[Lecture 10](#page-0-0)

Review

重

ヨメ イヨメ

4 0 8

n → 1

• Conditioning reduces entropy

э

 299

∢ ロ ▶ - ∢ 何 ▶ - ∢

- • Conditioning reduces entropy
- **•** Chain rules:
	- \bullet $H(X, Y, Z)$

э

4 0 8

4 何 ト 4

- • Conditioning reduces entropy
- **Q** Chain rules:
	- $H(X, Y, Z) = H(Z) + H(Y|X) + H(Z|X, Y)$
	- \bullet $H(X, Y, U|V)$

重

4 0 8

 \rightarrow \oplus \rightarrow \rightarrow \oplus \rightarrow

- • Conditioning reduces entropy
- Chain rules:
	- $H(X, Y, Z) = H(Z) + H(Y|X) + H(Z|X, Y)$
	- $H(X, Y, U|V) = H(X|V) + H(Y|X, V) + H(U|Y, X, V)$
	- $I(X, Y, Z; U)$

重

イロト イ伊 ト イヨ ト イヨ

- • Conditioning reduces entropy
- Chain rules:
	- $H(X, Y, Z) = H(Z) + H(Y|X) + H(Z|X, Y)$
	- $H(X, Y, U|V) = H(X|V) + H(Y|X, V) + H(U|Y, X, V)$
	- $I(X, Y, Z; U) = I(X; U) + I(Y; U|X) + I(Z; U|X, Y)$
	- \bullet $I(X, Y, Z; U|V)$

メロメ メ母メ メミメ メミメ

- • Conditioning reduces entropy
- Chain rules:
	- $H(X, Y, Z) = H(Z) + H(Y|X) + H(Z|X, Y)$
	- $H(X, Y, U|V) = H(X|V) + H(Y|X, V) + H(U|Y, X, V)$
	- $I(X, Y, Z; U) = I(X; U) + I(Y; U|X) + I(Z; U|X, Y)$
	- $I(X, Y, Z; U|V) = I(X; U|V) + I(Y; U|V, X) + I(Z; U|V, X, Y)$
- \bullet Data processing inequality: if $X \perp Y/Z$,

 Ω

 \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow

 \leftarrow \Box

- • Conditioning reduces entropy
- Chain rules:
	- $H(X, Y, Z) = H(Z) + H(Y|X) + H(Z|X, Y)$
	- $H(X, Y, U|V) = H(X|V) + H(Y|X, V) + H(U|Y, X, V)$
	- $I(X, Y, Z; U) = I(X; U) + I(Y; U|X) + I(Z; U|X, Y)$
	- $I(X, Y, Z; U|V) = I(X; U|V) + I(Y; U|V, X) + I(Z; U|V, X, Y)$
- \bullet Data processing inequality: if $X \perp Y | Z$, $I(X; Y) \geq I(X; Z)$
- Independence and mutual information:

$$
\bullet\ X \bot Y \Leftrightarrow
$$

 200

 \mathcal{A} and \mathcal{A} . In the set of \mathbb{R}^n is

4 **D** >

- • Conditioning reduces entropy
- Chain rules:
	- $H(X, Y, Z) = H(Z) + H(Y|X) + H(Z|X, Y)$
	- $H(X, Y, U|V) = H(X|V) + H(Y|X, V) + H(U|Y, X, V)$
	- $I(X, Y, Z; U) = I(X; U) + I(Y; U|X) + I(Z; U|X, Y)$
	- $I(X, Y, Z; U|V) = I(X; U|V) + I(Y; U|V, X) + I(Z; U|V, X, Y)$
- \bullet Data processing inequality: if $X \perp Y | Z$, $I(X; Y) \geq I(X; Z)$
- Independence and mutual information:

$$
\bullet\ X \bot Y \Leftrightarrow I(X;Y) = 0
$$

 \bullet X⊥Y $|Z \Leftrightarrow$

 200

4 FR 3 4

- • Conditioning reduces entropy
- Chain rules:
	- $H(X, Y, Z) = H(Z) + H(Y|X) + H(Z|X, Y)$
	- $H(X, Y, U|V) = H(X|V) + H(Y|X, V) + H(U|Y, X, V)$
	- $I(X, Y, Z; U) = I(X; U) + I(Y; U|X) + I(Z; U|X, Y)$
	- $I(X, Y, Z; U|V) = I(X; U|V) + I(Y; U|V, X) + I(Z; U|V, X, Y)$

