Lecture 10
Review

H(X,Y)=H(X|Y)+I(X;Y)+ H(Y|X)

O

H(X|Y) I(X;Y) (Y|X)
H(X) = HX|Y) + I(X;Y) XY)+HY|X) H(Y)
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Lecture 10 Overview

This time

Identification/Decision trees
Random forests
Law of Large Number

Asymptotic equipartition (AEP) and typical sequences
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Lecture 10 Identification/Decision tree

Vampire database

Romanian Data Base

Vampire? Shadow? Garlic? Complexion? Accent?
No ? Yes Pale None
No Yes Yes Ruddy None
Yes ? No Ruddy Nore
Yes No No Average Heaw
Yes ? No Averace Odd

No Yes No Pae Heaw
No Yes No Average Heaw
No ? Yes Ruddy Odd

(https://www.youtube.com /watch?v=SXBG3RGr_Rc)
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Lecture 10 Identification/Decision tree

Identifying vampire

Goal: Design a set of tests to identify vampires

Potential difficulties
@ Non-numerical data

@ Some information may not matter
@ Some may matter only sometimes
°

Tests may be costly = conduct as few as possible
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+ : Vampire — : Not vampire J
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Lecture 10 Identification/Decision tree

Test trees

+ : Vampire — : Not vampire J

How to pick a good test? Pick test that identifies most vampires (and
non-vampires)!
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Lecture 10 Identification/Decision tree

Sizes of homogeneous sets

+ : Vampire — : Not vampire J
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Lecture 10 Identification/Decision tree

Sizes of homogeneous sets

+ : Vampire — : Not vampire

Shadow: 4 Garlic: 3 Complexion: 2

Accent: 0

J
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October 17, 2017
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Lecture 10 Identification/Decision tree

Picking second test

Let say we pick “shadow” as the first test after all. Then, for the
remaining unclassified individuals,

= @ 0 @@ & &

Garlic: 4 Complexion: 2 Accent: 0 )
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Lecture 10 Identification/Decision tree

Combined tests
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Lecture 10 Identification/Decision tree

Combined tests

When our database size increases, none of the test likely to completely
separate vampire from non-vampire. All tests will score 0 then.
Entropy comes to the rescue!
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Lecture 10 Identification/Decision tree

Conditional entropy as a measure of test efficiency

Consider the database is randomly sampled from a distribution. A set is
@ Very homogeneous = high certainty
@ Not so homogenous = high randomness

These can be measured with its entropy or

H(VIS=?)=1 H(VIS=Y)=0 H(V|S=N)=0 .
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Lecture 10 Identification/Decision tree

Remaining uncertainty
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Lecture 10 Identification/Decision tree

Remaining uncertainty

H(V|S) =0.5

3 5
--04-:097=0.61
8 +8

3

H(V|G)

H(V|C) == -0.92 + %-0+ 2-0.92 = 0.69

8
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Lecture 10 Identification/Decision tree

Remaining uncertainty

2

H(V|C) =5 092+ 20+ g £0.92 = 0.69
2

H(V|A) == -0.92 + g 092+ 2-1=094
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Lecture 10 Identification/Decision tree

Remaining uncertainty

=0.
3 5
H(V|G) =50+ 5 -0.97 =061
2
H(V|C) :g 1092+ 20+ g -0.92 = 0.69
2
H(V|A) :% £0.92 + g 092+ 2-1=094

v

Order of tests to pick: S >= G > C = A
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Lecture 10 Identification/Decision tree

Potential extensions

@ The test does not need to return discrete result. Let X be the test
outcome. It can be continuous as well
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Potential extensions

@ The test does not need to return discrete result. Let X be the test
outcome. It can be continuous as well
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Lecture 10 Identification/Decision tree

Potential extensions

@ The test does not need to return discrete result. Let X be the test
outcome. It can be continuous as well

e We should just pick 7 such that H(V|X;) to be as small as possible

o It is equivalent of saying /(V; X;) = H(V) — H(V|X;) is as large as
possible. This is intuitive because we want to pick the information that
is most relevant (sharing most information with) to V

@ Build a number of trees instead of a single tree = random forests
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Lecture 10 Identification/Decision tree

