)

= I (X ;Z) + I (X ;Y |Z)
≥ I (X ;Z)

S. Cheng (OU-Tulsa) December 5, 2017 147 / 275

Lecture 9 Shannon’s perfect secrecy

Application: perfect secrecy

Example (A simple cryptography example)

Say you have a very personal letter that you don’t want to let anyone
else except some special someone to read

You will first encrypt the letter to some code. To decrypt the
message, you will need some key and you will also pass it to your
special someone. Translate to the cryptography language/symbols

Letter: plaintext message M
Code: ciphertext C
Key: key K

Remark

Shannon’s result: to ensure perfect secrecy, we can show that
H(M) ≤ H(K)

S. Cheng (OU-Tulsa) December 5, 2017 148 / 275

Lecture 9 Shannon’s perfect secrecy

Application: perfect secrecy

Example (A simple cryptography example)

Say you have a very personal letter that you don’t want to let anyone
else except some special someone to read

You will first encrypt the letter to some code. To decrypt the
message, you will need some key and you will also pass it to your
special someone.

Translate to the cryptography language/symbols

Letter: plaintext message M
Code: ciphertext C
Key: key K

Remark

Shannon’s result: to ensure perfect secrecy, we can show that
H(M) ≤ H(K)

S. Cheng (OU-Tulsa) December 5, 2017 148 / 275

Lecture 9 Shannon’s perfect secrecy

Application: perfect secrecy

Example (A simple cryptography example)

Say you have a very personal letter that you don’t want to let anyone
else except some special someone to read

You will first encrypt the letter to some code. To decrypt the
message, you will need some key and you will also pass it to your
special someone. Translate to the cryptography language/symbols

Letter: plaintext message M
Code: ciphertext C
Key: key K

Remark

Shannon’s result: to ensure perfect secrecy, we can show that
H(M) ≤ H(K)

S. Cheng (OU-Tulsa) December 5, 2017 148 / 275

Lecture 9 Shannon’s perfect secrecy

Application: perfect secrecy

Example (A simple cryptography example)

Say you have a very personal letter that you don’t want to let anyone
else except some special someone to read

You will first encrypt the letter to some code. To decrypt the
message, you will need some key and you will also pass it to your
special someone. Translate to the cryptography language/symbols

Letter: plaintext message M
Code: ciphertext C
Key: key K

Remark

Shannon’s result: to ensure perfect secrecy, we can show that
H(M) ≤ H(K)

S. Cheng (OU-Tulsa) December 5, 2017 148 / 275

Lecture 9 Shannon’s perfect secrecy

Application: perfect secrecy

Recall that M,C ,K be plaintext message, ciphertext, and key, respectively

Assumption

We will assume here that we have a non-probabilistic encryption scheme.
In other words, each plaintext message maps to a unique ciphertext given
a fixed key. So there is no ambiguity during decoding. Therefore,
H(M|C ,K) = 0

Remark (Independence)

For perfect secrecy, one should not be able to deduce anything regarding
the message from the ciphertext. Therefore, C and M should be
independent. Thus,
I (C ;M) = 0⇒ H(M) = H(M|C) + I (C ;M) = H(M|C)

S. Cheng (OU-Tulsa) December 5, 2017 149 / 275

Lecture 9 Shannon’s perfect secrecy

Application: perfect secrecy

Recall that M,C ,K be plaintext message, ciphertext, and key, respectively

Assumption

We will assume here that we have a non-probabilistic encryption scheme.
In other words, each plaintext message maps to a unique ciphertext given
a fixed key. So there is no ambiguity during decoding. Therefore,
H(M|C ,K) = 0

Remark (Independence)

For perfect secrecy, one should not be able to deduce anything regarding
the message from the ciphertext. Therefore, C and M should be
independent.

Thus,
I (C ;M) = 0⇒ H(M) = H(M|C) + I (C ;M) = H(M|C)

S. Cheng (OU-Tulsa) December 5, 2017 149 / 275

Lecture 9 Shannon’s perfect secrecy

Application: perfect secrecy

Recall that M,C ,K be plaintext message, ciphertext, and key, respectively

Assumption

We will assume here that we have a non-probabilistic encryption scheme.
In other words, each plaintext message maps to a unique ciphertext given
a fixed key. So there is no ambiguity during decoding. Therefore,
H(M|C ,K) = 0

Remark (Independence)

For perfect secrecy, one should not be able to deduce anything regarding
the message from the ciphertext. Therefore, C and M should be
independent. Thus,
I (C ;M) = 0⇒ H(M) = H(M|C) + I (C ;M) = H(M|C)

S. Cheng (OU-Tulsa) December 5, 2017 149 / 275

Lecture 9 Shannon’s perfect secrecy

Application: perfect secrecy

Lemma (Entropy bound)

For any non-probabilistic encryption scheme, H(M|C) ≤ H(K |C)

Proof.

Recall that for non-probabilistic encryption scheme, H(M|K ,C) = 0⇒
H(M|C) ≤ H(M,K |C)= H(K |C) + H(M|K ,C) = H(K |C)

Corollary (Entropy bound)

For any non-probabilistic encryption scheme, H(M|C) ≤ H(K)

Theorem (Perfect secrecy)

We have perfect secrecy if H(M) ≤ H(K)

Proof.

Combine Corollary (Entropy bound) and Remark (Independence)

S. Cheng (OU-Tulsa) December 5, 2017 150 / 275

Lecture 9 Shannon’s perfect secrecy

Application: perfect secrecy

Lemma (Entropy bound)

For any non-probabilistic encryption scheme, H(M|C) ≤ H(K |C)

Proof.

Recall that for non-probabilistic encryption scheme, H(M|K ,C) = 0⇒
H(M|C) ≤ H(M,K |C)

= H(K |C) + H(M|K ,C) = H(K |C)

Corollary (Entropy bound)

For any non-probabilistic encryption scheme, H(M|C) ≤ H(K)

Theorem (Perfect secrecy)

We have perfect secrecy if H(M) ≤ H(K)

Proof.

Combine Corollary (Entropy bound) and Remark (Independence)

S. Cheng (OU-Tulsa) December 5, 2017 150 / 275

Lecture 9 Shannon’s perfect secrecy

Application: perfect secrecy

Lemma (Entropy bound)

For any non-probabilistic encryption scheme, H(M|C) ≤ H(K |C)

Proof.

Recall that for non-probabilistic encryption scheme, H(M|K ,C) = 0⇒
H(M|C) ≤ H(M,K |C)= H(K |C) + H(M|K ,C) = H(K |C)

Corollary (Entropy bound)

For any non-probabilistic encryption scheme, H(M|C) ≤ H(K)

Theorem (Perfect secrecy)

We have perfect secrecy if H(M) ≤ H(K)

Proof.

Combine Corollary (Entropy bound) and Remark (Independence)

S. Cheng (OU-Tulsa) December 5, 2017 150 / 275

Lecture 9 Shannon’s perfect secrecy

Application: perfect secrecy

Lemma (Entropy bound)

For any non-probabilistic encryption scheme, H(M|C) ≤ H(K |C)

Proof.

Recall that for non-probabilistic encryption scheme, H(M|K ,C) = 0⇒
H(M|C) ≤ H(M,K |C)= H(K |C) + H(M|K ,C) = H(K |C)

Corollary (Entropy bound)

For any non-probabilistic encryption scheme, H(M|C) ≤ H(K)

Theorem (Perfect secrecy)

We have perfect secrecy if H(M) ≤ H(K)

Proof.

Combine Corollary (Entropy bound) and Remark (Independence)

S. Cheng (OU-Tulsa) December 5, 2017 150 / 275

Lecture 9 Shannon’s perfect secrecy

Application: perfect secrecy

Lemma (Entropy bound)

For any non-probabilistic encryption scheme, H(M|C) ≤ H(K |C)

Proof.

Recall that for non-probabilistic encryption scheme, H(M|K ,C) = 0⇒
H(M|C) ≤ H(M,K |C)= H(K |C) + H(M|K ,C) = H(K |C)

Corollary (Entropy bound)

For any non-probabilistic encryption scheme, H(M|C) ≤ H(K)

Theorem (Perfect secrecy)

We have perfect secrecy if H(M) ≤ H(K)

Proof.

Combine Corollary (Entropy bound) and Remark (Independence)

S. Cheng (OU-Tulsa) December 5, 2017 150 / 275

Lecture 9 Shannon’s perfect secrecy

Application: perfect secrecy

Lemma (Entropy bound)

For any non-probabilistic encryption scheme, H(M|C) ≤ H(K |C)

Proof.

Recall that for non-probabilistic encryption scheme, H(M|K ,C) = 0⇒
H(M|C) ≤ H(M,K |C)= H(K |C) + H(M|K ,C) = H(K |C)

Corollary (Entropy bound)

For any non-probabilistic encryption scheme, H(M|C) ≤ H(K)

Theorem (Perfect secrecy)

We have perfect secrecy if H(M) ≤ H(K)

Proof.

Combine Corollary (Entropy bound) and Remark (Independence)

S. Cheng (OU-Tulsa) December 5, 2017 150 / 275

Lecture 9 Shannon’s perfect secrecy

Summary

S. Cheng (OU-Tulsa) December 5, 2017 151 / 275

Lecture 10

Review

S. Cheng (OU-Tulsa) December 5, 2017 152 / 275

Lecture 10

Review

Conditioning reduces entropy

Chain rules:

H(X ,Y ,Z) = H(Z) + H(Y |X) + H(Z |X ,Y)
H(X ,Y ,U|V)= H(X |V) + H(Y |X ,V) + H(U|Y ,X ,V)
I (X ,Y ,Z ;U)= I (X ;U) + I (Y ;U|X) + I (Z ;U|X ,Y)
I (X ,Y ,Z ;U|V)= I (X ;U|V) + I (Y ;U|V ,X) + I (Z ;U|V ,X ,Y)

Data processing inequality: if X⊥Y |Z , I (X ;Y) ≥ I (X ;Z)

Independence and mutual information:

X⊥Y ⇔ I (X ;Y) = 0
X⊥Y |Z ⇔ I (X ;Y |Z) = 0

KL-divergence: KL(p||q) ,
∑

x p(x) log
p(x)
q(x)

S. Cheng (OU-Tulsa) December 5, 2017 153 / 275

Lecture 10

Review

Conditioning reduces entropy

Chain rules:

H(X ,Y ,Z)

= H(Z) + H(Y |X) + H(Z |X ,Y)
H(X ,Y ,U|V)= H(X |V) + H(Y |X ,V) + H(U|Y ,X ,V)
I (X ,Y ,Z ;U)= I (X ;U) + I (Y ;U|X) + I (Z ;U|X ,Y)
I (X ,Y ,Z ;U|V)= I (X ;U|V) + I (Y ;U|V ,X) + I (Z ;U|V ,X ,Y)

Data processing inequality: if X⊥Y |Z , I (X ;Y) ≥ I (X ;Z)

Independence and mutual information:

X⊥Y ⇔ I (X ;Y) = 0
X⊥Y |Z ⇔ I (X ;Y |Z) = 0

KL-divergence: KL(p||q) ,
∑

x p(x) log
p(x)
q(x)

S. Cheng (OU-Tulsa) December 5, 2017 153 / 275

Lecture 10

Review

Conditioning reduces entropy

Chain rules:

H(X ,Y ,Z) = H(Z) + H(Y |X) + H(Z |X ,Y)
H(X ,Y ,U|V)

= H(X |V) + H(Y |X ,V) + H(U|Y ,X ,V)
I (X ,Y ,Z ;U)= I (X ;U) + I (Y ;U|X) + I (Z ;U|X ,Y)
I (X ,Y ,Z ;U|V)= I (X ;U|V) + I (Y ;U|V ,X) + I (Z ;U|V ,X ,Y)

Data processing inequality: if X⊥Y |Z , I (X ;Y) ≥ I (X ;Z)

Independence and mutual information:

X⊥Y ⇔ I (X ;Y) = 0
X⊥Y |Z ⇔ I (X ;Y |Z) = 0

KL-divergence: KL(p||q) ,
∑

x p(x) log
p(x)
q(x)

S. Cheng (OU-Tulsa) December 5, 2017 153 / 275

Lecture 10

Review

Conditioning reduces entropy

Chain rules:

H(X ,Y ,Z) = H(Z) + H(Y |X) + H(Z |X ,Y)
H(X ,Y ,U|V)= H(X |V) + H(Y |X ,V) + H(U|Y ,X ,V)
I (X ,Y ,Z ;U)

= I (X ;U) + I (Y ;U|X) + I (Z ;U|X ,Y)
I (X ,Y ,Z ;U|V)= I (X ;U|V) + I (Y ;U|V ,X) + I (Z ;U|V ,X ,Y)

Data processing inequality: if X⊥Y |Z , I (X ;Y) ≥ I (X ;Z)

Independence and mutual information:

X⊥Y ⇔ I (X ;Y) = 0
X⊥Y |Z ⇔ I (X ;Y |Z) = 0

KL-divergence: KL(p||q) ,
∑

x p(x) log
p(x)
q(x)

S. Cheng (OU-Tulsa) December 5, 2017 153 / 275

Lecture 10

Review

Conditioning reduces entropy

Chain rules:

H(X ,Y ,Z) = H(Z) + H(Y |X) + H(Z |X ,Y)
H(X ,Y ,U|V)= H(X |V) + H(Y |X ,V) + H(U|Y ,X ,V)
I (X ,Y ,Z ;U)= I (X ;U) + I (Y ;U|X) + I (Z ;U|X ,Y)
I (X ,Y ,Z ;U|V)

= I (X ;U|V) + I (Y ;U|V ,X) + I (Z ;U|V ,X ,Y)

Data processing inequality: if X⊥Y |Z , I (X ;Y) ≥ I (X ;Z)

Independence and mutual information:

X⊥Y ⇔ I (X ;Y) = 0
X⊥Y |Z ⇔ I (X ;Y |Z) = 0

KL-divergence: KL(p||q) ,
∑

x p(x) log
p(x)
q(x)

S. Cheng (OU-Tulsa) December 5, 2017 153 / 275

Lecture 10

Review

Conditioning reduces entropy

Chain rules:

H(X ,Y ,Z) = H(Z) + H(Y |X) + H(Z |X ,Y)
H(X ,Y ,U|V)= H(X |V) + H(Y |X ,V) + H(U|Y ,X ,V)
I (X ,Y ,Z ;U)= I (X ;U) + I (Y ;U|X) + I (Z ;U|X ,Y)
I (X ,Y ,Z ;U|V)= I (X ;U|V) + I (Y ;U|V ,X) + I (Z ;U|V ,X ,Y)

Data processing inequality: if X⊥Y |Z ,

I (X ;Y) ≥ I (X ;Z)

Independence and mutual information:

X⊥Y ⇔ I (X ;Y) = 0
X⊥Y |Z ⇔ I (X ;Y |Z) = 0

KL-divergence: KL(p||q) ,
∑

x p(x) log
p(x)
q(x)

S. Cheng (OU-Tulsa) December 5, 2017 153 / 275

Lecture 10

Review

Conditioning reduces entropy

Chain rules:

H(X ,Y ,Z) = H(Z) + H(Y |X) + H(Z |X ,Y)
H(X ,Y ,U|V)= H(X |V) + H(Y |X ,V) + H(U|Y ,X ,V)
I (X ,Y ,Z ;U)= I (X ;U) + I (Y ;U|X) + I (Z ;U|X ,Y)
I (X ,Y ,Z ;U|V)= I (X ;U|V) + I (Y ;U|V ,X) + I (Z ;U|V ,X ,Y)

Data processing inequality: if X⊥Y |Z , I (X ;Y) ≥ I (X ;Z)

Independence and mutual information:

X⊥Y ⇔

I (X ;Y) = 0
X⊥Y |Z ⇔ I (X ;Y |Z) = 0

KL-divergence: KL(p||q) ,
∑

x p(x) log
p(x)
q(x)

S. Cheng (OU-Tulsa) December 5, 2017 153 / 275

Lecture 10

Review

Conditioning reduces entropy

Chain rules:

H(X ,Y ,Z) = H(Z) + H(Y |X) + H(Z |X ,Y)
H(X ,Y ,U|V)= H(X |V) + H(Y |X ,V) + H(U|Y ,X ,V)
I (X ,Y ,Z ;U)= I (X ;U) + I (Y ;U|X) + I (Z ;U|X ,Y)
I (X ,Y ,Z ;U|V)= I (X ;U|V) + I (Y ;U|V ,X) + I (Z ;U|V ,X ,Y)

Data processing inequality: if X⊥Y |Z , I (X ;Y) ≥ I (X ;Z)

Independence and mutual information:

X⊥Y ⇔ I (X ;Y) = 0
X⊥Y |Z ⇔

I (X ;Y |Z) = 0

KL-divergence: KL(p||q) ,
∑

x p(x) log
p(x)
q(x)

S. Cheng (OU-Tulsa) December 5, 2017 153 / 275

Lecture 10

Review

Conditioning reduces entropy

Chain rules:

H(X ,Y ,Z) = H(Z) + H(Y |X) + H(Z |X ,Y)
H(X ,Y ,U|V)= H(X |V) + H(Y |X ,V) + H(U|Y ,X ,V)
I (X ,Y ,Z ;U)= I (X ;U) + I (Y ;U|X) + I (Z ;U|X ,Y)
I (X ,Y ,Z ;U|V)= I (X ;U|V) + I (Y ;U|V ,X) + I (Z ;U|V ,X ,Y)

Data processing inequality: if X⊥Y |Z , I (X ;Y) ≥ I (X ;Z)

Independence and mutual information:

X⊥Y ⇔ I (X ;Y) = 0
X⊥Y |Z ⇔ I (X ;Y |Z) = 0

KL-divergence: KL(p||q) ,

∑
x p(x) log

p(x)
q(x)

S. Cheng (OU-Tulsa) December 5, 2017 153 / 275

Lecture 10

Review

Conditioning reduces entropy

Chain rules:

H(X ,Y ,Z) = H(Z) + H(Y |X) + H(Z |X ,Y)
H(X ,Y ,U|V)= H(X |V) + H(Y |X ,V) + H(U|Y ,X ,V)
I (X ,Y ,Z ;U)= I (X ;U) + I (Y ;U|X) + I (Z ;U|X ,Y)
I (X ,Y ,Z ;U|V)= I (X ;U|V) + I (Y ;U|V ,X) + I (Z ;U|V ,X ,Y)

Data processing inequality: if X⊥Y |Z , I (X ;Y) ≥ I (X ;Z)

Independence and mutual information:

X⊥Y ⇔ I (X ;Y) = 0
X⊥Y |Z ⇔ I (X ;Y |Z) = 0

KL-divergence: KL(p||q) ,
∑

x p(x) log
p(x)
q(x)

S. Cheng (OU-Tulsa) December 5, 2017 153 / 275

Lecture 10 Overview

This time

Identification/Decision trees

Random forests

Law of Large Number

Asymptotic equipartition (AEP) and typical sequences

S. Cheng (OU-Tulsa) December 5, 2017 154 / 275

Lecture 10 Identification/Decision tree

Vampire database

(https://www.youtube.com/watch?v=SXBG3RGr Rc)

S. Cheng (OU-Tulsa) December 5, 2017 155 / 275

Lecture 10 Identification/Decision tree

Identifying vampire

Goal: Design a set of tests to identify vampires

Potential difficulties

Non-numerical data

Some information may not matter

Some may matter only sometimes

Tests may be costly ⇒ conduct as few as possible

S. Cheng (OU-Tulsa) December 5, 2017 156 / 275

Lecture 10 Identification/Decision tree

Test trees

Shadow

++

--

?

Y

+

N

Garlic

Y

+++

--

N

Complexion

++

-

A

--

P
--

+

R

Accent

--

+

N

-

++
H

-+

O

+ : Vampire − : Not vampire

How to pick a good test?

Pick test that identifies most vampires (and
non-vampires)!

S. Cheng (OU-Tulsa) December 5, 2017 157 / 275

Lecture 10 Identification/Decision tree

Test trees

Shadow

++

--

?

Y

+

N

Garlic

Y

+++

--

N

Complexion

++

-

A

--

P
--

+

R

Accent

--

+

N

-

++
H

-+

O

+ : Vampire − : Not vampire

How to pick a good test?

Pick test that identifies most vampires (and
non-vampires)!

S. Cheng (OU-Tulsa) December 5, 2017 157 / 275

Lecture 10 Identification/Decision tree

Test trees

Shadow

++

--

?

Y

+

N

Garlic

Y

+++

--

N

Complexion

++

-

A

--

P
--

+

R

Accent

--

+

N

-

++
H

-+

O

+ : Vampire − : Not vampire

How to pick a good test? Pick test that identifies most vampires (and
non-vampires)!

S. Cheng (OU-Tulsa) December 5, 2017 157 / 275

Lecture 10 Identification/Decision tree

Sizes of homogeneous sets

Shadow

++

--

?

Y

+

N

Garlic

Y

+++

--

N

Complexion

++

-

A

--

P
--

+

R

Accent

--

+

N

-

++

H
-+

O

+ : Vampire − : Not vampire

Shadow: 4 Garlic: 3 Complexion: 2 Accent: 0

S. Cheng (OU-Tulsa) December 5, 2017 158 / 275

Lecture 10 Identification/Decision tree

Sizes of homogeneous sets

Shadow

++

--

?

Y

+

N

Garlic

Y

+++

--

N

Complexion

++

-

A

--

P
--

+

R

Accent

--

+

N

-

++

H
-+

O

+ : Vampire − : Not vampire

Shadow: 4 Garlic: 3 Complexion: 2 Accent: 0

S. Cheng (OU-Tulsa) December 5, 2017 158 / 275

Lecture 10 Identification/Decision tree

Picking second test

Let say we pick “shadow” as the first test after all. Then, for the
remaining unclassified individuals,

Garlic

--

Y

++

N

Complexion

+

A

-

P

+-
R

Accent

+-

N

+-

H

-+

O

Garlic: 4 Complexion: 2 Accent: 0

S. Cheng (OU-Tulsa) December 5, 2017 159 / 275

Lecture 10 Identification/Decision tree

Combined tests

Shadow

Garlic

Not

vampire

Y

Vampire

N

?

Not

vampire

Y

Vampire

N

Problem

When our database size increases, none of the test likely to completely
separate vampire from non-vampire. All tests will score 0 then.

Entropy comes to the rescue!

S. Cheng (OU-Tulsa) December 5, 2017 160 / 275

Lecture 10 Identification/Decision tree

Combined tests

Shadow

Garlic

Not

vampire

Y

Vampire

N

?

Not

vampire

Y

Vampire

N

Problem

When our database size increases, none of the test likely to completely
separate vampire from non-vampire. All tests will score 0 then.

Entropy comes to the rescue!

S. Cheng (OU-Tulsa) December 5, 2017 160 / 275

Lecture 10 Identification/Decision tree

Combined tests

Shadow

Garlic

Not

vampire

Y

Vampire

N

?

Not

vampire

Y

Vampire

N

Problem

When our database size increases, none of the test likely to completely
separate vampire from non-vampire. All tests will score 0 then.
Entropy comes to the rescue!

S. Cheng (OU-Tulsa) December 5, 2017 160 / 275

Lecture 10 Identification/Decision tree

Conditional entropy as a measure of test efficiency

Consider the database is randomly sampled from a distribution. A set is

Very homogeneous ≈ high certainty

Not so homogenous ≈ high randomness

These can be measured with its entropy

Shadow

++--

?

Y

+

N

H(V |S =?) = 1 H(V |S = Y) = 0 H(V |S = N) = 0

Remaining uncertainty given the test:

4

8
H(V |S =?)

+
3

8
H(V |S = Y) +

1

8
H(V |S = N) = 0.5

=Pr(S =?)H(V |S =?) + Pr(S = Y)H(V |S = Y) + Pr(S = N)H(V |S = N)

=H(V |S)

S. Cheng (OU-Tulsa) December 5, 2017 161 / 275

0 0.2 0.4 0.6 0.8 1

Pr(Head)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

E
nt

ro
py

Lecture 10 Identification/Decision tree

Conditional entropy as a measure of test efficiency

Consider the database is randomly sampled from a distribution. A set is

Very homogeneous ≈ high certainty

Not so homogenous ≈ high randomness

These can be measured with its entropy

Shadow

++--

?

Y

+

N

H(V |S =?) = 1 H(V |S = Y) = 0 H(V |S = N) = 0

Remaining uncertainty given the test:

4

8
H(V |S =?)

+
3

8
H(V |S = Y) +

1

8
H(V |S = N) = 0.5

=Pr(S =?)H(V |S =?) + Pr(S = Y)H(V |S = Y) + Pr(S = N)H(V |S = N)

=H(V |S)

S. Cheng (OU-Tulsa) December 5, 2017 161 / 275

0 0.2 0.4 0.6 0.8 1

Pr(Head)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

E
nt

ro
py

Lecture 10 Identification/Decision tree

Conditional entropy as a measure of test efficiency

Consider the database is randomly sampled from a distribution. A set is

Very homogeneous ≈ high certainty

Not so homogenous ≈ high randomness

These can be measured with its entropy

Shadow

++--

?

Y

+

N

H(V |S =?) = 1 H(V |S = Y) = 0 H(V |S = N) = 0

Remaining uncertainty given the test:

4

8
H(V |S =?) +

3

8
H(V |S = Y)

+
1

8
H(V |S = N) = 0.5

=Pr(S =?)H(V |S =?) + Pr(S = Y)H(V |S = Y) + Pr(S = N)H(V |S = N)

=H(V |S)

S. Cheng (OU-Tulsa) December 5, 2017 161 / 275

0 0.2 0.4 0.6 0.8 1

Pr(Head)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

E
nt

ro
py

Lecture 10 Identification/Decision tree

Conditional entropy as a measure of test efficiency

Consider the database is randomly sampled from a distribution. A set is

Very homogeneous ≈ high certainty

Not so homogenous ≈ high randomness

These can be measured with its entropy

Shadow

++--

?

Y

+

N

H(V |S =?) = 1 H(V |S = Y) = 0 H(V |S = N) = 0

Remaining uncertainty given the test:

4

8
H(V |S =?) +

3

8
H(V |S = Y) +

1

8
H(V |S = N) = 0.5

=Pr(S =?)H(V |S =?) + Pr(S = Y)H(V |S = Y) + Pr(S = N)H(V |S = N)

=H(V |S)

S. Cheng (OU-Tulsa) December 5, 2017 161 / 275

0 0.2 0.4 0.6 0.8 1

Pr(Head)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

E
nt

ro
py

Lecture 10 Identification/Decision tree

Conditional entropy as a measure of test efficiency

Consider the database is randomly sampled from a distribution. A set is

Very homogeneous ≈ high certainty

Not so homogenous ≈ high randomness

These can be measured with its entropy

Shadow

++--

?

Y

+

N

H(V |S =?) = 1 H(V |S = Y) = 0 H(V |S = N) = 0

Remaining uncertainty given the test:

4

8
H(V |S =?) +

3

8
H(V |S = Y) +

1

8
H(V |S = N) = 0.5

=Pr(S =?)H(V |S =?) + Pr(S = Y)H(V |S = Y) + Pr(S = N)H(V |S = N)

=H(V |S)

S. Cheng (OU-Tulsa) December 5, 2017 161 / 275

0 0.2 0.4 0.6 0.8 1

Pr(Head)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

E
nt

ro
py

Lecture 10 Identification/Decision tree

Conditional entropy as a measure of test efficiency

Consider the database is randomly sampled from a distribution. A set is

Very homogeneous ≈ high certainty

Not so homogenous ≈ high randomness

These can be measured with its entropy

Shadow

++--

?

Y

+

N

H(V |S =?) = 1 H(V |S = Y) = 0 H(V |S = N) = 0

Remaining uncertainty given the test:

4

8
H(V |S =?) +

3

8
H(V |S = Y) +

1

8
H(V |S = N) = 0.5

=Pr(S =?)H(V |S =?) + Pr(S = Y)H(V |S = Y) + Pr(S = N)H(V |S = N)

=H(V |S)

S. Cheng (OU-Tulsa) December 5, 2017 161 / 275

0 0.2 0.4 0.6 0.8 1

Pr(Head)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

E
nt

ro
py

Lecture 10 Identification/Decision tree

Remaining uncertainty

Garlic

Y

+++

--

N

H(V |G = Y)
= 0 0.97

Complexion

++

-

A

--

P

--

+

R

0.92
0

0.92

Accent

--

+

N

-

++

H

-+

O

0.92 0.92
1

H(V |S) =0.5

H(V |G) =
3

8
· 0 + 5

8
· 0.97 = 0.61

H(V |C) =
3

8
· 0.92 + 2

8
· 0 + 3

8
· 0.92 = 0.69

H(V |A) =3

8
· 0.92 + 3

8
· 0.92 + 2

8
· 1 = 0.94

H(V |S) is maximum. Thus should pick test S first

S. Cheng (OU-Tulsa) December 5, 2017 162 / 275

Lecture 10 Identification/Decision tree

Remaining uncertainty

Garlic

Y

+++

--

N

H(V |G = Y)
= 0 0.97

Complexion

++

-

A

--

P

--

+

R

0.92
0

0.92

Accent

--

+

N

-

++

H

-+

O

0.92 0.92
1

H(V |S) =0.5

H(V |G) =
3

8
· 0 + 5

8
· 0.97 = 0.61

H(V |C) =
3

8
· 0.92 + 2

8
· 0 + 3

8
· 0.92 = 0.69

H(V |A) =3

8
· 0.92 + 3

8
· 0.92 + 2

8
· 1 = 0.94

H(V |S) is maximum. Thus should pick test S first

S. Cheng (OU-Tulsa) December 5, 2017 162 / 275

Lecture 10 Identification/Decision tree

Remaining uncertainty

Garlic

Y

+++

--

N

H(V |G = Y)
= 0 0.97

Complexion

++

-

A

--

P

--

+

R

0.92
0

0.92

Accent

--

+

N

-

++

H

-+

O

0.92 0.92
1

H(V |S) =0.5

H(V |G) =
3

8
· 0 + 5

8
· 0.97 = 0.61

H(V |C) =
3

8
· 0.92 + 2

8
· 0 + 3

8
· 0.92 = 0.69

H(V |A) =3

8
· 0.92 + 3

8
· 0.92 + 2

8
· 1 = 0.94

H(V |S) is maximum. Thus should pick test S first

S. Cheng (OU-Tulsa) December 5, 2017 162 / 275

Lecture 10 Identification/Decision tree

Remaining uncertainty

Garlic

Y

+++

--

N

H(V |G = Y)
= 0 0.97

Complexion

++

-

A

--

P

--

+

R

0.92
0

0.92

Accent

--

+

N

-

++

H

-+

O

0.92 0.92
1

H(V |S) =0.5

H(V |G) =
3

8
· 0 + 5

8
· 0.97 = 0.61

H(V |C) =
3

8
· 0.92 + 2

8
· 0 + 3

8
· 0.92 = 0.69

H(V |A) =3

8
· 0.92 + 3

8
· 0.92 + 2

8
· 1 = 0.94

H(V |S) is maximum. Thus should pick test S first

S. Cheng (OU-Tulsa) December 5, 2017 162 / 275

Lecture 10 Identification/Decision tree

Remaining uncertainty

Garlic

Y

+++

--

N

H(V |G = Y)
= 0 0.97

Complexion

++

-

A

--

P

--

+

R

0.92
0

0.92

Accent

--

+

N

-

++

H

-+

O

0.92 0.92
1

H(V |S) =0.5

H(V |G) =
3

8
· 0 + 5

8
· 0.97 = 0.61

H(V |C) =
3

8
· 0.92 + 2

8
· 0 + 3

8
· 0.92 = 0.69

H(V |A) =3

8
· 0.92 + 3

8
· 0.92 + 2

8
· 1 = 0.94

H(V |S) is maximum. Thus should pick test S first
S. Cheng (OU-Tulsa) December 5, 2017 162 / 275

Lecture 10 Identification/Decision tree

Potential extensions

The test does not need to return discrete result. Let X be the test
outcome. It can be continuous as well

We should just pick i such that H(V |Xi) to be as small as possible
It is equivalent of saying I (V ;Xi) = H(V)− H(V |Xi) is as large as
possible. This is intuitive because we want to pick the information that
is most relevant (sharing most information with) to V

Build a number of trees instead of a single tree ⇒ random forests

S. Cheng (OU-Tulsa) December 5, 2017 163 / 275

Lecture 10 Identification/Decision tree

Potential extensions

The test does not need to return discrete result. Let X be the test
outcome. It can be continuous as well

We should just pick i such that H(V |Xi) to be as small as possible

It is equivalent of saying I (V ;Xi) = H(V)− H(V |Xi) is as large as
possible. This is intuitive because we want to pick the information that
is most relevant (sharing most information with) to V

Build a number of trees instead of a single tree ⇒ random forests

S. Cheng (OU-Tulsa) December 5, 2017 163 / 275

Lecture 10 Identification/Decision tree

Potential extensions

The test does not need to return discrete result. Let X be the test
outcome. It can be continuous as well

We should just pick i such that H(V |Xi) to be as small as possible
It is equivalent of saying I (V ;Xi) = H(V)− H(V |Xi) is as large as
possible. This is intuitive because we want to pick the information that
is most relevant (sharing most information with) to V

Build a number of trees instead of a single tree ⇒ random forests

S. Cheng (OU-Tulsa) December 5, 2017 163 / 275

Lecture 10 Identification/Decision tree

Potential extensions

The test does not need to return discrete result. Let X be the test
outcome. It can be continuous as well

We should just pick i such that H(V |Xi) to be as small as possible
It is equivalent of saying I (V ;Xi) = H(V)− H(V |Xi) is as large as
possible. This is intuitive because we want to pick the information that
is most relevant (sharing most information with) to V

Build a number of trees instead of a single tree ⇒ random forests

S. Cheng (OU-Tulsa) December 5, 2017 163 / 275

Lecture 10 Identification/Decision tree

Random forests

Pick random subset of training samples

Train on each random subset but limited to a subset of
features/attributes

Given a test sample

Classify sample using each of the trees
Make final decision based on majority vote

S. Cheng (OU-Tulsa) December 5, 2017 164 / 275

Lecture 10 Law of Large Number

Law of Large Number (LLN)

If we randomly sample x1, x2, · · · , xN from an i.i.d. (identical and
independently distributed) source, the average of f (xi) will approach the
expected value as N →∞. That is,

1

N

N∑
i=1

f (xi) = E [f (X)] as N →∞

Example

This is precisely how poll supposes to work! Pollster randomly draws
sample from a portion of the population but will expect the prediction
matches the outcome

S. Cheng (OU-Tulsa) December 5, 2017 165 / 275

Lecture 10 Law of Large Number

Law of Large Number (LLN)

If we randomly sample x1, x2, · · · , xN from an i.i.d. (identical and
independently distributed) source, the average of f (xi) will approach the
expected value as N →∞. That is,

1

N

N∑
i=1

f (xi) = E [f (X)] as N →∞

Example

This is precisely how poll supposes to work! Pollster randomly draws
sample from a portion of the population but will expect the prediction
matches the outcome

S. Cheng (OU-Tulsa) December 5, 2017 165 / 275

Lecture 10 Law of Large Number

Proof of LLN

The LLN is a rather strong result. We will only show a weak version here

Pr

(∣∣∣∣∣ 1N
N∑
i=1

f (Xi)− E [f (X)]

∣∣∣∣∣ ≥ a

)
≤ Var(f (X))

Na2
∝ 1

N

Markov’s Inequality

Pr(X ≥ b) ≤ E [X]

b
if X ≥ 0

Proof:
X = I (X ≥ b) · X + I (X < b) · X ≥ I (X ≥ b) · b ⇒ E [X] ≥ Pr(X ≥ b) · b

S. Cheng (OU-Tulsa) December 5, 2017 166 / 275

Lecture 10 Law of Large Number

Proof of LLN

The LLN is a rather strong result. We will only show a weak version here

Pr

(∣∣∣∣∣ 1N
N∑
i=1

f (Xi)− E [f (X)]

∣∣∣∣∣ ≥ a

)
≤ Var(f (X))

Na2
∝ 1

N

Markov’s Inequality

Pr(X ≥ b) ≤ E [X]

b
if X ≥ 0

Proof:
X = I (X ≥ b) · X + I (X < b) · X ≥ I (X ≥ b) · b ⇒ E [X] ≥ Pr(X ≥ b) · b

S. Cheng (OU-Tulsa) December 5, 2017 166 / 275

Lecture 10 Law of Large Number

Proof of LLN

The LLN is a rather strong result. We will only show a weak version here

Pr

(∣∣∣∣∣ 1N
N∑
i=1

f (Xi)− E [f (X)]

∣∣∣∣∣ ≥ a

)
≤ Var(f (X))

Na2
∝ 1

N

Markov’s Inequality

Pr(X ≥ b) ≤ E [X]

b
if X ≥ 0

Proof:
X = I (X ≥ b) · X + I (X < b) · X ≥ I (X ≥ b) · b

⇒ E [X] ≥ Pr(X ≥ b) · b

S. Cheng (OU-Tulsa) December 5, 2017 166 / 275

Lecture 10 Law of Large Number

Proof of LLN

The LLN is a rather strong result. We will only show a weak version here

Pr

(∣∣∣∣∣ 1N
N∑
i=1

f (Xi)− E [f (X)]

∣∣∣∣∣ ≥ a

)
≤ Var(f (X))

Na2
∝ 1

N

Markov’s Inequality

Pr(X ≥ b) ≤ E [X]

b
if X ≥ 0

Proof:
X = I (X ≥ b) · X + I (X < b) · X ≥ I (X ≥ b) · b ⇒ E [X] ≥ Pr(X ≥ b) · b

S. Cheng (OU-Tulsa) December 5, 2017 166 / 275

Lecture 10 Law of Large Number

Proof of LLN

Markov’s Inequality

Pr(X ≥ b) ≤ E [X]

b
if X ≥ 0

Chebyshev’s Inequality

Pr(|Y − E [Y]| ≥ a) ≤ Var(Y)

a2

Proof: Take X = |Y − E [Y]|2 and b = a2, by Markov’s Inequality
Pr(|Y − E [Y]| ≥ a) = Pr(|Y − E [Y]|2 ≥ a2)

≤E [|Y − E [Y]|2]
a2

=
Var(Y)

a2

S. Cheng (OU-Tulsa) December 5, 2017 167 / 275

Lecture 10 Law of Large Number

Proof of LLN

Markov’s Inequality

Pr(X ≥ b) ≤ E [X]

b
if X ≥ 0

Chebyshev’s Inequality

Pr(|Y − E [Y]| ≥ a) ≤ Var(Y)

a2

Proof: Take X = |Y − E [Y]|2 and b = a2, by Markov’s Inequality

Pr(|Y − E [Y]| ≥ a) = Pr(|Y − E [Y]|2 ≥ a2)

≤E [|Y − E [Y]|2]
a2

=
Var(Y)

a2

S. Cheng (OU-Tulsa) December 5, 2017 167 / 275

Lecture 10 Law of Large Number

Proof of LLN

Markov’s Inequality

Pr(X ≥ b) ≤ E [X]

b
if X ≥ 0

Chebyshev’s Inequality

Pr(|Y − E [Y]| ≥ a) ≤ Var(Y)

a2

Proof: Take X = |Y − E [Y]|2 and b = a2, by Markov’s Inequality
Pr(|Y − E [Y]| ≥ a) = Pr(|Y − E [Y]|2 ≥ a2)

≤E [|Y − E [Y]|2]
a2

=
Var(Y)

a2

S. Cheng (OU-Tulsa) December 5, 2017 167 / 275

Lecture 10 Law of Large Number

Proof of LLN

Markov’s Inequality

Pr(X ≥ b) ≤ E [X]

b
if X ≥ 0

Chebyshev’s Inequality

Pr(|Y − E [Y]| ≥ a) ≤ Var(Y)

a2

Proof: Take X = |Y − E [Y]|2 and b = a2, by Markov’s Inequality
Pr(|Y − E [Y]| ≥ a) = Pr(|Y − E [Y]|2 ≥ a2)

≤E [|Y − E [Y]|2]
a2

=
Var(Y)

a2

S. Cheng (OU-Tulsa) December 5, 2017 167 / 275

Lecture 10 Law of Large Number

Proof of LLN

Chebyshev’s Inequality

Pr(|Y − E [Y]| ≥ a) ≤ Var(Y)

a2

Proof of weak LLN

Let ZN = 1
N

∑N
i=1 f (Xi), apparently E [ZN] = E [f (X)] and

Var(ZN) =
1

N2

N∑
i=1

Var(f (X)) =
Var(f (X))

N

By Chebyshev’s Inequality,

Pr

(∣∣∣∣∣ 1N
N∑
i=1

f (Xi)− E [f (X)]

∣∣∣∣∣ ≥ a

)

=Pr(|ZN − E [ZN]| ≥ a) ≤ Var(ZN)

a2
=

Var(f (X))

Na2

S. Cheng (OU-Tulsa) December 5, 2017 168 / 275

Lecture 10 Law of Large Number

Proof of LLN

Chebyshev’s Inequality

Pr(|Y − E [Y]| ≥ a) ≤ Var(Y)

a2

Proof of weak LLN

Let ZN = 1
N

∑N
i=1 f (Xi), apparently E [ZN] = E [f (X)] and

Var(ZN) =
1

N2

N∑
i=1

Var(f (X)) =
Var(f (X))

N

By Chebyshev’s Inequality,

Pr

(∣∣∣∣∣ 1N
N∑
i=1

f (Xi)− E [f (X)]

∣∣∣∣∣ ≥ a

)

=Pr(|ZN − E [ZN]| ≥ a) ≤ Var(ZN)

a2

=
Var(f (X))

Na2

S. Cheng (OU-Tulsa) December 5, 2017 168 / 275

Lecture 10 Law of Large Number

Proof of LLN

Chebyshev’s Inequality

Pr(|Y − E [Y]| ≥ a) ≤ Var(Y)

a2

Proof of weak LLN

Let ZN = 1
N

∑N
i=1 f (Xi), apparently E [ZN] = E [f (X)] and

Var(ZN) =
1

N2

N∑
i=1

Var(f (X)) =
Var(f (X))

N

By Chebyshev’s Inequality,

Pr

(∣∣∣∣∣ 1N
N∑
i=1

f (Xi)− E [f (X)]

∣∣∣∣∣ ≥ a

)

=Pr(|ZN − E [ZN]| ≥ a) ≤ Var(ZN)

a2
=

Var(f (X))

Na2

S. Cheng (OU-Tulsa) December 5, 2017 168 / 275

Lecture 10 Asymptotic equipartition

Main idea

Consider a sequence of symbols x1, x2, · · · , xN sampled from a DMS and
consider the sample average of the log-probabilities of each sampled
symbols

1

N

N∑
i=1

log
1

p(xi)
→ E

[
log

1

p(X)

]

= H(X)

by LLN.

But for the LHS,

1

N

N∑
i=1

log
1

p(xi)
=

1

N
log

1∏N
i=1 p(xi)

= − 1

N
log p(xN),

where xN = x1, x2, · · · , xN

Rearranging the terms, this implies that for any sequence sampled from
the source, the probability of the sampled sequence p(xN)→ 2−NH(X)!

S. Cheng (OU-Tulsa) December 5, 2017 169 / 275

Lecture 10 Asymptotic equipartition

Main idea

Consider a sequence of symbols x1, x2, · · · , xN sampled from a DMS and
consider the sample average of the log-probabilities of each sampled
symbols

1

N

N∑
i=1

log
1

p(xi)
→ E

[
log

1

p(X)

]
= H(X)

by LLN.

But for the LHS,

1

N

N∑
i=1

log
1

p(xi)
=

1

N
log

1∏N
i=1 p(xi)

= − 1

N
log p(xN),

where xN = x1, x2, · · · , xN

Rearranging the terms, this implies that for any sequence sampled from
the source, the probability of the sampled sequence p(xN)→ 2−NH(X)!

S. Cheng (OU-Tulsa) December 5, 2017 169 / 275

Lecture 10 Asymptotic equipartition

Main idea

Consider a sequence of symbols x1, x2, · · · , xN sampled from a DMS and
consider the sample average of the log-probabilities of each sampled
symbols

1

N

N∑
i=1

log
1

p(xi)
→ E

[
log

1

p(X)

]
= H(X)

by LLN. But for the LHS,

1

N

N∑
i=1

log
1

p(xi)
=

1

N
log

1∏N
i=1 p(xi)

= − 1

N
log p(xN),

where xN = x1, x2, · · · , xN

Rearranging the terms, this implies that for any sequence sampled from
the source, the probability of the sampled sequence p(xN)→ 2−NH(X)!

S. Cheng (OU-Tulsa) December 5, 2017 169 / 275

Lecture 10 Asymptotic equipartition

Main idea

Consider a sequence of symbols x1, x2, · · · , xN sampled from a DMS and
consider the sample average of the log-probabilities of each sampled
symbols

1

N

N∑
i=1

log
1

p(xi)
→ E

[
log

1

p(X)

]
= H(X)

by LLN. But for the LHS,

1

N

N∑
i=1

log
1

p(xi)
=

1

N
log

1∏N
i=1 p(xi)

= − 1

N
log p(xN),

where xN = x1, x2, · · · , xN

Rearranging the terms, this implies that for any sequence sampled from
the source, the probability of the sampled sequence p(xN)→ 2−NH(X)!