 $4.69 + 4$

4 D F

- \bullet Data processing inequality: if $X \perp Y | Z$, $I(X; Y) > I(X; Z)$
- Independence and mutual information:
	- \bullet $X \perp Y \Leftrightarrow I(X; Y) = 0$
	- \bullet $X \perp Y | Z \Leftrightarrow I(X; Y | Z) = 0$
- KL-divergence: $KL(p||q) \triangleq$

- • Conditioning reduces entropy
- Chain rules:
	- $H(X, Y, Z) = H(Z) + H(Y|X) + H(Z|X, Y)$
	- $H(X, Y, U|V) = H(X|V) + H(Y|X, V) + H(U|Y, X, V)$
	- $I(X, Y, Z; U) = I(X; U) + I(Y; U|X) + I(Z; U|X, Y)$
	- $I(X, Y, Z; U|V) = I(X; U|V) + I(Y; U|V, X) + I(Z; U|V, X, Y)$
- \bullet Data processing inequality: if $X \perp Y | Z$, $I(X; Y) > I(X; Z)$
- Independence and mutual information:
	- \bullet $X \perp Y \Leftrightarrow I(X; Y) = 0$
	- \bullet $X \perp Y | Z \Leftrightarrow I(X; Y | Z) = 0$
- KL-divergence: $\mathcal{K}L(\rho||q)\triangleq \sum_{x}\rho(x)\log\frac{\rho(x)}{q(x)}$

 200

4 FR 3 4

This time

- Identification/Decision trees
- **e** Random forests
- Law of Large Number
- Asymptotic equipartition (AEP) and typical sequences

4 0 3

Vampire database

(https://www.youtube.com/watch?v=SXBG3RGr_Rc)

重

K ロ ▶ K 伊 ▶ K

÷. \sim 一心語

Identifying vampire

Goal: Design a set of tests to identify vampires

Potential difficulties

- Non-numerical data
- Some information may not matter
- Some may matter only sometimes
- Tests may be costly \Rightarrow conduct as few as possible

 \leftarrow

Test trees

э

重

K ロ ▶ K 伊 ▶ K

∍

Test trees

Test trees

Sizes of homogeneous sets

э

重

K ロ ▶ K 伊 ▶ K

Sizes of homogeneous sets

Picking second test

Let say we pick "shadow" as the first test after all. Then, for the remaining unclassified individuals,

4日)

Combined tests

Þ

 299

K ロ ▶ K 何 ▶ K

重す \rightarrow \equiv

Combined tests

Problem

When our database size increases, none of the test likely to completely separate vampire from non-vampire. All tests will score 0 then.

Combined tests

Problem

When our database size increases, none of the test likely to completely separate vampire from non-vampire. All tests will score 0 then. Entropy comes to the rescue!

Conditional entropy as a measure of test efficiency

Consider the database is randomly sampled from a distribution. A set is

- Very homogeneous \approx high certainty
- Not so homogenous \approx high randomness

These can be measured with its entropy

Conditional entropy as a measure of test efficiency

Consider the database is randomly sampled from a distribution. A set is

- Very homogeneous \approx high certainty
- Not so homogenous \approx high randomness

These can be measured with its entropy

$$
\frac{4}{8}H(V|S=?)
$$

Conditional entropy as a measure of test efficiency

Consider the database is randomly sampled from a distribution. A set is

- Very homogeneous \approx high certainty
- Not so homogenous \approx high randomness

These can be measured with its entropy

$$
\frac{4}{8}H(V|S=?)+\frac{3}{8}H(V|S=Y)
$$

 $0.7 -$

Conditional entropy as a measure of test efficiency

Consider the database is randomly sampled from a distribution. A set is

- Very homogeneous \approx high certainty
- Not so homogenous \approx high randomness

These can be measured with its entropy

$$
\frac{4}{8}H(V|S=?) + \frac{3}{8}H(V|S=Y) + \frac{1}{8}H(V|S=N) = 0.5
$$

 $0.7 -$

Conditional entropy as a measure of test efficiency

Consider the database is randomly sampled from a distribution. A set is

- Very homogeneous \approx high certainty
- Not so homogenous \approx high randomness

