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Lecture 11 Packing lemma and covering lemma

Jointly typical sequences

For a pair of sequences xN and yN , we say that they are jointly typical if

2−N(H(X ,Y )+ε) ≤ p(xN , yN) ≤ 2−N(H(X ,Y )−ε)

and xN and yN themselves are typical

As in the single sequence case,

Any sequence pair drawing from a joint source p(x , y) is essentially
jointly typical

There are ∼ 2NH(X ,Y ) jointly typical sequences
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Lecture 11 Packing lemma and covering lemma

Joint typicality of independent seqences

Given sequences XN and Y N independently drawn from discrete
memoryless sources p(x) and p(y)

What is the probability that XN and Y N are jointly typical?

Pr((XN ,Y N) ∈ A(N)
ε )

=
∑

{(xN ,yN)|(xN ,yN)∈A(N)
ε }

p(xN , yN)

=
∑

{(xN ,yN)|(xN ,yN)∈A(N)
ε }

p(xN)p(yN)

≤
∑

{(xN ,yN)|(xN ,yN)∈A(N)
ε }

2−N(H(X )−ε)2−N(H(Y )−ε)

≤2−N(I (X ;Y )−3ε)

p(x)

p(y)
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Lecture 11 Packing lemma and covering lemma

Packing lemma

Instead of drawing one Y N sequences, let us draw M of them

The probability of any of the sequence to be jointly typical with XN is
bounded by

Pr(Any one of M Y N jointly typical with XN)

≤MPr((XN ,Y N) ∈ AN
ε (X ,Y ))

≤M2−N(I (X ;Y )−3ε)

≤2−N(I (X ;Y )−R−3ε) → 0 as N → ∞ and I (X ;Y )− 3ε > R,

where 2NR = M

Since ε can be made arbitrarily small as N increases, as long as
I (X ;Y ) > R, we can find a sufficiently large N so that we can “pack” the
M Y N with XN and none of the Y N will be jointly typical with XN
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Lecture 11 Packing lemma and covering lemma

Covering lemma

Again, draw M(= 2NR) Y N sequences

Under what condition that at least one Y N jointly typical with XN?

Pr((XN(m),Y N) /∈ A(N)
ε (X ,Y ) for all m)

=
M∏

m=1

Pr((XN(m),Y N) /∈ A(N)
ε (Y ,X ))

=
M∏

m=1

[
1− Pr((XN(m),Y N) ∈ A(N)

ε (Y ,X ))
]

≤(1− (1− δ)2−N(I (Y ;X )+3ε))M

≤ exp(−M(1− δ)2−N(I (Y ;X )+3ε))

≤ exp(−(1− δ)2−N(I (Y ;X )−R+3ε)) → 0 as N → ∞ and R > I (X ;Y )
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Lecture 11 Packing lemma and covering lemma

Summary of packing lemma and covering lemma

Packing Lemma

We can “pack” M = 2NR (with R < I (X ;Y )) xN together without being
jointly typical with yN

Covering Lemma

We can “cover” with M = 2NR (with R > I (X ;Y )) xN such that at least
one xN being jointly typical with yN

Remark

Packing lemma is useful in the proof of channel coding theorem

Covering lemma is useful in the proof of rate-distortion theorem

We will look into the above applications later in this course

S. Cheng (OU-Tulsa) October 24, 2017 8 / 20



Lecture 11 Channel coding setup

Channel coding setup

p(m) Encoder p(y |x) Decoder m̂
m xN yN

As the name suggests, the output of a discrete memoryless channel
(DMS) only depends on the current input (thus no memoryless). And
both its input X and output Y are characterized by the conditional
probability p(y |x)

Given an input sequence xN = x1, · · · , xN , the probability of getting
an output sequence yN = y1, · · · , yN is p(yN |xN) =

∏N
i=1 p(yi |xi )

Given a message m (say generated from a distribution p(m))

We will have an encoder decoder pair
The encoder will convert m to xN suitable for transmission
Decoder will try to extracted the message from the channel output yN
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Lecture 11 Channel coding setup

Channel coding rate

p(m) Encoder p(y |x) Decoder m̂
m xN yN

The channel coding rate is defined as number of bits of message can be
sent per channel use

Since there is H(M) bits of information for each message M sent

R = H(M)
N
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Lecture 11 Channel capacity

Channel capacity

By Shannon’s channel coding theorem, the capacity of the channel
(will be shown later) is given by

C = max
p(x)

I (X ;Y )

This means that as long as the rate R is less than the capacity C , we
can find encoder-decoder pair such that the decoding error
(Pr(M̂ 6= M)) can be made arbitrarily small

On the other hand, if R is larger than the capacity C , no matter how
we try, it is impossible to recontruct m error free

An intuitive interpretation is that the amount of information can be
passed through a channel is just mutual information between the
input and output. And since we can pick the statistics of our input,
we may make our choice wisely and maximize the mutual information.
And the maximum that we can attain is the capacity
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Lecture 11 Channel capacity

Continuous channel

p(m) Encoder? p(y |x) Decoder? m̂
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Lecture 11 Channel capacity

Continuous channel

p(m) Encoder D/A p(y |x) A/D Decoder m̂
m xN∆ xN yN yN∆

For continuous channel, we can create a “pseudo” discrete channel
using A/D and D/A converters

The maximum information that can pass through the channel will
then be

C∆ = max
p(x)

I (X∆;Y∆) = max
p(x)