S. Cheng (OU-Tulsa) December 5, 2017 169 / 275

Lecture 10 Asymptotic equipartition

Set of typical sequences

Let’s name the sequence xN with p(xN) ∼ 2−NH(X) typical and define the
set of typical sequences

AN
ε (X) = {xN |2−N(H(X)+ε) ≤ p(xN) ≤ 2−N(H(X)−ε)}

For any ε > 0, we can find a sufficiently large N such that any
sampled sequence from the source is typical

Since all typical sequences have probability ∼ 2−NH(X) and they fill
up the entire probability space (everything is typical), there should be
approximately 1

2−NH(X) = 2NH(X) typical sequences

S. Cheng (OU-Tulsa) December 5, 2017 170 / 275

Lecture 10 Asymptotic equipartition

Set of typical sequences

Let’s name the sequence xN with p(xN) ∼ 2−NH(X) typical and define the
set of typical sequences

AN
ε (X) = {xN |2−N(H(X)+ε) ≤ p(xN) ≤ 2−N(H(X)−ε)}

For any ε > 0, we can find a sufficiently large N such that any
sampled sequence from the source is typical

Since all typical sequences have probability ∼ 2−NH(X) and they fill
up the entire probability space (everything is typical), there should be
approximately 1

2−NH(X) = 2NH(X) typical sequences

S. Cheng (OU-Tulsa) December 5, 2017 170 / 275

Lecture 10 Asymptotic equipartition

Set of typical sequences

Let’s name the sequence xN with p(xN) ∼ 2−NH(X) typical and define the
set of typical sequences

AN
ε (X) = {xN |2−N(H(X)+ε) ≤ p(xN) ≤ 2−N(H(X)−ε)}

For any ε > 0, we can find a sufficiently large N such that any
sampled sequence from the source is typical

Since all typical sequences have probability ∼ 2−NH(X) and they fill
up the entire probability space (everything is typical), there should be
approximately 1

2−NH(X) = 2NH(X) typical sequences

S. Cheng (OU-Tulsa) December 5, 2017 170 / 275

Lecture 10 Asymptotic equipartition

Precise bounds on the size of typical set

(1− δ)2N(H(X)−ε) ≤ |AN
ε (X)| ≤ 2N(H(X)+ε)

1 ≥ Pr(XN ∈ AN
ε (X))

=
∑

xN∈AN
ε (X)

p(xN) ≥
∑

xN∈AN
ε (X)

2−N(H(X)+ε)

= |AN
ε (X)|2−N(H(X)+ε)

For a sufficiently large N, we have

1− δ ≤ Pr(XN ∈ AN
ε (X)) =

∑
xN∈AN

ε (X)

p(xN) ≤
∑

xN∈AN
ε (X)

2−N(H(X)−ε)

= |AN
ε (X)|2−N(H(X)−ε)

S. Cheng (OU-Tulsa) December 5, 2017 171 / 275

Lecture 10 Asymptotic equipartition

Precise bounds on the size of typical set

(1− δ)2N(H(X)−ε) ≤ |AN
ε (X)| ≤ 2N(H(X)+ε)

1 ≥ Pr(XN ∈ AN
ε (X)) =

∑
xN∈AN

ε (X)

p(xN)

≥
∑

xN∈AN
ε (X)

2−N(H(X)+ε)

= |AN
ε (X)|2−N(H(X)+ε)

For a sufficiently large N, we have

1− δ ≤ Pr(XN ∈ AN
ε (X)) =

∑
xN∈AN

ε (X)

p(xN) ≤
∑

xN∈AN
ε (X)

2−N(H(X)−ε)

= |AN
ε (X)|2−N(H(X)−ε)

S. Cheng (OU-Tulsa) December 5, 2017 171 / 275

Lecture 10 Asymptotic equipartition

Precise bounds on the size of typical set

(1− δ)2N(H(X)−ε) ≤ |AN
ε (X)| ≤ 2N(H(X)+ε)

1 ≥ Pr(XN ∈ AN
ε (X)) =

∑
xN∈AN

ε (X)

p(xN) ≥
∑

xN∈AN
ε (X)

2−N(H(X)+ε)

= |AN
ε (X)|2−N(H(X)+ε)

For a sufficiently large N, we have

1− δ ≤ Pr(XN ∈ AN
ε (X)) =

∑
xN∈AN

ε (X)

p(xN) ≤
∑

xN∈AN
ε (X)

2−N(H(X)−ε)

= |AN
ε (X)|2−N(H(X)−ε)

S. Cheng (OU-Tulsa) December 5, 2017 171 / 275

Lecture 10 Asymptotic equipartition

Precise bounds on the size of typical set

(1− δ)2N(H(X)−ε) ≤ |AN
ε (X)| ≤ 2N(H(X)+ε)

1 ≥ Pr(XN ∈ AN
ε (X)) =

∑
xN∈AN

ε (X)

p(xN) ≥
∑

xN∈AN
ε (X)

2−N(H(X)+ε)

= |AN
ε (X)|2−N(H(X)+ε)

For a sufficiently large N, we have

1− δ ≤ Pr(XN ∈ AN
ε (X)) =

∑
xN∈AN

ε (X)

p(xN) ≤
∑

xN∈AN
ε (X)

2−N(H(X)−ε)

= |AN
ε (X)|2−N(H(X)−ε)

S. Cheng (OU-Tulsa) December 5, 2017 171 / 275

Lecture 10 Asymptotic equipartition

Precise bounds on the size of typical set

(1− δ)2N(H(X)−ε) ≤ |AN
ε (X)| ≤ 2N(H(X)+ε)

1 ≥ Pr(XN ∈ AN
ε (X)) =

∑
xN∈AN

ε (X)

p(xN) ≥
∑

xN∈AN
ε (X)

2−N(H(X)+ε)

= |AN
ε (X)|2−N(H(X)+ε)

For a sufficiently large N, we have

1− δ ≤ Pr(XN ∈ AN
ε (X))

=
∑

xN∈AN
ε (X)

p(xN) ≤
∑

xN∈AN
ε (X)

2−N(H(X)−ε)

= |AN
ε (X)|2−N(H(X)−ε)

S. Cheng (OU-Tulsa) December 5, 2017 171 / 275

Lecture 10 Asymptotic equipartition

Precise bounds on the size of typical set

(1− δ)2N(H(X)−ε) ≤ |AN
ε (X)| ≤ 2N(H(X)+ε)

1 ≥ Pr(XN ∈ AN
ε (X)) =

∑
xN∈AN

ε (X)

p(xN) ≥
∑

xN∈AN
ε (X)

2−N(H(X)+ε)

= |AN
ε (X)|2−N(H(X)+ε)

For a sufficiently large N, we have

1− δ ≤ Pr(XN ∈ AN
ε (X)) =

∑
xN∈AN

ε (X)

p(xN) ≤
∑

xN∈AN
ε (X)

2−N(H(X)−ε)

= |AN
ε (X)|2−N(H(X)−ε)

S. Cheng (OU-Tulsa) December 5, 2017 171 / 275

Lecture 10 Asymptotic equipartition

AEP

Set of typical
Sequences

Sequences
are equally
probable

Sequence
that won't
happen

Asymptotic equipatition refers to the fact that the probability space is
equally partitioned by the typical sequences

S. Cheng (OU-Tulsa) December 5, 2017 172 / 275

Lecture 10 Asymptotic equipartition

AEP and compression limit

Consider coin flipping again, let say Pr(Head) = 0.3 and N = 1000

The typical sequences will be those with approximately 300 heads and
700 tails

AEP (LLN) tells us that it is almost impossible to get, say, a sequence
of 100 heads and 900 tails

AEP also tells us that the number of typical sequences are
approximately 2NH(X)

Therefore, we can simply assign index to all the typical sequences and
ignore the rest. Then we only need log 2NH(X) = NH(X) to store a
sequence of N symbols. And on average, we need H(X) bits per
symbol as before!

S. Cheng (OU-Tulsa) December 5, 2017 173 / 275

Lecture 10 Asymptotic equipartition

AEP and compression limit

Consider coin flipping again, let say Pr(Head) = 0.3 and N = 1000

The typical sequences will be those with approximately 300 heads and
700 tails

AEP (LLN) tells us that it is almost impossible to get, say, a sequence
of 100 heads and 900 tails

AEP also tells us that the number of typical sequences are
approximately 2NH(X)

Therefore, we can simply assign index to all the typical sequences and
ignore the rest. Then we only need log 2NH(X) = NH(X) to store a
sequence of N symbols. And on average, we need H(X) bits per
symbol as before!

S. Cheng (OU-Tulsa) December 5, 2017 173 / 275

Lecture 10 Asymptotic equipartition

AEP and compression limit

Consider coin flipping again, let say Pr(Head) = 0.3 and N = 1000

The typical sequences will be those with approximately 300 heads and
700 tails

AEP (LLN) tells us that it is almost impossible to get, say, a sequence
of 100 heads and 900 tails

AEP also tells us that the number of typical sequences are
approximately 2NH(X)

Therefore, we can simply assign index to all the typical sequences and
ignore the rest. Then we only need log 2NH(X) = NH(X) to store a
sequence of N symbols. And on average, we need H(X) bits per
symbol as before!

S. Cheng (OU-Tulsa) December 5, 2017 173 / 275

Lecture 10 Asymptotic equipartition

AEP and compression limit

Consider coin flipping again, let say Pr(Head) = 0.3 and N = 1000

The typical sequences will be those with approximately 300 heads and
700 tails

AEP (LLN) tells us that it is almost impossible to get, say, a sequence
of 100 heads and 900 tails

AEP also tells us that the number of typical sequences are
approximately 2NH(X)

Therefore, we can simply assign index to all the typical sequences and
ignore the rest. Then we only need log 2NH(X) = NH(X) to store a
sequence of N symbols. And on average, we need H(X) bits per
symbol as before!

S. Cheng (OU-Tulsa) December 5, 2017 173 / 275

Lecture 10 Asymptotic equipartition

AEP and compression limit

Consider coin flipping again, let say Pr(Head) = 0.3 and N = 1000

The typical sequences will be those with approximately 300 heads and
700 tails

AEP (LLN) tells us that it is almost impossible to get, say, a sequence
of 100 heads and 900 tails

AEP also tells us that the number of typical sequences are
approximately 2NH(X)

Therefore, we can simply assign index to all the typical sequences and
ignore the rest. Then we only need log 2NH(X) = NH(X) to store a
sequence of N symbols. And on average, we need H(X) bits per
symbol as before!

S. Cheng (OU-Tulsa) December 5, 2017 173 / 275

Lecture 11 Review

Previously...

Identification/Decision trees

Random forests

Law of Large Number

Asymptotic equipartition (AEP) and typical sequences

S. Cheng (OU-Tulsa) December 5, 2017 174 / 275

Lecture 11 Overview

This time

Joint typical sequences

Covering and Packing Lemmas

Channel coding setup

Channel coding rate

Channel capacity

Channel Coding Theorem

S. Cheng (OU-Tulsa) December 5, 2017 175 / 275

Lecture 11 Packing lemma and covering lemma

Jointly typical sequences

For a pair of sequences xN and yN , we say that they are jointly typical if

2−N(H(X ,Y)+ε) ≤ p(xN , yN) ≤ 2−N(H(X ,Y)−ε)

and xN and yN themselves are typical

As in the single sequence case,

Any sequence pair drawing from a joint source p(x , y) is essentially
jointly typical

There are ∼ 2NH(X ,Y) jointly typical sequences

S. Cheng (OU-Tulsa) December 5, 2017 176 / 275

p(x , y)

xN

yN

Lecture 11 Packing lemma and covering lemma

Joint typicality of independent seqences

Given sequences XN and Y N independently drawn from discrete
memoryless sources p(x) and p(y)

What is the probability that XN and Y N are jointly typical?

Pr((XN ,Y N) ∈ A(N)
ε)

=
∑

{(xN ,yN)|(xN ,yN)∈A(N)
ε }

p(xN , yN)

=
∑

{(xN ,yN)|(xN ,yN)∈A(N)
ε }

p(xN)p(yN)

≤
∑

{(xN ,yN)|(xN ,yN)∈A(N)
ε }

2−N(H(X)−ε)2−N(H(Y)−ε)

≤2−N(I (X ;Y)−3ε)

p(x)

p(y)


Jointly
typical?

S. Cheng (OU-Tulsa) December 5, 2017 177 / 275

Lecture 11 Packing lemma and covering lemma

Joint typicality of independent seqences

Given sequences XN and Y N independently drawn from discrete
memoryless sources p(x) and p(y)

What is the probability that XN and Y N are jointly typical?

Pr((XN ,Y N) ∈ A(N)
ε)

=
∑

{(xN ,yN)|(xN ,yN)∈A(N)
ε }

p(xN , yN)

=
∑

{(xN ,yN)|(xN ,yN)∈A(N)
ε }

p(xN)p(yN)

≤
∑

{(xN ,yN)|(xN ,yN)∈A(N)
ε }

2−N(H(X)−ε)2−N(H(Y)−ε)

≤2−N(I (X ;Y)−3ε)

p(x)

p(y)


Jointly
typical?

S. Cheng (OU-Tulsa) December 5, 2017 177 / 275

Lecture 11 Packing lemma and covering lemma

Joint typicality of independent seqences

Given sequences XN and Y N independently drawn from discrete
memoryless sources p(x) and p(y)

What is the probability that XN and Y N are jointly typical?

Pr((XN ,Y N) ∈ A(N)
ε)

=
∑

{(xN ,yN)|(xN ,yN)∈A(N)
ε }

p(xN , yN)

=
∑

{(xN ,yN)|(xN ,yN)∈A(N)
ε }

p(xN)p(yN)

≤
∑

{(xN ,yN)|(xN ,yN)∈A(N)
ε }

2−N(H(X)−ε)2−N(H(Y)−ε)

≤2−N(I (X ;Y)−3ε)

p(x)

p(y)


Jointly
typical?

S. Cheng (OU-Tulsa) December 5, 2017 177 / 275

Lecture 11 Packing lemma and covering lemma

Joint typicality of independent seqences

Given sequences XN and Y N independently drawn from discrete
memoryless sources p(x) and p(y)

What is the probability that XN and Y N are jointly typical?

Pr((XN ,Y N) ∈ A(N)
ε)

=
∑

{(xN ,yN)|(xN ,yN)∈A(N)
ε }

p(xN , yN)

=
∑

{(xN ,yN)|(xN ,yN)∈A(N)
ε }

p(xN)p(yN)

≤
∑

{(xN ,yN)|(xN ,yN)∈A(N)
ε }

2−N(H(X)−ε)2−N(H(Y)−ε)

≤2−N(I (X ;Y)−3ε)

p(x)

p(y)


Jointly
typical?

S. Cheng (OU-Tulsa) December 5, 2017 177 / 275

Lecture 11 Packing lemma and covering lemma

Joint typicality of independent seqences

Given sequences XN and Y N independently drawn from discrete
memoryless sources p(x) and p(y)

What is the probability that XN and Y N are jointly typical?

Pr((XN ,Y N) ∈ A(N)
ε)

=
∑

{(xN ,yN)|(xN ,yN)∈A(N)
ε }

p(xN , yN)

=
∑

{(xN ,yN)|(xN ,yN)∈A(N)
ε }

p(xN)p(yN)

≤
∑

{(xN ,yN)|(xN ,yN)∈A(N)
ε }

2−N(H(X)−ε)2−N(H(Y)−ε)

≤2−N(I (X ;Y)−3ε)

p(x)

p(y)


Jointly
typical?

S. Cheng (OU-Tulsa) December 5, 2017 177 / 275

Lecture 11 Packing lemma and covering lemma

Joint typicality of independent seqences

Given sequences XN and Y N independently drawn from discrete
memoryless sources p(x) and p(y)

What is the probability that XN and Y N are jointly typical?

Pr((XN ,Y N) ∈ A(N)
ε)

=
∑

{(xN ,yN)|(xN ,yN)∈A(N)
ε }

p(xN , yN)

=
∑

{(xN ,yN)|(xN ,yN)∈A(N)
ε }

p(xN)p(yN)

≤
∑

{(xN ,yN)|(xN ,yN)∈A(N)
ε }

2−N(H(X)−ε)2−N(H(Y)−ε)

≤2−N(I (X ;Y)−3ε)

p(x)

p(y)


Jointly
typical?

S. Cheng (OU-Tulsa) December 5, 2017 177 / 275

Lecture 11 Packing lemma and covering lemma

Joint typicality of independent seqences

Given sequences XN and Y N independently drawn from discrete
memoryless sources p(x) and p(y)

What is the probability that XN and Y N are jointly typical?

Pr((XN ,Y N) ∈ A(N)
ε)

=
∑

{(xN ,yN)|(xN ,yN)∈A(N)
ε }

p(xN , yN)

=
∑

{(xN ,yN)|(xN ,yN)∈A(N)
ε }

p(xN)p(yN)

≥
∑

{(xN ,yN)|(xN ,yN)∈A(N)
ε }

2−N(H(X)+ε)2−N(H(Y)+ε)

≥(1− δ)2−N(I (X ;Y)+3ε)

p(x)

p(y)


Jointly
typical?

S. Cheng (OU-Tulsa) December 5, 2017 178 / 275

Lecture 11 Packing lemma and covering lemma

Joint typicality of independent seqences

Given sequences XN and Y N independently drawn from discrete
memoryless sources p(x) and p(y)

What is the probability that XN and Y N are jointly typical?

Pr((XN ,Y N) ∈ A(N)
ε)

=
∑

{(xN ,yN)|(xN ,yN)∈A(N)
ε }

p(xN , yN)

=
∑

{(xN ,yN)|(xN ,yN)∈A(N)
ε }

p(xN)p(yN)

≥
∑

{(xN ,yN)|(xN ,yN)∈A(N)
ε }

2−N(H(X)+ε)2−N(H(Y)+ε)

≥(1− δ)2−N(I (X ;Y)+3ε)

p(x)

p(y)


Jointly
typical?

S. Cheng (OU-Tulsa) December 5, 2017 178 / 275

Lecture 11 Packing lemma and covering lemma

Joint typicality of independent seqences

Given sequences XN and Y N independently drawn from discrete
memoryless sources p(x) and p(y)

What is the probability that XN and Y N are jointly typical?

Pr((XN ,Y N) ∈ A(N)
ε)

=
∑

{(xN ,yN)|(xN ,yN)∈A(N)
ε }

p(xN , yN)

=
∑

{(xN ,yN)|(xN ,yN)∈A(N)
ε }

p(xN)p(yN)

≥
∑

{(xN ,yN)|(xN ,yN)∈A(N)
ε }

2−N(H(X)+ε)2−N(H(Y)+ε)

≥(1− δ)2−N(I (X ;Y)+3ε)

p(x)

p(y)


Jointly
typical?

S. Cheng (OU-Tulsa) December 5, 2017 178 / 275

Lecture 11 Packing lemma and covering lemma

Packing lemma

Instead of drawing one Y N sequences, let us draw M of them

The probability of any of the sequence to be jointly typical with XN is
bounded by

Pr(Any one of M Y N jointly typical with XN)

≤MPr((XN ,Y N) ∈ AN
ε (X ,Y))

≤M2−N(I (X ;Y)−3ε)

≤2−N(I (X ;Y)−R−3ε) → 0 as N →∞ and I (X ;Y)− 3ε > R,

where 2NR = M

Since ε can be made arbitrarily small as N increases, as long as
I (X ;Y) > R, we can find a sufficiently large N so that we can “pack” the
M Y N with XN and none of the Y N will be jointly typical with XN

S. Cheng (OU-Tulsa) December 5, 2017 179 / 275

Lecture 11 Packing lemma and covering lemma

Packing lemma

Instead of drawing one Y N sequences, let us draw M of them

The probability of any of the sequence to be jointly typical with XN is
bounded by

Pr(Any one of M Y N jointly typical with XN)

≤MPr((XN ,Y N) ∈ AN
ε (X ,Y))

≤M2−N(I (X ;Y)−3ε)

≤2−N(I (X ;Y)−R−3ε) → 0 as N →∞ and I (X ;Y)− 3ε > R,

where 2NR = M

Since ε can be made arbitrarily small as N increases, as long as
I (X ;Y) > R, we can find a sufficiently large N so that we can “pack” the
M Y N with XN and none of the Y N will be jointly typical with XN

S. Cheng (OU-Tulsa) December 5, 2017 179 / 275

Lecture 11 Packing lemma and covering lemma

Packing lemma

Instead of drawing one Y N sequences, let us draw M of them

The probability of any of the sequence to be jointly typical with XN is
bounded by

Pr(Any one of M Y N jointly typical with XN)

≤MPr((XN ,Y N) ∈ AN
ε (X ,Y))

≤M2−N(I (X ;Y)−3ε)

≤2−N(I (X ;Y)−R−3ε) → 0 as N →∞ and I (X ;Y)− 3ε > R,

where 2NR = M

Since ε can be made arbitrarily small as N increases, as long as
I (X ;Y) > R, we can find a sufficiently large N so that we can “pack” the
M Y N with XN and none of the Y N will be jointly typical with XN

S. Cheng (OU-Tulsa) December 5, 2017 179 / 275

Lecture 11 Packing lemma and covering lemma

Packing lemma

Instead of drawing one Y N sequences, let us draw M of them

The probability of any of the sequence to be jointly typical with XN is
bounded by

Pr(Any one of M Y N jointly typical with XN)

≤MPr((XN ,Y N) ∈ AN
ε (X ,Y))

≤M2−N(I (X ;Y)−3ε)

≤2−N(I (X ;Y)−R−3ε)

→ 0 as N →∞ and I (X ;Y)− 3ε > R,

where 2NR = M

Since ε can be made arbitrarily small as N increases, as long as
I (X ;Y) > R, we can find a sufficiently large N so that we can “pack” the
M Y N with XN and none of the Y N will be jointly typical with XN

S. Cheng (OU-Tulsa) December 5, 2017 179 / 275

Lecture 11 Packing lemma and covering lemma

Packing lemma

Instead of drawing one Y N sequences, let us draw M of them

The probability of any of the sequence to be jointly typical with XN is
bounded by

Pr(Any one of M Y N jointly typical with XN)

≤MPr((XN ,Y N) ∈ AN
ε (X ,Y))

≤M2−N(I (X ;Y)−3ε)

≤2−N(I (X ;Y)−R−3ε) → 0 as N →∞ and I (X ;Y)− 3ε > R,

where 2NR = M

Since ε can be made arbitrarily small as N increases, as long as
I (X ;Y) > R, we can find a sufficiently large N so that we can “pack” the
M Y N with XN and none of the Y N will be jointly typical with XN

S. Cheng (OU-Tulsa) December 5, 2017 179 / 275

Lecture 11 Packing lemma and covering lemma

Packing lemma

Instead of drawing one Y N sequences, let us draw M of them

The probability of any of the sequence to be jointly typical with XN is
bounded by

Pr(Any one of M Y N jointly typical with XN)

≤MPr((XN ,Y N) ∈ AN
ε (X ,Y))

≤M2−N(I (X ;Y)−3ε)

≤2−N(I (X ;Y)−R−3ε) → 0 as N →∞ and I (X ;Y)− 3ε > R,

where 2NR = M

Since ε can be made arbitrarily small as N increases, as long as
I (X ;Y) > R, we can find a sufficiently large N so that we can “pack” the
M Y N with XN and none of the Y N will be jointly typical with XN

S. Cheng (OU-Tulsa) December 5, 2017 179 / 275

Lecture 11 Packing lemma and covering lemma

Covering lemma

Again, draw M(= 2NR) Y N sequences

Under what condition that at least one Y N jointly typical with XN?

Pr((XN(m),Y N) /∈ A(N)
ε (X ,Y) for all m)

=
M∏

m=1

Pr((XN(m),Y N) /∈ A(N)
ε (Y ,X))

=
M∏

m=1

[
1− Pr((XN(m),Y N) ∈ A(N)

ε (Y ,X))
]

≤(1− (1− δ)2−N(I (Y ;X)+3ε))M

≤ exp(−M(1− δ)2−N(I (Y ;X)+3ε))

≤ exp(−(1− δ)2−N(I (Y ;X)−R+3ε))→ 0 as N →∞ and R > I (X ;Y) + 3ε

S. Cheng (OU-Tulsa) December 5, 2017 180 / 275

0 2 4

−4

−2

0

1− x

e−x

Lecture 11 Packing lemma and covering lemma

Covering lemma

Again, draw M(= 2NR) Y N sequences

Under what condition that at least one Y N jointly typical with XN?

Pr((XN(m),Y N) /∈ A(N)
ε (X ,Y) for all m)

=
M∏

m=1

Pr((XN(m),Y N) /∈ A(N)
ε (Y ,X))

=
M∏

m=1

[
1− Pr((XN(m),Y N) ∈ A(N)

ε (Y ,X))
]

≤(1− (1− δ)2−N(I (Y ;X)+3ε))M

≤ exp(−M(1− δ)2−N(I (Y ;X)+3ε))

≤ exp(−(1− δ)2−N(I (Y ;X)−R+3ε))→ 0 as N →∞ and R > I (X ;Y) + 3ε

S. Cheng (OU-Tulsa) December 5, 2017 180 / 275

0 2 4

−4

−2

0

1− x

e−x

Lecture 11 Packing lemma and covering lemma

Covering lemma

Again, draw M(= 2NR) Y N sequences

Under what condition that at least one Y N jointly typical with XN?

Pr((XN(m),Y N) /∈ A(N)
ε (X ,Y) for all m)

=
M∏

m=1

Pr((XN(m),Y N) /∈ A(N)
ε (Y ,X))

=
M∏

m=1

[
1− Pr((XN(m),Y N) ∈ A(N)

ε (Y ,X))
]

≤(1− (1− δ)2−N(I (Y ;X)+3ε))M

≤ exp(−M(1− δ)2−N(I (Y ;X)+3ε))

≤ exp(−(1− δ)2−N(I (Y ;X)−R+3ε))→ 0 as N →∞ and R > I (X ;Y) + 3ε

S. Cheng (OU-Tulsa) December 5, 2017 180 / 275

0 2 4

−4

−2

0

1− x

e−x

Lecture 11 Packing lemma and covering lemma

Covering lemma

Again, draw M(= 2NR) Y N sequences

Under what condition that at least one Y N jointly typical with XN?

Pr((XN(m),Y N) /∈ A(N)
ε (X ,Y) for all m)

=
M∏

m=1

Pr((XN(m),Y N) /∈ A(N)
ε (Y ,X))

=
M∏

m=1

[
1− Pr((XN(m),Y N) ∈ A(N)

ε (Y ,X))
]

≤(1− (1− δ)2−N(I (Y ;X)+3ε))M

≤ exp(−M(1− δ)2−N(I (Y ;X)+3ε))

≤ exp(−(1− δ)2−N(I (Y ;X)−R+3ε))→ 0 as N →∞ and R > I (X ;Y) + 3ε

S. Cheng (OU-Tulsa) December 5, 2017 180 / 275

0 2 4

−4

−2

0

1− x

e−x

Lecture 11 Packing lemma and covering lemma

Covering lemma

Again, draw M(= 2NR) Y N sequences

Under what condition that at least one Y N jointly typical with XN?

Pr((XN(m),Y N) /∈ A(N)
ε (X ,Y) for all m)

=
M∏

m=1

Pr((XN(m),Y N) /∈ A(N)
ε (Y ,X))

=
M∏

m=1

[
1− Pr((XN(m),Y N) ∈ A(N)

ε (Y ,X))
]

≤(1− (1− δ)2−N(I (Y ;X)+3ε))M

≤ exp(−M(1− δ)2−N(I (Y ;X)+3ε))

≤ exp(−(1− δ)2−N(I (Y ;X)−R+3ε))→ 0 as N →∞ and R > I (X ;Y) + 3ε

S. Cheng (OU-Tulsa) December 5, 2017 180 / 275

0 2 4

−4

−2

0

1− x

e−x

Lecture 11 Packing lemma and covering lemma

Covering lemma

Again, draw M(= 2NR) Y N sequences

Under what condition that at least one Y N jointly typical with XN?

Pr((XN(m),Y N) /∈ A(N)
ε (X ,Y) for all m)

=
M∏

m=1

Pr((XN(m),Y N) /∈ A(N)
ε (Y ,X))

=
M∏

m=1

[
1− Pr((XN(m),Y N) ∈ A(N)

ε (Y ,X))
]

≤(1− (1− δ)2−N(I (Y ;X)+3ε))M

≤ exp(−M(1− δ)2−N(I (Y ;X)+3ε))

≤ exp(−(1− δ)2−N(I (Y ;X)−R+3ε))→ 0 as N →∞ and R > I (X ;Y) + 3ε

S. Cheng (OU-Tulsa) December 5, 2017 180 / 275

0 2 4

−4

−2

0

1− x

e−x

Lecture 11 Packing lemma and covering lemma

Covering lemma

Again, draw M(= 2NR) Y N sequences

Under what condition that at least one Y N jointly typical with XN?

Pr((XN(m),Y N) /∈ A(N)
ε (X ,Y) for all m)

=
M∏

m=1

Pr((XN(m),Y N) /∈ A(N)
ε (Y ,X))

=
M∏

m=1

[
1− Pr((XN(m),Y N) ∈ A(N)

ε (Y ,X))
]

≤(1− (1− δ)2−N(I (Y ;X)+3ε))M

≤ exp(−M(1− δ)2−N(I (Y ;X)+3ε))

≤ exp(−(1− δ)2−N(I (Y ;X)−R+3ε))→ 0 as N →∞ and R > I (X ;Y) + 3ε

S. Cheng (OU-Tulsa) December 5, 2017 180 / 275

0 2 4

−4

−2

0

1− x

e−x

Lecture 11 Packing lemma and covering lemma

Summary of packing lemma and covering lemma

Packing Lemma

We can “pack” M = 2NR (with R < I (X ;Y)) xN together without being
jointly typical with yN

Covering Lemma

We can “cover” with M = 2NR (with R > I (X ;Y)) xN such that at least
one xN being jointly typical with yN

Remark

Packing lemma is useful in the proof of channel coding theorem

Covering lemma is useful in the proof of rate-distortion theorem

We will look into the above applications later in this course

S. Cheng (OU-Tulsa) December 5, 2017 181 / 275

Lecture 11 Channel coding setup

Channel coding setup

p(m) Encoder p(y |x) Decoder m̂
m xN yN

As the name suggests, the output of a discrete memoryless channel
(DMS) only depends on the current input (thus no memoryless). And
both its input X and output Y are characterized by the conditional
probability p(y |x)

Given an input sequence xN = x1, · · · , xN , the probability of getting
an output sequence yN = y1, · · · , yN is p(yN |xN) =

∏N
i=1 p(yi |xi)

Given a message m (say generated from a distribution p(m))

We will have an encoder decoder pair
The encoder will convert m to xN suitable for transmission
Decoder will try to extracted the message from the channel output yN

S. Cheng (OU-Tulsa) December 5, 2017 182 / 275

Lecture 11 Channel coding setup

Channel coding setup

p(m) Encoder p(y |x) Decoder m̂
m xN yN

As the name suggests, the output of a discrete memoryless channel
(DMS) only depends on the current input (thus no memoryless). And
both its input X and output Y are characterized by the conditional
probability p(y |x)
Given an input sequence xN = x1, · · · , xN , the probability of getting
an output sequence yN = y1, · · · , yN is p(yN |xN) =

∏N
i=1 p(yi |xi)

Given a message m (say generated from a distribution p(m))

We will have an encoder decoder pair
The encoder will convert m to xN suitable for transmission
Decoder will try to extracted the message from the channel output yN

S. Cheng (OU-Tulsa) December 5, 2017 182 / 275

Lecture 11 Channel coding setup

Channel coding setup

p(m) Encoder p(y |x) Decoder m̂
m xN yN

As the name suggests, the output of a discrete memoryless channel
(DMS) only depends on the current input (thus no memoryless). And
both its input X and output Y are characterized by the conditional
probability p(y |x)
Given an input sequence xN = x1, · · · , xN , the probability of getting
an output sequence yN = y1, · · · , yN is p(yN |xN) =

∏N
i=1 p(yi |xi)

Given a message m (say generated from a distribution p(m))

We will have an encoder decoder pair
The encoder will convert m to xN suitable for transmission
Decoder will try to extracted the message from the channel output yN

S. Cheng (OU-Tulsa) December 5, 2017 182 / 275

Lecture 11 Channel coding setup

Channel coding setup

p(m) Encoder p(y |x) Decoder m̂
m xN yN

As the name suggests, the output of a discrete memoryless channel
(DMS) only depends on the current input (thus no memoryless). And
both its input X and output Y are characterized by the conditional
probability p(y |x)
Given an input sequence xN = x1, · · · , xN , the probability of getting
an output sequence yN = y1, · · · , yN is p(yN |xN) =

∏N
i=1 p(yi |xi)

Given a message m (say generated from a distribution p(m))

We will have an encoder decoder pair

The encoder will convert m to xN suitable for transmission
Decoder will try to extracted the message from the channel output yN

S. Cheng (OU-Tulsa) December 5, 2017 182 / 275

Lecture 11 Channel coding setup

Channel coding setup

p(m) Encoder p(y |x) Decoder m̂
m xN yN

As the name suggests, the output of a discrete memoryless channel
(DMS) only depends on the current input (thus no memoryless). And
both its input X and output Y are characterized by the conditional
probability p(y |x)
Given an input sequence xN = x1, · · · , xN , the probability of getting
an output sequence yN = y1, · · · , yN is p(yN |xN) =

∏N
i=1 p(yi |xi)

Given a message m (say generated from a distribution p(m))

We will have an encoder decoder pair
The encoder will convert m to xN suitable for transmission

Decoder will try to extracted the message from the channel output yN

S. Cheng (OU-Tulsa) December 5, 2017 182 / 275

Lecture 11 Channel coding setup

Channel coding setup

p(m) Encoder p(y |x) Decoder m̂
m xN yN

As the name suggests, the output of a discrete memoryless channel
(DMS) only depends on the current input (thus no memoryless). And
both its input X and output Y are characterized by the conditional
probability p(y |x)
Given an input sequence xN = x1, · · · , xN , the probability of getting
an output sequence yN = y1, · · · , yN is p(yN |xN) =

∏N
i=1 p(yi |xi)

Given a message m (say generated from a distribution p(m))

We will have an encoder decoder pair
The encoder will convert m to xN suitable for transmission
Decoder will try to extracted the message from the channel output yN

S. Cheng (OU-Tulsa) December 5, 2017 182 / 275

Lecture 11 Channel coding setup

Channel coding rate

p(m) Encoder p(y |x) Decoder m̂
m xN yN

The channel coding rate is defined as number of bits of message can be
sent per channel use

Since there is H(M) bits of information for each message M sent

R = H(M)
N

S. Cheng (OU-Tulsa) December 5, 2017 183 / 275

Lecture 11 Channel coding setup

Channel coding rate

p(m) Encoder p(y |x) Decoder m̂
m xN yN

The channel coding rate is defined as number of bits of message can be
sent per channel use

Since there is H(M) bits of information for each message M sent

R = H(M)
N

S. Cheng (OU-Tulsa) December 5, 2017 183 / 275

Lecture 11 Channel coding setup

Channel coding rate

p(m) Encoder p(y |x) Decoder m̂
m xN yN

The channel coding rate is defined as number of bits of message can be
sent per channel use

Since there is H(M) bits of information for each message M sent

R = H(M)
N

S. Cheng (OU-Tulsa) December 5, 2017 183 / 275

Lecture 11 Channel capacity

Channel capacity

By Shannon’s channel coding theorem, the capacity of the channel
(will be shown later) is given by

C = max
p(x)

I (X ;Y)

This means that as long as the rate R is less than the capacity C , we
can find encoder-decoder pair such that the decoding error
(Pr(M̂ 6= M)) can be made arbitrarily small

On the other hand, if R is larger than the capacity C , no matter how
we try, it is impossible to recontruct m error free

An intuitive interpretation is that the amount of information can be
passed through a channel is just mutual information between the
input and output. And since we can pick the statistics of our input,
we may make our choice wisely and maximize the mutual information.
And the maximum that we can attain is the capacity

S. Cheng (OU-Tulsa) December 5, 2017 184 / 275

Lecture 11 Channel capacity

Channel capacity

By Shannon’s channel coding theorem, the capacity of the channel
(will be shown later) is given by

C = max
p(x)

I (X ;Y)

This means that as long as the rate R is less than the capacity C , we
can find encoder-decoder pair such that the decoding error
(Pr(M̂ 6= M)) can be made arbitrarily small

On the other hand, if R is larger than the capacity C , no matter how
we try, it is impossible to recontruct m error free

An intuitive interpretation is that the amount of information can be
passed through a channel is just mutual information between the
input and output. And since we can pick the statistics of our input,
we may make our choice wisely and maximize the mutual information.
And the maximum that we can attain is the capacity

S. Cheng (OU-Tulsa) December 5, 2017 184 / 275

Lecture 11 Channel capacity

Channel capacity

By Shannon’s channel coding theorem, the capacity of the channel
(will be shown later) is given by

C = max
p(x)

I (X ;Y)

This means that as long as the rate R is less than the capacity C , we
can find encoder-decoder pair such that the decoding error
(Pr(M̂ 6= M)) can be made arbitrarily small

On the other hand, if R is larger than the capacity C , no matter how
we try, it is impossible to recontruct m error free

An intuitive interpretation is that the amount of information can be
passed through a channel is just mutual information between the
input and output. And since we can pick the statistics of our input,
we may make our choice wisely and maximize the mutual information.
And the maximum that we can attain is the capacity

S. Cheng (OU-Tulsa) December 5, 2017 184 / 275

Lecture 11 Channel capacity

Channel capacity

By Shannon’s channel coding theorem, the capacity of the channel
(will be shown later) is given by

C = max
p(x)

I (X ;Y)

This means that as long as the rate R is less than the capacity C , we
can find encoder-decoder pair such that the decoding error
(Pr(M̂ 6= M)) can be made arbitrarily small

On the other hand, if R is larger than the capacity C , no matter how
we try, it is impossible to recontruct m error free

An intuitive interpretation is that the amount of information can be
passed through a channel is just mutual information between the
input and output. And since we can pick the statistics of our input,
we may make our choice wisely and maximize the mutual information.
And the maximum that we can attain is the capacity

S. Cheng (OU-Tulsa) December 5, 2017 184 / 275

Lecture 11 Channel capacity

Continuous channel

p(m) Encoder? p(y |x) Decoder? m̂
m xN yN

S. Cheng (OU-Tulsa) December 5, 2017 185 / 275

Lecture 11 Channel capacity

Continuous channel

p(m) Encoder D/A p(y |x) A/D Decoder m̂
m xN

∆ xN yN yN
∆

For continuous channel, we can create a “pseudo” discrete channel
using A/D and D/A converters

The maximum information that can pass through the channel will
then be

C∆ = max
p(x)

I (X∆;Y∆) = max
p(x)

H(Y∆)− H(Y∆|X∆)

≈ max
p(x)

h(Y)− log∆− h(Y |X∆) + log∆

≈ max
p(x)

h(Y)− h(Y |X) = max
p(x)

I (X ;Y)

As ∆→ 0, C = maxp(x) I (X ;Y). So expression is completely the
same as the discrete case

S. Cheng (OU-Tulsa) December 5, 2017 186 / 275

Lecture 11 Channel capacity

Continuous channel

p(m) Encoder D/A p(y |x) A/D Decoder m̂
m xN

∆ xN yN yN
∆

For continuous channel, we can create a “pseudo” discrete channel
using A/D and D/A converters

The maximum information that can pass through the channel will
then be

C∆ = max
p(x)

I (X∆;Y∆) = max
p(x)

H(Y∆)− H(Y∆|X∆)

≈ max
p(x)

h(Y)− log∆− h(Y |X∆) + log∆

≈ max
p(x)

h(Y)− h(Y |X) = max
p(x)

I (X ;Y)

As ∆→ 0, C = maxp(x) I (X ;Y). So expression is completely the
same as the discrete case

S. Cheng (OU-Tulsa) December 5, 2017 186 / 275

Lecture 11 Channel capacity

Continuous channel

p(m) Encoder D/A p(y |x) A/D Decoder m̂
m xN

∆ xN yN yN
∆

For continuous channel, we can create a “pseudo” discrete channel
using A/D and D/A converters

The maximum information that can pass through the channel will
then be

C∆ = max
p(x)

I (X∆;Y∆) = max
p(x)

H(Y∆)− H(Y∆|X∆)

≈ max
p(x)

h(Y)− log∆− h(Y |X∆) + log∆

≈ max
p(x)

h(Y)− h(Y |X) = max
p(x)

I (X ;Y)

As ∆→ 0, C = maxp(x) I (X ;Y). So expression is completely the
same as the discrete case

S. Cheng (OU-Tulsa) December 5, 2017 186 / 275

Lecture 11 Channel capacity

Example: Binary symmetric channel

Both input and output are binary (say take value 0 or 1)

The channel is symmetric in the sense that

pY |X (1|0) = pY |X (0|1) = p

and
pY |X (0|0) = pY |X (1|1) = 1− p,

where p is known to be the cross-over probability

Capacity is given by

C = max
p(x)

I (X ;Y)

= max
p(x)

H(Y)− H(Y |X)

= max
p(x)

H(Y)− H(p) = 1− H(p)

S. Cheng (OU-Tulsa) December 5, 2017 187 / 275

Lecture 11 Channel capacity

Example: Binary symmetric channel

Both input and output are binary (say take value 0 or 1)

The channel is symmetric in the sense that

pY |X (1|0) = pY |X (0|1) = p

and
pY |X (0|0) = pY |X (1|1) = 1− p,

where p is known to be the cross-over probability

Capacity is given by

C = max
p(x)

I (X ;Y)

= max
p(x)

H(Y)− H(Y |X)

= max
p(x)

H(Y)− H(p) = 1− H(p)

S. Cheng (OU-Tulsa) December 5, 2017 187 / 275

Lecture 11 Channel capacity

Example: Binary symmetric channel

Both input and output are binary (say take value 0 or 1)

The channel is symmetric in the sense that

pY |X (1|0) = pY |X (0|1) = p

and
pY |X (0|0) = pY |X (1|1) = 1− p,

where p is known to be the cross-over probability

Capacity is given by

C = max
p(x)

I (X ;Y)

= max
p(x)

H(Y)− H(Y |X)

= max
p(x)

H(Y)− H(p) = 1− H(p)

S. Cheng (OU-Tulsa) December 5, 2017 187 / 275

Lecture 11 Channel capacity

Example: Binary symmetric channel

Both input and output are binary (say take value 0 or 1)

The channel is symmetric in the sense that

pY |X (1|0) = pY |X (0|1) = p

and
pY |X (0|0) = pY |X (1|1) = 1− p,

where p is known to be the cross-over probability

Capacity is given by

C = max
p(x)

I (X ;Y)

= max
p(x)

H(Y)− H(Y |X)

= max
p(x)

H(Y)− H(p) = 1− H(p)

S. Cheng (OU-Tulsa) December 5, 2017 187 / 275

Lecture 11 Channel capacity

Example: Binary symmetric channel

Both input and output are binary (say take value 0 or 1)

The channel is symmetric in the sense that

pY |X (1|0) = pY |X (0|1) = p

and
pY |X (0|0) = pY |X (1|1) = 1− p,

where p is known to be the cross-over probability

Capacity is given by

C = max
p(x)

I (X ;Y)

= max
p(x)

H(Y)− H(Y |X)

= max
p(x)

H(Y)− H(p)

= 1− H(p)

S. Cheng (OU-Tulsa) December 5, 2017 187 / 275

Lecture 11 Channel capacity

Example: Binary symmetric channel

Both input and output are binary (say take value 0 or 1)

The channel is symmetric in the sense that

pY |X (1|0) = pY |X (0|1) = p

and
pY |X (0|0) = pY |X (1|1) = 1− p,

where p is known to be the cross-over probability

Capacity is given by

C = max
p(x)

I (X ;Y)

= max
p(x)

H(Y)− H(Y |X)

= max
p(x)

H(Y)− H(p) = 1− H(p)

S. Cheng (OU-Tulsa) December 5, 2017 187 / 275

Lecture 11 Channel capacity

Example: Gaussian channel

The channel output Y = X + Z , where Z is a zero-mean Gaussian noise
(independent of the input X)

C = max
p(x)

I (X ;Y)

= max
p(x)

h(Y)− h(Y |X) = max
p(x)

h(Y)− h(X + Z |X)

= max
p(x)

h(Y)− h(Z |X) = max
p(x)

h(Y)− h(Z)

= max
p(x)

h(Y)− 1

2
log 2πeσ2

Z =
1

2
log 2πeσ2

Y −
1

2
log 2πeσ2

Z

=
1

2
log

σ2
X + σ2

Z

σ2
Z

=
1

2
log

(
1 +

σ2
X

σ2
Z

)
=

1

2
log(1 + SNR),

where SNR is the signal to noise ratio

S. Cheng (OU-Tulsa) December 5, 2017 188 / 275

Lecture 11 Channel capacity

Example: Gaussian channel

The channel output Y = X + Z , where Z is a zero-mean Gaussian noise
(independent of the input X)

C = max
p(x)

I (X ;Y)

= max
p(x)

h(Y)− h(Y |X)

= max
p(x)

h(Y)− h(X + Z |X)

= max
p(x)

h(Y)− h(Z |X) = max
p(x)

h(Y)− h(Z)

= max
p(x)

h(Y)− 1

2
log 2πeσ2

Z =
1

2
log 2πeσ2

Y −
1

2
log 2πeσ2

Z

=
1

2
log

σ2
X + σ2

Z

σ2
Z

=
1

2
log

(
1 +

σ2
X

σ2
Z

)
=

1

2
log(1 + SNR),

where SNR is the signal to noise ratio

S. Cheng (OU-Tulsa) December 5, 2017 188 / 275

Lecture 11 Channel capacity

Example: Gaussian channel

The channel output Y = X + Z , where Z is a zero-mean Gaussian noise
(independent of the input X)

C = max
p(x)

I (X ;Y)

= max
p(x)

h(Y)− h(Y |X) = max
p(x)

h(Y)− h(X + Z |X)

= max
p(x)

h(Y)− h(Z |X) = max
p(x)

h(Y)− h(Z)

= max
p(x)

h(Y)− 1

2
log 2πeσ2

Z =
1

2
log 2πeσ2

Y −
1

2
log 2πeσ2

Z

=
1

2
log

σ2
X + σ2

Z

σ2
Z

=
1

2
log

(
1 +

σ2
X

σ2
Z

)
=

1

2
log(1 + SNR),

where SNR is the signal to noise ratio

S. Cheng (OU-Tulsa) December 5, 2017 188 / 275

Lecture 11 Channel capacity

Example: Gaussian channel

The channel output Y = X + Z , where Z is a zero-mean Gaussian noise
(independent of the input X)

C = max
p(x)

I (X ;Y)

= max
p(x)

h(Y)− h(Y |X) = max
p(x)

h(Y)− h(X + Z |X)

= max
p(x)

h(Y)− h(Z |X)

= max
p(x)

h(Y)− h(Z)

= max
p(x)

h(Y)− 1

2
log 2πeσ2

Z =
1

2
log 2πeσ2

Y −
1

2
log 2πeσ2

Z

=
1

2
log

σ2
X + σ2

Z

σ2
Z

=
1

2
log

(
1 +

σ2
X

σ2
Z

)
=

1

2
log(1 + SNR),

where SNR is the signal to noise ratio

S. Cheng (OU-Tulsa) December 5, 2017 188 / 275

Lecture 11 Channel capacity

Example: Gaussian channel

The channel output Y = X + Z , where Z is a zero-mean Gaussian noise
(independent of the input X)

C = max
p(x)

I (X ;Y)

= max
p(x)

h(Y)− h(Y |X) = max
p(x)

h(Y)− h(X + Z |X)

= max
p(x)

h(Y)− h(Z |X) = max
p(x)

h(Y)− h(Z)

= max
p(x)

h(Y)− 1

2
log 2πeσ2

Z =
1

2
log 2πeσ2

Y −
1

2
log 2πeσ2

Z

=
1

2
log

σ2
X + σ2

Z

σ2
Z

=
1

2
log

(
1 +

σ2
X

σ2
Z

)
=

1

2
log(1 + SNR),

where SNR is the signal to noise ratio

S. Cheng (OU-Tulsa) December 5, 2017 188 / 275

Lecture 11 Channel capacity

Example: Gaussian channel

The channel output Y = X + Z , where Z is a zero-mean Gaussian noise
(independent of the input X)

C = max
p(x)

I (X ;Y)

= max
p(x)

h(Y)− h(Y |X) = max
p(x)

h(Y)− h(X + Z |X)