These can be measured with its entropy

$$
\frac{4}{8}H(V|S=?) + \frac{3}{8}H(V|S=Y) + \frac{1}{8}H(V|S=N) = 0.5
$$

= Pr(S=?)H(V|S=?) + Pr(S=Y)H(V|S=Y) + Pr(S=N)H(V|S=N)

 $0.7 -$

Conditional entropy as a measure of test efficiency

Consider the database is randomly sampled from a distribution. A set is

- Very homogeneous \approx high certainty
- Not so homogenous \approx high randomness

These can be measured with its entropy

$$
\frac{4}{8}H(V|S=?) + \frac{3}{8}H(V|S=Y) + \frac{1}{8}H(V|S=N) = 0.5
$$
\n
$$
=Pr(S=?)H(V|S=?) + Pr(S=Y)H(V|S=Y) + Pr(S=N)H(V|S=N)
$$
\n
$$
=H(V|S)
$$

 $H(V|S) = 0.5$

Þ

つへへ

 \rightarrow \Rightarrow \rightarrow

K ロ ▶ K 何 ▶

$$
H(V|S) = 0.5
$$

H(V|G) = $\frac{3}{8} \cdot 0 + \frac{5}{8} \cdot 0.97 = 0.61$

э

K ロ ▶ K 何 ▶

Þ

$$
H(V|S) = 0.5
$$

\n
$$
H(V|G) = \frac{3}{8} \cdot 0 + \frac{5}{8} \cdot 0.97 = 0.61
$$

\n
$$
H(V|C) = \frac{3}{8} \cdot 0.92 + \frac{2}{8} \cdot 0 + \frac{3}{8} \cdot 0.92 = 0.69
$$

э

← ロ ▶ → 何 ▶

Þ

$$
H(V|S) = 0.5
$$

\n
$$
H(V|G) = \frac{3}{8} \cdot 0 + \frac{5}{8} \cdot 0.97 = 0.61
$$

\n
$$
H(V|C) = \frac{3}{8} \cdot 0.92 + \frac{2}{8} \cdot 0 + \frac{3}{8} \cdot 0.92 = 0.69
$$

\n
$$
H(V|A) = \frac{3}{8} \cdot 0.92 + \frac{3}{8} \cdot 0.92 + \frac{2}{8} \cdot 1 = 0.94
$$

4 0 8 → 伊 ▶ Þ

$$
H(V|S) = 0.5
$$

\n
$$
H(V|G) = \frac{3}{8} \cdot 0 + \frac{5}{8} \cdot 0.97 = 0.61
$$

\n
$$
H(V|C) = \frac{3}{8} \cdot 0.92 + \frac{2}{8} \cdot 0 + \frac{3}{8} \cdot 0.92 = 0.69
$$

\n
$$
H(V|A) = \frac{3}{8} \cdot 0.92 + \frac{3}{8} \cdot 0.92 + \frac{2}{8} \cdot 1 = 0.94
$$

Order of tests to pick: $S \succ G \succ C \succ A$

 \bullet The test does not need to return discrete result. Let X be the test outcome. It can be continuous as well

4 0 8

- \bullet The test does not need to return discrete result. Let X be the test outcome. It can be continuous as well
	- We should just pick *i* such that $H(V|X_i)$ to be as small as possible

- \bullet The test does not need to return discrete result. Let X be the test outcome. It can be continuous as well
	- We should just pick i such that $H(V|X_i)$ to be as small as possible
	- It is equivalent of saying $I(V; X_i) = H(V) H(V|X_i)$ is as large as possible. This is intuitive because we want to pick the information that is most relevant (sharing most information with) to V

 Ω

- \bullet The test does not need to return discrete result. Let X be the test outcome. It can be continuous as well
	- We should just pick i such that $H(V|X_i)$ to be as small as possible
	- It is equivalent of saying $I(V; X_i) = H(V) H(V|X_i)$ is as large as possible. This is intuitive because we want to pick the information that is most relevant (sharing most information with) to V

• Build a number of trees instead of a single tree \Rightarrow random forests

 Ω

Random forests

- Pick random subset of training samples
- **•** Train on each random subset but limited to a subset of features/attributes
- Given a test sample
	- Classify sample using each of the trees
	- Make final decision based on majority vote

Law of Large Number (LLN)