Random forests

@ Pick random subset of training samples

@ Train on each random subset but limited to a subset of
features/attributes

@ Given a test sample

o Classify sample using each of the trees
e Make final decision based on majority vote
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Lecture 10 Law of Large Number

Law of Large Number (LLN)

If we randomly sample xq, x2, - -+ , xy from an i.i.d. (identical and
independently distributed) source, the average of f(x;) will approach the
expected value as N — co. That is,
T
o > f(xi) = E[F(X)] as N — oo
i=1
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Lecture 10 Law of Large Number

Law of Large Number (LLN)

If we randomly sample xq, x2, - -+ , xy from an i.i.d. (identical and
independently distributed) source, the average of f(x;) will approach the
expected value as N — co. That is,

T

=) f(x) = E[f(X)] as N — oo

| 2
n.
A\

Example

This is precisely how poll supposes to work! Pollster randomly draws
sample from a portion of the population but will expect the prediction
matches the outcome
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Lecture 10 Law of Large Number

Proof of LLN

The LLN is a rather strong result. We will only show a weak version here
L
pPr ( sz(Xi) — E[f(X)]

i=1

>a><woc1
- - Na2 N
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Lecture 10 Law of Large Number

Proof of LLN

The LLN is a rather strong result. We will only show a weak version here

( XN: _ )| > a)gVar(f(X)) 1

Naz N
Markov's Inequality

| A\

Pr(X > b) < EX]

if X>0

Proof:
X=I(X=>2b)- X+ I(X<b)-X>I(X>b)-b
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Proof of LLN

The LLN is a rather strong result. We will only show a weak version here

( XN: _ )| > a)gVar(f(X)) 1

Naz N
Markov's Inequality

| A\

Pr(X > b) < EX]

if X>0

Proof:
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Lecture 10 Law of Large Number

Proof of LLN

Markov's Inequality

EIX]

Pr(X > b) <

Chebyshev's Inequality

Pr(|Y — E[Y]| > 2) < 2Y)

if X>0

32
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Markov's Inequality

EIX]

Pr(X > b) <

Chebyshev's Inequality

Pr(|Y — E[Y]| > 2) < 2Y)

if X>0

o
Proof: Take X = |Y — E[Y]|? and b = a?, by Markov's Inequality
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Lecture 10 Law of Large Number

Proof of LLN

Markov's Inequality

EIX]

Pr(X > b) <

Chebyshev's Inequality

Pr(|Y — E[Y]| > 2) < 2Y)

if X>0

o
Proof: Take X = |Y — E[Y]|? and b = a?, by Markov's Inequality
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Lecture 10 Law of Large Number

Proof of LLN

Chebyshev's Inequality

Pr(Y — E[Y]| > 2) < Y21Y)

Proof of weak LLN
Let Z =% Z,N:l f(Xi), apparently E[Z] = E[f(X)] and

Var(2) = Z Var(f \/ar(Iz;(X))

By Chebyshev’s Inequality,

v
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_Pr(Z - E[Z]| 2 a) < Vaf)

v




Lecture 10 Law of Large Number

Proof of LLN

Chebyshev's Inequality

Pr(Y — E[Y]| > 2) < Y21Y)

Proof of weak LLN
Let Z =% Z,N:l f(Xi), apparently E[Z] = E[f(X)] and
Var(f (X))
Var(2) = Z Var(f(X)) = ——5 =
By Chebyshev's Inequality

( Zf — E[f(X)]| > a)

—Pr(Z - E[2] 2 2) < YEIE) _ VartiiX))

V.
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Lecture 10 Asymptotic equipartition

Main idea

Consider a sequence of symbols x1, x2, -+ , xy sampled from a DMS and
consider the sample average of the log-probabilities of each sampled
symbols

by LLN.
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Lecture 10 Asymptotic equipartition

Main idea

Consider a sequence of symbols x1, x2, -+ , xy sampled from a DMS and
consider the sample average of the log-probabilities of each sampled
symbols

1Y 1 1
Nﬁlogp(m)% E [Iogp(x)] = H(X)

by LLN. But for the LHS,

N
1 1 1 1 1
=3 log —— = — log ———— = —= log p(x"),
N ,Z:; p(xi;) N TIE, p(x) N
where xV = x1, x2, -+, xn