= max
p(x)

h(Y)− h(Z |X) = max
p(x)

h(Y)− h(Z)

= max
p(x)

h(Y)− 1

2
log 2πeσ2

Z

=
1

2
log 2πeσ2

Y −
1

2
log 2πeσ2

Z

=
1

2
log

σ2
X + σ2

Z

σ2
Z

=
1

2
log

(
1 +

σ2
X

σ2
Z

)
=

1

2
log(1 + SNR),

where SNR is the signal to noise ratio

S. Cheng (OU-Tulsa) December 5, 2017 188 / 275

Lecture 11 Channel capacity

Example: Gaussian channel

The channel output Y = X + Z , where Z is a zero-mean Gaussian noise
(independent of the input X)

C = max
p(x)

I (X ;Y)

= max
p(x)

h(Y)− h(Y |X) = max
p(x)

h(Y)− h(X + Z |X)

= max
p(x)

h(Y)− h(Z |X) = max
p(x)

h(Y)− h(Z)

= max
p(x)

h(Y)− 1

2
log 2πeσ2

Z =
1

2
log 2πeσ2

Y −
1

2
log 2πeσ2

Z

=
1

2
log

σ2
X + σ2

Z

σ2
Z

=
1

2
log

(
1 +

σ2
X

σ2
Z

)
=

1

2
log(1 + SNR),

where SNR is the signal to noise ratio

S. Cheng (OU-Tulsa) December 5, 2017 188 / 275

Lecture 11 Channel capacity

Example: Gaussian channel

The channel output Y = X + Z , where Z is a zero-mean Gaussian noise
(independent of the input X)

C = max
p(x)

I (X ;Y)

= max
p(x)

h(Y)− h(Y |X) = max
p(x)

h(Y)− h(X + Z |X)

= max
p(x)

h(Y)− h(Z |X) = max
p(x)

h(Y)− h(Z)

= max
p(x)

h(Y)− 1

2
log 2πeσ2

Z =
1

2
log 2πeσ2

Y −
1

2
log 2πeσ2

Z

=
1

2
log

σ2
X + σ2

Z

σ2
Z

=
1

2
log

(
1 +

σ2
X

σ2
Z

)

=
1

2
log(1 + SNR),

where SNR is the signal to noise ratio

S. Cheng (OU-Tulsa) December 5, 2017 188 / 275

Lecture 11 Channel capacity

Example: Gaussian channel

The channel output Y = X + Z , where Z is a zero-mean Gaussian noise
(independent of the input X)

C = max
p(x)

I (X ;Y)

= max
p(x)

h(Y)− h(Y |X) = max
p(x)

h(Y)− h(X + Z |X)

= max
p(x)

h(Y)− h(Z |X) = max
p(x)

h(Y)− h(Z)

= max
p(x)

h(Y)− 1

2
log 2πeσ2

Z =
1

2
log 2πeσ2

Y −
1

2
log 2πeσ2

Z

=
1

2
log

σ2
X + σ2

Z

σ2
Z

=
1

2
log

(
1 +

σ2
X

σ2
Z

)
=

1

2
log(1 + SNR),

where SNR is the signal to noise ratio

S. Cheng (OU-Tulsa) December 5, 2017 188 / 275

Lecture 11 Channel capacity

Example: Additive White Gaussian Noise (AWGN) channel

Consider an AWGN channel with bandwidth W and two-sided power
spectrum density of N0/2

From the result of Nyquist and Shannon, a signal of bandwidth W
will need to at least 2W samples per second to be fully reconstructed

Per each second, 2W samples needed to recover the signal

Per each second, 2W degrees of freedom exists ⇒ 2W parallel
Gaussian channel per second

Given N0, SNR =
σ2
X

WN0
= P

WN0

C = 2W
1

2
log(1 + SNR) = W log

(
1 +

P

WN0

)

S. Cheng (OU-Tulsa) December 5, 2017 189 / 275

Lecture 11 Channel capacity

Example: Additive White Gaussian Noise (AWGN) channel

Consider an AWGN channel with bandwidth W and two-sided power
spectrum density of N0/2

From the result of Nyquist and Shannon, a signal of bandwidth W
will need to at least 2W samples per second to be fully reconstructed

Per each second, 2W samples needed to recover the signal

Per each second, 2W degrees of freedom exists ⇒ 2W parallel
Gaussian channel per second

Given N0, SNR =
σ2
X

WN0
= P

WN0

C = 2W
1

2
log(1 + SNR) = W log

(
1 +

P

WN0

)

S. Cheng (OU-Tulsa) December 5, 2017 189 / 275

Lecture 11 Channel capacity

Example: Additive White Gaussian Noise (AWGN) channel

Consider an AWGN channel with bandwidth W and two-sided power
spectrum density of N0/2

From the result of Nyquist and Shannon, a signal of bandwidth W
will need to at least 2W samples per second to be fully reconstructed

Per each second, 2W samples needed to recover the signal

Per each second, 2W degrees of freedom exists ⇒ 2W parallel
Gaussian channel per second

Given N0, SNR =
σ2
X

WN0
= P

WN0

C = 2W
1

2
log(1 + SNR) = W log

(
1 +

P

WN0

)

S. Cheng (OU-Tulsa) December 5, 2017 189 / 275

Lecture 11 Channel capacity

Example: Additive White Gaussian Noise (AWGN) channel

Consider an AWGN channel with bandwidth W and two-sided power
spectrum density of N0/2

From the result of Nyquist and Shannon, a signal of bandwidth W
will need to at least 2W samples per second to be fully reconstructed

Per each second, 2W samples needed to recover the signal

Per each second, 2W degrees of freedom exists ⇒ 2W parallel
Gaussian channel per second

Given N0, SNR =
σ2
X

WN0
= P

WN0

C = 2W
1

2
log(1 + SNR) = W log

(
1 +

P

WN0

)

S. Cheng (OU-Tulsa) December 5, 2017 189 / 275

Lecture 11 Channel capacity

Example: Additive White Gaussian Noise (AWGN) channel

Consider an AWGN channel with bandwidth W and two-sided power
spectrum density of N0/2

From the result of Nyquist and Shannon, a signal of bandwidth W
will need to at least 2W samples per second to be fully reconstructed

Per each second, 2W samples needed to recover the signal

Per each second, 2W degrees of freedom exists ⇒ 2W parallel
Gaussian channel per second

Given N0, SNR =
σ2
X

WN0
= P

WN0

C = 2W
1

2
log(1 + SNR) = W log

(
1 +

P

WN0

)

S. Cheng (OU-Tulsa) December 5, 2017 189 / 275

Lecture 11 Channel capacity

Example: Additive White Gaussian Noise (AWGN) channel

Consider an AWGN channel with bandwidth W and two-sided power
spectrum density of N0/2

From the result of Nyquist and Shannon, a signal of bandwidth W
will need to at least 2W samples per second to be fully reconstructed

Per each second, 2W samples needed to recover the signal

Per each second, 2W degrees of freedom exists ⇒ 2W parallel
Gaussian channel per second

Given N0, SNR =
σ2
X

WN0
= P

WN0

C = 2W
1

2
log(1 + SNR) = W log

(
1 +

P

WN0

)

S. Cheng (OU-Tulsa) December 5, 2017 189 / 275

Lecture 11 Forward proof of Channel Coding Theorem

Codebook construction

Forward statement

If the code rate R < C = maxp(x) I (X ;Y), according to the Channel
Coding Theorem, we should be able to find a code with encoding mapping
c : m ∈ {1, 2, · · · , 2NR} → {0, 1}N and the error probability of
transmitting any message m ∈ {1, 2, · · · , 2NR}, pe(m), is arbitrarily small

The main tool of the proof is random coding

Let p∗(x) = argmaxp(x) I (X ;Y). Generate codewords from the DMS
p∗(x) by sampling 2n length-n sequences from the source:

c(1) =(x1(1), x2(1), · · · , xN(1))
c(2) =(x1(2), x2(2), · · · , xN(2))

· · ·
c(2NR) =(x1(2

NR), x2(2
NR), · · · , xN(2NR))

S. Cheng (OU-Tulsa) December 5, 2017 190 / 275

Lecture 11 Forward proof of Channel Coding Theorem

Codebook construction

Forward statement

If the code rate R < C = maxp(x) I (X ;Y), according to the Channel
Coding Theorem, we should be able to find a code with encoding mapping
c : m ∈ {1, 2, · · · , 2NR} → {0, 1}N and the error probability of
transmitting any message m ∈ {1, 2, · · · , 2NR}, pe(m), is arbitrarily small

The main tool of the proof is random coding

Let p∗(x) = argmaxp(x) I (X ;Y). Generate codewords from the DMS
p∗(x) by sampling 2n length-n sequences from the source:

c(1) =(x1(1), x2(1), · · · , xN(1))
c(2) =(x1(2), x2(2), · · · , xN(2))

· · ·
c(2NR) =(x1(2

NR), x2(2
NR), · · · , xN(2NR))

S. Cheng (OU-Tulsa) December 5, 2017 190 / 275

Lecture 11 Forward proof of Channel Coding Theorem

Codebook construction

Forward statement

If the code rate R < C = maxp(x) I (X ;Y), according to the Channel
Coding Theorem, we should be able to find a code with encoding mapping
c : m ∈ {1, 2, · · · , 2NR} → {0, 1}N and the error probability of
transmitting any message m ∈ {1, 2, · · · , 2NR}, pe(m), is arbitrarily small

The main tool of the proof is random coding

Let p∗(x) = argmaxp(x) I (X ;Y). Generate codewords from the DMS
p∗(x) by sampling 2n length-n sequences from the source:

c(1) =(x1(1), x2(1), · · · , xN(1))
c(2) =(x1(2), x2(2), · · · , xN(2))

· · ·
c(2NR) =(x1(2

NR), x2(2
NR), · · · , xN(2NR))

S. Cheng (OU-Tulsa) December 5, 2017 190 / 275

Lecture 11 Forward proof of Channel Coding Theorem

Encoding and decoding

The encoding and decoding procedures will be as follows.

Encoding

For input message m, output c(m) = (x1(m), x2(m), · · · , xN(m))

Decoding

Upon receiving sequence y = (y1, y2, · · · , yN), pick the sequence c(m)
from {c(1), · · · , c(2NR)} such that (c(m), y) are jointly typical. That is
pXN ,Y N (c(m), y) ∼ 2−nH(X ,Y). If no such c(m) exists or more than one
such sequence exist, announce error. Otherwise output the decoded
message as m

S. Cheng (OU-Tulsa) December 5, 2017 191 / 275

Lecture 11 Forward proof of Channel Coding Theorem

Encoding and decoding

The encoding and decoding procedures will be as follows.

Encoding

For input message m, output c(m) = (x1(m), x2(m), · · · , xN(m))

Decoding

Upon receiving sequence y = (y1, y2, · · · , yN), pick the sequence c(m)
from {c(1), · · · , c(2NR)} such that (c(m), y) are jointly typical. That is
pXN ,Y N (c(m), y) ∼ 2−nH(X ,Y). If no such c(m) exists or more than one
such sequence exist, announce error. Otherwise output the decoded
message as m

S. Cheng (OU-Tulsa) December 5, 2017 191 / 275

Lecture 11 Forward proof of Channel Coding Theorem

Encoding and decoding

The encoding and decoding procedures will be as follows.

Encoding

For input message m, output c(m) = (x1(m), x2(m), · · · , xN(m))

Decoding

Upon receiving sequence y = (y1, y2, · · · , yN), pick the sequence c(m)
from {c(1), · · · , c(2NR)} such that (c(m), y) are jointly typical. That is
pXN ,Y N (c(m), y) ∼ 2−nH(X ,Y). If no such c(m) exists or more than one
such sequence exist, announce error. Otherwise output the decoded
message as m

S. Cheng (OU-Tulsa) December 5, 2017 191 / 275

Lecture 11 Forward proof of Channel Coding Theorem

Average performance

Without loss of generality, let us assume M = 1, decoding error occurs
when:

1 P1 = Pr(C(1),Y) /∈ AN
ε (X ,Y))

2 P2 : ∃M ′ 6= 1 and (c(M ′),Y) ∈ AN
ε (X ,Y)

Thus P(error) = P(error |M = 1) ≤ P1 + P2

1 Since (C(1),Y) is coming out of the joint source X ,Y , P1 → 0 as
n→∞

2 Note that C(M ′) and Y are independent and thus by Packing lemma,

P2 ≤ 2−N(I (X ;Y)−R−3ε) (1)

Since ε can be made arbitrarily small as N increase, as long as
I (X ;Y)− 3ε > R, we can make P2 arbitrarily small also given a
sufficiently large N

S. Cheng (OU-Tulsa) December 5, 2017 192 / 275

Lecture 11 Forward proof of Channel Coding Theorem

Average performance

Without loss of generality, let us assume M = 1, decoding error occurs
when:

1 P1 = Pr(C(1),Y) /∈ AN
ε (X ,Y))

2 P2 : ∃M ′ 6= 1 and (c(M ′),Y) ∈ AN
ε (X ,Y)

Thus P(error) = P(error |M = 1) ≤ P1 + P2

1 Since (C(1),Y) is coming out of the joint source X ,Y , P1 → 0 as
n→∞

2 Note that C(M ′) and Y are independent and thus by Packing lemma,

P2 ≤ 2−N(I (X ;Y)−R−3ε) (1)

Since ε can be made arbitrarily small as N increase, as long as
I (X ;Y)− 3ε > R, we can make P2 arbitrarily small also given a
sufficiently large N

S. Cheng (OU-Tulsa) December 5, 2017 192 / 275

Lecture 11 Forward proof of Channel Coding Theorem

Average performance

Without loss of generality, let us assume M = 1, decoding error occurs
when:

1 P1 = Pr(C(1),Y) /∈ AN
ε (X ,Y))

2 P2 : ∃M ′ 6= 1 and (c(M ′),Y) ∈ AN
ε (X ,Y)

Thus P(error) = P(error |M = 1) ≤ P1 + P2

1 Since (C(1),Y) is coming out of the joint source X ,Y , P1 → 0 as
n→∞

2 Note that C(M ′) and Y are independent and thus by Packing lemma,

P2 ≤ 2−N(I (X ;Y)−R−3ε) (1)

Since ε can be made arbitrarily small as N increase, as long as
I (X ;Y)− 3ε > R, we can make P2 arbitrarily small also given a
sufficiently large N

S. Cheng (OU-Tulsa) December 5, 2017 192 / 275

Lecture 11 Forward proof of Channel Coding Theorem

Average performance

Without loss of generality, let us assume M = 1, decoding error occurs
when:

1 P1 = Pr(C(1),Y) /∈ AN
ε (X ,Y))

2 P2 : ∃M ′ 6= 1 and (c(M ′),Y) ∈ AN
ε (X ,Y)

Thus P(error) = P(error |M = 1) ≤ P1 + P2

1 Since (C(1),Y) is coming out of the joint source X ,Y , P1 → 0 as
n→∞

2 Note that C(M ′) and Y are independent and thus by Packing lemma,

P2 ≤ 2−N(I (X ;Y)−R−3ε) (1)

Since ε can be made arbitrarily small as N increase, as long as
I (X ;Y)− 3ε > R, we can make P2 arbitrarily small also given a
sufficiently large N

S. Cheng (OU-Tulsa) December 5, 2017 192 / 275

Lecture 11 Forward proof of Channel Coding Theorem

Average performance

Without loss of generality, let us assume M = 1, decoding error occurs
when:

1 P1 = Pr(C(1),Y) /∈ AN
ε (X ,Y))

2 P2 : ∃M ′ 6= 1 and (c(M ′),Y) ∈ AN
ε (X ,Y)

Thus P(error) = P(error |M = 1) ≤ P1 + P2

1 Since (C(1),Y) is coming out of the joint source X ,Y , P1 → 0 as
n→∞

2 Note that C(M ′) and Y are independent and thus by Packing lemma,

P2 ≤ 2−N(I (X ;Y)−R−3ε) (1)

Since ε can be made arbitrarily small as N increase, as long as
I (X ;Y)− 3ε > R, we can make P2 arbitrarily small also given a
sufficiently large N

S. Cheng (OU-Tulsa) December 5, 2017 192 / 275

Lecture 11 Forward proof of Channel Coding Theorem

Average performance

Without loss of generality, let us assume M = 1, decoding error occurs
when:

1 P1 = Pr(C(1),Y) /∈ AN
ε (X ,Y))

2 P2 : ∃M ′ 6= 1 and (c(M ′),Y) ∈ AN
ε (X ,Y)

Thus P(error) = P(error |M = 1) ≤ P1 + P2

1 Since (C(1),Y) is coming out of the joint source X ,Y , P1 → 0 as
n→∞

2 Note that C(M ′) and Y are independent and thus by Packing lemma,

P2 ≤ 2−N(I (X ;Y)−R−3ε) (1)

Since ε can be made arbitrarily small as N increase, as long as
I (X ;Y)− 3ε > R, we can make P2 arbitrarily small also given a
sufficiently large N

S. Cheng (OU-Tulsa) December 5, 2017 192 / 275

Lecture 11 Forward proof of Channel Coding Theorem

A bit more caveat

We show that the average error over all random codes can be made
arbitrarily small

But we really want is to find a code c∗(·) and ensure that
Pr(error |c∗,m)→ 0 no matter what message m is sent

Let say for a finite N, the average error is δ. Then, we should be able
to find a code c∗ such that it has average error at least equal to δ

Without loss of generality and for simplicity, assume that all messages
are equally likely Pr(error |c∗) = 1

2NR

∑
m Pr(error |c∗,m) ≤ δ

If we discard the worse half of the codewords, for any remaining
message m, we have Pr(error |c∗,m) ≤ 2Pr(error |c∗) ≤ 2δ → 0 as
N →∞
Even though the rate reduces from R to R − 1

N (number of messages
from 2NR → 2NR−1). But we can still make the final rate arbitrarily
close to the capacity as N →∞

S. Cheng (OU-Tulsa) December 5, 2017 193 / 275

Lecture 11 Forward proof of Channel Coding Theorem

A bit more caveat

We show that the average error over all random codes can be made
arbitrarily small

But we really want is to find a code c∗(·) and ensure that
Pr(error |c∗,m)→ 0 no matter what message m is sent

Let say for a finite N, the average error is δ. Then, we should be able
to find a code c∗ such that it has average error at least equal to δ

Without loss of generality and for simplicity, assume that all messages
are equally likely Pr(error |c∗) = 1

2NR

∑
m Pr(error |c∗,m) ≤ δ

If we discard the worse half of the codewords, for any remaining
message m, we have Pr(error |c∗,m) ≤ 2Pr(error |c∗) ≤ 2δ → 0 as
N →∞
Even though the rate reduces from R to R − 1

N (number of messages
from 2NR → 2NR−1). But we can still make the final rate arbitrarily
close to the capacity as N →∞

S. Cheng (OU-Tulsa) December 5, 2017 193 / 275

Lecture 11 Forward proof of Channel Coding Theorem

A bit more caveat

We show that the average error over all random codes can be made
arbitrarily small

But we really want is to find a code c∗(·) and ensure that
Pr(error |c∗,m)→ 0 no matter what message m is sent

Let say for a finite N, the average error is δ. Then, we should be able
to find a code c∗ such that it has average error at least equal to δ

Without loss of generality and for simplicity, assume that all messages
are equally likely Pr(error |c∗) = 1

2NR

∑
m Pr(error |c∗,m) ≤ δ

If we discard the worse half of the codewords, for any remaining
message m, we have Pr(error |c∗,m) ≤ 2Pr(error |c∗) ≤ 2δ → 0 as
N →∞
Even though the rate reduces from R to R − 1

N (number of messages
from 2NR → 2NR−1). But we can still make the final rate arbitrarily
close to the capacity as N →∞

S. Cheng (OU-Tulsa) December 5, 2017 193 / 275

Lecture 11 Forward proof of Channel Coding Theorem

A bit more caveat

We show that the average error over all random codes can be made
arbitrarily small

But we really want is to find a code c∗(·) and ensure that
Pr(error |c∗,m)→ 0 no matter what message m is sent

Let say for a finite N, the average error is δ. Then, we should be able
to find a code c∗ such that it has average error at least equal to δ

Without loss of generality and for simplicity, assume that all messages
are equally likely Pr(error |c∗) = 1

2NR

∑
m Pr(error |c∗,m) ≤ δ

If we discard the worse half of the codewords, for any remaining
message m, we have Pr(error |c∗,m) ≤ 2Pr(error |c∗) ≤ 2δ → 0 as
N →∞
Even though the rate reduces from R to R − 1

N (number of messages
from 2NR → 2NR−1). But we can still make the final rate arbitrarily
close to the capacity as N →∞

S. Cheng (OU-Tulsa) December 5, 2017 193 / 275

Lecture 11 Forward proof of Channel Coding Theorem

A bit more caveat

We show that the average error over all random codes can be made
arbitrarily small

But we really want is to find a code c∗(·) and ensure that
Pr(error |c∗,m)→ 0 no matter what message m is sent

Let say for a finite N, the average error is δ. Then, we should be able
to find a code c∗ such that it has average error at least equal to δ

Without loss of generality and for simplicity, assume that all messages
are equally likely Pr(error |c∗) = 1

2NR

∑
m Pr(error |c∗,m) ≤ δ

If we discard the worse half of the codewords, for any remaining
message m, we have Pr(error |c∗,m) ≤ 2Pr(error |c∗) ≤ 2δ → 0 as
N →∞

Even though the rate reduces from R to R − 1
N (number of messages

from 2NR → 2NR−1). But we can still make the final rate arbitrarily
close to the capacity as N →∞

S. Cheng (OU-Tulsa) December 5, 2017 193 / 275

Lecture 11 Forward proof of Channel Coding Theorem

A bit more caveat

We show that the average error over all random codes can be made
arbitrarily small

But we really want is to find a code c∗(·) and ensure that
Pr(error |c∗,m)→ 0 no matter what message m is sent

Let say for a finite N, the average error is δ. Then, we should be able
to find a code c∗ such that it has average error at least equal to δ

Without loss of generality and for simplicity, assume that all messages
are equally likely Pr(error |c∗) = 1

2NR

∑
m Pr(error |c∗,m) ≤ δ

If we discard the worse half of the codewords, for any remaining
message m, we have Pr(error |c∗,m) ≤ 2Pr(error |c∗) ≤ 2δ → 0 as
N →∞
Even though the rate reduces from R to R − 1

N (number of messages
from 2NR → 2NR−1). But we can still make the final rate arbitrarily
close to the capacity as N →∞

S. Cheng (OU-Tulsa) December 5, 2017 193 / 275

Lecture 12 Review

Previously...

Joint typical sequences

Covering and Packing Lemmas

Channel Coding Theorem

Capacity of Gaussian channel

Capacity of additive white Gaussian channel

Forward proof of Channel Coding Theorem

S. Cheng (OU-Tulsa) December 5, 2017 194 / 275

Lecture 12 Overview

This time

Converse Proof of Channel Coding Theorem

Non-white Gaussian Channel

Rate-distortion problems

Rate-distortion Theorem

S. Cheng (OU-Tulsa) December 5, 2017 195 / 275

Lecture 12 Converse proof of Channel Coding Theorem

Converse proof

We want to say that whenever the code rate is larger than the capacity,
the probability of error will be non-zero

Equivalently...

As long as the probability of error is 0, the rate of the code R has to be
larger than the capacity

To continue the converse proof, we will need to introduce a simple result
from Fano

S. Cheng (OU-Tulsa) December 5, 2017 196 / 275

Lecture 12 Converse proof of Channel Coding Theorem

Converse proof

We want to say that whenever the code rate is larger than the capacity,
the probability of error will be non-zero

Equivalently...

As long as the probability of error is 0, the rate of the code R has to be
larger than the capacity

To continue the converse proof, we will need to introduce a simple result
from Fano

S. Cheng (OU-Tulsa) December 5, 2017 196 / 275

Lecture 12 Converse proof of Channel Coding Theorem

Converse proof

We want to say that whenever the code rate is larger than the capacity,
the probability of error will be non-zero

Equivalently...

As long as the probability of error is 0, the rate of the code R has to be
larger than the capacity

To continue the converse proof, we will need to introduce a simple result
from Fano

S. Cheng (OU-Tulsa) December 5, 2017 196 / 275

Lecture 12 Converse proof of Channel Coding Theorem

Fano’s inequality

Fano’s inequality

Denote Pr(error) = Pe = Pr(M 6= M̂), then H(M|Y N) ≤ 1 + PeH(M)
Intuitively, if Pe → 0, on average we will know M for certain given y and
thus 1

NH(M|Y N)→ 0

Proof: Let E = I (M 6= M̂), then

H(M|Y N) = H(M,E |Y N)− H(E |Y N ,M)

= H(M,E |Y N) = H(E |Y N) + H(M|Y N ,E)

≤ H(E) + H(M|Y N ,E)

≤ 1 + P(E = 0)H(M|Y N ,E = 0) + P(E = 1)H(M|Y N ,E = 1)

≤ 1 + 0 + PeH(M|Y N ,E = 1)
(d)

≤ 1 + PeH(M)

S. Cheng (OU-Tulsa) December 5, 2017 197 / 275

Lecture 12 Converse proof of Channel Coding Theorem

Fano’s inequality

Fano’s inequality

Denote Pr(error) = Pe = Pr(M 6= M̂), then H(M|Y N) ≤ 1 + PeH(M)
Intuitively, if Pe → 0, on average we will know M for certain given y and
thus 1

NH(M|Y N)→ 0

Proof: Let E = I (M 6= M̂), then

H(M|Y N) = H(M,E |Y N)− H(E |Y N ,M)

= H(M,E |Y N) = H(E |Y N) + H(M|Y N ,E)

≤ H(E) + H(M|Y N ,E)

≤ 1 + P(E = 0)H(M|Y N ,E = 0) + P(E = 1)H(M|Y N ,E = 1)

≤ 1 + 0 + PeH(M|Y N ,E = 1)
(d)

≤ 1 + PeH(M)

S. Cheng (OU-Tulsa) December 5, 2017 197 / 275

Lecture 12 Converse proof of Channel Coding Theorem

Fano’s inequality

Fano’s inequality

Denote Pr(error) = Pe = Pr(M 6= M̂), then H(M|Y N) ≤ 1 + PeH(M)
Intuitively, if Pe → 0, on average we will know M for certain given y and
thus 1

NH(M|Y N)→ 0

Proof: Let E = I (M 6= M̂), then

H(M|Y N) = H(M,E |Y N)− H(E |Y N ,M)

= H(M,E |Y N) = H(E |Y N) + H(M|Y N ,E)

≤ H(E) + H(M|Y N ,E)

≤ 1 + P(E = 0)H(M|Y N ,E = 0) + P(E = 1)H(M|Y N ,E = 1)

≤ 1 + 0 + PeH(M|Y N ,E = 1)
(d)

≤ 1 + PeH(M)

S. Cheng (OU-Tulsa) December 5, 2017 197 / 275

Lecture 12 Converse proof of Channel Coding Theorem

Fano’s inequality

Fano’s inequality

Denote Pr(error) = Pe = Pr(M 6= M̂), then H(M|Y N) ≤ 1 + PeH(M)
Intuitively, if Pe → 0, on average we will know M for certain given y and
thus 1

NH(M|Y N)→ 0

Proof: Let E = I (M 6= M̂), then

H(M|Y N) = H(M,E |Y N)− H(E |Y N ,M)

= H(M,E |Y N) = H(E |Y N) + H(M|Y N ,E)

≤ H(E) + H(M|Y N ,E)

≤ 1 + P(E = 0)H(M|Y N ,E = 0) + P(E = 1)H(M|Y N ,E = 1)

≤ 1 + 0 + PeH(M|Y N ,E = 1)
(d)

≤ 1 + PeH(M)

S. Cheng (OU-Tulsa) December 5, 2017 197 / 275

Lecture 12 Converse proof of Channel Coding Theorem

Fano’s inequality

Fano’s inequality

Denote Pr(error) = Pe = Pr(M 6= M̂), then H(M|Y N) ≤ 1 + PeH(M)
Intuitively, if Pe → 0, on average we will know M for certain given y and
thus 1

NH(M|Y N)→ 0

Proof: Let E = I (M 6= M̂), then

H(M|Y N) = H(M,E |Y N)− H(E |Y N ,M)

= H(M,E |Y N) = H(E |Y N) + H(M|Y N ,E)

≤ H(E) + H(M|Y N ,E)

≤ 1 + P(E = 0)H(M|Y N ,E = 0) + P(E = 1)H(M|Y N ,E = 1)

≤ 1 + 0 + PeH(M|Y N ,E = 1)
(d)

≤ 1 + PeH(M)

S. Cheng (OU-Tulsa) December 5, 2017 197 / 275

Lecture 12 Converse proof of Channel Coding Theorem

Fano’s inequality

Fano’s inequality

Denote Pr(error) = Pe = Pr(M 6= M̂), then H(M|Y N) ≤ 1 + PeH(M)
Intuitively, if Pe → 0, on average we will know M for certain given y and
thus 1

NH(M|Y N)→ 0

Proof: Let E = I (M 6= M̂), then

H(M|Y N) = H(M,E |Y N)− H(E |Y N ,M)

= H(M,E |Y N) = H(E |Y N) + H(M|Y N ,E)

≤ H(E) + H(M|Y N ,E)

≤ 1 + P(E = 0)H(M|Y N ,E = 0) + P(E = 1)H(M|Y N ,E = 1)

≤ 1 + 0 + PeH(M|Y N ,E = 1)
(d)

≤ 1 + PeH(M)

S. Cheng (OU-Tulsa) December 5, 2017 197 / 275

Lecture 12 Converse proof of Channel Coding Theorem

Fano’s inequality

Fano’s inequality

Denote Pr(error) = Pe = Pr(M 6= M̂), then H(M|Y N) ≤ 1 + PeH(M)
Intuitively, if Pe → 0, on average we will know M for certain given y and
thus 1

NH(M|Y N)→ 0

Proof: Let E = I (M 6= M̂), then

H(M|Y N) = H(M,E |Y N)− H(E |Y N ,M)

= H(M,E |Y N) = H(E |Y N) + H(M|Y N ,E)

≤ H(E) + H(M|Y N ,E)

≤ 1 + P(E = 0)H(M|Y N ,E = 0) + P(E = 1)H(M|Y N ,E = 1)

≤ 1 + 0 + PeH(M|Y N ,E = 1)
(d)

≤ 1 + PeH(M)

S. Cheng (OU-Tulsa) December 5, 2017 197 / 275

Lecture 12 Converse proof of Channel Coding Theorem

Converse proof

R =
H(M)

N
=

1

N

[
I (M;Y N) + H(M|Y N)

]

≤ 1

N

[
I (XN ;Y N) + H(M|Y N)

]
=

1

N

[
H(Y N)− H(Y N |XN) + H(M|Y N)

]
=

1

N

[
H(Y N)−

∑
i

H(Yi |XN ,Y i−1) + H(M|Y N)

]

=
1

N

[
H(Y N)−

∑
i

H(Yi |Xi) + H(M|Y N)

]

≤ 1

N

[∑
i

H(Yi)−
∑
i

H(Yi |Xi) + H(M|Y N)

]

=
1

N

[∑
i

I (Xi ;Yi) + H(M|Y N)

]
= I (X ;Y) +

H(M|Y N)

N
→ I (X ;Y)

as N →∞ by Fano’s inequality

S. Cheng (OU-Tulsa) December 5, 2017 198 / 275

Lecture 12 Converse proof of Channel Coding Theorem

Converse proof

R =
H(M)

N
=

1

N

[
I (M;Y N) + H(M|Y N)

]
≤ 1

N

[
I (XN ;Y N) + H(M|Y N)

]

=
1

N

[
H(Y N)− H(Y N |XN) + H(M|Y N)

]
=

1

N

[
H(Y N)−

∑
i

H(Yi |XN ,Y i−1) + H(M|Y N)

]

=
1

N

[
H(Y N)−

∑
i

H(Yi |Xi) + H(M|Y N)

]

≤ 1

N

[∑
i

H(Yi)−
∑
i

H(Yi |Xi) + H(M|Y N)

]

=
1

N

[∑
i

I (Xi ;Yi) + H(M|Y N)

]
= I (X ;Y) +

H(M|Y N)

N
→ I (X ;Y)

as N →∞ by Fano’s inequality

S. Cheng (OU-Tulsa) December 5, 2017 198 / 275

Lecture 12 Converse proof of Channel Coding Theorem

Converse proof

R =
H(M)

N
=

1

N

[
I (M;Y N) + H(M|Y N)

]
≤ 1

N

[
I (XN ;Y N) + H(M|Y N)

]
=

1

N

[
H(Y N)− H(Y N |XN) + H(M|Y N)

]

=
1

N

[
H(Y N)−

∑
i

H(Yi |XN ,Y i−1) + H(M|Y N)

]

=
1

N

[
H(Y N)−

∑
i

H(Yi |Xi) + H(M|Y N)

]

≤ 1

N

[∑
i

H(Yi)−
∑
i

H(Yi |Xi) + H(M|Y N)

]

=
1

N

[∑
i

I (Xi ;Yi) + H(M|Y N)

]
= I (X ;Y) +

H(M|Y N)

N
→ I (X ;Y)

as N →∞ by Fano’s inequality

S. Cheng (OU-Tulsa) December 5, 2017 198 / 275

Lecture 12 Converse proof of Channel Coding Theorem

Converse proof

R =
H(M)

N
=

1

N

[
I (M;Y N) + H(M|Y N)

]
≤ 1

N

[
I (XN ;Y N) + H(M|Y N)

]
=

1

N

[
H(Y N)− H(Y N |XN) + H(M|Y N)

]
=

1

N

[
H(Y N)−

∑
i

H(Yi |XN ,Y i−1) + H(M|Y N)

]

=
1

N

[
H(Y N)−

∑
i

H(Yi |Xi) + H(M|Y N)

]

≤ 1

N

[∑
i

H(Yi)−
∑
i

H(Yi |Xi) + H(M|Y N)

]

=
1

N

[∑
i

I (Xi ;Yi) + H(M|Y N)

]
= I (X ;Y) +

H(M|Y N)

N
→ I (X ;Y)

as N →∞ by Fano’s inequality

S. Cheng (OU-Tulsa) December 5, 2017 198 / 275

Lecture 12 Converse proof of Channel Coding Theorem

Converse proof

R =
H(M)

N
=

1

N

[
I (M;Y N) + H(M|Y N)

]
≤ 1

N

[
I (XN ;Y N) + H(M|Y N)

]
=

1

N

[
H(Y N)− H(Y N |XN) + H(M|Y N)

]
=

1

N

[
H(Y N)−

∑
i

H(Yi |XN ,Y i−1) + H(M|Y N)

]

=
1

N

[
H(Y N)−

∑
i

H(Yi |Xi) + H(M|Y N)

]

≤ 1

N

[∑
i

H(Yi)−
∑
i

H(Yi |Xi) + H(M|Y N)

]

=
1

N

[∑
i

I (Xi ;Yi) + H(M|Y N)

]
= I (X ;Y) +

H(M|Y N)

N
→ I (X ;Y)

as N →∞ by Fano’s inequality

S. Cheng (OU-Tulsa) December 5, 2017 198 / 275

Lecture 12 Converse proof of Channel Coding Theorem

Converse proof

R =
H(M)

N
=

1

N

[
I (M;Y N) + H(M|Y N)

]
≤ 1

N

[
I (XN ;Y N) + H(M|Y N)

]
=

1

N

[
H(Y N)− H(Y N |XN) + H(M|Y N)

]
=

1

N

[
H(Y N)−

∑
i

H(Yi |XN ,Y i−1) + H(M|Y N)

]

=
1

N

[
H(Y N)−

∑
i

H(Yi |Xi) + H(M|Y N)

]

≤ 1

N

[∑
i

H(Yi)−
∑
i

H(Yi |Xi) + H(M|Y N)

]

=
1

N

[∑
i

I (Xi ;Yi) + H(M|Y N)

]
= I (X ;Y) +

H(M|Y N)

N
→ I (X ;Y)

as N →∞ by Fano’s inequality

S. Cheng (OU-Tulsa) December 5, 2017 198 / 275

Lecture 12 Converse proof of Channel Coding Theorem

Converse proof

R =
H(M)

N
=

1

N

[
I (M;Y N) + H(M|Y N)

]
≤ 1

N

[
I (XN ;Y N) + H(M|Y N)

]
=

1

N

[
H(Y N)− H(Y N |XN) + H(M|Y N)

]
=

1

N

[
H(Y N)−

∑
i

H(Yi |XN ,Y i−1) + H(M|Y N)

]

=
1

N

[
H(Y N)−

∑
i

H(Yi |Xi) + H(M|Y N)

]

≤ 1

N

[∑
i

H(Yi)−
∑
i

H(Yi |Xi) + H(M|Y N)

]

=
1

N

[∑
i

I (Xi ;Yi) + H(M|Y N)

]
= I (X ;Y) +

H(M|Y N)

N

→ I (X ;Y)

as N →∞ by Fano’s inequality

S. Cheng (OU-Tulsa) December 5, 2017 198 / 275

Lecture 12 Converse proof of Channel Coding Theorem

Converse proof

R =
H(M)

N
=

1

N

[
I (M;Y N) + H(M|Y N)

]
≤ 1

N

[
I (XN ;Y N) + H(M|Y N)

]
=

1

N

[
H(Y N)− H(Y N |XN) + H(M|Y N)

]
=

1

N

[
H(Y N)−

∑
i

H(Yi |XN ,Y i−1) + H(M|Y N)

]

=
1

N

[
H(Y N)−

∑
i

H(Yi |Xi) + H(M|Y N)

]

≤ 1

N

[∑
i

H(Yi)−
∑
i

H(Yi |Xi) + H(M|Y N)

]

=
1

N

[∑
i

I (Xi ;Yi) + H(M|Y N)

]
= I (X ;Y) +

H(M|Y N)

N
→ I (X ;Y)

as N →∞ by Fano’s inequality
S. Cheng (OU-Tulsa) December 5, 2017 198 / 275

Lecture 12 Capacity of non-white Gaussian channels

Color channels

We look into capacity of white Gaussian channel last time

But sometimes noise power can be different for different band,
consequently, “color” channels

Intuitively, we should assign different amount of power to different
band. Hence, we have an allocation problem

Without loss of generality, let’s consider the discrete approximation,
parallel Gaussian channel

S. Cheng (OU-Tulsa) December 5, 2017 199 / 275

Lecture 12 Capacity of non-white Gaussian channels

Color channels

We look into capacity of white Gaussian channel last time

But sometimes noise power can be different for different band,
consequently, “color” channels

Intuitively, we should assign different amount of power to different
band. Hence, we have an allocation problem

Without loss of generality, let’s consider the discrete approximation,
parallel Gaussian channel

S. Cheng (OU-Tulsa) December 5, 2017 199 / 275

Lecture 12 Capacity of non-white Gaussian channels

Color channels

We look into capacity of white Gaussian channel last time

But sometimes noise power can be different for different band,
consequently, “color” channels

Intuitively, we should assign different amount of power to different
band. Hence, we have an allocation problem

Without loss of generality, let’s consider the discrete approximation,
parallel Gaussian channel

S. Cheng (OU-Tulsa) December 5, 2017 199 / 275

Lecture 12 Capacity of non-white Gaussian channels

Color channels

We look into capacity of white Gaussian channel last time

But sometimes noise power can be different for different band,
consequently, “color” channels

Intuitively, we should assign different amount of power to different
band. Hence, we have an allocation problem

Without loss of generality, let’s consider the discrete approximation,
parallel Gaussian channel

S. Cheng (OU-Tulsa) December 5, 2017 199 / 275

Lecture 12 Capacity of non-white Gaussian channels

Parallel Gaussian channels

Consider that we have K parallel channels (K bands) and the
corresponding noise powers are σ2

1, σ
2
2, · · · , σ2

K

And say, we can allocate a total of P power to all channels. The
powers assigned to the channels are P1,P2, · · · ,PK . So we need∑K

i=1 Pi ≤ P

Therefore, for the k-th channel, we can transmit 1
2 log

(
1 + Pk

σ2
k

)
bits

per channel use

So our goal is to assign P1,P2, · · · ,PK ≥ 0 (
∑K

k=1 Pk ≤ P) such
that the total capacity

K∑
k=1

1

2
log

(
1 +

Pk

σ2
k

)
is maximize

S. Cheng (OU-Tulsa) December 5, 2017 200 / 275

Lecture 12 Capacity of non-white Gaussian channels

Parallel Gaussian channels

Consider that we have K parallel channels (K bands) and the
corresponding noise powers are σ2

1, σ
2
2, · · · , σ2

K

And say, we can allocate a total of P power to all channels. The
powers assigned to the channels are P1,P2, · · · ,PK . So we need∑K

i=1 Pi ≤ P

Therefore, for the k-th channel, we can transmit 1
2 log

(
1 + Pk

σ2
k

)
bits

per channel use

So our goal is to assign P1,P2, · · · ,PK ≥ 0 (
∑K

k=1 Pk ≤ P) such
that the total capacity

K∑
k=1

1

2
log

(
1 +

Pk

σ2
k

)
is maximize

S. Cheng (OU-Tulsa) December 5, 2017 200 / 275

Lecture 12 Capacity of non-white Gaussian channels

Parallel Gaussian channels

Consider that we have K parallel channels (K bands) and the
corresponding noise powers are σ2

1, σ
2
2, · · · , σ2

K

And say, we can allocate a total of P power to all channels. The
powers assigned to the channels are P1,P2, · · · ,PK . So we need∑K

i=1 Pi ≤ P

Therefore, for the k-th channel, we can transmit 1
2 log

(
1 + Pk

σ2
k

)
bits

per channel use

So our goal is to assign P1,P2, · · · ,PK ≥ 0 (
∑K

k=1 Pk ≤ P) such
that the total capacity

K∑
k=1

1

2
log

(
1 +

Pk

σ2
k

)
is maximize

S. Cheng (OU-Tulsa) December 5, 2017 200 / 275

Lecture 12 Capacity of non-white Gaussian channels

Parallel Gaussian channels

Consider that we have K parallel channels (K bands) and the
corresponding noise powers are σ2

1, σ
2
2, · · · , σ2

K

And say, we can allocate a total of P power to all channels. The
powers assigned to the channels are P1,P2, · · · ,PK . So we need∑K

i=1 Pi ≤ P

Therefore, for the k-th channel, we can transmit 1
2 log

(
1 + Pk

σ2
k

)
bits

per channel use

So our goal is to assign P1,P2, · · · ,PK ≥ 0 (
∑K

k=1 Pk ≤ P) such
that the total capacity

K∑
k=1

1

2
log

(
1 +

Pk

σ2
k

)
is maximize

S. Cheng (OU-Tulsa) December 5, 2017 200 / 275

Lecture 12 Capacity of non-white Gaussian channels

KKT conditions

Let’s list all the KKT conditions for the optimization problem

max
K∑

k=1

1

2
log

(
1 +

Pk

σ2
k

)
such that

P1, · · · ,PK ≥ 0,
K∑

k=1

Pk ≤ P

∂

∂Pi

[
K∑

k=1

1

2
log

(
1 +

Pk

σ2
k

)
+

K∑
k=1

λkPk − µ

(
K∑

k=1

Pk − P

)]
= 0

µ, λ1, · · · , λK ≥ 0,P1, · · · ,PK ≥ 0,
K∑

k=1

Pk ≤ P

µ

(
K∑

k=1

Pk − P

)
= 0, λkPk = 0,∀k

S. Cheng (OU-Tulsa) December 5, 2017 201 / 275

Lecture 12 Capacity of non-white Gaussian channels

KKT conditions

Let’s list all the KKT conditions for the optimization problem

max
K∑

k=1

1

2
log

(
1 +

Pk

σ2
k

)
such that

P1, · · · ,PK ≥ 0,
K∑

k=1

Pk ≤ P

∂

∂Pi

[
K∑

k=1

1

2
log

(
1 +

Pk

σ2
k

)
+

K∑
k=1

λkPk − µ

(
K∑

k=1

Pk − P

)]
= 0

µ, λ1, · · · , λK ≥ 0

,P1, · · · ,PK ≥ 0,
K∑

k=1

Pk ≤ P

µ

(
K∑

k=1

Pk − P

)
= 0, λkPk = 0,∀k

S. Cheng (OU-Tulsa) December 5, 2017 201 / 275

Lecture 12 Capacity of non-white Gaussian channels

KKT conditions

Let’s list all the KKT conditions for the optimization problem

max
K∑

k=1

1

2
log

(
1 +

Pk

σ2
k

)
such that

P1, · · · ,PK ≥ 0,
K∑

k=1

Pk ≤ P

∂

∂Pi

[
K∑

k=1

1

2
log

(
1 +

Pk

σ2
k

)
+

K∑
k=1

λkPk − µ

(
K∑

k=1

Pk − P

)]
= 0

µ, λ1, · · · , λK ≥ 0,P1, · · · ,PK ≥ 0,
K∑

k=1

Pk ≤ P

µ

(
K∑

k=1

Pk − P

)
= 0, λkPk = 0,∀k

S. Cheng (OU-Tulsa) December 5, 2017 201 / 275

Lecture 12 Capacity of non-white Gaussian channels

KKT conditions

Let’s list all the KKT conditions for the optimization problem

max
K∑

k=1

1

2
log

(
1 +

Pk

σ2
k

)
such that

P1, · · · ,PK ≥ 0,
K∑

k=1

Pk ≤ P

∂

∂Pi

[
K∑

k=1

1

2
log

(
1 +

Pk

σ2
k

)
+

K∑
k=1

λkPk − µ

(
K∑

k=1

Pk − P

)]
= 0

µ, λ1, · · · , λK ≥ 0,P1, · · · ,PK ≥ 0,
K∑

k=1

Pk ≤ P

µ

(
K∑

k=1

Pk − P

)
= 0, λkPk = 0,∀k

S. Cheng (OU-Tulsa) December 5, 2017 201 / 275

Lecture 12 Capacity of non-white Gaussian channels

Capacity of parallel channels

∂

∂Pi

[
K∑

k=1

1

2
log

(
1 +

Pk

σ2
k

)
+

K∑
k=1

λkPk − µ

(
K∑

k=1

Pk − P

)]
= 0

⇒1

2

1

Pi + σ2
i

= µ− λi ⇒ Pi + σ2
i =

1

2(µ− λi)

Since λiPi = 0, for Pi > 0, we have λi = 0 and thus

Pi + σ2
i =

1

2µ
= constant

This suggests that µ > 0 and thus
∑K

k=1 Pk = P

S. Cheng (OU-Tulsa) December 5, 2017 202 / 275

Lecture 12 Capacity of non-white Gaussian channels

Capacity of parallel channels

∂

∂Pi

[
K∑

k=1

1

2
log

(
1 +

Pk

σ2
k

)
+

K∑
k=1

λkPk − µ

(
K∑

k=1

Pk − P

)]
= 0

⇒1

2

1

Pi + σ2
i

= µ− λi

⇒ Pi + σ2
i =

1

2(µ− λi)

Since λiPi = 0, for Pi > 0, we have λi = 0 and thus

Pi + σ2
i =

1

2µ
= constant

This suggests that µ > 0 and thus
∑K

k=1 Pk = P

S. Cheng (OU-Tulsa) December 5, 2017 202 / 275

Lecture 12 Capacity of non-white Gaussian channels

Capacity of parallel channels

∂

∂Pi

[
K∑

k=1

1

2
log

(
1 +

Pk

σ2
k

)
+

K∑
k=1

λkPk − µ

(
K∑

k=1

Pk − P

)]
= 0

⇒1

2

1

Pi + σ2
i

= µ− λi ⇒ Pi + σ2
i =

1

2(µ− λi)

Since λiPi = 0, for Pi > 0, we have λi = 0 and thus

Pi + σ2
i =

1

2µ
= constant

This suggests that µ > 0 and thus
∑K

k=1 Pk = P

S. Cheng (OU-Tulsa) December 5, 2017 202 / 275

Lecture 12 Capacity of non-white Gaussian channels

Capacity of parallel channels

∂

∂Pi

[
K∑

k=1

1

2
log

(
1 +

Pk

σ2
k

)
+

K∑
k=1

λkPk − µ

(
K∑

k=1

Pk − P

)]
= 0

⇒1

2

1

Pi + σ2
i

= µ− λi ⇒ Pi + σ2
i =

1

2(µ− λi)

Since λiPi = 0, for Pi > 0, we have λi = 0 and thus

Pi + σ2
i =

1

2µ

= constant

This suggests that µ > 0 and thus
∑K

k=1 Pk = P

S. Cheng (OU-Tulsa) December 5, 2017 202 / 275

Lecture 12 Capacity of non-white Gaussian channels

Capacity of parallel channels

∂

∂Pi

[
K∑

k=1

1

2
log

(
1 +

Pk

σ2
k

)
+

K∑
k=1

λkPk − µ

(
K∑

k=1

Pk − P

)]
= 0

⇒1

2

1

Pi + σ2
i

= µ− λi ⇒ Pi + σ2
i =

1

2(µ− λi)

Since λiPi = 0, for Pi > 0, we have λi = 0 and thus

Pi + σ2
i =

1

2µ

= constant

This suggests that µ > 0 and thus
∑K

k=1 Pk = P

S. Cheng (OU-Tulsa) December 5, 2017 202 / 275

Lecture 12 Capacity of non-white Gaussian channels

Capacity of parallel channels

∂

∂Pi

[
K∑

k=1

1

2
log

(
1 +

Pk

σ2
k

)
+

K∑
k=1

λkPk − µ

(
K∑

k=1

Pk − P

)]
= 0

⇒1

2

1

Pi + σ2
i

= µ− λi ⇒ Pi + σ2
i =

1

2(µ− λi)

Since λiPi = 0, for Pi > 0, we have λi = 0 and thus

Pi + σ2
i =

1

2µ
= constant

This suggests that µ > 0 and thus
∑K

k=1 Pk = P

S. Cheng (OU-Tulsa) December 5, 2017 202 / 275

Lecture 12 Capacity of non-white Gaussian channels

Water-filling interpretation

From Pi + σ2
i = const, power can be allocated intuitively as filling water

to a pond (hence “water-filling”)

Example

P1 = 0,P2 = 0.3,P3 = 0.6,P4 = 0,P5 = 0

P1 = 0,P2 = 0.8,P3 = 1.1,P4 = 0.3,P5 = 0

P1 = 0.5,P2 = 1.5,P3 = 1.8,P4 = 1,P5 = 0

S. Cheng (OU-Tulsa) December 5, 2017 203 / 275

Lecture 12 Capacity of non-white Gaussian channels

Water-filling interpretation

From Pi + σ2
i = const, power can be allocated intuitively as filling water

to a pond (hence “water-filling”)

Example

P1 = 0,P2 = 0.3,P3 = 0.6,P4 = 0,P5 = 0

P1 = 0,P2 = 0.8,P3 = 1.1,P4 = 0.3,P5 = 0

P1 = 0.5,P2 = 1.5,P3 = 1.8,P4 = 1,P5 = 0

S. Cheng (OU-Tulsa) December 5, 2017 203 / 275

Lecture 12 Capacity of non-white Gaussian channels

Water-filling interpretation

From Pi + σ2
i = const, power can be allocated intuitively as filling water

to a pond (hence “water-filling”)

Example

P1 = 0,P2 = 0.3,P3 = 0.6,P4 = 0,P5 = 0

P1 = 0,P2 = 0.8,P3 = 1.1,P4 = 0.3,P5 = 0

P1 = 0.5,P2 = 1.5,P3 = 1.8,P4 = 1,P5 = 0

S. Cheng (OU-Tulsa) December 5, 2017 203 / 275

Lecture 12 Capacity of non-white Gaussian channels

Water-filling interpretation

From Pi + σ2
i = const, power can be allocated intuitively as filling water

to a pond (hence “water-filling”)

Example

P1 = 0,P2 = 0.3,P3 = 0.6,P4 = 0,P5 = 0

P1 = 0,P2 = 0.8,P3 = 1.1,P4 = 0.3,P5 = 0

P1 = 0.5,P2 = 1.5,P3 = 1.8,P4 = 1,P5 = 0

S. Cheng (OU-Tulsa) December 5, 2017 203 / 275

Lecture 12 Capacity of non-white Gaussian channels

Water-filling interpretation

From Pi + σ2
i = const, power can be allocated intuitively as filling water

to a pond (hence “water-filling”)

Example

P1 = 0,P2 = 0.3,P3 = 0.6,P4 = 0,P5 = 0

P1 = 0,P2 = 0.8,P3 = 1.1,P4 = 0.3,P5 = 0

P1 = 0.5,P2 = 1.5,P3 = 1.8,P4 = 1,P5 = 0

S. Cheng (OU-Tulsa) December 5, 2017 203 / 275

Lecture 12 Rate-distortion problem

Rate-distortion problem

p(x) Encoder Decoder X̂N
XN m

We know that H(X) bits are needed on average to represent each
sample of a source X

If X is continuous, there is no way to recover X precisely

Let say we are satisfied as long as we can recover X up to certain
fidelity, how many bits are needed per sample?