If we randomly sample x_1, x_2, \cdots, x_N from an i.i.d. (identical and independently distributed) source, the average of $f(x_i)$ will approach the expected value as $N \rightarrow \infty$. That is,

$$
\frac{1}{N}\sum_{i=1}^N f(x_i) = E[f(X)] \quad \text{as } N \to \infty
$$

Law of Large Number (LLN)

If we randomly sample x_1, x_2, \dots, x_N from an i.i.d. (identical and independently distributed) source, the average of $f(x_i)$ will approach the expected value as $N \rightarrow \infty$. That is,

$$
\frac{1}{N}\sum_{i=1}^N f(x_i) = E[f(X)] \quad \text{as } N \to \infty
$$

Example

This is precisely how poll supposes to work! Pollster randomly draws sample from a portion of the population but will expect the prediction matches the outcome

The LLN is a rather strong result. We will only show a weak version here

$$
Pr\left(\left|\frac{1}{N}\sum_{i=1}^{N}f(X_i)-E[f(X)]\right|\geq a\right)\leq \frac{Var(f(X))}{Na^2}\propto \frac{1}{N}
$$

4日)

The LLN is a rather strong result. We will only show a weak version here

$$
Pr\left(\left|\frac{1}{N}\sum_{i=1}^{N}f(X_i)-E[f(X)]\right|\geq a\right)\leq \frac{Var(f(X))}{Na^2}\propto \frac{1}{N}
$$

Markov's Inequality

$$
Pr(X \ge b) \le \frac{E[X]}{b} \quad \text{if } X \ge 0
$$

4日)

 QQ

S. Cheng (OU-Tulsa) **Cheng (OU-Tulsa)** October 17, 2017 15 / 28

The LLN is a rather strong result. We will only show a weak version here

$$
Pr\left(\left|\frac{1}{N}\sum_{i=1}^{N}f(X_i)-E[f(X)]\right|\geq a\right)\leq \frac{Var(f(X))}{Na^2}\propto \frac{1}{N}
$$

Markov's Inequality

$$
Pr(X \ge b) \le \frac{E[X]}{b} \quad \text{if } X \ge 0
$$

4日)

Proof: $X = I(X \ge b) \cdot X + I(X < b) \cdot X \ge I(X \ge b) \cdot b$

A + + = + +

The LLN is a rather strong result. We will only show a weak version here

$$
Pr\left(\left|\frac{1}{N}\sum_{i=1}^{N}f(X_i)-E[f(X)]\right|\geq a\right)\leq \frac{Var(f(X))}{Na^2}\propto \frac{1}{N}
$$

Markov's Inequality

$$
Pr(X \ge b) \le \frac{E[X]}{b} \quad \text{if } X \ge 0
$$

Proof: $X = I(X \ge b) \cdot X + I(X < b) \cdot X \ge I(X \ge b) \cdot b \Rightarrow E[X] \ge Pr(X \ge b) \cdot b$

 Ω

Markov's Inequality

$$
Pr(X \ge b) \le \frac{E[X]}{b} \quad \text{if } X \ge 0
$$

Chebyshev's Inequality

$$
Pr(|Y - E[Y]| \ge a) \le \frac{Var(Y)}{a^2}
$$

4 0 8

K 伊 ▶ | K 手

Þ

Þ

 QQ

S. Cheng (OU-Tulsa) **October 17, 2017** 16 / 28

Markov's Inequality

$$
Pr(X \ge b) \le \frac{E[X]}{b} \quad \text{if } X \ge 0
$$

Chebyshev's Inequality

$$
Pr(|Y - E[Y]| \ge a) \le \frac{Var(Y)}{a^2}
$$

Proof: Take $X = |Y - E[Y]|^2$ and $b = a^2$, by Markov's Inequality

イロト イ伊 ト イヨ ト イヨ

 \equiv

Markov's Inequality

$$
Pr(X \ge b) \le \frac{E[X]}{b} \quad \text{if } X \ge 0
$$

Chebyshev's Inequality

$$
Pr(|Y - E[Y]| \ge a) \le \frac{Var(Y)}{a^2}
$$

Proof: Take
$$
X = |Y - E[Y]|^2
$$
 and $b = a^2$, by Markov's Inequality
\n
$$
Pr(|Y - E[Y]| \ge a) = Pr(|Y - E[Y]|^2 \ge a^2)
$$
\n
$$
\le \frac{E[|Y - E[Y]|^2]}{a^2}
$$