H(Y∆)− H(Y∆|X∆)

≈ max
p(x)

h(Y )− log∆− h(Y |X∆) + log∆

≈ max
p(x)

h(Y )− h(Y |X ) = max
p(x)

I (X ;Y )

As ∆ → 0, C = maxp(x) I (X ;Y ). So expression is completely the
same as the discrete case
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Lecture 11 Channel capacity

Example: Binary symmetric channel

Both input and output are binary (say take value 0 or 1)

The channel is symmetric in the sense that

pY |X (1|0) = pY |X (0|1) = p

and
pY |X (0|0) = pY |X (1|1) = 1− p,

where p is known to be the cross-over probability

Capacity is given by

C = max
p(x)

I (X ;Y )

= max
p(x)

H(Y )− H(Y |X )

= max
p(x)

H(Y )− H(p) = 1− H(p)
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Lecture 11 Channel capacity

Example: Gaussian channel

The channel output Y = X + Z , where Z is a zero-mean Gaussian noise
(independent of the input X )

C = max
p(x)

I (X ;Y )

= max
p(x)

h(Y )− h(Y |X ) = max
p(x)

h(Y )− h(X + Z |X )

= max
p(x)

h(Y )− h(Z |X ) = max
p(x)

h(Y )− h(Z )

= max
p(x)

h(Y )− 1

2
log 2πeσ2

Z =
1

2
log 2πeσ2

Y − 1

2
log 2πeσ2

Z

=
1

2
log

σ2
X + σ2

Z

σ2
Z

=
1

2
log

(
1 +

σ2
X

σ2
Z

)
=

1

2
log(1 + SNR),

where SNR is the signal to noise ratio
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Lecture 11 Channel capacity

Example: Additive White Gaussian Noise (AWGN) channel

Consider an AWGN channel with bandwidth W and two-sided power
spectrum density of N0/2

From the result of Nyquist and Shannon, a signal of bandwidth W
will need to at least 2W samples per second to be fully reconstructed

Per each second, 2W samples needed to recover the signal

Per each second, 2W degrees of freedom exists ⇒ 2W parallel
Gaussian channel per second

Given N0, SNR =
σ2
X

WN0
= P

WN0

C = 2W
1

2
log(1 + SNR) = W log

(
1 +

P

WN0

)
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Lecture 11 Forward proof of Channel Coding Theorem

Codebook construction

Forward statement

If the code rate R < C = maxp(x) I (X ;Y ), according to the Channel
Coding Theorem, we should be able to find a code with encoding mapping
c : m ∈ {1, 2, · · · , 2NR} → {0, 1}N and the error probability of
transmitting any message m ∈ {1, 2, · · · , 2NR}, pe(m), is arbitrarily small

The main tool of the proof is random coding

Let p∗(x) = argmaxp(x) I (X ;Y ). Generate codewords from the DMS
p∗(x) by sampling 2n length-n sequences from the source:

c(1) =(x1(1), x2(1), · · · , xN(1))
c(2) =(x1(2), x2(2), · · · , xN(2))

· · ·
c(2NR) =(x1(2

NR), x2(2
NR), · · · , xN(2NR))
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Lecture 11 Forward proof of Channel Coding Theorem

Encoding and decoding

The encoding and decoding procedures will be as follows.

Encoding

For input message m, output c(m) = (x1(m), x2(m), · · · , xN(m))

Decoding

Upon receiving sequence y = (y1, y2, · · · , yN), pick the sequence c(m)
from {c(1), · · · , c(2NR)} such that (c(m), y) are jointly typical. That is
pXN ,Y N (c(m), y) ∼ 2−nH(X ,Y ). If no such c(m) exists or more than one
such sequence exist, announce error. Otherwise output the decoded
message as m
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Lecture 11 Forward proof of Channel Coding Theorem

Average performance

Without loss of generality, let us assume M = 1, decoding error occurs
when:

1 P1 = Pr(C(1),Y) /∈ AN
ε (X ,Y ))

2 P2 : ∃M ′ 6= 1 and (c(M ′),Y) ∈ AN
ε (X ,Y )

Thus P(error) = P(error |M = 1) ≤ P1 + P2

1 Since (C(1),Y) is coming out of the joint source X ,Y , P1 → 0 as
n → ∞

2 Note that C(M ′) and Y are independent and thus by Packing lemma,

P2 ≤ 2−N(I (X ;Y )−R+3ε) (1)

Since ε can be made arbitrarily small as N increase, as long as
I (X ;Y ) > R, we can make P2 arbitrarily small also given a
sufficiently large N
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Lecture 11 Forward proof of Channel Coding Theorem

A bit more caveat

We show that the average error over all random codes can be made
arbitrarily small

But we really want is to find a code c∗(·) and ensure that
Pr(error |c∗,m) → 0 no matter what message m is sent

Let say for a finite N, the average error is δ. Then, we should be able
to find a code c∗ such that it has average error at least equal to δ

Without loss of generality and for simplicity, assume that all messages
are equally likely Pr(error |c∗) = 1

2NR

∑
m Pr(error |c∗,m) ≤ δ

If we discard the worse half of the codewords, for any remaining
message m, we have Pr(error |c∗,m) ≤ 2Pr(error |c∗) ≤ 2δ → 0 as
N → ∞
Even though the rate reduces from N to R − 1

N (number of messages
from 2NR → 2NR−1). But we can still make the final rate arbitrarily
close to the capacity as N → ∞
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