There is an apparent rate (bits per sample) and distortion (fidelity)
trade-off. We expect that needed rate is smaller if we allow a lower
fidelity (higher distortion). What we are really interested in is a
rate-distortion function

S. Cheng (OU-Tulsa) December 5, 2017 204 / 275

Lecture 12 Rate-distortion problem

Rate-distortion problem

p(x) Encoder Decoder X̂N
XN m

We know that H(X) bits are needed on average to represent each
sample of a source X

If X is continuous, there is no way to recover X precisely

Let say we are satisfied as long as we can recover X up to certain
fidelity, how many bits are needed per sample?

There is an apparent rate (bits per sample) and distortion (fidelity)
trade-off. We expect that needed rate is smaller if we allow a lower
fidelity (higher distortion). What we are really interested in is a
rate-distortion function

S. Cheng (OU-Tulsa) December 5, 2017 204 / 275

Lecture 12 Rate-distortion problem

Rate-distortion problem

p(x) Encoder Decoder X̂N
XN m

We know that H(X) bits are needed on average to represent each
sample of a source X

If X is continuous, there is no way to recover X precisely

Let say we are satisfied as long as we can recover X up to certain
fidelity, how many bits are needed per sample?

There is an apparent rate (bits per sample) and distortion (fidelity)
trade-off. We expect that needed rate is smaller if we allow a lower
fidelity (higher distortion). What we are really interested in is a
rate-distortion function

S. Cheng (OU-Tulsa) December 5, 2017 204 / 275

Lecture 12 Rate-distortion problem

Rate-distortion problem

p(x) Encoder Decoder X̂N
XN m

We know that H(X) bits are needed on average to represent each
sample of a source X

If X is continuous, there is no way to recover X precisely

Let say we are satisfied as long as we can recover X up to certain
fidelity, how many bits are needed per sample?

There is an apparent rate (bits per sample) and distortion (fidelity)
trade-off. We expect that needed rate is smaller if we allow a lower
fidelity (higher distortion). What we are really interested in is a
rate-distortion function

S. Cheng (OU-Tulsa) December 5, 2017 204 / 275

Lecture 12 Rate-distortion problem

Rate-distortion function

p(x) Encoder Decoder X̂N

m ∈ {1, 2, · · · ,M}

XN m

R =
logM

N
, D = E [d(X̂N ,XN)] =

1

N

N∑
i=1

d(X̂i ,Xi)

Maybe you can guess at this point. For given X and X̂ , the required
rate is simply I (X ; X̂)
How is it related to the distortion though?
Note that we have a freedom to pick p(x̂ |x) such that E [d(X̂N ,XN)]
(less than or) equal to the desired D
Therefore given D, the rate-distortion function is simply

R(D) = minp(x̂ |x)I (X̂ ;X)

such that E [d(X̂N ,XN)] ≤ D

S. Cheng (OU-Tulsa) December 5, 2017 205 / 275

Lecture 12 Rate-distortion problem

Rate-distortion function

p(x) Encoder Decoder X̂N

m ∈ {1, 2, · · · ,M}

XN m

R =
logM

N
, D = E [d(X̂N ,XN)] =

1

N

N∑
i=1

d(X̂i ,Xi)

Maybe you can guess at this point. For given X and X̂ , the required
rate is simply I (X ; X̂)
How is it related to the distortion though?
Note that we have a freedom to pick p(x̂ |x) such that E [d(X̂N ,XN)]
(less than or) equal to the desired D
Therefore given D, the rate-distortion function is simply

R(D) = minp(x̂ |x)I (X̂ ;X)

such that E [d(X̂N ,XN)] ≤ D

S. Cheng (OU-Tulsa) December 5, 2017 205 / 275

Lecture 12 Rate-distortion problem

Rate-distortion function

p(x) Encoder Decoder X̂N

m ∈ {1, 2, · · · ,M}

XN m

R =
logM

N
, D = E [d(X̂N ,XN)] =

1

N

N∑
i=1

d(X̂i ,Xi)

Maybe you can guess at this point. For given X and X̂ , the required
rate is simply I (X ; X̂)

How is it related to the distortion though?
Note that we have a freedom to pick p(x̂ |x) such that E [d(X̂N ,XN)]
(less than or) equal to the desired D
Therefore given D, the rate-distortion function is simply

R(D) = minp(x̂ |x)I (X̂ ;X)

such that E [d(X̂N ,XN)] ≤ D

S. Cheng (OU-Tulsa) December 5, 2017 205 / 275

Lecture 12 Rate-distortion problem

Rate-distortion function

p(x) Encoder Decoder X̂N

m ∈ {1, 2, · · · ,M}

XN m

R =
logM

N
, D = E [d(X̂N ,XN)] =

1

N

N∑
i=1

d(X̂i ,Xi)

Maybe you can guess at this point. For given X and X̂ , the required
rate is simply I (X ; X̂)
How is it related to the distortion though?

Note that we have a freedom to pick p(x̂ |x) such that E [d(X̂N ,XN)]
(less than or) equal to the desired D
Therefore given D, the rate-distortion function is simply

R(D) = minp(x̂ |x)I (X̂ ;X)

such that E [d(X̂N ,XN)] ≤ D

S. Cheng (OU-Tulsa) December 5, 2017 205 / 275

Lecture 12 Rate-distortion problem

Rate-distortion function

p(x) Encoder Decoder X̂N

m ∈ {1, 2, · · · ,M}

XN m

R =
logM

N
, D = E [d(X̂N ,XN)] =

1

N

N∑
i=1

d(X̂i ,Xi)

Maybe you can guess at this point. For given X and X̂ , the required
rate is simply I (X ; X̂)
How is it related to the distortion though?
Note that we have a freedom to pick p(x̂ |x) such that E [d(X̂N ,XN)]
(less than or) equal to the desired D

Therefore given D, the rate-distortion function is simply

R(D) = minp(x̂ |x)I (X̂ ;X)

such that E [d(X̂N ,XN)] ≤ D

S. Cheng (OU-Tulsa) December 5, 2017 205 / 275

Lecture 12 Rate-distortion problem

Rate-distortion function

p(x) Encoder Decoder X̂N

m ∈ {1, 2, · · · ,M}

XN m

R =
logM

N
, D = E [d(X̂N ,XN)] =

1

N

N∑
i=1

d(X̂i ,Xi)

Maybe you can guess at this point. For given X and X̂ , the required
rate is simply I (X ; X̂)
How is it related to the distortion though?
Note that we have a freedom to pick p(x̂ |x) such that E [d(X̂N ,XN)]
(less than or) equal to the desired D
Therefore given D, the rate-distortion function is simply

R(D) = minp(x̂ |x)I (X̂ ;X)

such that E [d(X̂N ,XN)] ≤ D
S. Cheng (OU-Tulsa) December 5, 2017 205 / 275

Lecture 12 Rate-distortion problem

Binary symmetric source

Let’s try to compress outcome from a fair coin toss

We know that we need 1 bit to compress the outcome losslessly, what
if we have only 0.5 bit per sample?
In this case, we can’t losslessly recover the outcome. But how good
will we do?
We need to introduce a distortion measure first. Note that we have
two types of errors: taking head as tail and taking tail as head. A
natural measure will just weights both error equally

d(X = H, X̂ = T) = d(X = T , X̂ = H) = 1

d(X = H, X̂ = H) = d(X = T , X̂ = T) = 0

If rate is > 1 bit, we know that distortion is 0. How about rate is 0,
what distortion suppose to be?
If decoders know nothing, the best bet will be just always decode
head (or tail). Then D = E [d(X ,H)] = 0.5

S. Cheng (OU-Tulsa) December 5, 2017 206 / 275

Lecture 12 Rate-distortion problem

Binary symmetric source

Let’s try to compress outcome from a fair coin toss
We know that we need 1 bit to compress the outcome losslessly, what
if we have only 0.5 bit per sample?

In this case, we can’t losslessly recover the outcome. But how good
will we do?
We need to introduce a distortion measure first. Note that we have
two types of errors: taking head as tail and taking tail as head. A
natural measure will just weights both error equally

d(X = H, X̂ = T) = d(X = T , X̂ = H) = 1

d(X = H, X̂ = H) = d(X = T , X̂ = T) = 0

If rate is > 1 bit, we know that distortion is 0. How about rate is 0,
what distortion suppose to be?
If decoders know nothing, the best bet will be just always decode
head (or tail). Then D = E [d(X ,H)] = 0.5

S. Cheng (OU-Tulsa) December 5, 2017 206 / 275

Lecture 12 Rate-distortion problem

Binary symmetric source

Let’s try to compress outcome from a fair coin toss
We know that we need 1 bit to compress the outcome losslessly, what
if we have only 0.5 bit per sample?
In this case, we can’t losslessly recover the outcome. But how good
will we do?

We need to introduce a distortion measure first. Note that we have
two types of errors: taking head as tail and taking tail as head. A
natural measure will just weights both error equally

d(X = H, X̂ = T) = d(X = T , X̂ = H) = 1

d(X = H, X̂ = H) = d(X = T , X̂ = T) = 0

If rate is > 1 bit, we know that distortion is 0. How about rate is 0,
what distortion suppose to be?
If decoders know nothing, the best bet will be just always decode
head (or tail). Then D = E [d(X ,H)] = 0.5

S. Cheng (OU-Tulsa) December 5, 2017 206 / 275

Lecture 12 Rate-distortion problem

Binary symmetric source

Let’s try to compress outcome from a fair coin toss
We know that we need 1 bit to compress the outcome losslessly, what
if we have only 0.5 bit per sample?
In this case, we can’t losslessly recover the outcome. But how good
will we do?
We need to introduce a distortion measure first. Note that we have
two types of errors: taking head as tail and taking tail as head. A
natural measure will just weights both error equally

d(X = H, X̂ = T) = d(X = T , X̂ = H) = 1

d(X = H, X̂ = H) = d(X = T , X̂ = T) = 0

If rate is > 1 bit, we know that distortion is 0. How about rate is 0,
what distortion suppose to be?
If decoders know nothing, the best bet will be just always decode
head (or tail). Then D = E [d(X ,H)] = 0.5

S. Cheng (OU-Tulsa) December 5, 2017 206 / 275

Lecture 12 Rate-distortion problem

Binary symmetric source

Let’s try to compress outcome from a fair coin toss
We know that we need 1 bit to compress the outcome losslessly, what
if we have only 0.5 bit per sample?
In this case, we can’t losslessly recover the outcome. But how good
will we do?
We need to introduce a distortion measure first. Note that we have
two types of errors: taking head as tail and taking tail as head. A
natural measure will just weights both error equally

d(X = H, X̂ = T) = d(X = T , X̂ = H) = 1

d(X = H, X̂ = H) = d(X = T , X̂ = T) = 0

If rate is > 1 bit, we know that distortion is 0. How about rate is 0,
what distortion suppose to be?

If decoders know nothing, the best bet will be just always decode
head (or tail). Then D = E [d(X ,H)] = 0.5

S. Cheng (OU-Tulsa) December 5, 2017 206 / 275

Lecture 12 Rate-distortion problem

Binary symmetric source

Let’s try to compress outcome from a fair coin toss
We know that we need 1 bit to compress the outcome losslessly, what
if we have only 0.5 bit per sample?
In this case, we can’t losslessly recover the outcome. But how good
will we do?
We need to introduce a distortion measure first. Note that we have
two types of errors: taking head as tail and taking tail as head. A
natural measure will just weights both error equally

d(X = H, X̂ = T) = d(X = T , X̂ = H) = 1

d(X = H, X̂ = H) = d(X = T , X̂ = T) = 0

If rate is > 1 bit, we know that distortion is 0. How about rate is 0,
what distortion suppose to be?
If decoders know nothing, the best bet will be just always decode
head (or tail). Then D = E [d(X ,H)] = 0.5

S. Cheng (OU-Tulsa) December 5, 2017 206 / 275

Lecture 12 Rate-distortion problem

Binary symmetric source

For 0 < D < 0.5, denote Z as the prediction error such that X = X̂ + Z .

Note that
Pr(Z = 1) = D

R = minp(x̂ |x)I (X̂ ;X) = minp(x̂ |x)H(X)− H(X |X̂)

= minp(x̂ |x)H(X)− H(X̂ + Z |X̂)

= minp(x̂ |x)H(X)− H(Z |X̂)

= minp(x̂ |x)H(X)− H(Z)

= 1− H(D)

S. Cheng (OU-Tulsa) December 5, 2017 207 / 275

0.1 0.2 0.3 0.4 0.5

0.2

0.4

0.6

0.8

1

D

R(D)

Lecture 12 Rate-distortion problem

Binary symmetric source

For 0 < D < 0.5, denote Z as the prediction error such that X = X̂ + Z .
Note that

Pr(Z = 1) = D

R = minp(x̂ |x)I (X̂ ;X) = minp(x̂ |x)H(X)− H(X |X̂)

= minp(x̂ |x)H(X)− H(X̂ + Z |X̂)

= minp(x̂ |x)H(X)− H(Z |X̂)

= minp(x̂ |x)H(X)− H(Z)

= 1− H(D)

S. Cheng (OU-Tulsa) December 5, 2017 207 / 275

0.1 0.2 0.3 0.4 0.5

0.2

0.4

0.6

0.8

1

D

R(D)

Lecture 12 Rate-distortion problem

Binary symmetric source

For 0 < D < 0.5, denote Z as the prediction error such that X = X̂ + Z .
Note that

Pr(Z = 1) = D

R = minp(x̂ |x)I (X̂ ;X) = minp(x̂ |x)H(X)− H(X |X̂)

= minp(x̂ |x)H(X)− H(X̂ + Z |X̂)

= minp(x̂ |x)H(X)− H(Z |X̂)

= minp(x̂ |x)H(X)− H(Z)

= 1− H(D)

S. Cheng (OU-Tulsa) December 5, 2017 207 / 275

0.1 0.2 0.3 0.4 0.5

0.2

0.4

0.6

0.8

1

D

R(D)

Lecture 12 Rate-distortion problem

Binary symmetric source

For 0 < D < 0.5, denote Z as the prediction error such that X = X̂ + Z .
Note that

Pr(Z = 1) = D

R = minp(x̂ |x)I (X̂ ;X) = minp(x̂ |x)H(X)− H(X |X̂)

= minp(x̂ |x)H(X)− H(X̂ + Z |X̂)

= minp(x̂ |x)H(X)− H(Z |X̂)

= minp(x̂ |x)H(X)− H(Z)

= 1− H(D)

S. Cheng (OU-Tulsa) December 5, 2017 207 / 275

0.1 0.2 0.3 0.4 0.5

0.2

0.4

0.6

0.8

1

D

R(D)

Lecture 12 Rate-distortion problem

Binary symmetric source

For 0 < D < 0.5, denote Z as the prediction error such that X = X̂ + Z .
Note that

Pr(Z = 1) = D

R = minp(x̂ |x)I (X̂ ;X) = minp(x̂ |x)H(X)− H(X |X̂)

= minp(x̂ |x)H(X)− H(X̂ + Z |X̂)

= minp(x̂ |x)H(X)− H(Z |X̂)

= minp(x̂ |x)H(X)− H(Z)

= 1− H(D)

S. Cheng (OU-Tulsa) December 5, 2017 207 / 275

0.1 0.2 0.3 0.4 0.5

0.2

0.4

0.6

0.8

1

D

R(D)

Lecture 12 Rate-distortion problem

Binary symmetric source

For 0 < D < 0.5, denote Z as the prediction error such that X = X̂ + Z .
Note that

Pr(Z = 1) = D

R = minp(x̂ |x)I (X̂ ;X) = minp(x̂ |x)H(X)− H(X |X̂)

= minp(x̂ |x)H(X)− H(X̂ + Z |X̂)

= minp(x̂ |x)H(X)− H(Z |X̂)

= minp(x̂ |x)H(X)− H(Z)

= 1− H(D)

S. Cheng (OU-Tulsa) December 5, 2017 207 / 275

0.1 0.2 0.3 0.4 0.5

0.2

0.4

0.6

0.8

1

D

R(D)

Lecture 12 Rate-distortion problem

Binary symmetric source

For 0 < D < 0.5, denote Z as the prediction error such that X = X̂ + Z .
Note that

Pr(Z = 1) = D

R = minp(x̂ |x)I (X̂ ;X) = minp(x̂ |x)H(X)− H(X |X̂)

= minp(x̂ |x)H(X)− H(X̂ + Z |X̂)

= minp(x̂ |x)H(X)− H(Z |X̂)

= minp(x̂ |x)H(X)− H(Z)

= 1− H(D)

S. Cheng (OU-Tulsa) December 5, 2017 207 / 275

0.1 0.2 0.3 0.4 0.5

0.2

0.4

0.6

0.8

1

D

R(D)

Lecture 13 Review

Previously...

Converse Proof of Channel Coding Theorem

Non-white Gaussian Channel

Rate-distortion problems

S. Cheng (OU-Tulsa) December 5, 2017 208 / 275

Lecture 13 Overview

This time

Proof of the Rate-distortion Theorem

S. Cheng (OU-Tulsa) December 5, 2017 209 / 275

Lecture 13 Rate-distortion problem

Gaussian source

Consider X ∼ N (0, σ2
X). To determine the rate-distortion function,

we need first to decide the distortion measure. An intuitive will be
just the square error. That is,

d(X̂ ,X) = (X̂ − X)2

Given E [d(X̂ ,X)] = D, what is the minimum rate required?

Like before, let us denote Z = X − X̂ as the prediction error. Note
that Var(Z) = D

R(D) = minp(x̂ |x)I (X̂ ;X) = minp(x̂ |x)h(X)− h(X |X̂)

= minp(x̂ |x)h(X)− h(Z + X̂ |X̂)

= minp(x̂ |x)h(X)− h(Z |X̂)

= minp(x̂ |x)h(X)− h(Z)

=
1

2
log

σ2
X

D

S. Cheng (OU-Tulsa) December 5, 2017 210 / 275

Lecture 13 Rate-distortion problem

Gaussian source

Consider X ∼ N (0, σ2
X). To determine the rate-distortion function,

we need first to decide the distortion measure. An intuitive will be
just the square error. That is,

d(X̂ ,X) = (X̂ − X)2

Given E [d(X̂ ,X)] = D, what is the minimum rate required?

Like before, let us denote Z = X − X̂ as the prediction error. Note
that Var(Z) = D

R(D) = minp(x̂ |x)I (X̂ ;X) = minp(x̂ |x)h(X)− h(X |X̂)

= minp(x̂ |x)h(X)− h(Z + X̂ |X̂)

= minp(x̂ |x)h(X)− h(Z |X̂)

= minp(x̂ |x)h(X)− h(Z)

=
1

2
log

σ2
X

D

S. Cheng (OU-Tulsa) December 5, 2017 210 / 275

Lecture 13 Rate-distortion problem

Gaussian source

Consider X ∼ N (0, σ2
X). To determine the rate-distortion function,

we need first to decide the distortion measure. An intuitive will be
just the square error. That is,

d(X̂ ,X) = (X̂ − X)2

Given E [d(X̂ ,X)] = D, what is the minimum rate required?

Like before, let us denote Z = X − X̂ as the prediction error. Note
that Var(Z) = D

R(D) = minp(x̂ |x)I (X̂ ;X) = minp(x̂ |x)h(X)− h(X |X̂)

= minp(x̂ |x)h(X)− h(Z + X̂ |X̂)

= minp(x̂ |x)h(X)− h(Z |X̂)

= minp(x̂ |x)h(X)− h(Z)

=
1

2
log

σ2
X

D

S. Cheng (OU-Tulsa) December 5, 2017 210 / 275

Lecture 13 Rate-distortion problem

Gaussian source

Consider X ∼ N (0, σ2
X). To determine the rate-distortion function,

we need first to decide the distortion measure. An intuitive will be
just the square error. That is,

d(X̂ ,X) = (X̂ − X)2

Given E [d(X̂ ,X)] = D, what is the minimum rate required?

Like before, let us denote Z = X − X̂ as the prediction error. Note
that Var(Z) = D

R(D) = minp(x̂ |x)I (X̂ ;X) = minp(x̂ |x)h(X)− h(X |X̂)

= minp(x̂ |x)h(X)− h(Z + X̂ |X̂)

= minp(x̂ |x)h(X)− h(Z |X̂)

= minp(x̂ |x)h(X)− h(Z)

=
1

2
log

σ2
X

D

S. Cheng (OU-Tulsa) December 5, 2017 210 / 275

Lecture 13 Rate-distortion problem

Gaussian source

Consider X ∼ N (0, σ2
X). To determine the rate-distortion function,

we need first to decide the distortion measure. An intuitive will be
just the square error. That is,

d(X̂ ,X) = (X̂ − X)2

Given E [d(X̂ ,X)] = D, what is the minimum rate required?

Like before, let us denote Z = X − X̂ as the prediction error. Note
that Var(Z) = D

R(D) = minp(x̂ |x)I (X̂ ;X) = minp(x̂ |x)h(X)− h(X |X̂)

= minp(x̂ |x)h(X)− h(Z + X̂ |X̂)

= minp(x̂ |x)h(X)− h(Z |X̂)

= minp(x̂ |x)h(X)− h(Z)

=
1

2
log

σ2
X

D

S. Cheng (OU-Tulsa) December 5, 2017 210 / 275

Lecture 13 Rate-distortion problem

Gaussian source

Consider X ∼ N (0, σ2
X). To determine the rate-distortion function,

we need first to decide the distortion measure. An intuitive will be
just the square error. That is,

d(X̂ ,X) = (X̂ − X)2

Given E [d(X̂ ,X)] = D, what is the minimum rate required?

Like before, let us denote Z = X − X̂ as the prediction error. Note
that Var(Z) = D

R(D) = minp(x̂ |x)I (X̂ ;X) = minp(x̂ |x)h(X)− h(X |X̂)

= minp(x̂ |x)h(X)− h(Z + X̂ |X̂)

= minp(x̂ |x)h(X)− h(Z |X̂)

= minp(x̂ |x)h(X)− h(Z)

=
1

2
log

σ2
X

D

S. Cheng (OU-Tulsa) December 5, 2017 210 / 275

Lecture 13 Rate-distortion problem

Gaussian source

Consider X ∼ N (0, σ2
X). To determine the rate-distortion function,

we need first to decide the distortion measure. An intuitive will be
just the square error. That is,

d(X̂ ,X) = (X̂ − X)2

Given E [d(X̂ ,X)] = D, what is the minimum rate required?

Like before, let us denote Z = X − X̂ as the prediction error. Note
that Var(Z) = D

R(D) = minp(x̂ |x)I (X̂ ;X) = minp(x̂ |x)h(X)− h(X |X̂)

= minp(x̂ |x)h(X)− h(Z + X̂ |X̂)

= minp(x̂ |x)h(X)− h(Z |X̂)

= minp(x̂ |x)h(X)− h(Z)

=
1

2
log

σ2
X

D

S. Cheng (OU-Tulsa) December 5, 2017 210 / 275

Lecture 13 Rate-distortion problem

Gaussian source

Consider X ∼ N (0, σ2
X). To determine the rate-distortion function,

we need first to decide the distortion measure. An intuitive will be
just the square error. That is,

d(X̂ ,X) = (X̂ − X)2

Given E [d(X̂ ,X)] = D, what is the minimum rate required?

Like before, let us denote Z = X − X̂ as the prediction error. Note
that Var(Z) = D

R(D) = minp(x̂ |x)I (X̂ ;X) = minp(x̂ |x)h(X)− h(X |X̂)

= minp(x̂ |x)h(X)− h(Z + X̂ |X̂)

= minp(x̂ |x)h(X)− h(Z |X̂)

= minp(x̂ |x)h(X)− h(Z)

=
1

2
log

σ2
X

D

S. Cheng (OU-Tulsa) December 5, 2017 210 / 275

Lecture 13 Rate-distortion Theorem

Forward proof

Forward statement

Given distortion constraint D, we can find scheme such that the require
rate is no bigger than

R(D) = min
p(x̂ |x)

I (X ; X̂),

where the X̂ introduced by p(x̂ |x) should satisfy E [d(X , X̂)] ≤ D

Code book construction

Let say p∗(x̂ |x) is the distribution that achieve the rate-distortion
optimiation problem. Randomly construct 2NR codewords as follows

Sample X from the source and pass X into p∗(x̂ |x) to obtain X̂

Repeat this N time to get a length-N codeword

Store the i-th codeword as C(i)

Note that the code rate is log 2NR

N = R as desired

S. Cheng (OU-Tulsa) December 5, 2017 211 / 275

Lecture 13 Rate-distortion Theorem

Forward proof

Forward statement

Given distortion constraint D, we can find scheme such that the require
rate is no bigger than

R(D) = min
p(x̂ |x)

I (X ; X̂),

where the X̂ introduced by p(x̂ |x) should satisfy E [d(X , X̂)] ≤ D

Code book construction

Let say p∗(x̂ |x) is the distribution that achieve the rate-distortion
optimiation problem. Randomly construct 2NR codewords as follows

Sample X from the source and pass X into p∗(x̂ |x) to obtain X̂

Repeat this N time to get a length-N codeword

Store the i-th codeword as C(i)

Note that the code rate is log 2NR

N = R as desired

S. Cheng (OU-Tulsa) December 5, 2017 211 / 275

Lecture 13 Rate-distortion Theorem

Forward proof

Forward statement

Given distortion constraint D, we can find scheme such that the require
rate is no bigger than

R(D) = min
p(x̂ |x)

I (X ; X̂),

where the X̂ introduced by p(x̂ |x) should satisfy E [d(X , X̂)] ≤ D

Code book construction

Let say p∗(x̂ |x) is the distribution that achieve the rate-distortion
optimiation problem. Randomly construct 2NR codewords as follows

Sample X from the source and pass X into p∗(x̂ |x) to obtain X̂

Repeat this N time to get a length-N codeword

Store the i-th codeword as C(i)

Note that the code rate is log 2NR

N = R as desired

S. Cheng (OU-Tulsa) December 5, 2017 211 / 275

Lecture 13 Rate-distortion Theorem

Forward proof

Forward statement

Given distortion constraint D, we can find scheme such that the require
rate is no bigger than

R(D) = min
p(x̂ |x)

I (X ; X̂),

where the X̂ introduced by p(x̂ |x) should satisfy E [d(X , X̂)] ≤ D

Code book construction

Let say p∗(x̂ |x) is the distribution that achieve the rate-distortion
optimiation problem. Randomly construct 2NR codewords as follows

Sample X from the source and pass X into p∗(x̂ |x) to obtain X̂

Repeat this N time to get a length-N codeword

Store the i-th codeword as C(i)

Note that the code rate is log 2NR

N = R as desired

S. Cheng (OU-Tulsa) December 5, 2017 211 / 275

Lecture 13 Rate-distortion Theorem

Forward proof

Forward statement

Given distortion constraint D, we can find scheme such that the require
rate is no bigger than

R(D) = min
p(x̂ |x)

I (X ; X̂),

where the X̂ introduced by p(x̂ |x) should satisfy E [d(X , X̂)] ≤ D

Code book construction

Let say p∗(x̂ |x) is the distribution that achieve the rate-distortion
optimiation problem. Randomly construct 2NR codewords as follows

Sample X from the source and pass X into p∗(x̂ |x) to obtain X̂

Repeat this N time to get a length-N codeword

Store the i-th codeword as C(i)

Note that the code rate is log 2NR

N = R as desired

S. Cheng (OU-Tulsa) December 5, 2017 211 / 275

Lecture 13 Rate-distortion Theorem

Covering lemma and distortion typical sequences

We say joint typical sequences xN and x̂N are distortion typical
((xN , x̂N) ∈ AN

d ,ε) if |d(xN , x̂N)− E [d(X , X̂)]| ≤ ε

By LLN, every pair of sequences sampled from the joint source will
virtually be distortion typical

Consequently, (1− δ)2N(H(X ,X̂)−ε) ≤ |AN
d ,ε| ≤ 2N(H(X ,X̂)+ε) as before

For two independently drawn sequences X̂N and XN , the probability
for them to be distortion typical will be just the same as before. In

particular, (1− δ)2−N(I (X ;X̂)−3ε) ≤ Pr((XN , X̂N) ∈ AN
d ,ε(X , X̂))

S. Cheng (OU-Tulsa) December 5, 2017 212 / 275

Lecture 13 Rate-distortion Theorem

Covering lemma and distortion typical sequences

We say joint typical sequences xN and x̂N are distortion typical
((xN , x̂N) ∈ AN

d ,ε) if |d(xN , x̂N)− E [d(X , X̂)]| ≤ ε

By LLN, every pair of sequences sampled from the joint source will
virtually be distortion typical

Consequently, (1− δ)2N(H(X ,X̂)−ε) ≤ |AN
d ,ε| ≤ 2N(H(X ,X̂)+ε) as before

For two independently drawn sequences X̂N and XN , the probability
for them to be distortion typical will be just the same as before. In

particular, (1− δ)2−N(I (X ;X̂)−3ε) ≤ Pr((XN , X̂N) ∈ AN
d ,ε(X , X̂))

S. Cheng (OU-Tulsa) December 5, 2017 212 / 275

Lecture 13 Rate-distortion Theorem

Covering lemma and distortion typical sequences

We say joint typical sequences xN and x̂N are distortion typical
((xN , x̂N) ∈ AN

d ,ε) if |d(xN , x̂N)− E [d(X , X̂)]| ≤ ε

By LLN, every pair of sequences sampled from the joint source will
virtually be distortion typical

Consequently, (1− δ)2N(H(X ,X̂)−ε) ≤ |AN
d ,ε| ≤ 2N(H(X ,X̂)+ε) as before

For two independently drawn sequences X̂N and XN , the probability
for them to be distortion typical will be just the same as before. In

particular, (1− δ)2−N(I (X ;X̂)−3ε) ≤ Pr((XN , X̂N) ∈ AN
d ,ε(X , X̂))

S. Cheng (OU-Tulsa) December 5, 2017 212 / 275

Lecture 13 Rate-distortion Theorem

Covering lemma and distortion typical sequences

We say joint typical sequences xN and x̂N are distortion typical
((xN , x̂N) ∈ AN

d ,ε) if |d(xN , x̂N)− E [d(X , X̂)]| ≤ ε

By LLN, every pair of sequences sampled from the joint source will
virtually be distortion typical

Consequently, (1− δ)2N(H(X ,X̂)−ε) ≤ |AN
d ,ε| ≤ 2N(H(X ,X̂)+ε) as before

For two independently drawn sequences X̂N and XN , the probability
for them to be distortion typical will be just the same as before. In

particular, (1− δ)2−N(I (X ;X̂)−3ε) ≤ Pr((XN , X̂N) ∈ AN
d ,ε(X , X̂))

S. Cheng (OU-Tulsa) December 5, 2017 212 / 275

Lecture 13 Rate-distortion Theorem

Covering lemma for distortion typical sequences

Pr((XN , X̂N(m)) /∈ A(N)
d ,ε (X , X̂) for all m)

=
M∏

m=1

Pr((XN , X̂N(m)) /∈ A(N)
d ,ε (X̂ ,X))

=
M∏

m=1

[
1− Pr((XN , X̂N(m)) ∈ A(N)

d ,ε (X̂ ,X))
]

≤(1− (1− δ)2−N(I (X̂ ;X)+3ε))M

≤ exp(−M(1− δ)2−N(I (X̂ ;X)+3ε))

≤ exp(−(1− δ)2−N(I (X̂ ;X)−R+3ε))→ 0 as N →∞ and R > I (X ; X̂) + 3ε

S. Cheng (OU-Tulsa) December 5, 2017 213 / 275

0 2 4

−4

−2

0

1− x

e−x

Lecture 13 Rate-distortion Theorem

Covering lemma for distortion typical sequences

Pr((XN , X̂N(m)) /∈ A(N)
d ,ε (X , X̂) for all m)

=
M∏

m=1

Pr((XN , X̂N(m)) /∈ A(N)
d ,ε (X̂ ,X))

=
M∏

m=1

[
1− Pr((XN , X̂N(m)) ∈ A(N)

d ,ε (X̂ ,X))
]

≤(1− (1− δ)2−N(I (X̂ ;X)+3ε))M

≤ exp(−M(1− δ)2−N(I (X̂ ;X)+3ε))

≤ exp(−(1− δ)2−N(I (X̂ ;X)−R+3ε))→ 0 as N →∞ and R > I (X ; X̂) + 3ε

S. Cheng (OU-Tulsa) December 5, 2017 213 / 275

0 2 4

−4

−2

0

1− x

e−x

Lecture 13 Rate-distortion Theorem

Covering lemma for distortion typical sequences

Pr((XN , X̂N(m)) /∈ A(N)
d ,ε (X , X̂) for all m)

=
M∏

m=1

Pr((XN , X̂N(m)) /∈ A(N)
d ,ε (X̂ ,X))

=
M∏

m=1

[
1− Pr((XN , X̂N(m)) ∈ A(N)

d ,ε (X̂ ,X))
]

≤(1− (1− δ)2−N(I (X̂ ;X)+3ε))M

≤ exp(−M(1− δ)2−N(I (X̂ ;X)+3ε))

≤ exp(−(1− δ)2−N(I (X̂ ;X)−R+3ε))→ 0 as N →∞ and R > I (X ; X̂) + 3ε

S. Cheng (OU-Tulsa) December 5, 2017 213 / 275

0 2 4

−4

−2

0

1− x

e−x

Lecture 13 Rate-distortion Theorem

Covering lemma for distortion typical sequences

Pr((XN , X̂N(m)) /∈ A(N)
d ,ε (X , X̂) for all m)

=
M∏

m=1

Pr((XN , X̂N(m)) /∈ A(N)
d ,ε (X̂ ,X))

=
M∏

m=1

[
1− Pr((XN , X̂N(m)) ∈ A(N)

d ,ε (X̂ ,X))
]

≤(1− (1− δ)2−N(I (X̂ ;X)+3ε))M

≤ exp(−M(1− δ)2−N(I (X̂ ;X)+3ε))

≤ exp(−(1− δ)2−N(I (X̂ ;X)−R+3ε))→ 0 as N →∞ and R > I (X ; X̂) + 3ε

S. Cheng (OU-Tulsa) December 5, 2017 213 / 275

0 2 4

−4

−2

0

1− x

e−x

Lecture 13 Rate-distortion Theorem

Covering lemma for distortion typical sequences

Pr((XN , X̂N(m)) /∈ A(N)
d ,ε (X , X̂) for all m)

=
M∏

m=1

Pr((XN , X̂N(m)) /∈ A(N)
d ,ε (X̂ ,X))

=
M∏

m=1

[
1− Pr((XN , X̂N(m)) ∈ A(N)

d ,ε (X̂ ,X))
]

≤(1− (1− δ)2−N(I (X̂ ;X)+3ε))M

≤ exp(−M(1− δ)2−N(I (X̂ ;X)+3ε))

≤ exp(−(1− δ)2−N(I (X̂ ;X)−R+3ε))→ 0 as N →∞ and R > I (X ; X̂) + 3ε

S. Cheng (OU-Tulsa) December 5, 2017 213 / 275

0 2 4

−4

−2

0

1− x

e−x

Lecture 13 Rate-distortion Theorem

Covering lemma for distortion typical sequences

Pr((XN , X̂N(m)) /∈ A(N)
d ,ε (X , X̂) for all m)

=
M∏

m=1

Pr((XN , X̂N(m)) /∈ A(N)
d ,ε (X̂ ,X))

=
M∏

m=1

[
1− Pr((XN , X̂N(m)) ∈ A(N)

d ,ε (X̂ ,X))
]

≤(1− (1− δ)2−N(I (X̂ ;X)+3ε))M

≤ exp(−M(1− δ)2−N(I (X̂ ;X)+3ε))

≤ exp(−(1− δ)2−N(I (X̂ ;X)−R+3ε))→ 0 as N →∞ and R > I (X ; X̂) + 3ε

S. Cheng (OU-Tulsa) December 5, 2017 213 / 275

0 2 4

−4

−2

0

1− x

e−x

Lecture 13 Rate-distortion Theorem

Covering lemma for distortion typical sequences

Pr((XN , X̂N(m)) /∈ A(N)
d ,ε (X , X̂) for all m)

=
M∏

m=1

Pr((XN , X̂N(m)) /∈ A(N)
d ,ε (X̂ ,X))

=
M∏

m=1

[
1− Pr((XN , X̂N(m)) ∈ A(N)

d ,ε (X̂ ,X))
]

≤(1− (1− δ)2−N(I (X̂ ;X)+3ε))M

≤ exp(−M(1− δ)2−N(I (X̂ ;X)+3ε))

≤ exp(−(1− δ)2−N(I (X̂ ;X)−R+3ε))→ 0 as N →∞ and R > I (X ; X̂) + 3ε

S. Cheng (OU-Tulsa) December 5, 2017 213 / 275

0 2 4

−4

−2

0

1− x

e−x

Lecture 13 Rate-distortion Theorem

Forward proof

Encoding

Given input XN , find out of the codewords the one that is jointly typical
with XN . And say, if the codeword is C(i), output index i to the decoder

Decoding

Upon receiving the index i , simply output C(i)

Performance analysis

First of all, the only point of failure lies on encoding, that is when the
encoder cannot find a codeword jointly typical with XN

By covering Lemma, encoding failure is negligible as long as
R > I (X ; X̂)

If encoding is successful, C(i) and XN should be distortion typical.
Therefore, E [d(C(i);XN)] ∼ E [d(X̂ ,X)] ≤ D as desired

S. Cheng (OU-Tulsa) December 5, 2017 214 / 275

Lecture 13 Rate-distortion Theorem

Forward proof

Encoding

Given input XN , find out of the codewords the one that is jointly typical
with XN . And say, if the codeword is C(i), output index i to the decoder

Decoding

Upon receiving the index i , simply output C(i)

Performance analysis

First of all, the only point of failure lies on encoding, that is when the
encoder cannot find a codeword jointly typical with XN

By covering Lemma, encoding failure is negligible as long as
R > I (X ; X̂)

If encoding is successful, C(i) and XN should be distortion typical.
Therefore, E [d(C(i);XN)] ∼ E [d(X̂ ,X)] ≤ D as desired

S. Cheng (OU-Tulsa) December 5, 2017 214 / 275

Lecture 13 Rate-distortion Theorem

Forward proof

Encoding

Given input XN , find out of the codewords the one that is jointly typical
with XN . And say, if the codeword is C(i), output index i to the decoder

Decoding

Upon receiving the index i , simply output C(i)

Performance analysis

First of all, the only point of failure lies on encoding, that is when the
encoder cannot find a codeword jointly typical with XN

By covering Lemma, encoding failure is negligible as long as
R > I (X ; X̂)

If encoding is successful, C(i) and XN should be distortion typical.
Therefore, E [d(C(i);XN)] ∼ E [d(X̂ ,X)] ≤ D as desired

S. Cheng (OU-Tulsa) December 5, 2017 214 / 275

Lecture 13 Rate-distortion Theorem

Forward proof

Encoding

Given input XN , find out of the codewords the one that is jointly typical
with XN . And say, if the codeword is C(i), output index i to the decoder

Decoding

Upon receiving the index i , simply output C(i)

Performance analysis

First of all, the only point of failure lies on encoding, that is when the
encoder cannot find a codeword jointly typical with XN

By covering Lemma, encoding failure is negligible as long as
R > I (X ; X̂)

If encoding is successful, C(i) and XN should be distortion typical.
Therefore, E [d(C(i);XN)] ∼ E [d(X̂ ,X)] ≤ D as desired

S. Cheng (OU-Tulsa) December 5, 2017 214 / 275

Lecture 13 Rate-distortion Theorem

Forward proof

Encoding

Given input XN , find out of the codewords the one that is jointly typical
with XN . And say, if the codeword is C(i), output index i to the decoder

Decoding

Upon receiving the index i , simply output C(i)

Performance analysis

First of all, the only point of failure lies on encoding, that is when the
encoder cannot find a codeword jointly typical with XN

By covering Lemma, encoding failure is negligible as long as
R > I (X ; X̂)

If encoding is successful, C(i) and XN should be distortion typical.
Therefore, E [d(C(i);XN)] ∼ E [d(X̂ ,X)] ≤ D as desired

S. Cheng (OU-Tulsa) December 5, 2017 214 / 275

Lecture 13 Rate-distortion Theorem

Converse proof

Converse statement

If rate is smaller than R(D), distortion will be larger than D

Alternative statement

If distortion is less than or equal to D, the rate must be larger than R(D)

In the proof, we need to use the convex property of R(D). That is,

R(aD1 + (1− a)D2) ≥ aR(D1) + (1− a)R(D2)

So we will digress a little bit to show this convex property first

S. Cheng (OU-Tulsa) December 5, 2017 215 / 275

Lecture 13 Rate-distortion Theorem

Converse proof

Converse statement

If rate is smaller than R(D), distortion will be larger than D

Alternative statement

If distortion is less than or equal to D, the rate must be larger than R(D)

In the proof, we need to use the convex property of R(D). That is,

R(aD1 + (1− a)D2) ≥ aR(D1) + (1− a)R(D2)

So we will digress a little bit to show this convex property first

S. Cheng (OU-Tulsa) December 5, 2017 215 / 275

Lecture 13 Rate-distortion Theorem

Converse proof

Converse statement

If rate is smaller than R(D), distortion will be larger than D

Alternative statement

If distortion is less than or equal to D, the rate must be larger than R(D)

In the proof, we need to use the convex property of R(D). That is,

R(aD1 + (1− a)D2) ≥ aR(D1) + (1− a)R(D2)

So we will digress a little bit to show this convex property first

S. Cheng (OU-Tulsa) December 5, 2017 215 / 275

Lecture 13 Rate-distortion Theorem

Log-sum inequality

Log-sum inequality

For any a1, · · · , an ≥ 0 and b1, · · · , bn ≥ 0, we have∑
i

ai log2
ai
bi
≥

(∑
i

ai

)
log2

∑
i ai∑
i bi

.

