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Lecture 10

Review

Conditioning reduces entropy

Chain rules:

H(X ,Y ,Z ) = H(Z ) + H(Y |X ) + H(Z |X ,Y )
H(X ,Y ,U|V )= H(X |V ) + H(Y |X ,V ) + H(U|Y ,X ,V )
I (X ,Y ,Z ;U)= I (X ;U) + I (Y ;U|X ) + I (Z ;U|X ,Y )
I (X ,Y ,Z ;U|V )= I (X ;U|V ) + I (Y ;U|V ,X ) + I (Z ;U|V ,X ,Y )

Data processing inequality: if X⊥Y |Z , I (X ;Y ) ≥ I (X ;Z )

Independence and mutual information:

X⊥Y ⇔ I (X ;Y ) = 0
X⊥Y |Z ⇔ I (X ;Y |Z ) = 0

KL-divergence: KL(p||q) ,
∑

x p(x) log
p(x)
q(x)
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Lecture 10 Overview

This time

Identification/Decision trees

Random forests

Law of Large Number

Asymptotic equipartition (AEP) and typical sequences
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Lecture 10 Identification/Decision tree

Vampire database

(https://www.youtube.com/watch?v=SXBG3RGr Rc)
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Lecture 10 Identification/Decision tree

Identifying vampire

Goal: Design a set of tests to identify vampires

Potential difficulties

Non-numerical data

Some information may not matter

Some may matter only sometimes

Tests may be costly ⇒ conduct as few as possible
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Lecture 10 Identification/Decision tree

Test trees
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How to pick a good test?

Pick test that identifies most vampires (and
non-vampires)!
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Lecture 10 Identification/Decision tree

Sizes of homogeneous sets

Shadow

++

--

?

---

Y

+

N

Garlic

---

Y

+++

--

N

Complexion

++

-

A

--

P
--

+

R

Accent

--

+

N

-

++

H
-+

O

+ : Vampire − : Not vampire

Shadow: 4 Garlic: 3 Complexion: 2 Accent: 0

S. Cheng (OU-Tulsa) October 17, 2017 7 / 28



Lecture 10 Identification/Decision tree

Sizes of homogeneous sets

Shadow

++

--

?

---

Y

+

N

Garlic

---

Y

+++

--

N

Complexion

++

-

A

--

P
--

+

R

Accent

--

+

N

-

++

H
-+

O

+ : Vampire − : Not vampire

Shadow: 4 Garlic: 3 Complexion: 2 Accent: 0

S. Cheng (OU-Tulsa) October 17, 2017 7 / 28



Lecture 10 Identification/Decision tree

Picking second test

Let say we pick “shadow” as the first test after all. Then, for the
remaining unclassified individuals,
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Lecture 10 Identification/Decision tree

Combined tests

Shadow
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Problem

When our database size increases, none of the test likely to completely
separate vampire from non-vampire. All tests will score 0 then.

Entropy comes to the rescue!
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Lecture 10 Identification/Decision tree

Conditional entropy as a measure of test efficiency

Consider the database is randomly sampled from a distribution. A set is

Very homogeneous ≈ high certainty

Not so homogenous ≈ high randomness

These can be measured with its entropy
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Lecture 10 Identification/Decision tree

Remaining uncertainty
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Order of tests to pick: S � G � C � A
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Lecture 10 Identification/Decision tree

Potential extensions

The test does not need to return discrete result. Let X be the test
outcome. It can be continuous as well

We should just pick i such that H(V |Xi ) to be as small as possible
It is equivalent of saying I (V ;Xi ) = H(V )− H(V |Xi ) is as large as
possible. This is intuitive because we want to pick the information that
is most relevant (sharing most information with) to V

Build a number of trees instead of a single tree ⇒ random forests
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Lecture 10 Identification/Decision tree

Random forests

Pick random subset of training samples

Train on each random subset but limited to a subset of
features/attributes

Given a test sample

Classify sample using each of the trees
Make final decision based on majority vote

S. Cheng (OU-Tulsa) October 17, 2017 13 / 28



Lecture 10 Law of Large Number

Law of Large Number (LLN)

If we randomly sample x1, x2, · · · , xN from an i.i.d. (identical and
independently distributed) source, the average of f (xi ) will approach the
expected value as N → ∞. That is,

1

N

N∑
i=1

f (xi ) = E [f (X )] as N → ∞

Example

This is precisely how poll supposes to work! Pollster randomly draws
sample from a portion of the population but will expect the prediction
matches the outcome
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Lecture 10 Law of Large Number

Proof of LLN

The LLN is a rather strong result. We will only show a weak version here

Pr

(∣∣∣∣∣ 1N
N∑
i=1

f (Xi )− E [f (X )]

∣∣∣∣∣ ≥ a

)
≤ Var(f (X ))

Na2
∝ 1

N

Markov’s Inequality

Pr(X ≥ b) ≤ E [X ]

b
if X ≥ 0

Proof:
X = I (X ≥ b) · X + I (X < b) · X ≥ I (X ≥ b) · b ⇒ E [X ] ≥ Pr(X ≥ b) · b