S. Cheng (OU-Tulsa) October 17, 2017 18 / 28



Lecture 10 Asymptotic equipartition

Main idea

Consider a sequence of symbols x1, x2, -+ , xy sampled from a DMS and
consider the sample average of the log-probabilities of each sampled
symbols

1Y 1 1
Nﬁlogp(m)% E [Iogp(x)] = H(X)

by LLN. But for the LHS,

N
1 1 1 1 1
=3 log —— = — log ———— = —= log p(x"),
N ,Z:; p(x) N H;V:l p(x;) N
where xN = X1, X0, , XN

Rearranging the terms, this implies that for any sequence sampled from
the source, the probability of the sampled sequence p(xV) — 2=NH(X)] J
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Lecture 10 Asymptotic equipartition

Set of typical sequences

Let's name the sequence xV with p(x"V) ~ 2=NH(X) typical and define the
set of typical sequences

AN(X) = {xN[2~NHX)+e) < p(xN) < 2= N(HX)=e)y J

S. Cheng (OU-Tulsa) October 17, 2017 19 / 28
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@ For any € > 0, we can find a sufficiently large N such that any
sampled sequence from the source is typical
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Lecture 10 Asymptotic equipartition

Set of typical sequences

Let's name the sequence xV with p(x"V) ~ 2=NH(X) typical and define the
set of typical sequences

AN(X) = {xN[2~NHX)+e) < p(xN) < 2= N(HX)=e)y J

@ For any € > 0, we can find a sufficiently large N such that any
sampled sequence from the source is typical

o Since all typical sequences have probability ~ 2=NH(X) and they fill
up the entire probability space (everything is typical), there should be
approximately 5= NH = 2NH(X) typical sequences
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Lecture 10 Asymptotic equipartition

Precise bounds on the size of typical set

(1 _ 6)2N(H(X)—e) < |.A£V(X)| < 2N(H(X)+e) J

1> Pr(XN e AMN(X))
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Lecture 10 Asymptotic equipartition

Precise bounds on the size of typical set

(1 _ 6)2N(H(X)—e) < |.A£V(X)| < 2N(H(X)+e) J

1> Pr(xN c AQV(X)) — Z p(xN) > Z 5—N(H(X)+e)
xNeAY(X) xNe AN(X)
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Lecture 10 Asymptotic equipartition

Precise bounds on the size of typical set

(1 _ 6)2N(H(X)—e) < |.A£V(X)| < 2N(H(X)+e) J

1> Pr(xN c AQV(X)) — Z p(xN) > Z 5—N(H(X)+e)
xNeAN(X) xNeAN(X)
=AY OO MO+

For a sufficiently large N, we have

1-0<Pr(XN e AV(X))
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Lecture 10 Asymptotic equipartition

Precise bounds on the size of typical set

(1 _ 6)2N(H(X)—e) < |.A£V(X)| < 2N(H(X)+e)

1> Pr(xN c AQV(X)) — Z p(xN) > Z 5—N(H(X)+e)
xNeAN(X) xNeAN(X)
=AY OO MO+

For a sufficiently large N, we have

1-6<P(XNeAVx)= Y pxM)y< N 2 NHEO-9
xNe AN (X) xNe AN(X)
= AV MO0
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Lecture 10 Asymptotic equipartition

/' ‘
Sequence Set of typical
that won't / Sequences

happen

\ Sequences
are equally

probable

Asymptotic equipatition refers to the fact that the probability space is
equally partitioned by the typical sequences J
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Lecture 10 Asymptotic equipartition

AEP and compression limit

Consider coin flipping again, let say Pr(Head) = 0.3 and N = 1000
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Lecture 10 Asymptotic equipartition

AEP and compression limit

Consider coin flipping again, let say Pr(Head) = 0.3 and N = 1000
@ The typical sequences will be those with approximately 300 heads and
700 tails

@ AEP (LLN) tells us that it is almost impossible to get, say, a sequence
of 100 heads and 900 tails

@ AEP also tells us that the number of typical sequences are
approximately 2VH(X)

@ Therefore, we can simply assign index to all the typical sequences and
ignore the rest. Then we only need log 2VH(X) = NH(X) to store a
sequence of N symbols. And on average, we need H(X) bits per
symbol as before!
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