Proof

We can define two distributions p(x) and q(x) with p(xi) =
ai∑
i ai

and

q(xi) =
bi∑
i bi

. Since p(x) and q(x) are both non-negative and sum up to

1, they are indeed valid probability mass functions.

Then, we have

0 ≤ KL(p(x)‖q(x)) =
∑
i

p(xi) log2
p(xi)

q(xi)

=
∑
i

ai∑
i ai

(
log2

ai
bi
− log2

∑
i ai∑
i bi

)

S. Cheng (OU-Tulsa) December 5, 2017 216 / 275

Lecture 13 Rate-distortion Theorem

Log-sum inequality

Log-sum inequality

For any a1, · · · , an ≥ 0 and b1, · · · , bn ≥ 0, we have∑
i

ai log2
ai
bi
≥

(∑
i

ai

)
log2

∑
i ai∑
i bi

.

Proof

We can define two distributions p(x) and q(x) with p(xi) =
ai∑
i ai

and

q(xi) =
bi∑
i bi

. Since p(x) and q(x) are both non-negative and sum up to

1, they are indeed valid probability mass functions.

Then, we have

0 ≤ KL(p(x)‖q(x)) =
∑
i

p(xi) log2
p(xi)

q(xi)

=
∑
i

ai∑
i ai

(
log2

ai
bi
− log2

∑
i ai∑
i bi

)

S. Cheng (OU-Tulsa) December 5, 2017 216 / 275

Lecture 13 Rate-distortion Theorem

Log-sum inequality

Log-sum inequality

For any a1, · · · , an ≥ 0 and b1, · · · , bn ≥ 0, we have∑
i

ai log2
ai
bi
≥

(∑
i

ai

)
log2

∑
i ai∑
i bi

.

Proof

We can define two distributions p(x) and q(x) with p(xi) =
ai∑
i ai

and

q(xi) =
bi∑
i bi

. Since p(x) and q(x) are both non-negative and sum up to

1, they are indeed valid probability mass functions. Then, we have

0 ≤ KL(p(x)‖q(x)) =
∑
i

p(xi) log2
p(xi)

q(xi)

=
∑
i

ai∑
i ai

(
log2

ai
bi
− log2

∑
i ai∑
i bi

)

S. Cheng (OU-Tulsa) December 5, 2017 216 / 275

Lecture 13 Rate-distortion Theorem

Log-sum inequality

Log-sum inequality

For any a1, · · · , an ≥ 0 and b1, · · · , bn ≥ 0, we have∑
i

ai log2
ai
bi
≥

(∑
i

ai

)
log2

∑
i ai∑
i bi

.

Proof

We can define two distributions p(x) and q(x) with p(xi) =
ai∑
i ai

and

q(xi) =
bi∑
i bi

. Since p(x) and q(x) are both non-negative and sum up to

1, they are indeed valid probability mass functions. Then, we have

0 ≤ KL(p(x)‖q(x)) =
∑
i

p(xi) log2
p(xi)

q(xi)

=
∑
i

ai∑
i ai

(
log2

ai
bi
− log2

∑
i ai∑
i bi

)

S. Cheng (OU-Tulsa) December 5, 2017 216 / 275

Lecture 13 Rate-distortion Theorem

Log-sum inequality

Log-sum inequality

For any a1, · · · , an ≥ 0 and b1, · · · , bn ≥ 0, we have∑
i

ai log2
ai
bi
≥

(∑
i

ai

)
log2

∑
i ai∑
i bi

.

Proof

We can define two distributions p(x) and q(x) with p(xi) =
ai∑
i ai

and

q(xi) =
bi∑
i bi

. Since p(x) and q(x) are both non-negative and sum up to

1, they are indeed valid probability mass functions. Then, we have

0 ≤ KL(p(x)‖q(x)) =
∑
i

p(xi) log2
p(xi)

q(xi)

=
∑
i

ai∑
i ai

(
log2

ai
bi
− log2

∑
i ai∑
i bi

)
S. Cheng (OU-Tulsa) December 5, 2017 216 / 275

Lecture 13 Rate-distortion Theorem

Convexity of KL-Divergence

For any four distributions p1(·), p2(·), q1(·), and q2(·), we have

λ1KL(p1‖q1) + λ2KL(p2‖q2) ≥ KL(λ1p1 + λ2p2‖λ1q1 + λ2q2),

where λ1, λ2 ≥ 0 and λ1 + λ2 = 1

Proof

λ1KL(p1‖q1) + λ2KL(p2‖q2)

=λ1

∑
x∈X

p1(x) log
p1(x)

q1(x)
+ λ2

∑
x∈X

p2(x) log
p2(x)

q2(x)

=
∑
x∈X

λ1p1(x) log
λ1p1(x)

λ1q1(x)
+ λ2p2(x) log

λ2p2(x)

λ2q2(x)

≥
∑
x∈X

(λ1p1(x) + λ2p2(x)) log
λ1p1(x) + λ2p2(x)

λ1q1(x) + λ2q2(x)
(by log-sum inequality)

=KL(λ1p1 + λ2p2‖λ1q1 + λ2q2)

S. Cheng (OU-Tulsa) December 5, 2017 217 / 275

Lecture 13 Rate-distortion Theorem

Convexity of KL-Divergence

For any four distributions p1(·), p2(·), q1(·), and q2(·), we have

λ1KL(p1‖q1) + λ2KL(p2‖q2) ≥ KL(λ1p1 + λ2p2‖λ1q1 + λ2q2),

where λ1, λ2 ≥ 0 and λ1 + λ2 = 1

Proof

λ1KL(p1‖q1) + λ2KL(p2‖q2)

=λ1

∑
x∈X

p1(x) log
p1(x)

q1(x)
+ λ2

∑
x∈X

p2(x) log
p2(x)

q2(x)

=
∑
x∈X

λ1p1(x) log
λ1p1(x)

λ1q1(x)
+ λ2p2(x) log

λ2p2(x)

λ2q2(x)

≥
∑
x∈X

(λ1p1(x) + λ2p2(x)) log
λ1p1(x) + λ2p2(x)

λ1q1(x) + λ2q2(x)
(by log-sum inequality)

=KL(λ1p1 + λ2p2‖λ1q1 + λ2q2)

S. Cheng (OU-Tulsa) December 5, 2017 217 / 275

Lecture 13 Rate-distortion Theorem

Convexity of KL-Divergence

For any four distributions p1(·), p2(·), q1(·), and q2(·), we have

λ1KL(p1‖q1) + λ2KL(p2‖q2) ≥ KL(λ1p1 + λ2p2‖λ1q1 + λ2q2),

where λ1, λ2 ≥ 0 and λ1 + λ2 = 1

Proof

λ1KL(p1‖q1) + λ2KL(p2‖q2)

=λ1

∑
x∈X

p1(x) log
p1(x)

q1(x)
+ λ2

∑
x∈X

p2(x) log
p2(x)

q2(x)

=
∑
x∈X

λ1p1(x) log
λ1p1(x)

λ1q1(x)
+ λ2p2(x) log

λ2p2(x)

λ2q2(x)

≥
∑
x∈X

(λ1p1(x) + λ2p2(x)) log
λ1p1(x) + λ2p2(x)

λ1q1(x) + λ2q2(x)
(by log-sum inequality)

=KL(λ1p1 + λ2p2‖λ1q1 + λ2q2)

S. Cheng (OU-Tulsa) December 5, 2017 217 / 275

Lecture 13 Rate-distortion Theorem

Convexity of KL-Divergence

For any four distributions p1(·), p2(·), q1(·), and q2(·), we have

λ1KL(p1‖q1) + λ2KL(p2‖q2) ≥ KL(λ1p1 + λ2p2‖λ1q1 + λ2q2),

where λ1, λ2 ≥ 0 and λ1 + λ2 = 1

Proof

λ1KL(p1‖q1) + λ2KL(p2‖q2)

=λ1

∑
x∈X

p1(x) log
p1(x)

q1(x)
+ λ2

∑
x∈X

p2(x) log
p2(x)

q2(x)

=
∑
x∈X

λ1p1(x) log
λ1p1(x)

λ1q1(x)
+ λ2p2(x) log

λ2p2(x)

λ2q2(x)

≥
∑
x∈X

(λ1p1(x) + λ2p2(x)) log
λ1p1(x) + λ2p2(x)

λ1q1(x) + λ2q2(x)
(by log-sum inequality)

=KL(λ1p1 + λ2p2‖λ1q1 + λ2q2)

S. Cheng (OU-Tulsa) December 5, 2017 217 / 275

Lecture 13 Rate-distortion Theorem

Convexity of KL-Divergence

For any four distributions p1(·), p2(·), q1(·), and q2(·), we have

λ1KL(p1‖q1) + λ2KL(p2‖q2) ≥ KL(λ1p1 + λ2p2‖λ1q1 + λ2q2),

where λ1, λ2 ≥ 0 and λ1 + λ2 = 1

Proof

λ1KL(p1‖q1) + λ2KL(p2‖q2)

=λ1

∑
x∈X

p1(x) log
p1(x)

q1(x)
+ λ2

∑
x∈X

p2(x) log
p2(x)

q2(x)

=
∑
x∈X

λ1p1(x) log
λ1p1(x)

λ1q1(x)
+ λ2p2(x) log

λ2p2(x)

λ2q2(x)

≥
∑
x∈X

(λ1p1(x) + λ2p2(x)) log
λ1p1(x) + λ2p2(x)

λ1q1(x) + λ2q2(x)
(by log-sum inequality)

=KL(λ1p1 + λ2p2‖λ1q1 + λ2q2)

S. Cheng (OU-Tulsa) December 5, 2017 217 / 275

Lecture 13 Rate-distortion Theorem

Convexity of I (X ;Y) with respect to p(y |x)
For any random variables X and Y , I (X ;Y) is a convex function of p(y |x)
for a fixed p(x)

Remark

I (X ;Y) is concave with respect to p(x) for fixed p(y |x) though. A proof
is given in Cover and Thomas and will be omitted here

Proof

Let us write
I (X ;Y) = KL(p(x , y)‖p(x)p(y))

= KL
(
p(x)p(y |x)

∥∥∥p(x)∑
x

p(x)p(y |x)
)
, f (p(y |x))

We want to show
λf (p1(y |x)) + (1− λ)f (p2(y |x)) ≥ f (λp1(y |x) + (1− λ)p2(y |x))

S. Cheng (OU-Tulsa) December 5, 2017 218 / 275

Lecture 13 Rate-distortion Theorem

Convexity of I (X ;Y) with respect to p(y |x)
For any random variables X and Y , I (X ;Y) is a convex function of p(y |x)
for a fixed p(x)

Remark

I (X ;Y) is concave with respect to p(x) for fixed p(y |x) though. A proof
is given in Cover and Thomas and will be omitted here

Proof

Let us write
I (X ;Y) = KL(p(x , y)‖p(x)p(y))

= KL
(
p(x)p(y |x)

∥∥∥p(x)∑
x

p(x)p(y |x)
)
, f (p(y |x))

We want to show
λf (p1(y |x)) + (1− λ)f (p2(y |x)) ≥ f (λp1(y |x) + (1− λ)p2(y |x))

S. Cheng (OU-Tulsa) December 5, 2017 218 / 275

Lecture 13 Rate-distortion Theorem

Convexity of I (X ;Y) with respect to p(y |x)
For any random variables X and Y , I (X ;Y) is a convex function of p(y |x)
for a fixed p(x)

Remark

I (X ;Y) is concave with respect to p(x) for fixed p(y |x) though. A proof
is given in Cover and Thomas and will be omitted here

Proof

Let us write
I (X ;Y) = KL(p(x , y)‖p(x)p(y))

= KL
(
p(x)p(y |x)

∥∥∥p(x)∑
x

p(x)p(y |x)
)
, f (p(y |x))

We want to show
λf (p1(y |x)) + (1− λ)f (p2(y |x)) ≥ f (λp1(y |x) + (1− λ)p2(y |x))

S. Cheng (OU-Tulsa) December 5, 2017 218 / 275

Lecture 13 Rate-distortion Theorem

Convexity of I (X ;Y) with respect to p(y |x)
For any random variables X and Y , I (X ;Y) is a convex function of p(y |x)
for a fixed p(x)

Remark

I (X ;Y) is concave with respect to p(x) for fixed p(y |x) though. A proof
is given in Cover and Thomas and will be omitted here

Proof

Let us write
I (X ;Y) = KL(p(x , y)‖p(x)p(y))

= KL
(
p(x)p(y |x)

∥∥∥p(x)∑
x

p(x)p(y |x)
)
, f (p(y |x))

We want to show
λf (p1(y |x)) + (1− λ)f (p2(y |x)) ≥ f (λp1(y |x) + (1− λ)p2(y |x))

S. Cheng (OU-Tulsa) December 5, 2017 218 / 275

Lecture 13 Rate-distortion Theorem

Proof

Continue from previous slide, we have

λf (p1(y |x)) + (1− λ)f (p2(y |x))

=λKL
(
p(x)p1(y |x)

∥∥∥p(x)∑
x

p(x)p1(y |x)
)

+ (1− λ)KL
(
p(x)p2(y |x)

∥∥∥p(x)∑
x

p(x)p2(y |x)
)

≥KL
(
λp(x)p1(y |x) + (1− λ)p(x)p2(y |x)

∥∥∥λp(x)∑
x

p(x)p1(y |x)

+ (1− λ)p(x)
∑
x

p(x)p2(y |x)
)

=KL
(
p(x)[λp1(y |x) + (1− λ)p2(y |x)]

∥∥∥p(x)∑
x

p(x)[λp1(y |x) + (1− λ)p2(y |x)]
)

=f (λp1(y |x) + (1− λ)p2(y |x))

S. Cheng (OU-Tulsa) December 5, 2017 219 / 275

Lecture 13 Rate-distortion Theorem

Proof

Continue from previous slide, we have

λf (p1(y |x)) + (1− λ)f (p2(y |x))

=λKL
(
p(x)p1(y |x)

∥∥∥p(x)∑
x

p(x)p1(y |x)
)

+ (1− λ)KL
(
p(x)p2(y |x)

∥∥∥p(x)∑
x

p(x)p2(y |x)
)

≥KL
(
λp(x)p1(y |x) + (1− λ)p(x)p2(y |x)

∥∥∥λp(x)∑
x

p(x)p1(y |x)

+ (1− λ)p(x)
∑
x

p(x)p2(y |x)
)

=KL
(
p(x)[λp1(y |x) + (1− λ)p2(y |x)]

∥∥∥p(x)∑
x

p(x)[λp1(y |x) + (1− λ)p2(y |x)]
)

=f (λp1(y |x) + (1− λ)p2(y |x))

S. Cheng (OU-Tulsa) December 5, 2017 219 / 275

Lecture 13 Rate-distortion Theorem

Proof

Continue from previous slide, we have

λf (p1(y |x)) + (1− λ)f (p2(y |x))

=λKL
(
p(x)p1(y |x)

∥∥∥p(x)∑
x

p(x)p1(y |x)
)

+ (1− λ)KL
(
p(x)p2(y |x)

∥∥∥p(x)∑
x

p(x)p2(y |x)
)

≥KL
(
λp(x)p1(y |x) + (1− λ)p(x)p2(y |x)

∥∥∥λp(x)∑
x

p(x)p1(y |x)

+ (1− λ)p(x)
∑
x

p(x)p2(y |x)
)

=KL
(
p(x)[λp1(y |x) + (1− λ)p2(y |x)]

∥∥∥p(x)∑
x

p(x)[λp1(y |x) + (1− λ)p2(y |x)]
)

=f (λp1(y |x) + (1− λ)p2(y |x))

S. Cheng (OU-Tulsa) December 5, 2017 219 / 275

Lecture 13 Rate-distortion Theorem

Proof

Continue from previous slide, we have

λf (p1(y |x)) + (1− λ)f (p2(y |x))

=λKL
(
p(x)p1(y |x)

∥∥∥p(x)∑
x

p(x)p1(y |x)
)

+ (1− λ)KL
(
p(x)p2(y |x)

∥∥∥p(x)∑
x

p(x)p2(y |x)
)

≥KL
(
λp(x)p1(y |x) + (1− λ)p(x)p2(y |x)

∥∥∥λp(x)∑
x

p(x)p1(y |x)

+ (1− λ)p(x)
∑
x

p(x)p2(y |x)
)

=KL
(
p(x)[λp1(y |x) + (1− λ)p2(y |x)]

∥∥∥p(x)∑
x

p(x)[λp1(y |x) + (1− λ)p2(y |x)]
)

=f (λp1(y |x) + (1− λ)p2(y |x))

S. Cheng (OU-Tulsa) December 5, 2017 219 / 275

Lecture 13 Rate-distortion Theorem

Convexity of R(D)
Recall that R(D) = minp(x̂ |x) I (X̂ ;X) with E [d(X , X̂)] ≤ D
We want to show that

R(λD1 + (1− λ)D2) ≤ λR(D1) + (1− λ)R(D2)

Proof

Let p∗1(x̂ |x) and p∗2(x̂ |x) be the distributions that optimize R(D1) and
R(D2). Let’s try to time share between the two distributions.

That is,
using p∗1(x̂ |x) with λ fraction of time and p∗2(x̂ |x) with (1− λ) fraction of
time. The resulting distortion will be λD1 + (1− λ)D2. Therefore,

λR(D1) + (1− λ)R(D2) = λI (X̂1;X) + (1− λ)I (X̂2;X)

=λf (p∗1(x̂ |x)) + (1− λ)f (p∗2(x̂ |x)) ≥ f (λp∗1(x̂ |x) + (1− λ)p∗2(x̂ |x))
=I (X̃ ;X) ≥ R(λD1 + (1− λ)D2),

where X̃ =

{
X̂1 with λ fraction of time

X̂2 with (1− λ) fraction of time

S. Cheng (OU-Tulsa) December 5, 2017 220 / 275

Lecture 13 Rate-distortion Theorem

Convexity of R(D)
Recall that R(D) = minp(x̂ |x) I (X̂ ;X) with E [d(X , X̂)] ≤ D
We want to show that

R(λD1 + (1− λ)D2) ≤ λR(D1) + (1− λ)R(D2)

Proof

Let p∗1(x̂ |x) and p∗2(x̂ |x) be the distributions that optimize R(D1) and
R(D2). Let’s try to time share between the two distributions.

That is,
using p∗1(x̂ |x) with λ fraction of time and p∗2(x̂ |x) with (1− λ) fraction of
time. The resulting distortion will be λD1 + (1− λ)D2. Therefore,

λR(D1) + (1− λ)R(D2) = λI (X̂1;X) + (1− λ)I (X̂2;X)

=λf (p∗1(x̂ |x)) + (1− λ)f (p∗2(x̂ |x)) ≥ f (λp∗1(x̂ |x) + (1− λ)p∗2(x̂ |x))
=I (X̃ ;X) ≥ R(λD1 + (1− λ)D2),

where X̃ =

{
X̂1 with λ fraction of time

X̂2 with (1− λ) fraction of time

S. Cheng (OU-Tulsa) December 5, 2017 220 / 275

Lecture 13 Rate-distortion Theorem

Convexity of R(D)
Recall that R(D) = minp(x̂ |x) I (X̂ ;X) with E [d(X , X̂)] ≤ D
We want to show that

R(λD1 + (1− λ)D2) ≤ λR(D1) + (1− λ)R(D2)

Proof

Let p∗1(x̂ |x) and p∗2(x̂ |x) be the distributions that optimize R(D1) and
R(D2). Let’s try to time share between the two distributions. That is,
using p∗1(x̂ |x) with λ fraction of time and p∗2(x̂ |x) with (1− λ) fraction of
time.

The resulting distortion will be λD1 + (1− λ)D2. Therefore,
λR(D1) + (1− λ)R(D2) = λI (X̂1;X) + (1− λ)I (X̂2;X)

=λf (p∗1(x̂ |x)) + (1− λ)f (p∗2(x̂ |x)) ≥ f (λp∗1(x̂ |x) + (1− λ)p∗2(x̂ |x))
=I (X̃ ;X) ≥ R(λD1 + (1− λ)D2),

where X̃ =

{
X̂1 with λ fraction of time

X̂2 with (1− λ) fraction of time

S. Cheng (OU-Tulsa) December 5, 2017 220 / 275

Lecture 13 Rate-distortion Theorem

Convexity of R(D)
Recall that R(D) = minp(x̂ |x) I (X̂ ;X) with E [d(X , X̂)] ≤ D
We want to show that

R(λD1 + (1− λ)D2) ≤ λR(D1) + (1− λ)R(D2)

Proof

Let p∗1(x̂ |x) and p∗2(x̂ |x) be the distributions that optimize R(D1) and
R(D2). Let’s try to time share between the two distributions. That is,
using p∗1(x̂ |x) with λ fraction of time and p∗2(x̂ |x) with (1− λ) fraction of
time. The resulting distortion will be λD1 + (1− λ)D2.

Therefore,
λR(D1) + (1− λ)R(D2) = λI (X̂1;X) + (1− λ)I (X̂2;X)

=λf (p∗1(x̂ |x)) + (1− λ)f (p∗2(x̂ |x)) ≥ f (λp∗1(x̂ |x) + (1− λ)p∗2(x̂ |x))
=I (X̃ ;X) ≥ R(λD1 + (1− λ)D2),

where X̃ =

{
X̂1 with λ fraction of time

X̂2 with (1− λ) fraction of time

S. Cheng (OU-Tulsa) December 5, 2017 220 / 275

Lecture 13 Rate-distortion Theorem

Convexity of R(D)
Recall that R(D) = minp(x̂ |x) I (X̂ ;X) with E [d(X , X̂)] ≤ D
We want to show that

R(λD1 + (1− λ)D2) ≤ λR(D1) + (1− λ)R(D2)

Proof

Let p∗1(x̂ |x) and p∗2(x̂ |x) be the distributions that optimize R(D1) and
R(D2). Let’s try to time share between the two distributions. That is,
using p∗1(x̂ |x) with λ fraction of time and p∗2(x̂ |x) with (1− λ) fraction of
time. The resulting distortion will be λD1 + (1− λ)D2. Therefore,

λR(D1) + (1− λ)R(D2) = λI (X̂1;X) + (1− λ)I (X̂2;X)

=λf (p∗1(x̂ |x)) + (1− λ)f (p∗2(x̂ |x)) ≥ f (λp∗1(x̂ |x) + (1− λ)p∗2(x̂ |x))
=I (X̃ ;X) ≥ R(λD1 + (1− λ)D2),

where X̃ =

{
X̂1 with λ fraction of time

X̂2 with (1− λ) fraction of time

S. Cheng (OU-Tulsa) December 5, 2017 220 / 275

Lecture 13 Rate-distortion Theorem

Convexity of R(D)
Recall that R(D) = minp(x̂ |x) I (X̂ ;X) with E [d(X , X̂)] ≤ D
We want to show that

R(λD1 + (1− λ)D2) ≤ λR(D1) + (1− λ)R(D2)

Proof

Let p∗1(x̂ |x) and p∗2(x̂ |x) be the distributions that optimize R(D1) and
R(D2). Let’s try to time share between the two distributions. That is,
using p∗1(x̂ |x) with λ fraction of time and p∗2(x̂ |x) with (1− λ) fraction of
time. The resulting distortion will be λD1 + (1− λ)D2. Therefore,

λR(D1) + (1− λ)R(D2) = λI (X̂1;X) + (1− λ)I (X̂2;X)

=λf (p∗1(x̂ |x)) + (1− λ)f (p∗2(x̂ |x))

≥ f (λp∗1(x̂ |x) + (1− λ)p∗2(x̂ |x))
=I (X̃ ;X) ≥ R(λD1 + (1− λ)D2),

where X̃ =

{
X̂1 with λ fraction of time

X̂2 with (1− λ) fraction of time

S. Cheng (OU-Tulsa) December 5, 2017 220 / 275

Lecture 13 Rate-distortion Theorem

Convexity of R(D)
Recall that R(D) = minp(x̂ |x) I (X̂ ;X) with E [d(X , X̂)] ≤ D
We want to show that

R(λD1 + (1− λ)D2) ≤ λR(D1) + (1− λ)R(D2)

Proof

Let p∗1(x̂ |x) and p∗2(x̂ |x) be the distributions that optimize R(D1) and
R(D2). Let’s try to time share between the two distributions. That is,
using p∗1(x̂ |x) with λ fraction of time and p∗2(x̂ |x) with (1− λ) fraction of
time. The resulting distortion will be λD1 + (1− λ)D2. Therefore,

λR(D1) + (1− λ)R(D2) = λI (X̂1;X) + (1− λ)I (X̂2;X)

=λf (p∗1(x̂ |x)) + (1− λ)f (p∗2(x̂ |x)) ≥ f (λp∗1(x̂ |x) + (1− λ)p∗2(x̂ |x))

=I (X̃ ;X) ≥ R(λD1 + (1− λ)D2),

where X̃ =

{
X̂1 with λ fraction of time

X̂2 with (1− λ) fraction of time

S. Cheng (OU-Tulsa) December 5, 2017 220 / 275

Lecture 13 Rate-distortion Theorem

Convexity of R(D)
Recall that R(D) = minp(x̂ |x) I (X̂ ;X) with E [d(X , X̂)] ≤ D
We want to show that

R(λD1 + (1− λ)D2) ≤ λR(D1) + (1− λ)R(D2)

Proof

Let p∗1(x̂ |x) and p∗2(x̂ |x) be the distributions that optimize R(D1) and
R(D2). Let’s try to time share between the two distributions. That is,
using p∗1(x̂ |x) with λ fraction of time and p∗2(x̂ |x) with (1− λ) fraction of
time. The resulting distortion will be λD1 + (1− λ)D2. Therefore,

λR(D1) + (1− λ)R(D2) = λI (X̂1;X) + (1− λ)I (X̂2;X)

=λf (p∗1(x̂ |x)) + (1− λ)f (p∗2(x̂ |x)) ≥ f (λp∗1(x̂ |x) + (1− λ)p∗2(x̂ |x))
=I (X̃ ;X)

≥ R(λD1 + (1− λ)D2),

where X̃ =

{
X̂1 with λ fraction of time

X̂2 with (1− λ) fraction of time

S. Cheng (OU-Tulsa) December 5, 2017 220 / 275

Lecture 13 Rate-distortion Theorem

Convexity of R(D)
Recall that R(D) = minp(x̂ |x) I (X̂ ;X) with E [d(X , X̂)] ≤ D
We want to show that

R(λD1 + (1− λ)D2) ≤ λR(D1) + (1− λ)R(D2)

Proof

Let p∗1(x̂ |x) and p∗2(x̂ |x) be the distributions that optimize R(D1) and
R(D2). Let’s try to time share between the two distributions. That is,
using p∗1(x̂ |x) with λ fraction of time and p∗2(x̂ |x) with (1− λ) fraction of
time. The resulting distortion will be λD1 + (1− λ)D2. Therefore,

λR(D1) + (1− λ)R(D2) = λI (X̂1;X) + (1− λ)I (X̂2;X)

=λf (p∗1(x̂ |x)) + (1− λ)f (p∗2(x̂ |x)) ≥ f (λp∗1(x̂ |x) + (1− λ)p∗2(x̂ |x))
=I (X̃ ;X) ≥ R(λD1 + (1− λ)D2),

where X̃ =

{
X̂1 with λ fraction of time

X̂2 with (1− λ) fraction of time

S. Cheng (OU-Tulsa) December 5, 2017 220 / 275

Lecture 13 Rate-distortion Theorem

Converse proof

p(x) Encoder Decoder X̂N
XN m

H(M)

≥ H(M)− H(M|XN) = I (M;XN) ≥ I (X̂N ;XN)

= H(XN)− H(XN |X̂N) =
N∑
i=1

H(Xi)−
N∑
i=1

H(Xi |X̂N ,X i−1)

≥
N∑
i=1

H(Xi)−
N∑
i=1

H(Xi |X̂i) =
N∑
i=1

I (Xi ; X̂i)

≥
N∑
i=1

R(E [d(Xi , X̂i)]) = N

(
1

N

N∑
i=1

R(E [d(Xi ; X̂i)])

)

≥ NR

(
1

N

N∑
i=1

E [d(Xi ; X̂i)]

)
= NR

(
E

[
1

N

N∑
i=1

d(Xi ; X̂i)

])
= NR(E [d(XN ; X̂N)]) ≥ NR(D)

S. Cheng (OU-Tulsa) December 5, 2017 221 / 275

Lecture 13 Rate-distortion Theorem

Converse proof

p(x) Encoder Decoder X̂N
XN m

H(M) ≥ H(M)− H(M|XN) = I (M;XN)

≥ I (X̂N ;XN)

= H(XN)− H(XN |X̂N) =
N∑
i=1

H(Xi)−
N∑
i=1

H(Xi |X̂N ,X i−1)

≥
N∑
i=1

H(Xi)−
N∑
i=1

H(Xi |X̂i) =
N∑
i=1

I (Xi ; X̂i)

≥
N∑
i=1

R(E [d(Xi , X̂i)]) = N

(
1

N

N∑
i=1

R(E [d(Xi ; X̂i)])

)

≥ NR

(
1

N

N∑
i=1

E [d(Xi ; X̂i)]

)
= NR

(
E

[
1

N

N∑
i=1

d(Xi ; X̂i)

])
= NR(E [d(XN ; X̂N)]) ≥ NR(D)

S. Cheng (OU-Tulsa) December 5, 2017 221 / 275

Lecture 13 Rate-distortion Theorem

Converse proof

p(x) Encoder Decoder X̂N
XN m

H(M) ≥ H(M)− H(M|XN) = I (M;XN) ≥ I (X̂N ;XN)

= H(XN)− H(XN |X̂N)

=
N∑
i=1

H(Xi)−
N∑
i=1

H(Xi |X̂N ,X i−1)

≥
N∑
i=1

H(Xi)−
N∑
i=1

H(Xi |X̂i) =
N∑
i=1

I (Xi ; X̂i)

≥
N∑
i=1

R(E [d(Xi , X̂i)]) = N

(
1

N

N∑
i=1

R(E [d(Xi ; X̂i)])

)

≥ NR

(
1

N

N∑
i=1

E [d(Xi ; X̂i)]

)
= NR

(
E

[
1

N

N∑
i=1

d(Xi ; X̂i)

])
= NR(E [d(XN ; X̂N)]) ≥ NR(D)

S. Cheng (OU-Tulsa) December 5, 2017 221 / 275

Lecture 13 Rate-distortion Theorem

Converse proof

p(x) Encoder Decoder X̂N
XN m

H(M) ≥ H(M)− H(M|XN) = I (M;XN) ≥ I (X̂N ;XN)

= H(XN)− H(XN |X̂N) =
N∑
i=1

H(Xi)−
N∑
i=1

H(Xi |X̂N ,X i−1)

≥
N∑
i=1

H(Xi)−
N∑
i=1

H(Xi |X̂i) =
N∑
i=1

I (Xi ; X̂i)

≥
N∑
i=1

R(E [d(Xi , X̂i)]) = N

(
1

N

N∑
i=1

R(E [d(Xi ; X̂i)])

)

≥ NR

(
1

N

N∑
i=1

E [d(Xi ; X̂i)]

)
= NR

(
E

[
1

N

N∑
i=1

d(Xi ; X̂i)

])
= NR(E [d(XN ; X̂N)]) ≥ NR(D)

S. Cheng (OU-Tulsa) December 5, 2017 221 / 275

Lecture 13 Rate-distortion Theorem

Converse proof

p(x) Encoder Decoder X̂N
XN m

H(M) ≥ H(M)− H(M|XN) = I (M;XN) ≥ I (X̂N ;XN)

= H(XN)− H(XN |X̂N) =
N∑
i=1

H(Xi)−
N∑
i=1

H(Xi |X̂N ,X i−1)

≥
N∑
i=1

H(Xi)−
N∑
i=1

H(Xi |X̂i) =
N∑
i=1

I (Xi ; X̂i)

≥
N∑
i=1

R(E [d(Xi , X̂i)]) = N

(
1

N

N∑
i=1

R(E [d(Xi ; X̂i)])

)

≥ NR

(
1

N

N∑
i=1

E [d(Xi ; X̂i)]

)
= NR

(
E

[
1

N

N∑
i=1

d(Xi ; X̂i)

])
= NR(E [d(XN ; X̂N)]) ≥ NR(D)

S. Cheng (OU-Tulsa) December 5, 2017 221 / 275

Lecture 13 Rate-distortion Theorem

Converse proof

p(x) Encoder Decoder X̂N
XN m

H(M) ≥ H(M)− H(M|XN) = I (M;XN) ≥ I (X̂N ;XN)

= H(XN)− H(XN |X̂N) =
N∑
i=1

H(Xi)−
N∑
i=1

H(Xi |X̂N ,X i−1)

≥
N∑
i=1

H(Xi)−
N∑
i=1

H(Xi |X̂i) =
N∑
i=1

I (Xi ; X̂i)

≥
N∑
i=1

R(E [d(Xi , X̂i)]) = N

(
1

N

N∑
i=1

R(E [d(Xi ; X̂i)])

)

≥ NR

(
1

N

N∑
i=1

E [d(Xi ; X̂i)]

)
= NR

(
E

[
1

N

N∑
i=1

d(Xi ; X̂i)

])
= NR(E [d(XN ; X̂N)]) ≥ NR(D)

S. Cheng (OU-Tulsa) December 5, 2017 221 / 275

Lecture 13 Rate-distortion Theorem

Converse proof

p(x) Encoder Decoder X̂N
XN m

H(M) ≥ H(M)− H(M|XN) = I (M;XN) ≥ I (X̂N ;XN)

= H(XN)− H(XN |X̂N) =
N∑
i=1

H(Xi)−
N∑
i=1

H(Xi |X̂N ,X i−1)

≥
N∑
i=1

H(Xi)−
N∑
i=1

H(Xi |X̂i) =
N∑
i=1

I (Xi ; X̂i)

≥
N∑
i=1

R(E [d(Xi , X̂i)]) = N

(
1

N

N∑
i=1

R(E [d(Xi ; X̂i)])

)

≥ NR

(
1

N

N∑
i=1

E [d(Xi ; X̂i)]

)

= NR

(
E

[
1

N

N∑
i=1

d(Xi ; X̂i)

])
= NR(E [d(XN ; X̂N)]) ≥ NR(D)

S. Cheng (OU-Tulsa) December 5, 2017 221 / 275

Lecture 13 Rate-distortion Theorem

Converse proof

p(x) Encoder Decoder X̂N
XN m

H(M) ≥ H(M)− H(M|XN) = I (M;XN) ≥ I (X̂N ;XN)

= H(XN)− H(XN |X̂N) =
N∑
i=1

H(Xi)−
N∑
i=1

H(Xi |X̂N ,X i−1)

≥
N∑
i=1

H(Xi)−
N∑
i=1

H(Xi |X̂i) =
N∑
i=1

I (Xi ; X̂i)

≥
N∑
i=1

R(E [d(Xi , X̂i)]) = N

(
1

N

N∑
i=1

R(E [d(Xi ; X̂i)])

)

≥ NR

(
1

N

N∑
i=1

E [d(Xi ; X̂i)]

)
= NR

(
E

[
1

N

N∑
i=1

d(Xi ; X̂i)

])

= NR(E [d(XN ; X̂N)]) ≥ NR(D)

S. Cheng (OU-Tulsa) December 5, 2017 221 / 275

Lecture 13 Rate-distortion Theorem

Converse proof

p(x) Encoder Decoder X̂N
XN m

H(M) ≥ H(M)− H(M|XN) = I (M;XN) ≥ I (X̂N ;XN)

= H(XN)− H(XN |X̂N) =
N∑
i=1

H(Xi)−
N∑
i=1

H(Xi |X̂N ,X i−1)

≥
N∑
i=1

H(Xi)−
N∑
i=1

H(Xi |X̂i) =
N∑
i=1

I (Xi ; X̂i)

≥
N∑
i=1

R(E [d(Xi , X̂i)]) = N

(
1

N

N∑
i=1

R(E [d(Xi ; X̂i)])

)

≥ NR

(
1

N

N∑
i=1

E [d(Xi ; X̂i)]

)
= NR

(
E

[
1

N

N∑
i=1

d(Xi ; X̂i)

])
= NR(E [d(XN ; X̂N)]) ≥ NR(D)

S. Cheng (OU-Tulsa) December 5, 2017 221 / 275

Lecture 14 Review

Previously...

Forward and converse proof of the rate-distortion theorem

S. Cheng (OU-Tulsa) December 5, 2017 222 / 275

Lecture 14 Overview

This time

Method of types

Universal source coding

Large deviation theory

S. Cheng (OU-Tulsa) December 5, 2017 223 / 275

Lecture 14 Overview

Project presentation

Start as usual class time (12/12)

Please prepare ∼30 minutes presentation. Explain your problem
statement. Focus on your approach and result

Take a format similar to a conference presentation

Expect ∼5 minutes Q/A

Grading

Presentation: clarity, structure, references, etc. (10/40)
Technical: correctness, depth, novelty, etc. (15/40)
Evaluation and results: sound evaluation metric, thoroughness in
analysis and experimentation (if any), results and performance (15/40)

Expectation

National conference quality (4/4), reserach day quality (3/4), research
meeting quality (2/4), just show up (1/4)

S. Cheng (OU-Tulsa) December 5, 2017 224 / 275

Lecture 14 Method of types

Motivation

In previous lectures, we have introduced LLN and typical sequences.
In a sense that every sequences drawn from a discrete memoryless
source is typical

Take coin tossing as example again, if Pr(Head) = 0.6, and we throw
the coin 1000 times. We expect that almost all drawn sequences with
have about 600 heads. And the rest have neglible probability

However, sometimes we are interested in the probability of getting say
400 heads, even though we know that the probability is neglible

→
method of types

S. Cheng (OU-Tulsa) December 5, 2017 225 / 275

Lecture 14 Method of types

Motivation

In previous lectures, we have introduced LLN and typical sequences.
In a sense that every sequences drawn from a discrete memoryless
source is typical

Take coin tossing as example again, if Pr(Head) = 0.6, and we throw
the coin 1000 times. We expect that almost all drawn sequences with
have about 600 heads. And the rest have neglible probability

However, sometimes we are interested in the probability of getting say
400 heads, even though we know that the probability is neglible

→
method of types

S. Cheng (OU-Tulsa) December 5, 2017 225 / 275

Lecture 14 Method of types

Motivation

In previous lectures, we have introduced LLN and typical sequences.
In a sense that every sequences drawn from a discrete memoryless
source is typical

Take coin tossing as example again, if Pr(Head) = 0.6, and we throw
the coin 1000 times. We expect that almost all drawn sequences with
have about 600 heads. And the rest have neglible probability

However, sometimes we are interested in the probability of getting say
400 heads, even though we know that the probability is neglible

→
method of types

S. Cheng (OU-Tulsa) December 5, 2017 225 / 275

Lecture 14 Method of types

Motivation

In previous lectures, we have introduced LLN and typical sequences.
In a sense that every sequences drawn from a discrete memoryless
source is typical

Take coin tossing as example again, if Pr(Head) = 0.6, and we throw
the coin 1000 times. We expect that almost all drawn sequences with
have about 600 heads. And the rest have neglible probability

However, sometimes we are interested in the probability of getting say
400 heads, even though we know that the probability is neglible →
method of types

S. Cheng (OU-Tulsa) December 5, 2017 225 / 275

Lecture 14 Method of types

Motivation

By the end of the class, we will be able to solve the following nontrivial
puzzle

Tom throws a unbiased dice for 10,000 times and adds all values

For whatever reason, he is not happy until the sum is at least 40,000.
If not, he will just throw the dice again for 10,000

Now, by the time he eventually got a sequence with sum at least
40,000, approximately how many ones in the sequence?

S. Cheng (OU-Tulsa) December 5, 2017 226 / 275

Lecture 14 Method of types

Motivation

By the end of the class, we will be able to solve the following nontrivial
puzzle

Tom throws a unbiased dice for 10,000 times and adds all values

For whatever reason, he is not happy until the sum is at least 40,000.
If not, he will just throw the dice again for 10,000

Now, by the time he eventually got a sequence with sum at least
40,000, approximately how many ones in the sequence?

S. Cheng (OU-Tulsa) December 5, 2017 226 / 275

Lecture 14 Method of types

Motivation

By the end of the class, we will be able to solve the following nontrivial
puzzle

Tom throws a unbiased dice for 10,000 times and adds all values

For whatever reason, he is not happy until the sum is at least 40,000.
If not, he will just throw the dice again for 10,000

Now, by the time he eventually got a sequence with sum at least
40,000, approximately how many ones in the sequence?

S. Cheng (OU-Tulsa) December 5, 2017 226 / 275

Lecture 14 Method of types

Type class

Continue with the coin-tossing example

Recall that the probability of getting a particular sequence with 600
heads is

0.66000.4400

= 2−1000(−0.6 log 0.6−0.4 log 0.4) = 2−NH(X)

How about the probability of getting a particular sequence with 400
heads? It is

0.64000.4600 = 2−1000(−0.4 log 0.6−0.6 log 0.4)

= 2−1000(−0.4 log 0.4−0.6 log 0.6+0.4 log 0.4
0.6

+0.6 log 0.6
0.4

)

= 2−N(H(X)+KL((0.4,0.6)||(0.6,0.4))

Every sequence with 400 heads has the same probability. And in
general, sequences with the same fraction of outcomes have same
probability and we can put them into the same (type) class

S. Cheng (OU-Tulsa) December 5, 2017 227 / 275

Lecture 14 Method of types

Type class

Continue with the coin-tossing example

Recall that the probability of getting a particular sequence with 600
heads is

0.66000.4400 = 2−1000(−0.6 log 0.6−0.4 log 0.4)

= 2−NH(X)

How about the probability of getting a particular sequence with 400
heads? It is

0.64000.4600 = 2−1000(−0.4 log 0.6−0.6 log 0.4)

= 2−1000(−0.4 log 0.4−0.6 log 0.6+0.4 log 0.4
0.6

+0.6 log 0.6
0.4

)

= 2−N(H(X)+KL((0.4,0.6)||(0.6,0.4))

Every sequence with 400 heads has the same probability. And in
general, sequences with the same fraction of outcomes have same
probability and we can put them into the same (type) class

S. Cheng (OU-Tulsa) December 5, 2017 227 / 275

Lecture 14 Method of types

Type class

Continue with the coin-tossing example

Recall that the probability of getting a particular sequence with 600
heads is

0.66000.4400 = 2−1000(−0.6 log 0.6−0.4 log 0.4) = 2−NH(X)

How about the probability of getting a particular sequence with 400
heads? It is

0.64000.4600 = 2−1000(−0.4 log 0.6−0.6 log 0.4)

= 2−1000(−0.4 log 0.4−0.6 log 0.6+0.4 log 0.4
0.6

+0.6 log 0.6
0.4

)

= 2−N(H(X)+KL((0.4,0.6)||(0.6,0.4))

Every sequence with 400 heads has the same probability. And in
general, sequences with the same fraction of outcomes have same
probability and we can put them into the same (type) class

S. Cheng (OU-Tulsa) December 5, 2017 227 / 275

Lecture 14 Method of types

Type class

Continue with the coin-tossing example

Recall that the probability of getting a particular sequence with 600
heads is

0.66000.4400 = 2−1000(−0.6 log 0.6−0.4 log 0.4) = 2−NH(X)

How about the probability of getting a particular sequence with 400
heads? It is

0.64000.4600 = 2−1000(−0.4 log 0.6−0.6 log 0.4)

= 2−1000(−0.4 log 0.4−0.6 log 0.6+0.4 log 0.4
0.6

+0.6 log 0.6
0.4

)

= 2−N(H(X)+KL((0.4,0.6)||(0.6,0.4))

Every sequence with 400 heads has the same probability. And in
general, sequences with the same fraction of outcomes have same
probability and we can put them into the same (type) class

S. Cheng (OU-Tulsa) December 5, 2017 227 / 275

Lecture 14 Method of types

Type class

Continue with the coin-tossing example

Recall that the probability of getting a particular sequence with 600
heads is

0.66000.4400 = 2−1000(−0.6 log 0.6−0.4 log 0.4) = 2−NH(X)

How about the probability of getting a particular sequence with 400
heads? It is

0.64000.4600 = 2−1000(−0.4 log 0.6−0.6 log 0.4)

= 2−1000(−0.4 log 0.4−0.6 log 0.6+0.4 log 0.4
0.6

+0.6 log 0.6
0.4

)

= 2−N(H(X)+KL((0.4,0.6)||(0.6,0.4))

Every sequence with 400 heads has the same probability. And in
general, sequences with the same fraction of outcomes have same
probability and we can put them into the same (type) class

S. Cheng (OU-Tulsa) December 5, 2017 227 / 275

Lecture 14 Method of types

Type class

Continue with the coin-tossing example

Recall that the probability of getting a particular sequence with 600
heads is

0.66000.4400 = 2−1000(−0.6 log 0.6−0.4 log 0.4) = 2−NH(X)

How about the probability of getting a particular sequence with 400
heads? It is

0.64000.4600 = 2−1000(−0.4 log 0.6−0.6 log 0.4)

= 2−1000(−0.4 log 0.4−0.6 log 0.6+0.4 log 0.4
0.6

+0.6 log 0.6
0.4

)

= 2−N(H(X)+KL((0.4,0.6)||(0.6,0.4))

Every sequence with 400 heads has the same probability. And in
general, sequences with the same fraction of outcomes have same
probability and we can put them into the same (type) class

S. Cheng (OU-Tulsa) December 5, 2017 227 / 275

Lecture 14 Method of types

Type class

Continue with the coin-tossing example

Recall that the probability of getting a particular sequence with 600
heads is

0.66000.4400 = 2−1000(−0.6 log 0.6−0.4 log 0.4) = 2−NH(X)

How about the probability of getting a particular sequence with 400
heads? It is

0.64000.4600 = 2−1000(−0.4 log 0.6−0.6 log 0.4)

= 2−1000(−0.4 log 0.4−0.6 log 0.6+0.4 log 0.4
0.6

+0.6 log 0.6
0.4

)

= 2−N(H(X)+KL((0.4,0.6)||(0.6,0.4))

Every sequence with 400 heads has the same probability. And in
general, sequences with the same fraction of outcomes have same
probability and we can put them into the same (type) class

S. Cheng (OU-Tulsa) December 5, 2017 227 / 275

Lecture 14 Method of types

Type class

For convenience, let us denote the number of a in the sequence xN as
N (a|xN)

Then for any valid distribution of X , p(x), we will define a type class

T (pX) as the set containing all sequences such that N (a|xN)
N ≈ p(a),

∀a ∈ X
Let us reserve q(x) as the true distribution of x (i.e., q(Head) = 0.6
and q(Tail) = 0.4). And in general, we expect all sequences drawn
from the source should belongs to T (q) asymptotically

Let’s also refer pxN as the empirical distribution of xN . That is

pxN (a) =
N (a|xN)

N . So T (pxN) is the type class containing xN

S. Cheng (OU-Tulsa) December 5, 2017 228 / 275

Lecture 14 Method of types

Type class

For convenience, let us denote the number of a in the sequence xN as
N (a|xN)
Then for any valid distribution of X , p(x), we will define a type class

T (pX) as the set containing all sequences such that N (a|xN)
N ≈ p(a),

∀a ∈ X

Let us reserve q(x) as the true distribution of x (i.e., q(Head) = 0.6
and q(Tail) = 0.4). And in general, we expect all sequences drawn
from the source should belongs to T (q) asymptotically

Let’s also refer pxN as the empirical distribution of xN . That is

pxN (a) =
N (a|xN)

N . So T (pxN) is the type class containing xN

S. Cheng (OU-Tulsa) December 5, 2017 228 / 275

Lecture 14 Method of types

Type class

For convenience, let us denote the number of a in the sequence xN as
N (a|xN)
Then for any valid distribution of X , p(x), we will define a type class

T (pX) as the set containing all sequences such that N (a|xN)
N ≈ p(a),

∀a ∈ X
Let us reserve q(x) as the true distribution of x (i.e., q(Head) = 0.6
and q(Tail) = 0.4). And in general, we expect all sequences drawn
from the source should belongs to T (q) asymptotically

Let’s also refer pxN as the empirical distribution of xN . That is

pxN (a) =
N (a|xN)

N . So T (pxN) is the type class containing xN

S. Cheng (OU-Tulsa) December 5, 2017 228 / 275

Lecture 14 Method of types

Type class

For convenience, let us denote the number of a in the sequence xN as
N (a|xN)
Then for any valid distribution of X , p(x), we will define a type class

T (pX) as the set containing all sequences such that N (a|xN)
N ≈ p(a),

∀a ∈ X
Let us reserve q(x) as the true distribution of x (i.e., q(Head) = 0.6
and q(Tail) = 0.4). And in general, we expect all sequences drawn
from the source should belongs to T (q) asymptotically

Let’s also refer pxN as the empirical distribution of xN . That is

pxN (a) =
N (a|xN)

N . So T (pxN) is the type class containing xN

S. Cheng (OU-Tulsa) December 5, 2017 228 / 275

Lecture 14 Method of types

Example

Let X ∈ {1, 2, 3} and xN = 11321

pxN (1) =
3
5 ,

pxN (2) =
1
5 , pxN (3) =

1
5

T (pxN) = {11123, 11132, 11231, 11321, · · · } containing all sequences
with three 1’s, one 2, and one 3

|T (pxN)| = 5!
3!1!1! = 20.