S. Cheng (OU-Tulsa) October 17, 2017 15 / 28



Lecture 10 Law of Large Number

Proof of LLN

The LLN is a rather strong result. We will only show a weak version here

Pr

(∣∣∣∣∣ 1N
N∑
i=1

f (Xi )− E [f (X )]

∣∣∣∣∣ ≥ a

)
≤ Var(f (X ))

Na2
∝ 1

N

Markov’s Inequality

Pr(X ≥ b) ≤ E [X ]

b
if X ≥ 0

Proof:
X = I (X ≥ b) · X + I (X < b) · X ≥ I (X ≥ b) · b ⇒ E [X ] ≥ Pr(X ≥ b) · b

S. Cheng (OU-Tulsa) October 17, 2017 15 / 28



Lecture 10 Law of Large Number

Proof of LLN

The LLN is a rather strong result. We will only show a weak version here

Pr

(∣∣∣∣∣ 1N
N∑
i=1

f (Xi )− E [f (X )]

∣∣∣∣∣ ≥ a

)
≤ Var(f (X ))

Na2
∝ 1

N

Markov’s Inequality

Pr(X ≥ b) ≤ E [X ]

b
if X ≥ 0

Proof:
X = I (X ≥ b) · X + I (X < b) · X ≥ I (X ≥ b) · b

⇒ E [X ] ≥ Pr(X ≥ b) · b

S. Cheng (OU-Tulsa) October 17, 2017 15 / 28



Lecture 10 Law of Large Number

Proof of LLN

The LLN is a rather strong result. We will only show a weak version here

Pr

(∣∣∣∣∣ 1N
N∑
i=1

f (Xi )− E [f (X )]

∣∣∣∣∣ ≥ a

)
≤ Var(f (X ))

Na2
∝ 1

N

Markov’s Inequality

Pr(X ≥ b) ≤ E [X ]

b
if X ≥ 0

Proof:
X = I (X ≥ b) · X + I (X < b) · X ≥ I (X ≥ b) · b ⇒ E [X ] ≥ Pr(X ≥ b) · b

S. Cheng (OU-Tulsa) October 17, 2017 15 / 28



Lecture 10 Law of Large Number

Proof of LLN

Markov’s Inequality

Pr(X ≥ b) ≤ E [X ]

b
if X ≥ 0

Chebyshev’s Inequality

Pr(|Y − E [Y ]| ≥ a) ≤ Var(Y )

a2

Proof: Take X = |Y − E [Y ]|2 and b = a2, by Markov’s Inequality
Pr(|Y − E [Y ]| ≥ a) = Pr(|Y − E [Y ]|2 ≥ a2)

≤E [|Y − E [Y ]|2]
a2

=
Var(Y )

a2
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Lecture 10 Law of Large Number

Proof of LLN

Chebyshev’s Inequality

Pr(|Y − E [Y ]| ≥ a) ≤ Var(Y )

a2

Proof of weak LLN

Let Z = 1
N

∑N
i=1 f (Xi ), apparently E [Z ] = E [f (X )] and

Var(Z ) =
1

N2

N∑
i=1

Var(f (X )) =
Var(f (X ))

N

By Chebyshev’s Inequality,

Pr

(∣∣∣∣∣ 1N
N∑
i=1

f (Xi )− E [f (X )]

∣∣∣∣∣ ≥ a

)

=Pr(|Z − E [Z ]| ≥ a) ≤ Var(Z )

a2
=

Var(f (X ))

Na2
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Lecture 10 Asymptotic equipartition

Main idea

Consider a sequence of symbols x1, x2, · · · , xN sampled from a DMS and
consider the sample average of the log-probabilities of each sampled
symbols

1

N

N∑
i=1

log
1

p(xi )
→ E

[
log

1

p(X )

]

= H(X )

by LLN.

But for the LHS,

1

N

N∑
i=1

log
1

p(xi )
=

1

N
log

1∏N
i=1 p(xi )

= − 1

N
log p(xN),

where xN = x1, x2, · · · , xN

Rearranging the terms, this implies that for any sequence sampled from
the source, the probability of the sampled sequence p(xN) → 2−NH(X )!

S. Cheng (OU-Tulsa) October 17, 2017 18 / 28



Lecture 10 Asymptotic equipartition

Main idea

Consider a sequence of symbols x1, x2, · · · , xN sampled from a DMS and
consider the sample average of the log-probabilities of each sampled
symbols

1

N

N∑
i=1

log
1

p(xi )
→ E

[
log

1

p(X )

]
= H(X )

by LLN.

But for the LHS,

1

N

N∑
i=1

log
1

p(xi )
=

1

N
log

1∏N
i=1 p(xi )

= − 1

N
log p(xN),

where xN = x1, x2, · · · , xN

Rearranging the terms, this implies that for any sequence sampled from
the source, the probability of the sampled sequence p(xN) → 2−NH(X )!