4 0 8

K 伊 ▶ | K 手

Þ

Markov's Inequality

$$
Pr(X \ge b) \le \frac{E[X]}{b} \quad \text{if } X \ge 0
$$

Chebyshev's Inequality

$$
Pr(|Y - E[Y]| \ge a) \le \frac{Var(Y)}{a^2}
$$

Proof: Take
$$
X = |Y - E[Y]|^2
$$
 and $b = a^2$, by Markov's Inequality
\n
$$
Pr(|Y - E[Y]| \ge a) = Pr(|Y - E[Y]|^2 \ge a^2)
$$
\n
$$
\le \frac{E[|Y - E[Y]|^2]}{a^2} = \frac{Var(Y)}{a^2}
$$

э K 向 ▶ : K

4 0 8

Þ

Chebyshev's Inequality

$$
Pr(|Y - E[Y]| \ge a) \le \frac{Var(Y)}{a^2}
$$

Proof of weak LLN

Let
$$
Z = \frac{1}{N} \sum_{i=1}^{N} f(X_i)
$$
, apparently $E[Z] = E[f(X)]$ and

$$
Var(Z) = \frac{1}{N^2} \sum_{i=1}^{N} Var(f(X)) = \frac{Var(f(X))}{N}
$$

By Chebyshev's Inequality,

Chebyshev's Inequality

$$
Pr(|Y - E[Y]| \ge a) \le \frac{Var(Y)}{a^2}
$$

Proof of weak LLN

Let
$$
Z = \frac{1}{N} \sum_{i=1}^{N} f(X_i)
$$
, apparently $E[Z] = E[f(X)]$ and

$$
Var(Z) = \frac{1}{N^2} \sum_{i=1}^{N} Var(f(X)) = \frac{Var(f(X))}{N}
$$

By Chebyshev's Inequality,

$$
Pr\left(\left|\frac{1}{N}\sum_{i=1}^{N}f(X_i)-E[f(X)]\right|\geq a\right)
$$

=
$$
Pr(|Z-E[Z]| \geq a) \leq \frac{Var(Z)}{a^2}
$$

Chebyshev's Inequality

$$
Pr(|Y - E[Y]| \ge a) \le \frac{Var(Y)}{a^2}
$$

Proof of weak LLN

Let
$$
Z = \frac{1}{N} \sum_{i=1}^{N} f(X_i)
$$
, apparently $E[Z] = E[f(X)]$ and

$$
Var(Z) = \frac{1}{N^2} \sum_{i=1}^{N} Var(f(X)) = \frac{Var(f(X))}{N}
$$

By Chebyshev's Inequality,

$$
Pr\left(\left|\frac{1}{N}\sum_{i=1}^{N}f(X_i)-E[f(X)]\right|\ge a\right)
$$

=
$$
Pr(|Z-E[Z]| \ge a) \le \frac{Var(Z)}{a^2} = \frac{Var(f(X))}{Na^2}
$$

Consider a sequence of symbols x_1, x_2, \dots, x_N sampled from a DMS and consider the sample average of the log-probabilities of each sampled symbols

$$
\frac{1}{N}\sum_{i=1}^N\log\frac{1}{\rho(x_i)}\to E\left[\log\frac{1}{\rho(X)}\right]
$$

by LLN.

4日)

Consider a sequence of symbols x_1, x_2, \dots, x_N sampled from a DMS and consider the sample average of the log-probabilities of each sampled symbols

$$
\frac{1}{N}\sum_{i=1}^N\log\frac{1}{p(x_i)}\to E\left[\log\frac{1}{p(X)}\right]=H(X)
$$

by LLN.

4日)

Consider a sequence of symbols x_1, x_2, \dots, x_N sampled from a DMS and consider the sample average of the log-probabilities of each sampled symbols

$$
\frac{1}{N}\sum_{i=1}^N\log\frac{1}{p(x_i)}\to E\left[\log\frac{1}{p(X)}\right]=H(X)
$$

by LLN. But for the LHS,

$$
\frac{1}{N}\sum_{i=1}^N \log \frac{1}{p(x_i)} = \frac{1}{N} \log \frac{1}{\prod_{i=1}^N p(x_i)} = -\frac{1}{N} \log p(x^N),
$$

where $x^{\mathcal{N}} = x_1, x_2, \cdots, x_{\mathcal{N}}$

4日)