In general,

|T (p)| = N!

(Np(x1))!(Np(x2))!(Np(x3))! · · ·

Actually we don’t care too much what |T (p)| is exactly. We will
provide bounds for |T (p)| as we come back later on

And for any sequence y in T (pxN), p(y) = q(1)3q(2)q(3), where q(·)
is the true distribution

S. Cheng (OU-Tulsa) December 5, 2017 229 / 275

Lecture 14 Method of types

Example

Let X ∈ {1, 2, 3} and xN = 11321

pxN (1) =
3
5 , pxN (2) =

1
5 , pxN (3) =

1
5

T (pxN) = {11123, 11132, 11231, 11321, · · · } containing all sequences
with three 1’s, one 2, and one 3

|T (pxN)| = 5!
3!1!1! = 20.

In general,

|T (p)| = N!

(Np(x1))!(Np(x2))!(Np(x3))! · · ·

Actually we don’t care too much what |T (p)| is exactly. We will
provide bounds for |T (p)| as we come back later on

And for any sequence y in T (pxN), p(y) = q(1)3q(2)q(3), where q(·)
is the true distribution

S. Cheng (OU-Tulsa) December 5, 2017 229 / 275

Lecture 14 Method of types

Example

Let X ∈ {1, 2, 3} and xN = 11321

pxN (1) =
3
5 , pxN (2) =

1
5 , pxN (3) =

1
5

T (pxN) = {11123, 11132, 11231, 11321, · · · } containing all sequences
with three 1’s, one 2, and one 3

|T (pxN)| = 5!
3!1!1! = 20.

In general,

|T (p)| = N!

(Np(x1))!(Np(x2))!(Np(x3))! · · ·

Actually we don’t care too much what |T (p)| is exactly. We will
provide bounds for |T (p)| as we come back later on

And for any sequence y in T (pxN), p(y) = q(1)3q(2)q(3), where q(·)
is the true distribution

S. Cheng (OU-Tulsa) December 5, 2017 229 / 275

Lecture 14 Method of types

Example

Let X ∈ {1, 2, 3} and xN = 11321

pxN (1) =
3
5 , pxN (2) =

1
5 , pxN (3) =

1
5

T (pxN) = {11123, 11132, 11231, 11321, · · · } containing all sequences
with three 1’s, one 2, and one 3

|T (pxN)| = 5!
3!1!1! = 20.

In general,

|T (p)| = N!

(Np(x1))!(Np(x2))!(Np(x3))! · · ·

Actually we don’t care too much what |T (p)| is exactly. We will
provide bounds for |T (p)| as we come back later on

And for any sequence y in T (pxN), p(y) = q(1)3q(2)q(3), where q(·)
is the true distribution

S. Cheng (OU-Tulsa) December 5, 2017 229 / 275

Lecture 14 Method of types

Example

Let X ∈ {1, 2, 3} and xN = 11321

pxN (1) =
3
5 , pxN (2) =

1
5 , pxN (3) =

1
5

T (pxN) = {11123, 11132, 11231, 11321, · · · } containing all sequences
with three 1’s, one 2, and one 3

|T (pxN)| = 5!
3!1!1! = 20. In general,

|T (p)| = N!

(Np(x1))!(Np(x2))!(Np(x3))! · · ·

Actually we don’t care too much what |T (p)| is exactly. We will
provide bounds for |T (p)| as we come back later on

And for any sequence y in T (pxN), p(y) = q(1)3q(2)q(3), where q(·)
is the true distribution

S. Cheng (OU-Tulsa) December 5, 2017 229 / 275

Lecture 14 Method of types

Example

Let X ∈ {1, 2, 3} and xN = 11321

pxN (1) =
3
5 , pxN (2) =

1
5 , pxN (3) =

1
5

T (pxN) = {11123, 11132, 11231, 11321, · · · } containing all sequences
with three 1’s, one 2, and one 3

|T (pxN)| = 5!
3!1!1! = 20. In general,

|T (p)| = N!

(Np(x1))!(Np(x2))!(Np(x3))! · · ·

Actually we don’t care too much what |T (p)| is exactly. We will
provide bounds for |T (p)| as we come back later on

And for any sequence y in T (pxN), p(y) = q(1)3q(2)q(3), where q(·)
is the true distribution

S. Cheng (OU-Tulsa) December 5, 2017 229 / 275

Lecture 14 Method of types

Example

Let X ∈ {1, 2, 3} and xN = 11321

pxN (1) =
3
5 , pxN (2) =

1
5 , pxN (3) =

1
5

T (pxN) = {11123, 11132, 11231, 11321, · · · } containing all sequences
with three 1’s, one 2, and one 3

|T (pxN)| = 5!
3!1!1! = 20. In general,

|T (p)| = N!

(Np(x1))!(Np(x2))!(Np(x3))! · · ·

Actually we don’t care too much what |T (p)| is exactly. We will
provide bounds for |T (p)| as we come back later on

And for any sequence y in T (pxN), p(y) = q(1)3q(2)q(3), where q(·)
is the true distribution

S. Cheng (OU-Tulsa) December 5, 2017 229 / 275

Lecture 14 Method of types

Type sequence probability

Even though we have seen that in the coin toss example, let’s restate it
more formally.

Theorem 1

If xN ∈ T (p) and q(·) is the true distribution of X , the probability of
getting xN from sampling q(·) for N times, as denoted as qN(xN), is given
by

2−N(H(p)+KL(p||q))

Proof

qN(xN) =
N∏
i=1

q(xi) = 2
∑N

i=1 log q(xi)

= 2
∑

a∈X N (a|xN) log q(a)

= 2−N
∑

a∈X −pxN (a) log q(a) = 2
−N

(
−

∑
a∈X p(a) log p(a)−

∑
a∈X p(a) log p(a)

q(a)

)
= 2−N(H(p)+KL(p||q))

S. Cheng (OU-Tulsa) December 5, 2017 230 / 275

Lecture 14 Method of types

Type sequence probability

Even though we have seen that in the coin toss example, let’s restate it
more formally.

Theorem 1

If xN ∈ T (p) and q(·) is the true distribution of X , the probability of
getting xN from sampling q(·) for N times, as denoted as qN(xN), is given
by

2−N(H(p)+KL(p||q))

Proof

qN(xN) =
N∏
i=1

q(xi) = 2
∑N

i=1 log q(xi)

= 2
∑

a∈X N (a|xN) log q(a)

= 2−N
∑

a∈X −pxN (a) log q(a) = 2
−N

(
−

∑
a∈X p(a) log p(a)−

∑
a∈X p(a) log p(a)

q(a)

)
= 2−N(H(p)+KL(p||q))

S. Cheng (OU-Tulsa) December 5, 2017 230 / 275

Lecture 14 Method of types

Type sequence probability

Even though we have seen that in the coin toss example, let’s restate it
more formally.

Theorem 1

If xN ∈ T (p) and q(·) is the true distribution of X , the probability of
getting xN from sampling q(·) for N times, as denoted as qN(xN), is given
by

2−N(H(p)+KL(p||q))

Proof

qN(xN) =
N∏
i=1

q(xi) = 2
∑N

i=1 log q(xi) = 2
∑

a∈X N (a|xN) log q(a)

= 2−N
∑

a∈X −pxN (a) log q(a) = 2
−N

(
−

∑
a∈X p(a) log p(a)−

∑
a∈X p(a) log p(a)

q(a)

)
= 2−N(H(p)+KL(p||q))

S. Cheng (OU-Tulsa) December 5, 2017 230 / 275

Lecture 14 Method of types

Type sequence probability

Even though we have seen that in the coin toss example, let’s restate it
more formally.

Theorem 1

If xN ∈ T (p) and q(·) is the true distribution of X , the probability of
getting xN from sampling q(·) for N times, as denoted as qN(xN), is given
by

2−N(H(p)+KL(p||q))

Proof

qN(xN) =
N∏
i=1

q(xi) = 2
∑N

i=1 log q(xi) = 2
∑

a∈X N (a|xN) log q(a)

= 2−N
∑

a∈X −pxN (a) log q(a)

= 2
−N

(
−

∑
a∈X p(a) log p(a)−

∑
a∈X p(a) log p(a)

q(a)

)
= 2−N(H(p)+KL(p||q))

S. Cheng (OU-Tulsa) December 5, 2017 230 / 275

Lecture 14 Method of types

Type sequence probability

Even though we have seen that in the coin toss example, let’s restate it
more formally.

Theorem 1

If xN ∈ T (p) and q(·) is the true distribution of X , the probability of
getting xN from sampling q(·) for N times, as denoted as qN(xN), is given
by

2−N(H(p)+KL(p||q))

Proof

qN(xN) =
N∏
i=1

q(xi) = 2
∑N

i=1 log q(xi) = 2
∑

a∈X N (a|xN) log q(a)

= 2−N
∑

a∈X −pxN (a) log q(a) = 2
−N

(
−

∑
a∈X p(a) log p(a)−

∑
a∈X p(a) log p(a)

q(a)

)

= 2−N(H(p)+KL(p||q))

S. Cheng (OU-Tulsa) December 5, 2017 230 / 275

Lecture 14 Method of types

Type sequence probability

Even though we have seen that in the coin toss example, let’s restate it
more formally.

Theorem 1

If xN ∈ T (p) and q(·) is the true distribution of X , the probability of
getting xN from sampling q(·) for N times, as denoted as qN(xN), is given
by

2−N(H(p)+KL(p||q))

Proof

qN(xN) =
N∏
i=1

q(xi) = 2
∑N

i=1 log q(xi) = 2
∑

a∈X N (a|xN) log q(a)

= 2−N
∑

a∈X −pxN (a) log q(a) = 2
−N

(
−

∑
a∈X p(a) log p(a)−

∑
a∈X p(a) log p(a)

q(a)

)
= 2−N(H(p)+KL(p||q))

S. Cheng (OU-Tulsa) December 5, 2017 230 / 275

Lecture 14 Method of types

Probability of a sequence in the “typical” class

If xN ∈ T (q), where q(·) is the true distribution of X , then

qN(xN) = 2−NH(q) = 2−NH(X)

Remarks

Note that the probability is exactly equal to 2−NH(X)

Recall that this is the probability of a typical sequence supposed to
be. Therefore, any xN in T (q) is a typical sequence (T (q) ⊂ AN

ε (X))

S. Cheng (OU-Tulsa) December 5, 2017 231 / 275

Lecture 14 Method of types

Probability of a sequence in the “typical” class

If xN ∈ T (q), where q(·) is the true distribution of X , then

qN(xN) = 2−NH(q) = 2−NH(X)

Remarks

Note that the probability is exactly equal to 2−NH(X)

Recall that this is the probability of a typical sequence supposed to
be. Therefore, any xN in T (q) is a typical sequence (T (q) ⊂ AN

ε (X))

S. Cheng (OU-Tulsa) December 5, 2017 231 / 275

Lecture 14 Method of types

Probability of a sequence in the “typical” class

If xN ∈ T (q), where q(·) is the true distribution of X , then

qN(xN) = 2−NH(q) = 2−NH(X)

Remarks

Note that the probability is exactly equal to 2−NH(X)

Recall that this is the probability of a typical sequence supposed to
be. Therefore, any xN in T (q) is a typical sequence (T (q) ⊂ AN

ε (X))

S. Cheng (OU-Tulsa) December 5, 2017 231 / 275

Lecture 14 Method of types

Set of all empirical distribution PN(X)

Denote PN(X) as the set of all empirical distribution of X in a length-N
sequence

Example

If X ∈ {0, 1},

PN(X) =

{
(pX (0), pX (1)) :

(
0

N
,
N

N

)
,

(
1

N
,
N − 1

N

)
, · · · ,

(
N

N
,
0

N

)}
Note that |PN(X)| = N + 1

Since a type is uniquely characterized by a distribution of X in a
length-N sequence

Each element p of PN(X) corresponds a type T (p)

Number of types is |PN(X)|

S. Cheng (OU-Tulsa) December 5, 2017 232 / 275

Lecture 14 Method of types

Set of all empirical distribution PN(X)

Denote PN(X) as the set of all empirical distribution of X in a length-N
sequence

Example

If X ∈ {0, 1},

PN(X) =

{
(pX (0), pX (1)) :

(
0

N
,
N

N

)
,

(
1

N
,
N − 1

N

)
, · · · ,

(
N

N
,
0

N

)}
Note that |PN(X)| = N + 1

Since a type is uniquely characterized by a distribution of X in a
length-N sequence

Each element p of PN(X) corresponds a type T (p)

Number of types is |PN(X)|

S. Cheng (OU-Tulsa) December 5, 2017 232 / 275

Lecture 14 Method of types

Set of all empirical distribution PN(X)

Denote PN(X) as the set of all empirical distribution of X in a length-N
sequence

Example

If X ∈ {0, 1},

PN(X) =

{
(pX (0), pX (1)) :

(
0

N
,
N

N

)
,

(
1

N
,
N − 1

N

)
, · · · ,

(
N

N
,
0

N

)}
Note that |PN(X)| = N + 1

Since a type is uniquely characterized by a distribution of X in a
length-N sequence

Each element p of PN(X) corresponds a type T (p)

Number of types is |PN(X)|

S. Cheng (OU-Tulsa) December 5, 2017 232 / 275

Lecture 14 Method of types

Set of all empirical distribution PN(X)

Denote PN(X) as the set of all empirical distribution of X in a length-N
sequence

Example

If X ∈ {0, 1},

PN(X) =

{
(pX (0), pX (1)) :

(
0

N
,
N

N

)
,

(
1

N
,
N − 1

N

)
, · · · ,

(
N

N
,
0

N

)}
Note that |PN(X)| = N + 1

Since a type is uniquely characterized by a distribution of X in a
length-N sequence

Each element p of PN(X) corresponds a type T (p)

Number of types is |PN(X)|

S. Cheng (OU-Tulsa) December 5, 2017 232 / 275

Lecture 14 Method of types

Set of all empirical distribution PN(X)

Denote PN(X) as the set of all empirical distribution of X in a length-N
sequence

Example

If X ∈ {0, 1},

PN(X) =

{
(pX (0), pX (1)) :

(
0

N
,
N

N

)
,

(
1

N
,
N − 1

N

)
, · · · ,

(
N

N
,
0

N

)}
Note that |PN(X)| = N + 1

Since a type is uniquely characterized by a distribution of X in a
length-N sequence

Each element p of PN(X) corresponds a type T (p)

Number of types is |PN(X)|

S. Cheng (OU-Tulsa) December 5, 2017 232 / 275

Lecture 14 Method of types

Number of types

It is not too difficult to count the exact number of types. But in practice,
we don’t quite bother with it as long as we know that the number is
relatively “small”

Theorem 2

|PN(X)| ≤ (N + 1)|X |

Proof

Note that each type is specified by the empirical probability of each
outcome of X . And the possible values of the empirical probabilities are
0
N ,

1
N , · · · ,

N
N (N + 1 of them).

Since there are |X | elements, the number

of types is bounded by (N + 1)|X |

S. Cheng (OU-Tulsa) December 5, 2017 233 / 275

Lecture 14 Method of types

Number of types

It is not too difficult to count the exact number of types. But in practice,
we don’t quite bother with it as long as we know that the number is
relatively “small”

Theorem 2

|PN(X)| ≤ (N + 1)|X |

Proof

Note that each type is specified by the empirical probability of each
outcome of X . And the possible values of the empirical probabilities are
0
N ,

1
N , · · · ,

N
N (N + 1 of them).

Since there are |X | elements, the number

of types is bounded by (N + 1)|X |

S. Cheng (OU-Tulsa) December 5, 2017 233 / 275

Lecture 14 Method of types

Number of types

It is not too difficult to count the exact number of types. But in practice,
we don’t quite bother with it as long as we know that the number is
relatively “small”

Theorem 2

|PN(X)| ≤ (N + 1)|X |

Proof

Note that each type is specified by the empirical probability of each
outcome of X . And the possible values of the empirical probabilities are
0
N ,

1
N , · · · ,

N
N (N + 1 of them). Since there are |X | elements, the number

of types is bounded by (N + 1)|X |

S. Cheng (OU-Tulsa) December 5, 2017 233 / 275

Lecture 14 Method of types

Size of a type class

Recall that |T (p)| = N!
(Np(x1))!(Np(x2))!(Np(x3))!··· but the following bounds

are much more useful in practice

Theorem 3

1

(N + 1)|X | 2
NH(p) ≤ |T (p)| ≤ 2NH(p)

Proof

Let’s assume p(·) is the actual distribution of X here

1 ≥
∑

xN∈T (p)

pN(xN)

=
∑

xN∈T (p)

2−NH(p) = |T (p)|2−NH(p)

1 =
∑
p̂∈PN

Pr(T (p̂)) ≤
∑
p̂∈PN

max
p̃

Pr(T (p̃)) =
∑
p̂∈PN

Pr(T (p)) ≤ (N + 1)|X |Pr(T (p))

= (N + 1)|X ||T (p)|2−NH(p)

S. Cheng (OU-Tulsa) December 5, 2017 234 / 275

Lecture 14 Method of types

Size of a type class

Recall that |T (p)| = N!
(Np(x1))!(Np(x2))!(Np(x3))!··· but the following bounds

are much more useful in practice

Theorem 3

1

(N + 1)|X | 2
NH(p) ≤ |T (p)| ≤ 2NH(p)

Proof

Let’s assume p(·) is the actual distribution of X here

1 ≥
∑

xN∈T (p)

pN(xN)

=
∑

xN∈T (p)

2−NH(p) = |T (p)|2−NH(p)

1 =
∑
p̂∈PN

Pr(T (p̂)) ≤
∑
p̂∈PN

max
p̃

Pr(T (p̃)) =
∑
p̂∈PN

Pr(T (p)) ≤ (N + 1)|X |Pr(T (p))

= (N + 1)|X ||T (p)|2−NH(p)

S. Cheng (OU-Tulsa) December 5, 2017 234 / 275

Lecture 14 Method of types

Size of a type class

Recall that |T (p)| = N!
(Np(x1))!(Np(x2))!(Np(x3))!··· but the following bounds

are much more useful in practice

Theorem 3

1

(N + 1)|X | 2
NH(p) ≤ |T (p)| ≤ 2NH(p)

Proof

Let’s assume p(·) is the actual distribution of X here

1 ≥
∑

xN∈T (p)

pN(xN) =
∑

xN∈T (p)

2−NH(p) = |T (p)|2−NH(p)

1 =
∑
p̂∈PN

Pr(T (p̂)) ≤
∑
p̂∈PN

max
p̃

Pr(T (p̃)) =
∑
p̂∈PN

Pr(T (p)) ≤ (N + 1)|X |Pr(T (p))

= (N + 1)|X ||T (p)|2−NH(p)

S. Cheng (OU-Tulsa) December 5, 2017 234 / 275

Lecture 14 Method of types

Size of a type class

Recall that |T (p)| = N!
(Np(x1))!(Np(x2))!(Np(x3))!··· but the following bounds

are much more useful in practice

Theorem 3

1

(N + 1)|X | 2
NH(p) ≤ |T (p)| ≤ 2NH(p)

Proof

Let’s assume p(·) is the actual distribution of X here

1 ≥
∑

xN∈T (p)

pN(xN) =
∑

xN∈T (p)

2−NH(p) = |T (p)|2−NH(p)

1 =
∑
p̂∈PN

Pr(T (p̂))

≤
∑
p̂∈PN

max
p̃

Pr(T (p̃)) =
∑
p̂∈PN

Pr(T (p)) ≤ (N + 1)|X |Pr(T (p))

= (N + 1)|X ||T (p)|2−NH(p)

S. Cheng (OU-Tulsa) December 5, 2017 234 / 275

Lecture 14 Method of types

Size of a type class

Recall that |T (p)| = N!
(Np(x1))!(Np(x2))!(Np(x3))!··· but the following bounds

are much more useful in practice

Theorem 3

1

(N + 1)|X | 2
NH(p) ≤ |T (p)| ≤ 2NH(p)

Proof

Let’s assume p(·) is the actual distribution of X here

1 ≥
∑

xN∈T (p)

pN(xN) =
∑

xN∈T (p)

2−NH(p) = |T (p)|2−NH(p)

1 =
∑
p̂∈PN

Pr(T (p̂)) ≤
∑
p̂∈PN

max
p̃

Pr(T (p̃))

=
∑
p̂∈PN

Pr(T (p)) ≤ (N + 1)|X |Pr(T (p))

= (N + 1)|X ||T (p)|2−NH(p)

S. Cheng (OU-Tulsa) December 5, 2017 234 / 275

Lecture 14 Method of types

Size of a type class

Recall that |T (p)| = N!
(Np(x1))!(Np(x2))!(Np(x3))!··· but the following bounds

are much more useful in practice

Theorem 3

1

(N + 1)|X | 2
NH(p) ≤ |T (p)| ≤ 2NH(p)

Proof

Let’s assume p(·) is the actual distribution of X here

1 ≥
∑

xN∈T (p)

pN(xN) =
∑

xN∈T (p)

2−NH(p) = |T (p)|2−NH(p)

1 =
∑
p̂∈PN

Pr(T (p̂)) ≤
∑
p̂∈PN

max
p̃

Pr(T (p̃)) =
∑
p̂∈PN

Pr(T (p))

≤ (N + 1)|X |Pr(T (p))

= (N + 1)|X ||T (p)|2−NH(p)

S. Cheng (OU-Tulsa) December 5, 2017 234 / 275

Lecture 14 Method of types

Size of a type class

Recall that |T (p)| = N!
(Np(x1))!(Np(x2))!(Np(x3))!··· but the following bounds

are much more useful in practice

Theorem 3

1

(N + 1)|X | 2
NH(p) ≤ |T (p)| ≤ 2NH(p)

Proof

Let’s assume p(·) is the actual distribution of X here

1 ≥
∑

xN∈T (p)

pN(xN) =
∑

xN∈T (p)

2−NH(p) = |T (p)|2−NH(p)

1 =
∑
p̂∈PN

Pr(T (p̂)) ≤
∑
p̂∈PN

max
p̃

Pr(T (p̃)) =
∑
p̂∈PN

Pr(T (p)) ≤ (N + 1)|X |Pr(T (p))

= (N + 1)|X ||T (p)|2−NH(p)

S. Cheng (OU-Tulsa) December 5, 2017 234 / 275

Lecture 14 Method of types

Size of a type class

Recall that |T (p)| = N!
(Np(x1))!(Np(x2))!(Np(x3))!··· but the following bounds

are much more useful in practice

Theorem 3

1

(N + 1)|X | 2
NH(p) ≤ |T (p)| ≤ 2NH(p)

Proof

Let’s assume p(·) is the actual distribution of X here

1 ≥
∑

xN∈T (p)

pN(xN) =
∑

xN∈T (p)

2−NH(p) = |T (p)|2−NH(p)

1 =
∑
p̂∈PN

Pr(T (p̂)) ≤
∑
p̂∈PN

max
p̃

Pr(T (p̃)) =
∑
p̂∈PN

Pr(T (p)) ≤ (N + 1)|X |Pr(T (p))

= (N + 1)|X ||T (p)|2−NH(p)

S. Cheng (OU-Tulsa) December 5, 2017 234 / 275

Lecture 14 Method of types

Probability of a type class

Theorem 4

Let the true distribution of X is q(·), then

2−N(KL(p||q))

(N + 1)|X | ≤ Pr(T (p)) ≤ 2−N(KL(p||q))

Proof

From Theorem 1, each sequence in T (p) has probability 2−N(H(p)+KL(p||q))

and since 1
(N+1)|X| 2

NH(p) ≤ |T (p)| ≤ 2NH(p) from Theorem 3,

1

(N + 1)|X | 2
NH(p)2−N(H(p)+KL(p||q)) ≤ Pr(T (p)) ≤ 2NH(p)2−N(H(p)+KL(p||q))

S. Cheng (OU-Tulsa) December 5, 2017 235 / 275

Lecture 14 Method of types

Probability of a type class

Theorem 4

Let the true distribution of X is q(·), then

2−N(KL(p||q))

(N + 1)|X | ≤ Pr(T (p)) ≤ 2−N(KL(p||q))

Proof

From Theorem 1, each sequence in T (p) has probability 2−N(H(p)+KL(p||q))

and since 1
(N+1)|X| 2

NH(p) ≤ |T (p)| ≤ 2NH(p) from Theorem 3,

1

(N + 1)|X | 2
NH(p)2−N(H(p)+KL(p||q)) ≤ Pr(T (p)) ≤ 2NH(p)2−N(H(p)+KL(p||q))

S. Cheng (OU-Tulsa) December 5, 2017 235 / 275

Lecture 14 Method of types

Summary of type

Type class T (p) contains all sequences with empirical distribution of p.
That is,

T (p) =

{
xN :

N (a|xN)
N

= p(a)

}

All sequences in the type class T (p) has the same probability (q(·) is the
true distribution)

qN(xN) = 2−N(H(p)+KL(p||q)

There are about 2NH(p) sequences in T (p)

1

(N + 1)|X | 2
NH(p) ≤ |T (p)| ≤ 2NH(p)

Probability of getting a sequence in T (p) is about 2−N(KL(p||q)). More
precisely,

2−N(KL(p||q))

(N + 1)|X | ≤ Pr(T (p)) ≤ 2−N(KL(p||q))

There are (N + 1)|X | types

S. Cheng (OU-Tulsa) December 5, 2017 236 / 275

Lecture 14 Method of types

Summary of type

Type class T (p) contains all sequences with empirical distribution of p.
That is,

T (p) =

{
xN :

N (a|xN)
N

= p(a)

}
All sequences in the type class T (p) has the same probability (q(·) is the
true distribution)

qN(xN) = 2−N(H(p)+KL(p||q)

There are about 2NH(p) sequences in T (p)

1

(N + 1)|X | 2
NH(p) ≤ |T (p)| ≤ 2NH(p)

Probability of getting a sequence in T (p) is about 2−N(KL(p||q)). More
precisely,

2−N(KL(p||q))

(N + 1)|X | ≤ Pr(T (p)) ≤ 2−N(KL(p||q))

There are (N + 1)|X | types

S. Cheng (OU-Tulsa) December 5, 2017 236 / 275

Lecture 14 Method of types

Summary of type

Type class T (p) contains all sequences with empirical distribution of p.
That is,

T (p) =

{
xN :

N (a|xN)
N

= p(a)

}
All sequences in the type class T (p) has the same probability (q(·) is the
true distribution)

qN(xN) = 2−N(H(p)+KL(p||q)

There are about 2NH(p) sequences in T (p)

1

(N + 1)|X | 2
NH(p) ≤ |T (p)| ≤ 2NH(p)

Probability of getting a sequence in T (p) is about 2−N(KL(p||q)). More
precisely,

2−N(KL(p||q))

(N + 1)|X | ≤ Pr(T (p)) ≤ 2−N(KL(p||q))

There are (N + 1)|X | types

S. Cheng (OU-Tulsa) December 5, 2017 236 / 275

Lecture 14 Method of types

Summary of type

Type class T (p) contains all sequences with empirical distribution of p.
That is,

T (p) =

{
xN :

N (a|xN)
N

= p(a)

}
All sequences in the type class T (p) has the same probability (q(·) is the
true distribution)

qN(xN) = 2−N(H(p)+KL(p||q)

There are about 2NH(p) sequences in T (p)

1

(N + 1)|X | 2
NH(p) ≤ |T (p)| ≤ 2NH(p)

Probability of getting a sequence in T (p) is about 2−N(KL(p||q)). More
precisely,

2−N(KL(p||q))

(N + 1)|X | ≤ Pr(T (p)) ≤ 2−N(KL(p||q))

There are (N + 1)|X | types

S. Cheng (OU-Tulsa) December 5, 2017 236 / 275

Lecture 14 Method of types

Summary of type

Type class T (p) contains all sequences with empirical distribution of p.
That is,

T (p) =

{
xN :

N (a|xN)
N

= p(a)

}
All sequences in the type class T (p) has the same probability (q(·) is the
true distribution)

qN(xN) = 2−N(H(p)+KL(p||q)

There are about 2NH(p) sequences in T (p)

1

(N + 1)|X | 2
NH(p) ≤ |T (p)| ≤ 2NH(p)

Probability of getting a sequence in T (p) is about 2−N(KL(p||q)). More
precisely,

2−N(KL(p||q))

(N + 1)|X | ≤ Pr(T (p)) ≤ 2−N(KL(p||q))

There are (N + 1)|X | types

S. Cheng (OU-Tulsa) December 5, 2017 236 / 275

Lecture 14 Univesal source coding

Rationale

For the compression scheme (such as Huffmann coding) that we
discussed earlier in this class, one needs to know the source
distribution ahead to design the encoder and decoder

Question: Is it possible to construct compression scheme without
knowing the source distibution and still performs as good?

Answer: Yes. At least theoretically → universal source coding

S. Cheng (OU-Tulsa) December 5, 2017 237 / 275

Lecture 14 Univesal source coding

Rationale

For the compression scheme (such as Huffmann coding) that we
discussed earlier in this class, one needs to know the source
distribution ahead to design the encoder and decoder

Question: Is it possible to construct compression scheme without
knowing the source distibution and still performs as good?

Answer: Yes. At least theoretically → universal source coding

S. Cheng (OU-Tulsa) December 5, 2017 237 / 275

Lecture 14 Univesal source coding

Rationale

For the compression scheme (such as Huffmann coding) that we
discussed earlier in this class, one needs to know the source
distribution ahead to design the encoder and decoder

Question: Is it possible to construct compression scheme without
knowing the source distibution and still performs as good?

Answer: Yes. At least theoretically → universal source coding

S. Cheng (OU-Tulsa) December 5, 2017 237 / 275

Lecture 14 Univesal source coding

Theory of universal source coding

Given any source Q with H(Q) < R, there exists a length-N universal
code of rate R such that the source can be decoded losslessly as N →∞

Proof

Let RN = R − |X | log(N+1)
N , and consider the set of sequences

A = {xN : H(pxN) < RN} as the code book.

Note that the rate is < R as

|A| =
∑

p:H(p)<RN

|T (p)| ≤
∑

p:H(p)<RN

2NH(p) <
∑

p:H(p)<RN

2NRN

≤ (N + 1)|X |2NRN = 2
N
(
RN+|X | log(N+1)

N

)
= 2NR

Encoder: given input, check if input is in A, output index if so.
Otherwise, declare failure

Decoder: simply map index back to the sequence

S. Cheng (OU-Tulsa) December 5, 2017 238 / 275

Lecture 14 Univesal source coding

Theory of universal source coding

Given any source Q with H(Q) < R, there exists a length-N universal
code of rate R such that the source can be decoded losslessly as N →∞

Proof

Let RN = R − |X | log(N+1)
N , and consider the set of sequences

A = {xN : H(pxN) < RN} as the code book.

Note that the rate is < R as

|A| =
∑

p:H(p)<RN

|T (p)| ≤
∑

p:H(p)<RN

2NH(p) <
∑

p:H(p)<RN

2NRN

≤ (N + 1)|X |2NRN = 2
N
(
RN+|X | log(N+1)

N

)
= 2NR

Encoder: given input, check if input is in A, output index if so.
Otherwise, declare failure

Decoder: simply map index back to the sequence

S. Cheng (OU-Tulsa) December 5, 2017 238 / 275

Lecture 14 Univesal source coding

Theory of universal source coding

Given any source Q with H(Q) < R, there exists a length-N universal
code of rate R such that the source can be decoded losslessly as N →∞

Proof

Let RN = R − |X | log(N+1)
N , and consider the set of sequences

A = {xN : H(pxN) < RN} as the code book. Note that the rate is < R as

|A| =
∑

p:H(p)<RN

|T (p)|

≤
∑

p:H(p)<RN

2NH(p) <
∑

p:H(p)<RN

2NRN

≤ (N + 1)|X |2NRN = 2
N
(
RN+|X | log(N+1)

N

)
= 2NR

Encoder: given input, check if input is in A, output index if so.
Otherwise, declare failure

Decoder: simply map index back to the sequence

S. Cheng (OU-Tulsa) December 5, 2017 238 / 275

Lecture 14 Univesal source coding

Theory of universal source coding

Given any source Q with H(Q) < R, there exists a length-N universal
code of rate R such that the source can be decoded losslessly as N →∞

Proof

Let RN = R − |X | log(N+1)
N , and consider the set of sequences

A = {xN : H(pxN) < RN} as the code book. Note that the rate is < R as

|A| =
∑

p:H(p)<RN

|T (p)| ≤
∑

p:H(p)<RN

2NH(p)

<
∑

p:H(p)<RN

2NRN

≤ (N + 1)|X |2NRN = 2
N
(
RN+|X | log(N+1)

N

)
= 2NR

Encoder: given input, check if input is in A, output index if so.
Otherwise, declare failure

Decoder: simply map index back to the sequence

S. Cheng (OU-Tulsa) December 5, 2017 238 / 275

Lecture 14 Univesal source coding

Theory of universal source coding

Given any source Q with H(Q) < R, there exists a length-N universal
code of rate R such that the source can be decoded losslessly as N →∞

Proof

Let RN = R − |X | log(N+1)
N , and consider the set of sequences

A = {xN : H(pxN) < RN} as the code book. Note that the rate is < R as

|A| =
∑

p:H(p)<RN

|T (p)| ≤
∑

p:H(p)<RN

2NH(p) <
∑

p:H(p)<RN

2NRN

≤ (N + 1)|X |2NRN = 2
N
(
RN+|X | log(N+1)

N

)
= 2NR

Encoder: given input, check if input is in A, output index if so.
Otherwise, declare failure

Decoder: simply map index back to the sequence

S. Cheng (OU-Tulsa) December 5, 2017 238 / 275

Lecture 14 Univesal source coding

Theory of universal source coding

Given any source Q with H(Q) < R, there exists a length-N universal
code of rate R such that the source can be decoded losslessly as N →∞

Proof

Let RN = R − |X | log(N+1)
N , and consider the set of sequences

A = {xN : H(pxN) < RN} as the code book. Note that the rate is < R as

|A| =
∑

p:H(p)<RN

|T (p)| ≤
∑

p:H(p)<RN

2NH(p) <
∑

p:H(p)<RN

2NRN

≤ (N + 1)|X |2NRN

= 2
N
(
RN+|X | log(N+1)

N

)
= 2NR

Encoder: given input, check if input is in A, output index if so.
Otherwise, declare failure

Decoder: simply map index back to the sequence

S. Cheng (OU-Tulsa) December 5, 2017 238 / 275

Lecture 14 Univesal source coding

Theory of universal source coding

Given any source Q with H(Q) < R, there exists a length-N universal
code of rate R such that the source can be decoded losslessly as N →∞

Proof

Let RN = R − |X | log(N+1)
N , and consider the set of sequences

A = {xN : H(pxN) < RN} as the code book. Note that the rate is < R as

|A| =
∑

p:H(p)<RN

|T (p)| ≤
∑

p:H(p)<RN

2NH(p) <
∑

p:H(p)<RN

2NRN

≤ (N + 1)|X |2NRN = 2
N
(
RN+|X | log(N+1)

N

)
= 2NR

Encoder: given input, check if input is in A, output index if so.
Otherwise, declare failure

Decoder: simply map index back to the sequence

S. Cheng (OU-Tulsa) December 5, 2017 238 / 275

Lecture 14 Univesal source coding

Theory of universal source coding

Given any source Q with H(Q) < R, there exists a length-N universal
code of rate R such that the source can be decoded losslessly as N →∞

Proof

Let RN = R − |X | log(N+1)
N , and consider the set of sequences

A = {xN : H(pxN) < RN} as the code book. Note that the rate is < R as

|A| =
∑

p:H(p)<RN

|T (p)| ≤
∑

p:H(p)<RN

2NH(p) <
∑

p:H(p)<RN

2NRN

≤ (N + 1)|X |2NRN = 2
N
(
RN+|X | log(N+1)

N

)
= 2NR

Encoder: given input, check if input is in A, output index if so.
Otherwise, declare failure

Decoder: simply map index back to the sequence

S. Cheng (OU-Tulsa) December 5, 2017 238 / 275

Lecture 14 Univesal source coding

Theory of universal source coding

Proof (con’t)

Note that the probability of error Pe is given by

Pe =
∑

p:H(p)>RN

Pr(T (p))

≤
∑

p:H(p)>RN

max
p̃:H(p̃)>RN

Pr(T (p̃))

≤ (1 + N)|X |2
−N

(
minp̃:H(p̃)>RN

KL(p̃||q)
)

If H(q) < R, as RN → R as N increases, we can find some N0 such
that H(q) < RN for all N ≥ N0

Therefore, any p in {p : H(p) > RN} cannot be the same as q

⇒ minp̃:H(p̃)>RN
KL(p̃||q) > 0 for N ≥ N0

Hence, Pe → 0 as N →∞

S. Cheng (OU-Tulsa) December 5, 2017 239 / 275

Lecture 14 Univesal source coding

Theory of universal source coding

Proof (con’t)

Note that the probability of error Pe is given by

Pe =
∑

p:H(p)>RN

Pr(T (p)) ≤
∑

p:H(p)>RN

max
p̃:H(p̃)>RN

Pr(T (p̃))

≤ (1 + N)|X |2
−N

(
minp̃:H(p̃)>RN

KL(p̃||q)
)

If H(q) < R, as RN → R as N increases, we can find some N0 such
that H(q) < RN for all N ≥ N0

Therefore, any p in {p : H(p) > RN} cannot be the same as q

⇒ minp̃:H(p̃)>RN
KL(p̃||q) > 0 for N ≥ N0

Hence, Pe → 0 as N →∞

S. Cheng (OU-Tulsa) December 5, 2017 239 / 275

Lecture 14 Univesal source coding

Theory of universal source coding

Proof (con’t)

Note that the probability of error Pe is given by

Pe =
∑

p:H(p)>RN

Pr(T (p)) ≤
∑

p:H(p)>RN

max
p̃:H(p̃)>RN

Pr(T (p̃))

≤ (1 + N)|X |2
−N

(
minp̃:H(p̃)>RN

KL(p̃||q)
)

If H(q) < R, as RN → R as N increases, we can find some N0 such
that H(q) < RN for all N ≥ N0

Therefore, any p in {p : H(p) > RN} cannot be the same as q

⇒ minp̃:H(p̃)>RN
KL(p̃||q) > 0 for N ≥ N0

Hence, Pe → 0 as N →∞

S. Cheng (OU-Tulsa) December 5, 2017 239 / 275

Lecture 14 Univesal source coding

Theory of universal source coding

Proof (con’t)

Note that the probability of error Pe is given by

Pe =
∑

p:H(p)>RN

Pr(T (p)) ≤
∑

p:H(p)>RN

max
p̃:H(p̃)>RN

Pr(T (p̃))

≤ (1 + N)|X |2
−N

(
minp̃:H(p̃)>RN

KL(p̃||q)
)

If H(q) < R, as RN → R as N increases, we can find some N0 such
that H(q) < RN for all N ≥ N0

Therefore, any p in {p : H(p) > RN} cannot be the same as q

⇒ minp̃:H(p̃)>RN
KL(p̃||q) > 0 for N ≥ N0

Hence, Pe → 0 as N →∞

S. Cheng (OU-Tulsa) December 5, 2017 239 / 275

Lecture 14 Univesal source coding

Theory of universal source coding

Proof (con’t)

Note that the probability of error Pe is given by

Pe =
∑

p:H(p)>RN

Pr(T (p)) ≤
∑

p:H(p)>RN

max
p̃:H(p̃)>RN

Pr(T (p̃))

≤ (1 + N)|X |2
−N

(
minp̃:H(p̃)>RN

KL(p̃||q)
)

If H(q) < R, as RN → R as N increases, we can find some N0 such
that H(q) < RN for all N ≥ N0

Therefore, any p in {p : H(p) > RN} cannot be the same as q

⇒ minp̃:H(p̃)>RN
KL(p̃||q) > 0 for N ≥ N0

Hence, Pe → 0 as N →∞

S. Cheng (OU-Tulsa) December 5, 2017 239 / 275

Lecture 14 Univesal source coding

Theory of universal source coding

Proof (con’t)

Note that the probability of error Pe is given by

Pe =
∑

p:H(p)>RN

Pr(T (p)) ≤
∑

p:H(p)>RN

max
p̃:H(p̃)>RN

Pr(T (p̃))

≤ (1 + N)|X |2
−N

(
minp̃:H(p̃)>RN

KL(p̃||q)
)

If H(q) < R, as RN → R as N increases, we can find some N0 such
that H(q) < RN for all N ≥ N0

Therefore, any p in {p : H(p) > RN} cannot be the same as q

⇒ minp̃:H(p̃)>RN
KL(p̃||q) > 0 for N ≥ N0

Hence, Pe → 0 as N →∞

S. Cheng (OU-Tulsa) December 5, 2017 239 / 275

Lecture 14 Univesal source coding

Theory of universal source coding

Proof (con’t)

Note that the probability of error Pe is given by

Pe =
∑

p:H(p)>RN

Pr(T (p)) ≤
∑

p:H(p)>RN

max
p̃:H(p̃)>RN

Pr(T (p̃))

≤ (1 + N)|X |2
−N

(
minp̃:H(p̃)>RN

KL(p̃||q)
)

If H(q) < R, as RN → R as N increases, we can find some N0 such
that H(q) < RN for all N ≥ N0

Therefore, any p in {p : H(p) > RN} cannot be the same as q

⇒ minp̃:H(p̃)>RN
KL(p̃||q) > 0 for N ≥ N0

Hence, Pe → 0 as N →∞

S. Cheng (OU-Tulsa) December 5, 2017 239 / 275

Lecture 14 Univesal source coding

Lempel-Ziv coding

Its variants are widely used by compression tools almost everywhere
(zip, pkzip, tiff, etc.)

Main ideas

Construct a dictionary including all previously seen segments

Bits needed to send a new segment can be reduced taking advantage
known segment in the dictionary

Example: let’s compress 10110111011110111

First parse segment into segments that haven’t seen before ⇒

1
1,

2
0,

3
11,

4
01,

5
110,

6
111,

7
10,

8
111

Encode each segment into representation containing a pair of numbers:

1) index of segment (excluding the last bit) in the dictionary; 2) the
last bit ⇒ (0, 1), (0, 0), (1, 1), (2, 1), (3, 0), (3, 1), (1, 0), (6,∅)

Encode representation to bit stream. Note that as the dictionary
grows, number of bits needed to store the index increases ⇒
0100011101011001110010110

S. Cheng (OU-Tulsa) December 5, 2017 240 / 275

Lecture 14 Univesal source coding

Lempel-Ziv coding

Its variants are widely used by compression tools almost everywhere
(zip, pkzip, tiff, etc.)

Main ideas

Construct a dictionary including all previously seen segments

Bits needed to send a new segment can be reduced taking advantage
known segment in the dictionary

Example: let’s compress 10110111011110111

First parse segment into segments that haven’t seen before ⇒

1
1,

2
0,

3
11,

4
01,

5
110,

6
111,

7
10,

8
111

Encode each segment into representation containing a pair of numbers:

1) index of segment (excluding the last bit) in the dictionary; 2) the
last bit ⇒ (0, 1), (0, 0), (1, 1), (2, 1), (3, 0), (3, 1), (1, 0), (6,∅)

Encode representation to bit stream. Note that as the dictionary
grows, number of bits needed to store the index increases ⇒
0100011101011001110010110

S. Cheng (OU-Tulsa) December 5, 2017 240 / 275

Lecture 14 Univesal source coding

Lempel-Ziv coding

Its variants are widely used by compression tools almost everywhere
(zip, pkzip, tiff, etc.)