S. Cheng (OU-Tulsa) October 17, 2017 18 / 28



Lecture 10 Asymptotic equipartition

Main idea

Consider a sequence of symbols x1, x2, · · · , xN sampled from a DMS and
consider the sample average of the log-probabilities of each sampled
symbols

1

N

N∑
i=1

log
1

p(xi )
→ E

[
log

1

p(X )

]
= H(X )

by LLN. But for the LHS,

1

N

N∑
i=1

log
1

p(xi )
=

1

N
log

1∏N
i=1 p(xi )

= − 1

N
log p(xN),

where xN = x1, x2, · · · , xN

Rearranging the terms, this implies that for any sequence sampled from
the source, the probability of the sampled sequence p(xN) → 2−NH(X )!

S. Cheng (OU-Tulsa) October 17, 2017 18 / 28



Lecture 10 Asymptotic equipartition

Main idea

Consider a sequence of symbols x1, x2, · · · , xN sampled from a DMS and
consider the sample average of the log-probabilities of each sampled
symbols

1

N

N∑
i=1

log
1

p(xi )
→ E

[
log

1

p(X )

]
= H(X )

by LLN. But for the LHS,

1

N

N∑
i=1

log
1

p(xi )
=

1

N
log

1∏N
i=1 p(xi )

= − 1

N
log p(xN),

where xN = x1, x2, · · · , xN

Rearranging the terms, this implies that for any sequence sampled from
the source, the probability of the sampled sequence p(xN) → 2−NH(X )!

S. Cheng (OU-Tulsa) October 17, 2017 18 / 28



Lecture 10 Asymptotic equipartition

Set of typical sequences

Let’s name the sequence xN with p(xN) ∼ 2−NH(X ) typical and define the
set of typical sequences

AN
ε (X ) = {xN |2−N(H(X )+ε) ≤ p(xN) ≤ 2−N(H(X )−ε)}

For any ε > 0, we can find a sufficiently large N such that any
sampled sequence from the source is typical

Since all typical sequences have probability ∼ 2−NH(X ) and they fill
up the entire probability space (everything is typical), there should be
approximately 1

2−NH(X ) = 2NH(X ) typical sequences

S. Cheng (OU-Tulsa) October 17, 2017 19 / 28



Lecture 10 Asymptotic equipartition

Set of typical sequences

Let’s name the sequence xN with p(xN) ∼ 2−NH(X ) typical and define the
set of typical sequences

AN
ε (X ) = {xN |2−N(H(X )+ε) ≤ p(xN) ≤ 2−N(H(X )−ε)}

For any ε > 0, we can find a sufficiently large N such that any
sampled sequence from the source is typical

Since all typical sequences have probability ∼ 2−NH(X ) and they fill
up the entire probability space (everything is typical), there should be
approximately 1

2−NH(X ) = 2NH(X ) typical sequences

S. Cheng (OU-Tulsa) October 17, 2017 19 / 28



Lecture 10 Asymptotic equipartition

Set of typical sequences

Let’s name the sequence xN with p(xN) ∼ 2−NH(X ) typical and define the
set of typical sequences

AN
ε (X ) = {xN |2−N(H(X )+ε) ≤ p(xN) ≤ 2−N(H(X )−ε)}

For any ε > 0, we can find a sufficiently large N such that any
sampled sequence from the source is typical

Since all typical sequences have probability ∼ 2−NH(X ) and they fill
up the entire probability space (everything is typical), there should be
approximately 1

2−NH(X ) = 2NH(X ) typical sequences

S. Cheng (OU-Tulsa) October 17, 2017 19 / 28



Lecture 10 Asymptotic equipartition

Precise bounds on the size of typical set

(1− δ)2N(H(X )−ε) ≤ |AN
ε (X )| ≤ 2N(H(X )+ε)

1 ≥ Pr(XN ∈ AN
ε (X ))

=
∑

xN∈AN
ε (X )

p(xN) ≥
∑

xN∈AN
ε (X )

2−N(H(X )+ε)

= |AN
ε (X )|2−N(H(X )+ε)

For a sufficiently large N, we have

1− δ ≤ Pr(XN ∈ AN
ε (X )) =

∑
xN∈AN

ε (X )

p(xN) ≤
∑

xN∈AN
ε (X )

2−N(H(X )−ε)

= |AN
ε (X )|2−N(H(X )−ε)
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Lecture 10 Asymptotic equipartition

AEP

Set of typical
Sequences

Sequences 
are equally 
probable

Sequence 
that won't 
happen

Asymptotic equipatition refers to the fact that the probability space is
equally partitioned by the typical sequences
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Lecture 10 Asymptotic equipartition

AEP and compression limit

Consider coin flipping again, let say Pr(Head) = 0.3 and N = 1000

The typical sequences will be those with approximately 300 heads and
700 tails

AEP (LLN) tells us that it is almost impossible to get, say, a sequence
of 100 heads and 900 tails

AEP also tells us that the number of typical sequences are
approximately 2NH(X )

Therefore, we can simply assign index to all the typical sequences and
ignore the rest. Then we only need log 2NH(X ) = NH(X ) to store a
sequence of N symbols. And on average, we need H(X ) bits per
symbol as before!
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