 Ω

Consider a sequence of symbols x_1, x_2, \dots, x_N sampled from a DMS and consider the sample average of the log-probabilities of each sampled symbols

$$
\frac{1}{N}\sum_{i=1}^N\log\frac{1}{p(x_i)}\to E\left[\log\frac{1}{p(X)}\right]=H(X)
$$

by LLN. But for the LHS,

$$
\frac{1}{N}\sum_{i=1}^N \log \frac{1}{p(x_i)} = \frac{1}{N} \log \frac{1}{\prod_{i=1}^N p(x_i)} = -\frac{1}{N} \log p(x^N),
$$

where $x^{\mathcal{N}} = x_1, x_2, \cdots, x_{\mathcal{N}}$

Rearranging the terms, this implies that for any sequence sampled from the source, the probability of the sampled sequence $\,ho(x^N)\rightarrow 2^{-\,NH(X)}\,!$

 Ω

Set of typical sequences

Let's name the sequence x^{N} with $\rho(x^{\mathsf{N}})\sim 2^{-\mathsf{NH}(X)}$ typical and define the set of typical sequences

$$
\mathcal{A}_{\epsilon}^N(X) = \{x^N|2^{-N(H(X)+\epsilon)} \le p(x^N) \le 2^{-N(H(X)-\epsilon)}\}
$$

 \leftarrow

Set of typical sequences

Let's name the sequence x^{N} with $\rho(x^{\mathsf{N}})\sim 2^{-\mathsf{NH}(X)}$ typical and define the set of typical sequences

$$
\mathcal{A}_{\epsilon}^N(X) = \{x^N|2^{-N(H(X)+\epsilon)} \le p(x^N) \le 2^{-N(H(X)-\epsilon)}\}
$$

• For any $\epsilon > 0$, we can find a sufficiently large N such that any sampled sequence from the source is typical

Set of typical sequences

Let's name the sequence x^{N} with $\rho(x^{\mathsf{N}})\sim 2^{-\mathsf{NH}(X)}$ typical and define the set of typical sequences

$$
\mathcal{A}_{\epsilon}^N(X) = \{x^N|2^{-N(H(X)+\epsilon)} \le p(x^N) \le 2^{-N(H(X)-\epsilon)}\}
$$

- For any $\epsilon > 0$, we can find a sufficiently large N such that any sampled sequence from the source is typical
- Since all typical sequences have probability \sim 2 $^{-NH(X)}$ and they fill up the entire probability space (everything is typical), there should be approximately $\frac{1}{2^{-NH(X)}} = 2^{NH(X)}$ typical sequences

 Ω

$$
(1-\delta)2^{\mathsf{N}(\mathsf{H}(\mathsf{X})-\epsilon)}\leq |\mathcal{A}^{\mathsf{N}}_\epsilon(\mathsf{X})|\leq 2^{\mathsf{N}(\mathsf{H}(\mathsf{X})+\epsilon)}
$$

$$
1 \geq Pr(X^N \in \mathcal{A}_{\epsilon}^N(X))
$$

4日)

$$
(1-\delta)2^{\mathsf{N}(\mathsf{H}(\mathsf{X})-\epsilon)}\leq |\mathcal{A}^{\mathsf{N}}_\epsilon(\mathsf{X})|\leq 2^{\mathsf{N}(\mathsf{H}(\mathsf{X})+\epsilon)}
$$

$$
1 \ge Pr(X^N \in \mathcal{A}_{\epsilon}^N(X)) = \sum_{x^N \in \mathcal{A}_{\epsilon}^N(X)} p(x^N)
$$

4日)

$$
(1-\delta)2^{\mathsf{N}(\mathsf{H}(\mathsf{X})-\epsilon)}\leq |\mathcal{A}^{\mathsf{N}}_\epsilon(\mathsf{X})|\leq 2^{\mathsf{N}(\mathsf{H}(\mathsf{X})+\epsilon)}
$$

$$
1 \geq Pr(X^N \in \mathcal{A}_{\epsilon}^N(X)) = \sum_{x^N \in \mathcal{A}_{\epsilon}^N(X)} p(x^N) \geq \sum_{x^N \in \mathcal{A}_{\epsilon}^N(X)} 2^{-N(H(X)+\epsilon)}
$$