Main ideas

Construct a dictionary including all previously seen segments
Bits needed to send a new segment can be reduced taking advantage
known segment in the dictionary

Example: let’s compress 10110111011110111

First parse segment into segments that haven’t seen before ⇒

1
1,

2
0,

3
11,

4
01,

5
110,

6
111,

7
10,

8
111

Encode each segment into representation containing a pair of numbers:

1) index of segment (excluding the last bit) in the dictionary; 2) the
last bit ⇒ (0, 1), (0, 0), (1, 1), (2, 1), (3, 0), (3, 1), (1, 0), (6,∅)

Encode representation to bit stream. Note that as the dictionary
grows, number of bits needed to store the index increases ⇒
0100011101011001110010110

S. Cheng (OU-Tulsa) December 5, 2017 240 / 275

Lecture 14 Univesal source coding

Lempel-Ziv coding

Its variants are widely used by compression tools almost everywhere
(zip, pkzip, tiff, etc.)

Main ideas

Construct a dictionary including all previously seen segments
Bits needed to send a new segment can be reduced taking advantage
known segment in the dictionary

Example: let’s compress 10110111011110111

First parse segment into segments that haven’t seen before ⇒

1
1,

2
0,

3
11,

4
01,

5
110,

6
111,

7
10,

8
111

Encode each segment into representation containing a pair of numbers:

1) index of segment (excluding the last bit) in the dictionary; 2) the
last bit ⇒ (0, 1), (0, 0), (1, 1), (2, 1), (3, 0), (3, 1), (1, 0), (6,∅)

Encode representation to bit stream. Note that as the dictionary
grows, number of bits needed to store the index increases ⇒
0100011101011001110010110

S. Cheng (OU-Tulsa) December 5, 2017 240 / 275

Lecture 14 Univesal source coding

Lempel-Ziv coding

Its variants are widely used by compression tools almost everywhere
(zip, pkzip, tiff, etc.)

Main ideas

Construct a dictionary including all previously seen segments
Bits needed to send a new segment can be reduced taking advantage
known segment in the dictionary

Example: let’s compress 10110111011110111

First parse segment into segments that haven’t seen before ⇒
1
1

,
2
0,

3
11,

4
01,

5
110,

6
111,

7
10,

8
111

Encode each segment into representation containing a pair of numbers:

1) index of segment (excluding the last bit) in the dictionary; 2) the
last bit ⇒ (0, 1), (0, 0), (1, 1), (2, 1), (3, 0), (3, 1), (1, 0), (6,∅)

Encode representation to bit stream. Note that as the dictionary
grows, number of bits needed to store the index increases ⇒
0100011101011001110010110

S. Cheng (OU-Tulsa) December 5, 2017 240 / 275

Lecture 14 Univesal source coding

Lempel-Ziv coding

Its variants are widely used by compression tools almost everywhere
(zip, pkzip, tiff, etc.)

Main ideas

Construct a dictionary including all previously seen segments
Bits needed to send a new segment can be reduced taking advantage
known segment in the dictionary

Example: let’s compress 10110111011110111

First parse segment into segments that haven’t seen before ⇒
1
1,

2
0

,
3
11,

4
01,

5
110,

6
111,

7
10,

8
111

Encode each segment into representation containing a pair of numbers:

1) index of segment (excluding the last bit) in the dictionary; 2) the
last bit ⇒ (0, 1), (0, 0), (1, 1), (2, 1), (3, 0), (3, 1), (1, 0), (6,∅)

Encode representation to bit stream. Note that as the dictionary
grows, number of bits needed to store the index increases ⇒
0100011101011001110010110

S. Cheng (OU-Tulsa) December 5, 2017 240 / 275

Lecture 14 Univesal source coding

Lempel-Ziv coding

Its variants are widely used by compression tools almost everywhere
(zip, pkzip, tiff, etc.)

Main ideas

Construct a dictionary including all previously seen segments
Bits needed to send a new segment can be reduced taking advantage
known segment in the dictionary

Example: let’s compress 10110111011110111

First parse segment into segments that haven’t seen before ⇒
1
1,

2
0,

3
11

,
4
01,

5
110,

6
111,

7
10,

8
111

Encode each segment into representation containing a pair of numbers:

1) index of segment (excluding the last bit) in the dictionary; 2) the
last bit ⇒ (0, 1), (0, 0), (1, 1), (2, 1), (3, 0), (3, 1), (1, 0), (6,∅)

Encode representation to bit stream. Note that as the dictionary
grows, number of bits needed to store the index increases ⇒
0100011101011001110010110

S. Cheng (OU-Tulsa) December 5, 2017 240 / 275

Lecture 14 Univesal source coding

Lempel-Ziv coding

Its variants are widely used by compression tools almost everywhere
(zip, pkzip, tiff, etc.)

Main ideas

Construct a dictionary including all previously seen segments
Bits needed to send a new segment can be reduced taking advantage
known segment in the dictionary

Example: let’s compress 10110111011110111

First parse segment into segments that haven’t seen before ⇒
1
1,

2
0,

3
11,

4
01

,
5

110,
6

111,
7
10,

8
111

Encode each segment into representation containing a pair of numbers:

1) index of segment (excluding the last bit) in the dictionary; 2) the
last bit ⇒ (0, 1), (0, 0), (1, 1), (2, 1), (3, 0), (3, 1), (1, 0), (6,∅)

Encode representation to bit stream. Note that as the dictionary
grows, number of bits needed to store the index increases ⇒
0100011101011001110010110

S. Cheng (OU-Tulsa) December 5, 2017 240 / 275

Lecture 14 Univesal source coding

Lempel-Ziv coding

Its variants are widely used by compression tools almost everywhere
(zip, pkzip, tiff, etc.)

Main ideas

Construct a dictionary including all previously seen segments
Bits needed to send a new segment can be reduced taking advantage
known segment in the dictionary

Example: let’s compress 10110111011110111

First parse segment into segments that haven’t seen before ⇒
1
1,

2
0,

3
11,

4
01,

5
110

,
6

111,
7
10,

8
111

Encode each segment into representation containing a pair of numbers:

1) index of segment (excluding the last bit) in the dictionary; 2) the
last bit ⇒ (0, 1), (0, 0), (1, 1), (2, 1), (3, 0), (3, 1), (1, 0), (6,∅)

Encode representation to bit stream. Note that as the dictionary
grows, number of bits needed to store the index increases ⇒
0100011101011001110010110

S. Cheng (OU-Tulsa) December 5, 2017 240 / 275

Lecture 14 Univesal source coding

Lempel-Ziv coding

Its variants are widely used by compression tools almost everywhere
(zip, pkzip, tiff, etc.)

Main ideas

Construct a dictionary including all previously seen segments
Bits needed to send a new segment can be reduced taking advantage
known segment in the dictionary

Example: let’s compress 10110111011110111

First parse segment into segments that haven’t seen before ⇒
1
1,

2
0,

3
11,

4
01,

5
110,

6
111

,
7
10,

8
111

Encode each segment into representation containing a pair of numbers:

1) index of segment (excluding the last bit) in the dictionary; 2) the
last bit ⇒ (0, 1), (0, 0), (1, 1), (2, 1), (3, 0), (3, 1), (1, 0), (6,∅)

Encode representation to bit stream. Note that as the dictionary
grows, number of bits needed to store the index increases ⇒
0100011101011001110010110

S. Cheng (OU-Tulsa) December 5, 2017 240 / 275

Lecture 14 Univesal source coding

Lempel-Ziv coding

Its variants are widely used by compression tools almost everywhere
(zip, pkzip, tiff, etc.)

Main ideas

Construct a dictionary including all previously seen segments
Bits needed to send a new segment can be reduced taking advantage
known segment in the dictionary

Example: let’s compress 10110111011110111

First parse segment into segments that haven’t seen before ⇒
1
1,

2
0,

3
11,

4
01,

5
110,

6
111,

7
10

,
8

111
Encode each segment into representation containing a pair of numbers:

1) index of segment (excluding the last bit) in the dictionary; 2) the
last bit ⇒ (0, 1), (0, 0), (1, 1), (2, 1), (3, 0), (3, 1), (1, 0), (6,∅)

Encode representation to bit stream. Note that as the dictionary
grows, number of bits needed to store the index increases ⇒
0100011101011001110010110

S. Cheng (OU-Tulsa) December 5, 2017 240 / 275

Lecture 14 Univesal source coding

Lempel-Ziv coding

Its variants are widely used by compression tools almost everywhere
(zip, pkzip, tiff, etc.)

Main ideas

Construct a dictionary including all previously seen segments
Bits needed to send a new segment can be reduced taking advantage
known segment in the dictionary

Example: let’s compress 10110111011110111

First parse segment into segments that haven’t seen before ⇒
1
1,

2
0,

3
11,

4
01,

5
110,

6
111,

7
10,

8
111

Encode each segment into representation containing a pair of numbers:

1) index of segment (excluding the last bit) in the dictionary; 2) the
last bit ⇒ (0, 1), (0, 0), (1, 1), (2, 1), (3, 0), (3, 1), (1, 0), (6,∅)
Encode representation to bit stream. Note that as the dictionary
grows, number of bits needed to store the index increases ⇒
0100011101011001110010110

S. Cheng (OU-Tulsa) December 5, 2017 240 / 275

Lecture 14 Univesal source coding

Lempel-Ziv coding

Its variants are widely used by compression tools almost everywhere
(zip, pkzip, tiff, etc.)

Main ideas

Construct a dictionary including all previously seen segments
Bits needed to send a new segment can be reduced taking advantage
known segment in the dictionary

Example: let’s compress 10110111011110111

First parse segment into segments that haven’t seen before ⇒
1
1,

2
0,

3
11,

4
01,

5
110,

6
111,

7
10,

8
111

Encode each segment into representation containing a pair of numbers:
1) index of segment (excluding the last bit) in the dictionary;

2) the
last bit ⇒ (0, 1), (0, 0), (1, 1), (2, 1), (3, 0), (3, 1), (1, 0), (6,∅)
Encode representation to bit stream. Note that as the dictionary
grows, number of bits needed to store the index increases ⇒
0100011101011001110010110

S. Cheng (OU-Tulsa) December 5, 2017 240 / 275

Lecture 14 Univesal source coding

Lempel-Ziv coding

Its variants are widely used by compression tools almost everywhere
(zip, pkzip, tiff, etc.)

Main ideas

Construct a dictionary including all previously seen segments
Bits needed to send a new segment can be reduced taking advantage
known segment in the dictionary

Example: let’s compress 10110111011110111

First parse segment into segments that haven’t seen before ⇒
1
1,

2
0,

3
11,

4
01,

5
110,

6
111,

7
10,

8
111

Encode each segment into representation containing a pair of numbers:
1) index of segment (excluding the last bit) in the dictionary; 2) the
last bit

⇒ (0, 1), (0, 0), (1, 1), (2, 1), (3, 0), (3, 1), (1, 0), (6,∅)
Encode representation to bit stream. Note that as the dictionary
grows, number of bits needed to store the index increases ⇒
0100011101011001110010110

S. Cheng (OU-Tulsa) December 5, 2017 240 / 275

Lecture 14 Univesal source coding

Lempel-Ziv coding

Its variants are widely used by compression tools almost everywhere
(zip, pkzip, tiff, etc.)

Main ideas

Construct a dictionary including all previously seen segments
Bits needed to send a new segment can be reduced taking advantage
known segment in the dictionary

Example: let’s compress 10110111011110111

First parse segment into segments that haven’t seen before ⇒
1
1,

2
0,

3
11,

4
01,

5
110,

6
111,

7
10,

8
111

Encode each segment into representation containing a pair of numbers:
1) index of segment (excluding the last bit) in the dictionary; 2) the
last bit ⇒ (0, 1), (0, 0), (1, 1), (2, 1), (3, 0), (3, 1), (1, 0), (6,∅)

Encode representation to bit stream. Note that as the dictionary
grows, number of bits needed to store the index increases ⇒
0100011101011001110010110

S. Cheng (OU-Tulsa) December 5, 2017 240 / 275

Lecture 14 Univesal source coding

Lempel-Ziv coding

Its variants are widely used by compression tools almost everywhere
(zip, pkzip, tiff, etc.)

Main ideas

Construct a dictionary including all previously seen segments
Bits needed to send a new segment can be reduced taking advantage
known segment in the dictionary

Example: let’s compress 10110111011110111

First parse segment into segments that haven’t seen before ⇒
1
1,

2
0,

3
11,

4
01,

5
110,

6
111,

7
10,

8
111

Encode each segment into representation containing a pair of numbers:
1) index of segment (excluding the last bit) in the dictionary; 2) the
last bit ⇒ (0, 1), (0, 0), (1, 1), (2, 1), (3, 0), (3, 1), (1, 0), (6,∅)
Encode representation to bit stream. Note that as the dictionary
grows, number of bits needed to store the index increases ⇒
0100011101011001110010110

S. Cheng (OU-Tulsa) December 5, 2017 240 / 275

Lecture 14 Univesal source coding

Lempel-Ziv decoding

Decode bitstream back to representation
0100011101011001110010110 ⇒
(0, 1), (0, 0), (1, 1), (2, 1), (3, 0), (3, 1), (1, 0), (6,∅)

Build dictionary and decode

1 2 3 4 5 6 7 8
1 0 11 01 110 111 10 111

⇒ 10110111011110111

S. Cheng (OU-Tulsa) December 5, 2017 241 / 275

Lecture 14 Univesal source coding

Lempel-Ziv decoding

Decode bitstream back to representation
0100011101011001110010110 ⇒
(0, 1), (0, 0), (1, 1), (2, 1), (3, 0), (3, 1), (1, 0), (6,∅)

Build dictionary and decode

1

2 3 4 5 6 7 8

1

0 11 01 110 111 10 111

⇒ 1

0110111011110111

S. Cheng (OU-Tulsa) December 5, 2017 241 / 275

Lecture 14 Univesal source coding

Lempel-Ziv decoding

Decode bitstream back to representation
0100011101011001110010110 ⇒
(0, 1), (0, 0), (1, 1), (2, 1), (3, 0), (3, 1), (1, 0), (6,∅)

Build dictionary and decode

1 2

3 4 5 6 7 8

1 0

11 01 110 111 10 111

⇒ 10

110111011110111

S. Cheng (OU-Tulsa) December 5, 2017 241 / 275

Lecture 14 Univesal source coding

Lempel-Ziv decoding

Decode bitstream back to representation
0100011101011001110010110 ⇒
(0, 1), (0, 0), (1, 1), (2, 1), (3, 0), (3, 1), (1, 0), (6,∅)

Build dictionary and decode

1 2 3

4 5 6 7 8

1 0 11

01 110 111 10 111

⇒ 1011

0111011110111

S. Cheng (OU-Tulsa) December 5, 2017 241 / 275

Lecture 14 Univesal source coding

Lempel-Ziv decoding

Decode bitstream back to representation
0100011101011001110010110 ⇒
(0, 1), (0, 0), (1, 1), (2, 1), (3, 0), (3, 1), (1, 0), (6,∅)

Build dictionary and decode

1 2 3 4

5 6 7 8

1 0 11 01

110 111 10 111

⇒ 101101

11011110111

S. Cheng (OU-Tulsa) December 5, 2017 241 / 275

Lecture 14 Univesal source coding

Lempel-Ziv decoding

Decode bitstream back to representation
0100011101011001110010110 ⇒
(0, 1), (0, 0), (1, 1), (2, 1), (3, 0), (3, 1), (1, 0), (6,∅)

Build dictionary and decode

1 2 3 4 5

6 7 8

1 0 11 01 110

111 10 111

⇒ 101101110

11110111

S. Cheng (OU-Tulsa) December 5, 2017 241 / 275

Lecture 14 Univesal source coding

Lempel-Ziv decoding

Decode bitstream back to representation
0100011101011001110010110 ⇒
(0, 1), (0, 0), (1, 1), (2, 1), (3, 0), (3, 1), (1, 0), (6,∅)

Build dictionary and decode

1 2 3 4 5 6

7 8

1 0 11 01 110 111

10 111

⇒ 101101110111

10111

S. Cheng (OU-Tulsa) December 5, 2017 241 / 275

Lecture 14 Univesal source coding

Lempel-Ziv decoding

Decode bitstream back to representation
0100011101011001110010110 ⇒
(0, 1), (0, 0), (1, 1), (2, 1), (3, 0), (3, 1), (1, 0), (6,∅)

Build dictionary and decode

1 2 3 4 5 6 7

8

1 0 11 01 110 111 10

111

⇒ 10110111011110

111

S. Cheng (OU-Tulsa) December 5, 2017 241 / 275

Lecture 14 Univesal source coding

Lempel-Ziv decoding

Decode bitstream back to representation
0100011101011001110010110 ⇒
(0, 1), (0, 0), (1, 1), (2, 1), (3, 0), (3, 1), (1, 0), (6,∅)

Build dictionary and decode

1 2 3 4 5 6 7 8
1 0 11 01 110 111 10 111

⇒ 10110111011110111

S. Cheng (OU-Tulsa) December 5, 2017 241 / 275

Lecture 14 Large deviation theory

Motivation

Let’s revisit some coin tossing example. Say if a coin is fair, and we
toss if for 1000 times, we know that we will almost always get 500
heads. So getting, say, 400 heads has neglible probability

However, if we insist finding the probability of getting 400 heads,
from discussion up to now, we know that it is just

Pr(T ((0.4, 0.6))) ≈ 2−1000(KL((0.4,0.6)||(0.5,0.5)))

Now, what if we are interested in the probability of a more general
case? Say what is the probability of getting > 300 and < 400 heads?

S. Cheng (OU-Tulsa) December 5, 2017 242 / 275

Lecture 14 Large deviation theory

Motivation

Let’s revisit some coin tossing example. Say if a coin is fair, and we
toss if for 1000 times, we know that we will almost always get 500
heads. So getting, say, 400 heads has neglible probability

However, if we insist finding the probability of getting 400 heads,
from discussion up to now, we know that it is just

Pr(T ((0.4, 0.6))) ≈ 2−1000(KL((0.4,0.6)||(0.5,0.5)))

Now, what if we are interested in the probability of a more general
case? Say what is the probability of getting > 300 and < 400 heads?

S. Cheng (OU-Tulsa) December 5, 2017 242 / 275

Lecture 14 Large deviation theory

Motivation

Let’s revisit some coin tossing example. Say if a coin is fair, and we
toss if for 1000 times, we know that we will almost always get 500
heads. So getting, say, 400 heads has neglible probability

However, if we insist finding the probability of getting 400 heads,
from discussion up to now, we know that it is just

Pr(T ((0.4, 0.6))) ≈ 2−1000(KL((0.4,0.6)||(0.5,0.5)))

Now, what if we are interested in the probability of a more general
case? Say what is the probability of getting > 300 and < 400 heads?

S. Cheng (OU-Tulsa) December 5, 2017 242 / 275

Lecture 14 Large deviation theory

Sanov’s Theorem

Let E = {p : 0.3 ≤ p(Head) ≤ 0.4} and q(·) = (0.5, 0.5) is the true distribution,
then

Pr(E) = Pr(E ∩ P1000)

=
∑

p∈E∩P1000

Pr(T (p)) ≈
∑

p∈E∩P1000

2−1000(KL(p||q))

= 2−1000(KL((0.4,0.6)||(0.5,0.5))) + 2−1000(KL((0.399,0.601)||(0.5,0.5))) +

2−1000(KL((0.398,0.602)||(0.5,0.5))) + · · ·+ 2−1000(KL((0.3,0.7)||(0.5,0.5)))

≤ |P1000|2−1000(KL((0.4,0.6)||(0.5,0.5)))

Sanov’s Theorem

Let X1,X2, · · · ,XN be i.i.d. ∼ q(·) and E be a set of distribution. Then

Pr(E) = Pr(E ∩ PN) ≤ (N + 1)|X |2−N(KL(p∗||q)),

where p∗ = argminp∈E KL(p||q).

Moreover, given a rather weak condition
(closure of interior of E is E itself), we have

1

N
logPr(E)→ −KL(p∗||q)

S. Cheng (OU-Tulsa) December 5, 2017 243 / 275

Lecture 14 Large deviation theory

Sanov’s Theorem

Let E = {p : 0.3 ≤ p(Head) ≤ 0.4} and q(·) = (0.5, 0.5) is the true distribution,
then

Pr(E) = Pr(E ∩ P1000) =
∑

p∈E∩P1000

Pr(T (p))

≈
∑

p∈E∩P1000

2−1000(KL(p||q))

= 2−1000(KL((0.4,0.6)||(0.5,0.5))) + 2−1000(KL((0.399,0.601)||(0.5,0.5))) +

2−1000(KL((0.398,0.602)||(0.5,0.5))) + · · ·+ 2−1000(KL((0.3,0.7)||(0.5,0.5)))

≤ |P1000|2−1000(KL((0.4,0.6)||(0.5,0.5)))

Sanov’s Theorem

Let X1,X2, · · · ,XN be i.i.d. ∼ q(·) and E be a set of distribution. Then

Pr(E) = Pr(E ∩ PN) ≤ (N + 1)|X |2−N(KL(p∗||q)),

where p∗ = argminp∈E KL(p||q).

Moreover, given a rather weak condition
(closure of interior of E is E itself), we have

1

N
logPr(E)→ −KL(p∗||q)

S. Cheng (OU-Tulsa) December 5, 2017 243 / 275

Lecture 14 Large deviation theory

Sanov’s Theorem

Let E = {p : 0.3 ≤ p(Head) ≤ 0.4} and q(·) = (0.5, 0.5) is the true distribution,
then

Pr(E) = Pr(E ∩ P1000) =
∑

p∈E∩P1000

Pr(T (p)) ≈
∑

p∈E∩P1000

2−1000(KL(p||q))

= 2−1000(KL((0.4,0.6)||(0.5,0.5))) + 2−1000(KL((0.399,0.601)||(0.5,0.5))) +

2−1000(KL((0.398,0.602)||(0.5,0.5))) + · · ·+ 2−1000(KL((0.3,0.7)||(0.5,0.5)))

≤ |P1000|2−1000(KL((0.4,0.6)||(0.5,0.5)))

Sanov’s Theorem

Let X1,X2, · · · ,XN be i.i.d. ∼ q(·) and E be a set of distribution. Then

Pr(E) = Pr(E ∩ PN) ≤ (N + 1)|X |2−N(KL(p∗||q)),

where p∗ = argminp∈E KL(p||q).

Moreover, given a rather weak condition
(closure of interior of E is E itself), we have

1

N
logPr(E)→ −KL(p∗||q)

S. Cheng (OU-Tulsa) December 5, 2017 243 / 275

Lecture 14 Large deviation theory

Sanov’s Theorem

Let E = {p : 0.3 ≤ p(Head) ≤ 0.4} and q(·) = (0.5, 0.5) is the true distribution,
then

Pr(E) = Pr(E ∩ P1000) =
∑

p∈E∩P1000

Pr(T (p)) ≈
∑

p∈E∩P1000

2−1000(KL(p||q))

= 2−1000(KL((0.4,0.6)||(0.5,0.5))) + 2−1000(KL((0.399,0.601)||(0.5,0.5))) +

2−1000(KL((0.398,0.602)||(0.5,0.5))) + · · ·+ 2−1000(KL((0.3,0.7)||(0.5,0.5)))

≤ |P1000|2−1000(KL((0.4,0.6)||(0.5,0.5)))

Sanov’s Theorem

Let X1,X2, · · · ,XN be i.i.d. ∼ q(·) and E be a set of distribution. Then

Pr(E) = Pr(E ∩ PN) ≤ (N + 1)|X |2−N(KL(p∗||q)),

where p∗ = argminp∈E KL(p||q).

Moreover, given a rather weak condition
(closure of interior of E is E itself), we have

1

N
logPr(E)→ −KL(p∗||q)

S. Cheng (OU-Tulsa) December 5, 2017 243 / 275

Lecture 14 Large deviation theory

Sanov’s Theorem

Let E = {p : 0.3 ≤ p(Head) ≤ 0.4} and q(·) = (0.5, 0.5) is the true distribution,
then

Pr(E) = Pr(E ∩ P1000) =
∑

p∈E∩P1000

Pr(T (p)) ≈
∑

p∈E∩P1000

2−1000(KL(p||q))

= 2−1000(KL((0.4,0.6)||(0.5,0.5))) + 2−1000(KL((0.399,0.601)||(0.5,0.5))) +

2−1000(KL((0.398,0.602)||(0.5,0.5))) + · · ·+ 2−1000(KL((0.3,0.7)||(0.5,0.5)))

≤ |P1000|2−1000(KL((0.4,0.6)||(0.5,0.5)))

Sanov’s Theorem

Let X1,X2, · · · ,XN be i.i.d. ∼ q(·) and E be a set of distribution. Then

Pr(E) = Pr(E ∩ PN) ≤ (N + 1)|X |2−N(KL(p∗||q)),

where p∗ = argminp∈E KL(p||q).

Moreover, given a rather weak condition
(closure of interior of E is E itself), we have

1

N
logPr(E)→ −KL(p∗||q)

S. Cheng (OU-Tulsa) December 5, 2017 243 / 275

Lecture 14 Large deviation theory

Sanov’s Theorem

Let E = {p : 0.3 ≤ p(Head) ≤ 0.4} and q(·) = (0.5, 0.5) is the true distribution,
then

Pr(E) = Pr(E ∩ P1000) =
∑

p∈E∩P1000

Pr(T (p)) ≈
∑

p∈E∩P1000

2−1000(KL(p||q))

= 2−1000(KL((0.4,0.6)||(0.5,0.5))) + 2−1000(KL((0.399,0.601)||(0.5,0.5))) +

2−1000(KL((0.398,0.602)||(0.5,0.5))) + · · ·+ 2−1000(KL((0.3,0.7)||(0.5,0.5)))

≤ |P1000|2−1000(KL((0.4,0.6)||(0.5,0.5)))

Sanov’s Theorem

Let X1,X2, · · · ,XN be i.i.d. ∼ q(·) and E be a set of distribution. Then

Pr(E) = Pr(E ∩ PN) ≤ (N + 1)|X |2−N(KL(p∗||q)),

where p∗ = argminp∈E KL(p||q).

Moreover, given a rather weak condition
(closure of interior of E is E itself), we have

1

N
logPr(E)→ −KL(p∗||q)

S. Cheng (OU-Tulsa) December 5, 2017 243 / 275

Lecture 14 Large deviation theory

Sanov’s Theorem

Let E = {p : 0.3 ≤ p(Head) ≤ 0.4} and q(·) = (0.5, 0.5) is the true distribution,
then

Pr(E) = Pr(E ∩ P1000) =
∑

p∈E∩P1000

Pr(T (p)) ≈
∑

p∈E∩P1000

2−1000(KL(p||q))

= 2−1000(KL((0.4,0.6)||(0.5,0.5))) + 2−1000(KL((0.399,0.601)||(0.5,0.5))) +

2−1000(KL((0.398,0.602)||(0.5,0.5))) + · · ·+ 2−1000(KL((0.3,0.7)||(0.5,0.5)))

≤ |P1000|2−1000(KL((0.4,0.6)||(0.5,0.5)))

Sanov’s Theorem

Let X1,X2, · · · ,XN be i.i.d. ∼ q(·) and E be a set of distribution. Then

Pr(E) = Pr(E ∩ PN) ≤ (N + 1)|X |2−N(KL(p∗||q)),

where p∗ = argminp∈E KL(p||q). Moreover, given a rather weak condition
(closure of interior of E is E itself), we have

1

N
logPr(E)→ −KL(p∗||q)

S. Cheng (OU-Tulsa) December 5, 2017 243 / 275

Lecture 14 Large deviation theory

Conditional limit theorem

The first part of Sanov’s Theorm is easy to show as similar to the example.
However, the second half will need some more math background (mostly
mathematical analysis) to understand the proof and so we will skip it here

The latter part of Sanov’s Theorem suggests that the probability of getting
E is the same as the probability of getting T (p∗)

It turns out that we can claim something stronger. We will state the
theorem below without proof

Conditional limit theorem

Let E be a closed convex subset of P (the set of all distributions) and q(·) be the
true distribution which is /∈ E .

If x1, x2, · · · , xN are drawn from q(·) and we know
that pxN ∈ E , then

N (a|xN)
N

→ p∗(a)

in probability as N →∞

S. Cheng (OU-Tulsa) December 5, 2017 244 / 275

Lecture 14 Large deviation theory

Conditional limit theorem

The first part of Sanov’s Theorm is easy to show as similar to the example.
However, the second half will need some more math background (mostly
mathematical analysis) to understand the proof and so we will skip it here

The latter part of Sanov’s Theorem suggests that the probability of getting
E is the same as the probability of getting T (p∗)

It turns out that we can claim something stronger. We will state the
theorem below without proof

Conditional limit theorem

Let E be a closed convex subset of P (the set of all distributions) and q(·) be the
true distribution which is /∈ E .

If x1, x2, · · · , xN are drawn from q(·) and we know
that pxN ∈ E , then

N (a|xN)
N

→ p∗(a)

in probability as N →∞

S. Cheng (OU-Tulsa) December 5, 2017 244 / 275

Lecture 14 Large deviation theory

Conditional limit theorem

The first part of Sanov’s Theorm is easy to show as similar to the example.
However, the second half will need some more math background (mostly
mathematical analysis) to understand the proof and so we will skip it here

The latter part of Sanov’s Theorem suggests that the probability of getting
E is the same as the probability of getting T (p∗)

It turns out that we can claim something stronger. We will state the
theorem below without proof

Conditional limit theorem

Let E be a closed convex subset of P (the set of all distributions) and q(·) be the
true distribution which is /∈ E .

If x1, x2, · · · , xN are drawn from q(·) and we know
that pxN ∈ E , then

N (a|xN)
N

→ p∗(a)

in probability as N →∞

S. Cheng (OU-Tulsa) December 5, 2017 244 / 275

Lecture 14 Large deviation theory

Conditional limit theorem

The first part of Sanov’s Theorm is easy to show as similar to the example.
However, the second half will need some more math background (mostly
mathematical analysis) to understand the proof and so we will skip it here

The latter part of Sanov’s Theorem suggests that the probability of getting
E is the same as the probability of getting T (p∗)

It turns out that we can claim something stronger. We will state the
theorem below without proof

Conditional limit theorem

Let E be a closed convex subset of P (the set of all distributions) and q(·) be the
true distribution which is /∈ E .

If x1, x2, · · · , xN are drawn from q(·) and we know
that pxN ∈ E , then

N (a|xN)
N

→ p∗(a)

in probability as N →∞

S. Cheng (OU-Tulsa) December 5, 2017 244 / 275

Lecture 14 Large deviation theory

Conditional limit theorem

The first part of Sanov’s Theorm is easy to show as similar to the example.
However, the second half will need some more math background (mostly
mathematical analysis) to understand the proof and so we will skip it here

The latter part of Sanov’s Theorem suggests that the probability of getting
E is the same as the probability of getting T (p∗)

It turns out that we can claim something stronger. We will state the
theorem below without proof

Conditional limit theorem

Let E be a closed convex subset of P (the set of all distributions) and q(·) be the
true distribution which is /∈ E . If x1, x2, · · · , xN are drawn from q(·) and we know
that pxN ∈ E , then

N (a|xN)
N

→ p∗(a)

in probability as N →∞

S. Cheng (OU-Tulsa) December 5, 2017 244 / 275

Lecture 14 Large deviation theory

Examples

Coin toss

Let’s go back to our previous example. If we throw a fair coin 1000
times and some one tells you that there are 300 to 400 heads, recall

E = {0.3 ≤ p(Head) ≤ 0.4}

Since apparently,
p∗ = argmin

p∈E
KL(p||(0.5, 0.5)) = (0.4, 0.6)

By conditional limit theorem, knowing the the number of head is
within the range, the coin behaves like a biased coin with
p(Head) = 0.4

A best bet would be there are 400 heads

S. Cheng (OU-Tulsa) December 5, 2017 245 / 275

Lecture 14 Large deviation theory

Examples

Coin toss

Let’s go back to our previous example. If we throw a fair coin 1000
times and some one tells you that there are 300 to 400 heads, recall

E = {0.3 ≤ p(Head) ≤ 0.4}

Since apparently,
p∗ = argmin

p∈E
KL(p||(0.5, 0.5)) = (0.4, 0.6)

By conditional limit theorem, knowing the the number of head is
within the range, the coin behaves like a biased coin with
p(Head) = 0.4

A best bet would be there are 400 heads

S. Cheng (OU-Tulsa) December 5, 2017 245 / 275

Lecture 14 Large deviation theory

Examples

Coin toss

Let’s go back to our previous example. If we throw a fair coin 1000
times and some one tells you that there are 300 to 400 heads, recall

E = {0.3 ≤ p(Head) ≤ 0.4}

Since apparently,
p∗ = argmin

p∈E
KL(p||(0.5, 0.5)) = (0.4, 0.6)

By conditional limit theorem, knowing the the number of head is
within the range, the coin behaves like a biased coin with
p(Head) = 0.4

A best bet would be there are 400 heads

S. Cheng (OU-Tulsa) December 5, 2017 245 / 275

Lecture 14 Large deviation theory

Examples

Coin toss

Let’s go back to our previous example. If we throw a fair coin 1000
times and some one tells you that there are 300 to 400 heads, recall

E = {0.3 ≤ p(Head) ≤ 0.4}

Since apparently,
p∗ = argmin

p∈E
KL(p||(0.5, 0.5)) = (0.4, 0.6)

By conditional limit theorem, knowing the the number of head is
within the range, the coin behaves like a biased coin with
p(Head) = 0.4

A best bet would be there are 400 heads

S. Cheng (OU-Tulsa) December 5, 2017 245 / 275

Lecture 14 Large deviation theory

Examples

Lower bounds

Let say x1, x2, · · · , xN are drawn from q(·). And we have K functions
g1(·), g2(·), · · · , gK (·) such that for k = 1, · · · ,K ,

1

N

N∑
i=1

gk(xi) ≥ αk

Let E = {p :
∑

a p(a)gk(a) ≥ αk , k = 1, · · · ,K}

From conditional limit theorem, N (a|xN)
N → p∗(a), where

p∗ = argmin
p∈E

KL(p||q)

This is a simple constrained optimization problem and can be solved with
KKT conditions. If you go through the conditions, you will find that

p∗(x) ∝ q(x)2
∑K

k=1 λkgk (x),

with λk(
∑

a p(a)gk(a)− αk) = 0, λk ≥ 0, and
∑

a p(a)gk(a) ≥ αk

S. Cheng (OU-Tulsa) December 5, 2017 246 / 275

Lecture 14 Large deviation theory

Examples

Lower bounds

Let say x1, x2, · · · , xN are drawn from q(·). And we have K functions
g1(·), g2(·), · · · , gK (·) such that for k = 1, · · · ,K ,

1

N

N∑
i=1

gk(xi) ≥ αk

Let E = {p :
∑

a p(a)gk(a) ≥ αk , k = 1, · · · ,K}

From conditional limit theorem, N (a|xN)
N → p∗(a), where

p∗ = argmin
p∈E

KL(p||q)

This is a simple constrained optimization problem and can be solved with
KKT conditions. If you go through the conditions, you will find that

p∗(x) ∝ q(x)2
∑K

k=1 λkgk (x),

with λk(
∑

a p(a)gk(a)− αk) = 0, λk ≥ 0, and
∑

a p(a)gk(a) ≥ αk

S. Cheng (OU-Tulsa) December 5, 2017 246 / 275

Lecture 14 Large deviation theory

Examples

Lower bounds

Let say x1, x2, · · · , xN are drawn from q(·). And we have K functions
g1(·), g2(·), · · · , gK (·) such that for k = 1, · · · ,K ,

1

N

N∑
i=1

gk(xi) ≥ αk

Let E = {p :
∑

a p(a)gk(a) ≥ αk , k = 1, · · · ,K}

From conditional limit theorem, N (a|xN)
N → p∗(a), where

p∗ = argmin
p∈E

KL(p||q)

This is a simple constrained optimization problem and can be solved with
KKT conditions. If you go through the conditions, you will find that

p∗(x) ∝ q(x)2
∑K

k=1 λkgk (x),

with λk(
∑

a p(a)gk(a)− αk) = 0, λk ≥ 0, and
∑

a p(a)gk(a) ≥ αk

S. Cheng (OU-Tulsa) December 5, 2017 246 / 275

Lecture 14 Large deviation theory

Examples

Lower bounds

Let say x1, x2, · · · , xN are drawn from q(·). And we have K functions
g1(·), g2(·), · · · , gK (·) such that for k = 1, · · · ,K ,

1

N

N∑
i=1

gk(xi) ≥ αk

Let E = {p :
∑

a p(a)gk(a) ≥ αk , k = 1, · · · ,K}

From conditional limit theorem, N (a|xN)
N → p∗(a), where

p∗ = argmin
p∈E

KL(p||q)

This is a simple constrained optimization problem and can be solved with
KKT conditions. If you go through the conditions, you will find that

p∗(x) ∝ q(x)2
∑K

k=1 λkgk (x),

with λk(
∑

a p(a)gk(a)− αk) = 0, λk ≥ 0, and
∑

a p(a)gk(a) ≥ αk

S. Cheng (OU-Tulsa) December 5, 2017 246 / 275

Lecture 14 Large deviation theory

Examples

I think this example below gives a nice demonstration that the technique
we have learned today can solve some amazing puzzle!

Fair dice

A fair dice is thrown 10,000 times and the sum of all outcomes is larger
than 40,000, out of the 10,000 throw, how many ones do you think there
are?

S. Cheng (OU-Tulsa) December 5, 2017 247 / 275

Lecture 14 Large deviation theory

Examples

I think this example below gives a nice demonstration that the technique
we have learned today can solve some amazing puzzle!

Fair dice

A fair dice is thrown 10,000 times and the sum of all outcomes is larger
than 40,000, out of the 10,000 throw, how many ones do you think there
are?

S. Cheng (OU-Tulsa) December 5, 2017 247 / 275

Lecture 14 Large deviation theory

Fair dice

From the result of previous example, let g1(x) = x and α1 = 4, we
expect

p∗(i) =
2λi∑6
j=1 2

λj

for some λ

λ 6= 0 since
∑

a p(a)g1(a) = 3.5 < 4 = α1 if so

Since λ 6= 0, by the complementary slackness constraint
λk(
∑

a p(a)gk(a)− αk) = 0,∑
a

p(a)g1(a) = α1 = 4

This gives us λ = 0.2519, and thus
p∗ = (0.103, 0.123, 0.146, 0.174, 0.207, 0.247)

ones ≈ 0.103× 10000 = 1030

S. Cheng (OU-Tulsa) December 5, 2017 248 / 275

Lecture 14 Large deviation theory

Fair dice

From the result of previous example, let g1(x) = x and α1 = 4, we
expect

p∗(i) =
2λi∑6
j=1 2

λj

for some λ

λ 6= 0 since
∑

a p(a)g1(a) = 3.5 < 4 = α1 if so

Since λ 6= 0, by the complementary slackness constraint
λk(
∑

a p(a)gk(a)− αk) = 0,∑
a

p(a)g1(a) = α1 = 4

This gives us λ = 0.2519, and thus
p∗ = (0.103, 0.123, 0.146, 0.174, 0.207, 0.247)

ones ≈ 0.103× 10000 = 1030

S. Cheng (OU-Tulsa) December 5, 2017 248 / 275

Lecture 14 Large deviation theory

Fair dice

From the result of previous example, let g1(x) = x and α1 = 4, we
expect

p∗(i) =
2λi∑6
j=1 2

λj

for some λ

λ 6= 0 since
∑

a p(a)g1(a) = 3.5 < 4 = α1 if so

Since λ 6= 0, by the complementary slackness constraint
λk(
∑

a p(a)gk(a)− αk) = 0,∑
a

p(a)g1(a) = α1 = 4

This gives us λ = 0.2519, and thus
p∗ = (0.103, 0.123, 0.146, 0.174, 0.207, 0.247)

ones ≈ 0.103× 10000 = 1030

S. Cheng (OU-Tulsa) December 5, 2017 248 / 275

Lecture 14 Large deviation theory

Fair dice

From the result of previous example, let g1(x) = x and α1 = 4, we
expect

p∗(i) =
2λi∑6
j=1 2

λj

for some λ

λ 6= 0 since
∑

a p(a)g1(a) = 3.5 < 4 = α1 if so

Since λ 6= 0, by the complementary slackness constraint
λk(
∑

a p(a)gk(a)− αk) = 0,∑
a

p(a)g1(a) = α1 = 4

This gives us λ = 0.2519, and thus
p∗ = (0.103, 0.123, 0.146, 0.174, 0.207, 0.247)

ones ≈ 0.103× 10000 = 1030

S. Cheng (OU-Tulsa) December 5, 2017 248 / 275

Lecture 14 Large deviation theory

Fair dice

From the result of previous example, let g1(x) = x and α1 = 4, we
expect

p∗(i) =
2λi∑6
j=1 2

λj

for some λ

λ 6= 0 since
∑

a p(a)g1(a) = 3.5 < 4 = α1 if so

Since λ 6= 0, by the complementary slackness constraint
λk(
∑

a p(a)gk(a)− αk) = 0,∑
a

p(a)g1(a) = α1 = 4

This gives us λ = 0.2519, and thus
p∗ = (0.103, 0.123, 0.146, 0.174, 0.207, 0.247)

ones ≈ 0.103× 10000 = 1030

S. Cheng (OU-Tulsa) December 5, 2017 248 / 275

Lecture 15 Overview

This time...

Bayesian Net

Belief Propagation Algorithm

LDPC/IRA Codes

S. Cheng (OU-Tulsa) December 5, 2017 249 / 275

Lecture 15 Bayesian Net

Bayesian Net

Relationship of variables depicted by a directed graph with no loop

Given a variable’s parents, the variable is conditionally independent of
any non-descendants

Reduce model complexity

Facilitate easier inference

S. Cheng (OU-Tulsa) December 5, 2017 250 / 275

B

D

P

R

T

Lecture 15 Bayesian Net

Burlgar and racoon

Burlgar: B; Racoon: R; Dog barked: D; Police called: P; Trash can fell: T

p(p, d , b, t, r) =p(p|d , b, t, r)p(d |b, t, r)p(b|t, r)p(t|r)p(r)

=p(p|d , �b, �t, �r)︸ ︷︷ ︸
2 parameters

p(d |b, �t, r)p(b|�t, �r)p(t|r)p(r)

P D p(p|d)
p ¬d 0.01
p d 0.4
¬p ¬d 0.99
¬p d 0.6

T R p(t|r)
t ¬r 0.05
t r 0.7
¬t ¬r 0.95
¬t r 0.3

D B R p(d |b, r)
d ¬b ¬r 0.1
d ¬b r 0.5
d b ¬r 1
d b r 1

¬d ¬b ¬r 0.9
¬d ¬b r 0.5
¬d b ¬r 0
¬d b r 0

S. Cheng (OU-Tulsa) December 5, 2017 251 / 275

B

D

P

R

T

Lecture 15 Bayesian Net

Burlgar and racoon

Burlgar: B; Racoon: R; Dog barked: D; Police called: P; Trash can fell: T

p(p, d , b, t, r) =p(p|d , b, t, r)p(d |b, t, r)p(b|t, r)p(t|r)p(r)
=p(p|d , �b, �t, �r)︸ ︷︷ ︸

2 parameters

p(d |b, �t, r)p(b|�t, �r)p(t|r)p(r)

P D p(p|d)
p ¬d 0.01
p d 0.4
¬p ¬d 0.99
¬p d 0.6

T R p(t|r)
t ¬r 0.05
t r 0.7
¬t ¬r 0.95
¬t r 0.3

D B R p(d |b, r)
d ¬b ¬r 0.1
d ¬b r 0.5
d b ¬r 1
d b r 1

¬d ¬b ¬r 0.9
¬d ¬b r 0.5
¬d b ¬r 0
¬d b r 0

S. Cheng (OU-Tulsa) December 5, 2017 251 / 275

B

D

P

R

T

Lecture 15 Bayesian Net

Burlgar and racoon

Burlgar: B; Racoon: R; Dog barked: D; Police called: P; Trash can fell: T

p(p, d , b, t, r) =p(p|d , b, t, r)p(d |b, t, r)p(b|t, r)p(t|r)p(r)
=p(p|d , �b, �t, �r)︸ ︷︷ ︸

2 parameters

p(d |b, �t, r)p(b|�t, �r)p(t|r)p(r)

P D p(p|d)
p ¬d 0.01
p d 0.4
¬p ¬d 0.99
¬p d 0.6

T R p(t|r)
t ¬r 0.05
t r 0.7
¬t ¬r 0.95
¬t r 0.3

D B R p(d |b, r)
d ¬b ¬r 0.1
d ¬b r 0.5
d b ¬r 1
d b r 1

¬d ¬b ¬r 0.9
¬d ¬b r 0.5
¬d b ¬r 0
¬d b r 0

S. Cheng (OU-Tulsa) December 5, 2017 251 / 275

B

D

P

R

T

Lecture 15 Bayesian Net

Burlgar and racoon

Burlgar: B; Racoon: R; Dog barked: D; Police called: P; Trash can fell: T

p(p, d , b, t, r) =p(p|d , b, t, r)p(d |b, t, r)p(b|t, r)p(t|r)p(r)
=p(p|d , �b, �t, �r)︸ ︷︷ ︸

2 parameters

p(d |b, �t, r)p(b|�t, �r)p(t|r)p(r)

P D p(p|d)
p ¬d 0.01
p d 0.4
¬p ¬d 0.99
¬p d 0.6

T R p(t|r)
t ¬r 0.05
t r 0.7
¬t ¬r 0.95
¬t r 0.3

D B R p(d |b, r)
d ¬b ¬r 0.1
d ¬b r 0.5
d b ¬r 1
d b r 1

¬d ¬b ¬r 0.9
¬d ¬b r 0.5
¬d b ¬r 0
¬d b r 0

S. Cheng (OU-Tulsa) December 5, 2017 251 / 275

B

D

P

R

T

Lecture 15 Bayesian Net

Comparison of # parameters

parameters of complete model: 25 − 1 = 31

parameters of Bayesian net:

p(p|d): 2
p(d |b, r): 4
p(b): 1
p(t|r): 2
p(r): 1
Total: 2 + 4 + 1 + 2 + 1 = 10

The model size reduces to less than 1
3 !

S. Cheng (OU-Tulsa) December 5, 2017 252 / 275

B

D

P

R

T

Lecture 15 Bayesian Net

Comparison of # parameters

parameters of complete model: 25 − 1 = 31

parameters of Bayesian net:

p(p|d): 2
p(d |b, r): 4
p(b): 1
p(t|r): 2
p(r): 1
Total: 2 + 4 + 1 + 2 + 1 = 10

The model size reduces to less than 1
3 !

S. Cheng (OU-Tulsa) December 5, 2017 252 / 275

B

D

P

R

T

Lecture 15 Bayesian Net

Comparison of # parameters

parameters of complete model: 25 − 1 = 31

parameters of Bayesian net:

p(p|d): 2

p(d |b, r): 4
p(b): 1
p(t|r): 2
p(r): 1
Total: 2 + 4 + 1 + 2 + 1 = 10

The model size reduces to less than 1
3 !