4日)

$$
(1-\delta)2^{\mathsf{N}(H(X)-\epsilon)}\leq |\mathcal{A}^{\mathsf{N}}_{\epsilon}(X)|\leq 2^{\mathsf{N}(H(X)+\epsilon)}
$$

$$
1 \ge Pr(X^N \in \mathcal{A}_{\epsilon}^N(X)) = \sum_{x^N \in \mathcal{A}_{\epsilon}^N(X)} p(x^N) \ge \sum_{x^N \in \mathcal{A}_{\epsilon}^N(X)} 2^{-N(H(X)+\epsilon)}
$$

= $|\mathcal{A}_{\epsilon}^N(X)|2^{-N(H(X)+\epsilon)}$

4日)

$$
(1-\delta)2^{\mathsf{N}(H(X)-\epsilon)}\leq |\mathcal{A}^{\mathsf{N}}_{\epsilon}(X)|\leq 2^{\mathsf{N}(H(X)+\epsilon)}
$$

$$
1 \ge Pr(X^N \in \mathcal{A}_{\epsilon}^N(X)) = \sum_{x^N \in \mathcal{A}_{\epsilon}^N(X)} p(x^N) \ge \sum_{x^N \in \mathcal{A}_{\epsilon}^N(X)} 2^{-N(H(X)+\epsilon)}
$$

= $|\mathcal{A}_{\epsilon}^N(X)|2^{-N(H(X)+\epsilon)}$

For a sufficiently large N, we have

$$
1-\delta\leq Pr(X^N\in\mathcal{A}^N_\epsilon(X))
$$

 \leftarrow

$$
(1-\delta)2^{\mathsf{N}(H(X)-\epsilon)}\leq |\mathcal{A}^{\mathsf{N}}_{\epsilon}(X)|\leq 2^{\mathsf{N}(H(X)+\epsilon)}
$$

$$
1 \ge Pr(X^N \in \mathcal{A}_{\epsilon}^N(X)) = \sum_{x^N \in \mathcal{A}_{\epsilon}^N(X)} p(x^N) \ge \sum_{x^N \in \mathcal{A}_{\epsilon}^N(X)} 2^{-N(H(X)+\epsilon)}
$$

= $|\mathcal{A}_{\epsilon}^N(X)|2^{-N(H(X)+\epsilon)}$

For a sufficiently large N, we have

$$
1 - \delta \le Pr(X^N \in \mathcal{A}_{\epsilon}^N(X)) = \sum_{x^N \in \mathcal{A}_{\epsilon}^N(X)} p(x^N) \le \sum_{x^N \in \mathcal{A}_{\epsilon}^N(X)} 2^{-N(H(X) - \epsilon)}
$$

= $|\mathcal{A}_{\epsilon}^N(X)|2^{-N(H(X) - \epsilon)}$

 \leftarrow

Asymptotic equipatition refers to the fact that the probability space is equally partitioned by the typical sequences

Consider coin flipping again, let say $Pr(Head) = 0.3$ and $N = 1000$

4 0 8

Consider coin flipping again, let say $Pr(Head) = 0.3$ and $N = 1000$

The typical sequences will be those with approximately 300 heads and 700 tails

4日)

Consider coin flipping again, let say $Pr(Head) = 0.3$ and $N = 1000$

- The typical sequences will be those with approximately 300 heads and 700 tails
- AEP (LLN) tells us that it is almost impossible to get, say, a sequence of 100 heads and 900 tails

Consider coin flipping again, let say $Pr(Head) = 0.3$ and $N = 1000$

- The typical sequences will be those with approximately 300 heads and 700 tails
- AEP (LLN) tells us that it is almost impossible to get, say, a sequence of 100 heads and 900 tails
- AEP also tells us that the number of typical sequences are approximately $2^{NH(X)}$

Consider coin flipping again, let say $Pr(Head) = 0.3$ and $N = 1000$

- The typical sequences will be those with approximately 300 heads and 700 tails
- AEP (LLN) tells us that it is almost impossible to get, say, a sequence of 100 heads and 900 tails
- AEP also tells us that the number of typical sequences are approximately $2^{NH(X)}$
- Therefore, we can simply assign index to all the typical sequences and ignore the rest. Then we only need $log 2^{NH(X)} = NH(X)$ to store a sequence of N symbols. And on average, we need $H(X)$ bits per symbol as before!