S. Cheng (OU-Tulsa) December 5, 2017 252 / 275

B

D

P

R

T

Lecture 15 Bayesian Net

Comparison of # parameters

parameters of complete model: 25 − 1 = 31

parameters of Bayesian net:

p(p|d): 2
p(d |b, r): 4

p(b): 1
p(t|r): 2
p(r): 1
Total: 2 + 4 + 1 + 2 + 1 = 10

The model size reduces to less than 1
3 !

S. Cheng (OU-Tulsa) December 5, 2017 252 / 275

B

D

P

R

T

Lecture 15 Bayesian Net

Comparison of # parameters

parameters of complete model: 25 − 1 = 31

parameters of Bayesian net:

p(p|d): 2
p(d |b, r): 4
p(b): 1

p(t|r): 2
p(r): 1
Total: 2 + 4 + 1 + 2 + 1 = 10

The model size reduces to less than 1
3 !

S. Cheng (OU-Tulsa) December 5, 2017 252 / 275

B

D

P

R

T

Lecture 15 Bayesian Net

Comparison of # parameters

parameters of complete model: 25 − 1 = 31

parameters of Bayesian net:

p(p|d): 2
p(d |b, r): 4
p(b): 1
p(t|r): 2

p(r): 1
Total: 2 + 4 + 1 + 2 + 1 = 10

The model size reduces to less than 1
3 !

S. Cheng (OU-Tulsa) December 5, 2017 252 / 275

B

D

P

R

T

Lecture 15 Bayesian Net

Comparison of # parameters

parameters of complete model: 25 − 1 = 31

parameters of Bayesian net:

p(p|d): 2
p(d |b, r): 4
p(b): 1
p(t|r): 2
p(r): 1
Total: 2 + 4 + 1 + 2 + 1 = 10

The model size reduces to less than 1
3 !

S. Cheng (OU-Tulsa) December 5, 2017 252 / 275

B

D

P

R

T

Lecture 15 Bayesian Net

Burglar and racoon

Question: What is the probability of a burglar visit if police was called but
trash can stayed untouched?

Let p(r) = 0.2 and p(b) = 0.01

D B R p(d |b, r)
d ¬b ¬r 0.1
d ¬b r 0.5
d b ¬r 1
d b r 1

¬d ¬b ¬r 0.9
¬d ¬b r 0.5
¬d b ¬r 0
¬d b r 0

⇒

D B R p(d , b, r)

d ¬b ¬r 0.0792
d ¬b r 0.099
d b ¬r 0.008
d b r 0.002

¬d ¬b ¬r 0.7128
¬d ¬b r 0.099
¬d b ¬r 0
¬d b r 0

S. Cheng (OU-Tulsa) December 5, 2017 253 / 275

Lecture 15 Bayesian Net

Burglar and racoon

Question: What is the probability of a burglar visit if police was called but
trash can stayed untouched?

Let p(r) = 0.2 and p(b) = 0.01

D B R p(d |b, r)
d ¬b ¬r 0.1
d ¬b r 0.5
d b ¬r 1
d b r 1

¬d ¬b ¬r 0.9
¬d ¬b r 0.5
¬d b ¬r 0
¬d b r 0

⇒

D B R p(d , b, r)

d ¬b ¬r 0.0792
d ¬b r 0.099
d b ¬r 0.008
d b r 0.002

¬d ¬b ¬r 0.7128
¬d ¬b r 0.099
¬d b ¬r 0
¬d b r 0

S. Cheng (OU-Tulsa) December 5, 2017 253 / 275

Lecture 15 Bayesian Net

Burglar and racoon

Question: What is the probability of a burglar visit if police was called but
trash can stayed untouched?

P D p(p|d)
p ¬d 0.01
p d 0.4

¬p ¬d 0.99
¬p d 0.6

P D B R p(d , b, r , p)

p d ¬b ¬r 0.0792
p d ¬b r 0.099
p d b ¬r 0.008
p d b r 0.002

p ¬d ¬b ¬r 0.7128
p ¬d ¬b r 0.099
p ¬d b ¬r 0
p ¬d b r 0

· · ·

S. Cheng (OU-Tulsa) December 5, 2017 254 / 275

Lecture 15 Bayesian Net

Burglar and racoon

Question: What is the probability of a burglar visit if police was called but
trash can stayed untouched?

P D p(p|d)
p ¬d 0.01
p d 0.4

¬p ¬d 0.99
¬p d 0.6

P D B R p(d , b, r , p)

p d ¬b ¬r 0.0792
p d ¬b r 0.099
p d b ¬r 0.008
p d b r 0.002

p ¬d ¬b ¬r 0.007128
p ¬d ¬b r 0.00099
p ¬d b ¬r 0
p ¬d b r 0

· · ·

S. Cheng (OU-Tulsa) December 5, 2017 254 / 275

Lecture 15 Bayesian Net

Burglar and racoon

Question: What is the probability of a burglar visit if police was called but
trash can stayed untouched?

P D p(p|d)
p ¬d 0.01
p d 0.4

¬p ¬d 0.99
¬p d 0.6

P D B R p(d , b, r , p)

p d ¬b ¬r 0.03168
p d ¬b r 0.0396
p d b ¬r 0.0032
p d b r 0.0008

p ¬d ¬b ¬r 0.007128
p ¬d ¬b r 0.00099
p ¬d b ¬r 0
p ¬d b r 0

· · ·

S. Cheng (OU-Tulsa) December 5, 2017 254 / 275

Lecture 15 Bayesian Net

Burglar and racoon

Question: What is the probability of a burglar visit if police was called but
trash can stayed untouched?

T R p(t|r)
t ¬r 0.05
t r 0.7

¬t ¬r 0.95
¬t r 0.3

T P D B R p(d , b, r , p, t)

¬t p d ¬b ¬r 0.03168
¬t p d ¬b r 0.0396
¬t p d b ¬r 0.0032
¬t p d b r 0.0008

¬t p ¬d ¬b ¬r 0.007128
¬t p ¬d ¬b r 0.00099
¬t p ¬d b ¬r 0
¬t p ¬d b r 0

· · ·

S. Cheng (OU-Tulsa) December 5, 2017 255 / 275

Lecture 15 Bayesian Net

Burglar and racoon

Question: What is the probability of a burglar visit if police was called but
trash can stayed untouched?

T R p(t|r)
t ¬r 0.05
t r 0.7

¬t ¬r 0.95
¬t r 0.3

T P D B R p(d , b, r , p, t)

¬t p d ¬b ¬r 0.030096
¬t p d ¬b r 0.0396
¬t p d b ¬r 0.00304
¬t p d b r 0.0008

¬t p ¬d ¬b ¬r 0.0067716
¬t p ¬d ¬b r 0.00099
¬t p ¬d b ¬r 0
¬t p ¬d b r 0

· · ·

S. Cheng (OU-Tulsa) December 5, 2017 255 / 275

Lecture 15 Bayesian Net

Burglar and racoon

Question: What is the probability of a burglar visit if police was called but
trash can stayed untouched?

T R p(t|r)
t ¬r 0.05
t r 0.7

¬t ¬r 0.95
¬t r 0.3

T P D B R p(d , b, r , p, t)

¬t p d ¬b ¬r 0.030096
¬t p d ¬b r 0.01188
¬t p d b ¬r 0.00304
¬t p d b r 0.00024

¬t p ¬d ¬b ¬r 0.0067716
¬t p ¬d ¬b r 0.000297
¬t p ¬d b ¬r 0
¬t p ¬d b r 0

· · ·

S. Cheng (OU-Tulsa) December 5, 2017 255 / 275

Lecture 15 Bayesian Net

Burglar and racoon

Question: What is the probability of a burglar visit if police was called but
trash can stayed untouched?

Normalize...

T P D B R p(d , b, r , p)

¬t p d ¬b ¬r 0.030096
¬t p d ¬b r 0.01188
¬t p d b ¬r 0.00304
¬t p d b r 0.00024

¬t p ¬d ¬b ¬r 0.0067716
¬t p ¬d ¬b r 0.000297
¬t p ¬d b ¬r 0
¬t p ¬d b r 0

· · ·

S. Cheng (OU-Tulsa) December 5, 2017 256 / 275

Lecture 15 Bayesian Net

Burglar and racoon

Question: What is the probability of a burglar visit if police was called but
trash can stayed untouched?

Normalize...

T P D B R p(d , b, r , p)

¬t p d ¬b ¬r 0.57518
¬t p d ¬b r 0.22704
¬t p d b ¬r 0.058099
¬t p d b r 0.0045868

¬t p ¬d ¬b ¬r 0.12942
¬t p ¬d ¬b r 0.0056761
¬t p ¬d b ¬r 0
¬t p ¬d b r 0

· · ·

S. Cheng (OU-Tulsa) December 5, 2017 256 / 275

Lecture 15 Bayesian Net

Burglar and racoon

Question: What is the probability of a burglar visit if police was called but
trash can stayed untouched?

p(b|¬t, p)
=0.058099 + 0.0045868

≈0.0626

T P D B R p(d , b, r , p)

¬t p d ¬b ¬r 0.57518
¬t p d ¬b r 0.22704
¬t p d b ¬r 0.058099
¬t p d b r 0.0045868

¬t p ¬d ¬b ¬r 0.12942
¬t p ¬d ¬b r 0.0056761
¬t p ¬d b ¬r 0
¬t p ¬d b r 0

· · ·

S. Cheng (OU-Tulsa) December 5, 2017 256 / 275

Lecture 15 Belief Propagation Algorithm

Belief Propagation Algorithm

It is also known to be the sum-product algorithm

The goal of belief propagation is to efficiently compute the marginal
distribution out of the joint distribution of multiple variables. This is
essential for inferring the outcome of a particular variable with
insufficient information

The belief propagation algorithm is usually applied to problems
modeled by a undirected graph (Markov random field) or a factor
graph

Rather than giving a rigorous proof of the algorithm, we will provide a
simple example to illustrate the basic idea

S. Cheng (OU-Tulsa) December 5, 2017 257 / 275

Lecture 15 Belief Propagation Algorithm

Factor Graph

A factor graph is a bipartite graph describing the correlation among
several random variables. It generally contains two different types of
nodes in the graph: variable nodes and factor nodes

A variable node that is usually shown as circles corresponds to a
random variable

A factor node that is usually shown as a square connects variable
nodes whose corresponding variables are immediately related

S. Cheng (OU-Tulsa) December 5, 2017 258 / 275

Lecture 15 Belief Propagation Algorithm

An Example

A factor graph example is shown below. We have 8 discrete random
variables, x41 and z41 , depicted by 8 variable nodes

Among the variable nodes, random variables x41 (indicated by light
circles) are unknown and variables z41 (indicated by dark circles) are
observed with known outcomes z̃41
The relationships among variables are captured entirely by the figure.
For example, given x41 , z1, z2, z3, and z4 are conditional independent
of each other. Moreover, (x3, x4) are conditional independent of x1
given x2

z
3

z
4

x
3

x
4

x
2

x
1b ad

z
2

e

f

c

z
1mb1m

2b

mc2

ma1md2
m
3d

m
4d

me3

m f4

S. Cheng (OU-Tulsa) December 5, 2017 259 / 275

Lecture 15 Belief Propagation Algorithm

An Example

A factor graph example is shown below. We have 8 discrete random
variables, x41 and z41 , depicted by 8 variable nodes

Among the variable nodes, random variables x41 (indicated by light
circles) are unknown and variables z41 (indicated by dark circles) are
observed with known outcomes z̃41

The relationships among variables are captured entirely by the figure.
For example, given x41 , z1, z2, z3, and z4 are conditional independent
of each other. Moreover, (x3, x4) are conditional independent of x1
given x2

z
3

z
4

x
3

x
4

x
2

x
1b ad

z
2

e

f

c

z
1mb1m

2b

mc2

ma1md2
m
3d

m
4d

me3

m f4

S. Cheng (OU-Tulsa) December 5, 2017 259 / 275

Lecture 15 Belief Propagation Algorithm

An Example

A factor graph example is shown below. We have 8 discrete random
variables, x41 and z41 , depicted by 8 variable nodes

Among the variable nodes, random variables x41 (indicated by light
circles) are unknown and variables z41 (indicated by dark circles) are
observed with known outcomes z̃41
The relationships among variables are captured entirely by the figure.
For example, given x41 , z1, z2, z3, and z4 are conditional independent
of each other. Moreover, (x3, x4) are conditional independent of x1
given x2

z
3

z
4

x
3

x
4

x
2

x
1b ad

z
2

e

f

c

z
1mb1m

2b

mc2

ma1md2
m
3d

m
4d

me3

m f4

S. Cheng (OU-Tulsa) December 5, 2017 259 / 275

Lecture 15 Belief Propagation Algorithm

The joint probability p(x4, z4) of all variables can be decomposed into factor
functions with subsets of all variables as arguments in the following

p(x4, z4) = p(x4)p(z1|x1)p(z2|x2)p(z3|x3)p(z4|x4)

= p(x1, x2)︸ ︷︷ ︸
fb(x1,x2)

p(x3, x4|x2)︸ ︷︷ ︸
fd (x2,x3,x4)

p(z3|x3)︸ ︷︷ ︸
fe(x3,z3)

p(z1|x1)︸ ︷︷ ︸
fa(x1,z1)

p(z4|x4)︸ ︷︷ ︸
ff (x4,z4)

p(z2|x2)︸ ︷︷ ︸
fc (x2,z2)

= fb(x1, x2)fd(x2, x3, x4)fe(x3, z3)fa(x1, z1)ff (x4, z4)fc(x2, z2)

Note that each factor function corresponds to a factor node in the factor
graph.

The arguments of the factor function correspond to the variable nodes that
the factor node connects to.

z
3

z
4

x
3

x
4

x
2

x
1b ad

z
2

e

f

c

z
1mb1m

2b

mc2

ma1md2
m
3d

m
4d

me3

m f4

S. Cheng (OU-Tulsa) December 5, 2017 260 / 275

Lecture 15 Belief Propagation Algorithm

The joint probability p(x4, z4) of all variables can be decomposed into factor
functions with subsets of all variables as arguments in the following

p(x4, z4) = p(x4)p(z1|x1)p(z2|x2)p(z3|x3)p(z4|x4)
= p(x1, x2)︸ ︷︷ ︸

fb(x1,x2)

p(x3, x4|x2)︸ ︷︷ ︸
fd (x2,x3,x4)

p(z3|x3)︸ ︷︷ ︸
fe(x3,z3)

p(z1|x1)︸ ︷︷ ︸
fa(x1,z1)

p(z4|x4)︸ ︷︷ ︸
ff (x4,z4)

p(z2|x2)︸ ︷︷ ︸
fc (x2,z2)

= fb(x1, x2)fd(x2, x3, x4)fe(x3, z3)fa(x1, z1)ff (x4, z4)fc(x2, z2)

Note that each factor function corresponds to a factor node in the factor
graph.

The arguments of the factor function correspond to the variable nodes that
the factor node connects to.

z
3

z
4

x
3

x
4

x
2

x
1b ad

z
2

e

f

c

z
1mb1m

2b

mc2

ma1md2
m
3d

m
4d

me3

m f4

S. Cheng (OU-Tulsa) December 5, 2017 260 / 275

Lecture 15 Belief Propagation Algorithm

The joint probability p(x4, z4) of all variables can be decomposed into factor
functions with subsets of all variables as arguments in the following

p(x4, z4) = p(x4)p(z1|x1)p(z2|x2)p(z3|x3)p(z4|x4)
= p(x1, x2)︸ ︷︷ ︸

fb(x1,x2)

p(x3, x4|x2)︸ ︷︷ ︸
fd (x2,x3,x4)

p(z3|x3)︸ ︷︷ ︸
fe(x3,z3)

p(z1|x1)︸ ︷︷ ︸
fa(x1,z1)

p(z4|x4)︸ ︷︷ ︸
ff (x4,z4)

p(z2|x2)︸ ︷︷ ︸
fc (x2,z2)

= fb(x1, x2)fd(x2, x3, x4)fe(x3, z3)fa(x1, z1)ff (x4, z4)fc(x2, z2)

Note that each factor function corresponds to a factor node in the factor
graph.

The arguments of the factor function correspond to the variable nodes that
the factor node connects to.

z
3

z
4

x
3

x
4

x
2

x
1b ad

z
2

e

f

c

z
1mb1m

2b

mc2

ma1md2
m
3d

m
4d

me3

m f4

S. Cheng (OU-Tulsa) December 5, 2017 260 / 275

Lecture 15 Belief Propagation Algorithm

One common problem in probability inference is to estimate the value of a
variable given incomplete information. For example, we may want to estimate x1
given z4 as z̃4. The optimum estimate x̂1 will satisfy

x̂1 = argmax
x1

p(x1|z̃4) = argmax
x1

p(x1, z̃
4)

p(z̃4)
= argmax

x1
p(x1, z̃

4).

This requires us to compute the marginal distribution p(x1, z̃
4) out of the joint

probability p(x4, z̃4). Note that

p(x1, z̃
4) =

∑
x4
2

p(x4, z̃4)

=
∑
x4
2

fa(x1, z̃1)fb(x1, x2)fc(x2, z̃2)fd(x2, x3, x4)fe(x3, z̃3)ff (x4, z̃4)

=fa(x1, z̃1)︸ ︷︷ ︸
ma1

∑
x2

fb(x1, x2)fc(x2, z̃2)︸ ︷︷ ︸
mc2

∑
x3,x4

fd(x2, x3, x4)fe(x3, z̃3)︸ ︷︷ ︸
m3d

ff (x4, z̃4)︸ ︷︷ ︸
m4d︸ ︷︷ ︸

md2︸ ︷︷ ︸
m2b︸ ︷︷ ︸

mb1

S. Cheng (OU-Tulsa) December 5, 2017 261 / 275

Lecture 15 Belief Propagation Algorithm

One common problem in probability inference is to estimate the value of a
variable given incomplete information. For example, we may want to estimate x1
given z4 as z̃4. The optimum estimate x̂1 will satisfy

x̂1 = argmax
x1

p(x1|z̃4) = argmax
x1

p(x1, z̃
4)

p(z̃4)
= argmax

x1
p(x1, z̃

4).

This requires us to compute the marginal distribution p(x1, z̃
4) out of the joint

probability p(x4, z̃4). Note that

p(x1, z̃
4) =

∑
x4
2

p(x4, z̃4)

=
∑
x4
2

fa(x1, z̃1)fb(x1, x2)fc(x2, z̃2)fd(x2, x3, x4)fe(x3, z̃3)ff (x4, z̃4)

=fa(x1, z̃1)︸ ︷︷ ︸
ma1

∑
x2

fb(x1, x2)fc(x2, z̃2)︸ ︷︷ ︸
mc2

∑
x3,x4

fd(x2, x3, x4)fe(x3, z̃3)︸ ︷︷ ︸
m3d

ff (x4, z̃4)︸ ︷︷ ︸
m4d︸ ︷︷ ︸

md2︸ ︷︷ ︸
m2b︸ ︷︷ ︸

mb1

S. Cheng (OU-Tulsa) December 5, 2017 261 / 275

Lecture 15 Belief Propagation Algorithm

One common problem in probability inference is to estimate the value of a
variable given incomplete information. For example, we may want to estimate x1
given z4 as z̃4. The optimum estimate x̂1 will satisfy

x̂1 = argmax
x1

p(x1|z̃4) = argmax
x1

p(x1, z̃
4)

p(z̃4)
= argmax

x1
p(x1, z̃

4).

This requires us to compute the marginal distribution p(x1, z̃
4) out of the joint

probability p(x4, z̃4). Note that

p(x1, z̃
4) =

∑
x4
2

p(x4, z̃4)

=
∑
x4
2

fa(x1, z̃1)fb(x1, x2)fc(x2, z̃2)fd(x2, x3, x4)fe(x3, z̃3)ff (x4, z̃4)

=fa(x1, z̃1)︸ ︷︷ ︸
ma1

∑
x2

fb(x1, x2)fc(x2, z̃2)︸ ︷︷ ︸
mc2

∑
x3,x4

fd(x2, x3, x4)fe(x3, z̃3)︸ ︷︷ ︸
m3d

ff (x4, z̃4)︸ ︷︷ ︸
m4d︸ ︷︷ ︸

md2︸ ︷︷ ︸
m2b︸ ︷︷ ︸

mb1

S. Cheng (OU-Tulsa) December 5, 2017 261 / 275

Lecture 15 Belief Propagation Algorithm

We can see from the last equation that the joint probability can be
computed by combining a sequence of messages passing from a variable
node i to a factor node a (mia) and vice versa (mai). More precisely, we
can write

ma1(x1)← fa(x1, z̃1) =
∑
z1

fa(x1, z1)p(z1)︸ ︷︷ ︸
m1a

,

mc2(x2)← fc(x2, z̃2) =
∑
z2

fc(x2, z2)p(z2)︸ ︷︷ ︸
m2c

,

me3(x3)← fe(x3, z̃3) =
∑
z3

fe(x3, z3)p(z3)︸ ︷︷ ︸
m3e

,

mf 4(x4)← ff (x4, z̃4) =
∑
z4

ff (x4, z4)p(z4)︸ ︷︷ ︸
m4f

,

where p(zi) =

{
1, zi = z̃i

0, otherwise

S. Cheng (OU-Tulsa) December 5, 2017 262 / 275

Lecture 15 Belief Propagation Algorithm

m3d(x3)← me3(x3) = fe(x3, z̃3),

m4d(x4)← mf 4(x4) = ff (x4, z̃4),

md2(x2)←
∑
x3,x4

fd(x2, x3, x4)m3d(x3)m4d(x4),

m2b(x2)← mc2(x2)md2(x2),

mb1(x1)←
∑
x2

fb(x1, x2)m2b(x2),

p(x1, z̃
4)← ma1(x1)mb1(x1),

p(x1, z̃
4) = fa(x1, z̃1)︸ ︷︷ ︸

ma1

∑
x2

fb(x1, x2)fc(x2, z̃2)︸ ︷︷ ︸
mc2

∑
x3,x4

fd(x2, x3, x4)fe(x3, z̃3)︸ ︷︷ ︸
m3d

ff (x4, z̃4)︸ ︷︷ ︸
m4d︸ ︷︷ ︸

md2︸ ︷︷ ︸
m2b︸ ︷︷ ︸

mb1

(2)

S. Cheng (OU-Tulsa) December 5, 2017 263 / 275

Lecture 15 Belief Propagation Algorithm

m3d(x3)← me3(x3) = fe(x3, z̃3),

m4d(x4)← mf 4(x4) = ff (x4, z̃4),

md2(x2)←
∑
x3,x4

fd(x2, x3, x4)m3d(x3)m4d(x4),

m2b(x2)← mc2(x2)md2(x2),

mb1(x1)←
∑
x2

fb(x1, x2)m2b(x2),

p(x1, z̃
4)← ma1(x1)mb1(x1),

p(x1, z̃
4) = fa(x1, z̃1)︸ ︷︷ ︸

ma1

∑
x2

fb(x1, x2)fc(x2, z̃2)︸ ︷︷ ︸
mc2

∑
x3,x4

fd(x2, x3, x4)fe(x3, z̃3)︸ ︷︷ ︸
m3d

ff (x4, z̃4)︸ ︷︷ ︸
m4d︸ ︷︷ ︸

md2︸ ︷︷ ︸
m2b︸ ︷︷ ︸

mb1

(2)

S. Cheng (OU-Tulsa) December 5, 2017 263 / 275

Lecture 15 Belief Propagation Algorithm

m3d(x3)← me3(x3) = fe(x3, z̃3),

m4d(x4)← mf 4(x4) = ff (x4, z̃4),

md2(x2)←
∑
x3,x4

fd(x2, x3, x4)m3d(x3)m4d(x4),

m2b(x2)← mc2(x2)md2(x2),

mb1(x1)←
∑
x2

fb(x1, x2)m2b(x2),

p(x1, z̃
4)← ma1(x1)mb1(x1),

p(x1, z̃
4) = fa(x1, z̃1)︸ ︷︷ ︸

ma1

∑
x2

fb(x1, x2)fc(x2, z̃2)︸ ︷︷ ︸
mc2

∑
x3,x4

fd(x2, x3, x4)fe(x3, z̃3)︸ ︷︷ ︸
m3d

ff (x4, z̃4)︸ ︷︷ ︸
m4d︸ ︷︷ ︸

md2︸ ︷︷ ︸
m2b︸ ︷︷ ︸

mb1

(2)

S. Cheng (OU-Tulsa) December 5, 2017 263 / 275

Lecture 15 Belief Propagation Algorithm

m3d(x3)← me3(x3) = fe(x3, z̃3),

m4d(x4)← mf 4(x4) = ff (x4, z̃4),

md2(x2)←
∑
x3,x4

fd(x2, x3, x4)m3d(x3)m4d(x4),

m2b(x2)← mc2(x2)md2(x2),

mb1(x1)←
∑
x2

fb(x1, x2)m2b(x2),

p(x1, z̃
4)← ma1(x1)mb1(x1),

p(x1, z̃
4) = fa(x1, z̃1)︸ ︷︷ ︸

ma1

∑
x2

fb(x1, x2)fc(x2, z̃2)︸ ︷︷ ︸
mc2

∑
x3,x4

fd(x2, x3, x4)fe(x3, z̃3)︸ ︷︷ ︸
m3d

ff (x4, z̃4)︸ ︷︷ ︸
m4d︸ ︷︷ ︸

md2︸ ︷︷ ︸
m2b︸ ︷︷ ︸

mb1

(2)

S. Cheng (OU-Tulsa) December 5, 2017 263 / 275

Lecture 15 Belief Propagation Algorithm

m3d(x3)← me3(x3) = fe(x3, z̃3),

m4d(x4)← mf 4(x4) = ff (x4, z̃4),

md2(x2)←
∑
x3,x4

fd(x2, x3, x4)m3d(x3)m4d(x4),

m2b(x2)← mc2(x2)md2(x2),

mb1(x1)←
∑
x2

fb(x1, x2)m2b(x2),

p(x1, z̃
4)← ma1(x1)mb1(x1),

p(x1, z̃
4) = fa(x1, z̃1)︸ ︷︷ ︸

ma1

∑
x2

fb(x1, x2)fc(x2, z̃2)︸ ︷︷ ︸
mc2

∑
x3,x4

fd(x2, x3, x4)fe(x3, z̃3)︸ ︷︷ ︸
m3d

ff (x4, z̃4)︸ ︷︷ ︸
m4d︸ ︷︷ ︸

md2︸ ︷︷ ︸
m2b︸ ︷︷ ︸

mb1

(2)

S. Cheng (OU-Tulsa) December 5, 2017 263 / 275

Lecture 15 Belief Propagation Algorithm

m3d(x3)← me3(x3) = fe(x3, z̃3),

m4d(x4)← mf 4(x4) = ff (x4, z̃4),

md2(x2)←
∑
x3,x4

fd(x2, x3, x4)m3d(x3)m4d(x4),

m2b(x2)← mc2(x2)md2(x2),

mb1(x1)←
∑
x2

fb(x1, x2)m2b(x2),

p(x1, z̃
4)← ma1(x1)mb1(x1),

p(x1, z̃
4) = fa(x1, z̃1)︸ ︷︷ ︸

ma1

∑
x2

fb(x1, x2)fc(x2, z̃2)︸ ︷︷ ︸
mc2

∑
x3,x4

fd(x2, x3, x4)fe(x3, z̃3)︸ ︷︷ ︸
m3d

ff (x4, z̃4)︸ ︷︷ ︸
m4d︸ ︷︷ ︸

md2︸ ︷︷ ︸
m2b︸ ︷︷ ︸

mb1

(2)

S. Cheng (OU-Tulsa) December 5, 2017 263 / 275

Lecture 15 Belief Propagation Algorithm

Belief propagation algorithm

Initialization: For any variable node i , if the prior probability of xi is known
and equal to p(xi), for a ∈ N(i),

mia(xi)← p(xi)

Message passing:

mia(xi)←
∏

b∈N(i)\a

mbi (xi),

mai (xi)←
∑
xa

fa(xa)
∏

j∈N(a)\i

mja(xj) (“sum-product”)

Belief update:

βi (xi)←
∏

a∈N(i)

mai (xi)

Stopping criteria: repeat message update and/or belief update until the
algorithm stops when maximum number of iterations is reached or some
other conditions are satisfied.

S. Cheng (OU-Tulsa) December 5, 2017 264 / 275

Lecture 15 Belief Propagation Algorithm

Belief propagation algorithm

Initialization: For any variable node i , if the prior probability of xi is known
and equal to p(xi), for a ∈ N(i),

mia(xi)← p(xi)

Message passing:

mia(xi)←
∏

b∈N(i)\a

mbi (xi),

mai (xi)←
∑
xa

fa(xa)
∏

j∈N(a)\i

mja(xj) (“sum-product”)

Belief update:

βi (xi)←
∏

a∈N(i)

mai (xi)

Stopping criteria: repeat message update and/or belief update until the
algorithm stops when maximum number of iterations is reached or some
other conditions are satisfied.

S. Cheng (OU-Tulsa) December 5, 2017 264 / 275

Lecture 15 Belief Propagation Algorithm

Belief propagation algorithm

Initialization: For any variable node i , if the prior probability of xi is known
and equal to p(xi), for a ∈ N(i),

mia(xi)← p(xi)

Message passing:

mia(xi)←
∏

b∈N(i)\a

mbi (xi),

mai (xi)←
∑
xa

fa(xa)
∏

j∈N(a)\i

mja(xj) (“sum-product”)

Belief update:

βi (xi)←
∏

a∈N(i)

mai (xi)

Stopping criteria: repeat message update and/or belief update until the
algorithm stops when maximum number of iterations is reached or some
other conditions are satisfied.

S. Cheng (OU-Tulsa) December 5, 2017 264 / 275

Lecture 15 Belief Propagation Algorithm

Belief propagation algorithm

Initialization: For any variable node i , if the prior probability of xi is known
and equal to p(xi), for a ∈ N(i),

mia(xi)← p(xi)

Message passing:

mia(xi)←
∏

b∈N(i)\a

mbi (xi),

mai (xi)←
∑
xa

fa(xa)
∏

j∈N(a)\i

mja(xj) (“sum-product”)

Belief update:

βi (xi)←
∏

a∈N(i)

mai (xi)

Stopping criteria: repeat message update and/or belief update until the
algorithm stops when maximum number of iterations is reached or some
other conditions are satisfied.

S. Cheng (OU-Tulsa) December 5, 2017 264 / 275

Lecture 15 Belief Propagation Algorithm

Remark

We have not assumed the precise phyical meanings of the factor
functions themselves. The only assumption we made is that the joint
probability can be decomposed into the factor functions and
apparently this decomposition is not unique

The belief propagation algorithm as shown above is exact only
because the corresponding graph is a tree and has no loop. If loop
exists, the algorithm is not exact and generally the final belief may
not even converge

While the result is no longer exact, applying BP algorithm for general
graphs (sometimes refer to as loopy BP) works well in many
applications such as LDPC decoding

S. Cheng (OU-Tulsa) December 5, 2017 265 / 275

Lecture 15 Belief Propagation Algorithm

Burglar and racoon revisit

Question: What is the probability of a burglar visit if police was called but
trash can stayed untouched?

B

D

P

R

T

B

D

P

RT

T

fT ,R

R

fB,D,R

D

fD,P

P

B

fP

fT

S. Cheng (OU-Tulsa) December 5, 2017 266 / 275

Lecture 15 Belief Propagation Algorithm

Burglar and racoon revisit

Question: What is the probability of a burglar visit if police was called but
trash can stayed untouched?

B

D

P

R

T

B

D

P

RT

T

fT ,R

R

fB,D,R

D

fD,P

P

B

fP

fT

Moralization...

S. Cheng (OU-Tulsa) December 5, 2017 266 / 275

Lecture 15 Belief Propagation Algorithm

Burglar and racoon revisit

Question: What is the probability of a burglar visit if police was called but
trash can stayed untouched?

B

D

P

R

T

B

D

P

RT

T

fT ,R

R

fB,D,R

D

fD,P

P

B

fP

fT

Convert to factor graph..

S. Cheng (OU-Tulsa) December 5, 2017 266 / 275

Lecture 15 Belief Propagation Algorithm

Using belief propagation...

{
fP(p) = 1

fP(¬p) = 0

{
fT (t) = 0

fT (¬t) = 1

fB,D,R(b, d , r) = p(b, d , r)

fT ,R(t, r) = p(t|r)
fD,P(d , p) = p(p|d)

T

fT ,R

R

fB,D,R

D

fD,P

P

B

fP

fT

S. Cheng (OU-Tulsa) December 5, 2017 267 / 275

Lecture 15 LDPC Codes

Some History of LDPC Codes

Before 1990’s, the strategy for channel code has always been looking for
codes that can be decoded optimally. This leads to a wide range of so-called
algebraic codes. It turns out the “optimally-decodable” codes are usually
poor codes

Until early 1990’s, researchers had basically agreed that the Shannon
capacity was restricted to theoretical interest and could hardly be reached in
practice

The introduction of turbo codes gave a huge shock to the research
community. The community were so dubious about the amazing
performance of turbo codes that they did not accept the finding initially
until independent researchers had verified the results

The low-density parity-check (LDPC) codes were later rediscovered and both
LDPC codes and turbo codes are based on the same philosophy differs from
codes in the past. Instead of designing and using codes that can be decoded
“optimally”, let us just pick some random codes and perform decoding
“sub-optimally”

S. Cheng (OU-Tulsa) December 5, 2017 268 / 275

Lecture 15 LDPC Codes

LDPC Codes

As its name suggests, LDPC codes refer to codes that with sparse
(low-density) parity check matrices. In other words, there are only few
ones in a parity check matrix and the rest are all zeros

We learn from the proof of Channel Coding Theorem that random
code is asymptotically optimum. This suggests that if we just
generate a code randomly with a very long code length. It is likely
that we will get a very good code.

The problem is: how do we perform decoding? Due to the lack of
structure of a random code, tricks that enable fast decoding for
structured algebraic codes that were widely used before 1990’s are
unrealizable here

Solution: Belief propagation!

S. Cheng (OU-Tulsa) December 5, 2017 269 / 275

Lecture 15 LDPC Codes

LDPC Codes

As its name suggests, LDPC codes refer to codes that with sparse
(low-density) parity check matrices. In other words, there are only few
ones in a parity check matrix and the rest are all zeros

We learn from the proof of Channel Coding Theorem that random
code is asymptotically optimum. This suggests that if we just
generate a code randomly with a very long code length. It is likely
that we will get a very good code.

The problem is: how do we perform decoding? Due to the lack of
structure of a random code, tricks that enable fast decoding for
structured algebraic codes that were widely used before 1990’s are
unrealizable here

Solution: Belief propagation!

S. Cheng (OU-Tulsa) December 5, 2017 269 / 275

Lecture 15 LDPC Codes

LDPC Codes

As its name suggests, LDPC codes refer to codes that with sparse
(low-density) parity check matrices. In other words, there are only few
ones in a parity check matrix and the rest are all zeros

We learn from the proof of Channel Coding Theorem that random
code is asymptotically optimum. This suggests that if we just
generate a code randomly with a very long code length. It is likely
that we will get a very good code.

The problem is: how do we perform decoding? Due to the lack of
structure of a random code, tricks that enable fast decoding for
structured algebraic codes that were widely used before 1990’s are
unrealizable here

Solution: Belief propagation!

S. Cheng (OU-Tulsa) December 5, 2017 269 / 275

Lecture 15 LDPC Codes

Tanner Graph

An LDPC code can be represented using a Tanner
graph as shown on the right

Each circle xi represents a code bit sent to the decoder

Each square represents a check bit with value equal to
the sum of code bit connecting to it

The vector x1, x2, · · · , xN is a codeword only if all
checks are zero

By default, the mapping between a codeword to the
actual message is non-trivial for an LDPC code

It would be great if the actual message is included in
the codeword. That is, some of the bits in the
codeword spell out the actual message ⇒ IRA codes

S. Cheng (OU-Tulsa) December 5, 2017 270 / 275

Lecture 15 LDPC Codes

Tanner Graph

An LDPC code can be represented using a Tanner
graph as shown on the right

Each circle xi represents a code bit sent to the decoder

Each square represents a check bit with value equal to
the sum of code bit connecting to it

The vector x1, x2, · · · , xN is a codeword only if all
checks are zero

By default, the mapping between a codeword to the
actual message is non-trivial for an LDPC code

It would be great if the actual message is included in
the codeword. That is, some of the bits in the
codeword spell out the actual message ⇒ IRA codes

S. Cheng (OU-Tulsa) December 5, 2017 270 / 275

Lecture 15 LDPC Codes

Tanner Graph

An LDPC code can be represented using a Tanner
graph as shown on the right

Each circle xi represents a code bit sent to the decoder

Each square represents a check bit with value equal to
the sum of code bit connecting to it

The vector x1, x2, · · · , xN is a codeword only if all
checks are zero

By default, the mapping between a codeword to the
actual message is non-trivial for an LDPC code

It would be great if the actual message is included in
the codeword. That is, some of the bits in the
codeword spell out the actual message ⇒ IRA codes

S. Cheng (OU-Tulsa) December 5, 2017 270 / 275

Lecture 15 LDPC Codes

Tanner Graph

An LDPC code can be represented using a Tanner
graph as shown on the right

Each circle xi represents a code bit sent to the decoder

Each square represents a check bit with value equal to
the sum of code bit connecting to it

The vector x1, x2, · · · , xN is a codeword only if all
checks are zero

By default, the mapping between a codeword to the
actual message is non-trivial for an LDPC code

It would be great if the actual message is included in
the codeword. That is, some of the bits in the
codeword spell out the actual message ⇒ IRA codes

S. Cheng (OU-Tulsa) December 5, 2017 270 / 275

Lecture 15 LDPC Codes

Tanner Graph

An LDPC code can be represented using a Tanner
graph as shown on the right

Each circle xi represents a code bit sent to the decoder

Each square represents a check bit with value equal to
the sum of code bit connecting to it

The vector x1, x2, · · · , xN is a codeword only if all
checks are zero

By default, the mapping between a codeword to the
actual message is non-trivial for an LDPC code

It would be great if the actual message is included in
the codeword. That is, some of the bits in the
codeword spell out the actual message ⇒ IRA codes

S. Cheng (OU-Tulsa) December 5, 2017 270 / 275

Lecture 15 LDPC Codes

Tanner Graph

An LDPC code can be represented using a Tanner
graph as shown on the right

Each circle xi represents a code bit sent to the decoder

Each square represents a check bit with value equal to
the sum of code bit connecting to it

The vector x1, x2, · · · , xN is a codeword only if all
checks are zero

By default, the mapping between a codeword to the
actual message is non-trivial for an LDPC code

It would be great if the actual message is included in
the codeword. That is, some of the bits in the
codeword spell out the actual message ⇒ IRA codes

S. Cheng (OU-Tulsa) December 5, 2017 270 / 275

Lecture 15 LDPC Codes

IRA Codes

Irregular repeated accumulate (IRA) code a type of
systematic LDPC code, i.e., each codeword can be
partitioned into message bits and syndrome bits

As shown on the right, light blue circles correspond to
the input message bits and the dark blue circle
correspond to the syndrome bits

To ensure the top check bit is satisfied, the top
syndrome bit will be set to be the sum of message bits
connecting to the check

The computed syndrome bit will then pass to the next
check and again we can ensure the next check bit is
satisfied by setting that second syndrome bit as the
sum of message bits conecting to the check + last
syndrome bit. All (dark blue) syndrome bits can be
assigned in similar token

...

S. Cheng (OU-Tulsa) December 5, 2017 271 / 275

Lecture 15 LDPC Codes

IRA Codes

Irregular repeated accumulate (IRA) code a type of
systematic LDPC code, i.e., each codeword can be
partitioned into message bits and syndrome bits

As shown on the right, light blue circles correspond to
the input message bits and the dark blue circle
correspond to the syndrome bits

To ensure the top check bit is satisfied, the top
syndrome bit will be set to be the sum of message bits
connecting to the check

The computed syndrome bit will then pass to the next
check and again we can ensure the next check bit is
satisfied by setting that second syndrome bit as the
sum of message bits conecting to the check + last
syndrome bit. All (dark blue) syndrome bits can be
assigned in similar token

...

S. Cheng (OU-Tulsa) December 5, 2017 271 / 275

Lecture 15 LDPC Codes

IRA Codes

Irregular repeated accumulate (IRA) code a type of
systematic LDPC code, i.e., each codeword can be
partitioned into message bits and syndrome bits

As shown on the right, light blue circles correspond to
the input message bits and the dark blue circle
correspond to the syndrome bits

To ensure the top check bit is satisfied, the top
syndrome bit will be set to be the sum of message bits
connecting to the check

The computed syndrome bit will then pass to the next
check and again we can ensure the next check bit is
satisfied by setting that second syndrome bit as the
sum of message bits conecting to the check + last
syndrome bit. All (dark blue) syndrome bits can be
assigned in similar token

...

S. Cheng (OU-Tulsa) December 5, 2017 271 / 275

Lecture 15 LDPC Codes

IRA Codes

Irregular repeated accumulate (IRA) code a type of
systematic LDPC code, i.e., each codeword can be
partitioned into message bits and syndrome bits

As shown on the right, light blue circles correspond to
the input message bits and the dark blue circle
correspond to the syndrome bits

To ensure the top check bit is satisfied, the top
syndrome bit will be set to be the sum of message bits
connecting to the check

The computed syndrome bit will then pass to the next
check and again we can ensure the next check bit is
satisfied by setting that second syndrome bit as the
sum of message bits conecting to the check + last
syndrome bit. All (dark blue) syndrome bits can be
assigned in similar token

...

S. Cheng (OU-Tulsa) December 5, 2017 271 / 275

Lecture 15 LDPC Codes

LDPC Decoding

x1, · · · , xN (light blue): transmitted bits

y1, · · · , yN (dark grey): received bits

p(xN , yN) =
∏

i p(yi |xi)︸ ︷︷ ︸
fi (xi ,yi)

p(xN)︸ ︷︷ ︸∏
A fA(xA)

fi (xi , yi) = p(yi |xi) and

fA(x) =

{
0, x contains even number of 1,
1, x contains odd number of 1.

...

f 1 x1, y1 x1y1 f A x Am1Am11

mA2

S. Cheng (OU-Tulsa) December 5, 2017 272 / 275

Lecture 15 LDPC Codes

LDPC Decoding

x1, · · · , xN (light blue): transmitted bits

y1, · · · , yN (dark grey): received bits

p(xN , yN) =
∏

i p(yi |xi)︸ ︷︷ ︸
fi (xi ,yi)

p(xN)︸ ︷︷ ︸∏
A fA(xA)

fi (xi , yi) = p(yi |xi) and

fA(x) =

{
0, x contains even number of 1,
1, x contains odd number of 1.

...

f 1 x1, y1 x1y1 f A x Am1Am11

mA2

S. Cheng (OU-Tulsa) December 5, 2017 272 / 275

Lecture 15 LDPC Codes

LDPC Decoding

x1, · · · , xN (light blue): transmitted bits

y1, · · · , yN (dark grey): received bits

p(xN , yN) =
∏

i p(yi |xi)︸ ︷︷ ︸
fi (xi ,yi)

p(xN)︸ ︷︷ ︸∏
A fA(xA)

fi (xi , yi) = p(yi |xi) and

fA(x) =

{
0, x contains even number of 1,
1, x contains odd number of 1.

...

f 1 x1, y1 x1y1 f A x Am1Am11

mA2

S. Cheng (OU-Tulsa) December 5, 2017 272 / 275

Lecture 15 LDPC Codes

Variable Node Update

Since the unknown variables are binary, it is more convenient to
represent the messages using likelihood or log-likelihood ratios. Define

lai ,
mai (0)

mai (1)
, Lai , log lai (3)

and

lia ,
mia(0)

mia(1)
, Lia , log lia (4)

for any variable node i and factor node a.

Then,

Lia ←
∑

b∈N(i)\i

Lai . (5)

S. Cheng (OU-Tulsa) December 5, 2017 273 / 275

Lecture 15 LDPC Codes

Check Node Update

Assuming that we have three variable nodes 1,2, and 3 connecting to
the check node a, then the check to variable node updates become

ma1(1)← m2a(1)m3a(0) +m2a(0)m3a(1) (6)

ma1(0)← m2a(0)m3a(0) +m2a(1)m3a(1) (7)

Substitute in the likelihood ratios and log-likelihood ratios, we have

la1 ,
ma1(0)

ma1(1)
← 1 + l2al3a

l2a + l3a
(8)

and

eLa1 = la1 ←
1 + eL2aeL3a

eL2a + eL3a
. (9)

S. Cheng (OU-Tulsa) December 5, 2017 274 / 275

Lecture 15 LDPC Codes

Note that

tanh

(
La1
2

)
=

e
La1
2 − e−

La1
2

e
La1
2 + e−

La1
2

=
eLa1 − 1

eLa1 + 1
(10)

← 1 + eL2aeL3a − eL2a − eL3a

1 + eL2aeL3a + eL2a + eL3a
(11)

=
(eL2a − 1)(eL3a − 1)

(eL2a + 1)(eL3a + 1)
(12)

= tanh

(
L2a
2

)
tanh

(
L3a
2

)
. (13)

When we have more than 3 variable nodes connecting to the check
node a, it is easy to show using induction that

tanh

(
Lai
2

)
←

∏
j∈N(a)\i

tanh

(
Lja
2

)
. (14)

S. Cheng (OU-Tulsa) December 5, 2017 275 / 275

	Lecture 2
	Warmup
	More detour

	Lecture 3
	Multivariate normal distributions
	Principal component analysis
	Processing multivariate normal distribution

	Lecture 4
	Principal component analysis
	Processing multivariate normal distribution

	Lecture 5
	Mixture of ``Gaussians''
	More distributions

	Lecture 6
	Review
	More distributions

	Lecture 7
	Constraint optimization
	Overview of source coding
	Kraft's Inequality
	Converse proof of Source Coding Theorem

	Lecture 8
	SFE code
	Forward proof of Source Coding Theorem
	Entropy: another peek
	Differential entropy
	Properties of entropy and differential entropy

	Lecture 9
	Joint entropy and conditional entropy
	KL-divergence
	Mutual information
	More inequalities
	Shannon's perfect secrecy

	Lecture 10
	Overview
	Identification/Decision tree
	Law of Large Number
	Asymptotic equipartition

	Lecture 11
	Review
	Overview
	Packing lemma and covering lemma
	Channel coding setup
	Channel capacity
	Forward proof of Channel Coding Theorem

	Lecture 12
	Review
	Overview
	Converse proof of Channel Coding Theorem
	Capacity of non-white Gaussian channels
	Rate-distortion problem

	Lecture 13
	Review
	Overview
	Rate-distortion problem
	Rate-distortion Theorem

	Lecture 14
	Review
	Overview
	Method of types
	Univesal source coding
	Large deviation theory

	Lecture 15
	Overview
	Bayesian Net
	Belief Propagation Algorithm
	LDPC Codes

