
Lecture 12 Review

Previously...

Joint typical sequences

Covering and Packing Lemmas

Channel Coding Theorem

Capacity of Gaussian channel

Capacity of additive white Gaussian channel

Forward proof of Channel Coding Theorem
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Lecture 12 Overview

This time

Converse Proof of Channel Coding Theorem

Non-white Gaussian Channel

Rate-distortion problems

Rate-distortion Theorem
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Lecture 12 Converse proof of Channel Coding Theorem

Converse proof

We want to say that whenever the code rate is larger than the capacity,
the probability of error will be non-zero

Equivalently...

As long as the probability of error is 0, the rate of the code R has to be
larger than the capacity

To continue the converse proof, we will need to introduce a simple result
from Fano
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Lecture 12 Converse proof of Channel Coding Theorem

Fano’s inequality

Fano’s inequality

Denote Pr(error) = Pe = Pr(M 6= M̂), then H(M|Y N) ≤ 1 + PeH(M)
Intuitively, if Pe → 0, on average we will know M for certain given y and
thus 1

NH(M|Y N) → 0

Proof: Let E = I (M 6= M̂), then

H(M|Y N) = H(M,E |Y N)− H(E |Y N ,M)

= H(M,E |Y N) = H(E |Y N) + H(M|Y N ,E )

≤ H(E ) + H(M|Y N ,E )

≤ 1 + P(E = 0)H(M|Y N ,E = 0) + P(E = 1)H(M|Y N ,E = 1)

≤ 1 + 0 + PeH(M|Y N ,E = 1)
(d)

≤ 1 + PeH(M)
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Lecture 12 Converse proof of Channel Coding Theorem

Converse proof

R =
H(M)

N
=

1

N

[
I (M;Y N) + H(M|Y N)

]

≤ 1

N

[
I (XN ;Y N) + H(M|Y N)

]
=

1

N

[
H(Y N)− H(Y N |XN) + H(M|Y N)

]
=

1

N

[
H(Y N)−

∑
i

H(Yi |XN ,Y i−1) + H(M|Y N)

]

=
1

N

[
H(Y N)−

∑
i

H(Yi |Xi ) + H(M|Y N)

]

≤ 1

N

[∑
i

H(Yi )−
∑
i

H(Yi |Xi ) + H(M|Y N)

]

=
1

N

[∑
i

I (Xi ;Yi ) + H(M|Y N)

]
= I (X ;Y ) +

H(M|Y N)

N
→ I (X ;Y )

as N → ∞ by Fano’s inequality
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Lecture 12 Capacity of non-white Gaussian channels

Color channels

We look into capacity of white Gaussian channel last time

But sometimes noise power can be different for different band,
consequently, “color” channels

Intuitively, we should assign different amount of power to different
band. Hence, we have an allocation problem

Without loss of generality, let’s consider the discrete approximation,
parallel Gaussian channel

S. Cheng (OU-Tulsa) November 1, 2017 6 / 26



Lecture 12 Capacity of non-white Gaussian channels

Color channels

We look into capacity of white Gaussian channel last time

But sometimes noise power can be different for different band,
consequently, “color” channels

Intuitively, we should assign different amount of power to different
band. Hence, we have an allocation problem

Without loss of generality, let’s consider the discrete approximation,
parallel Gaussian channel

S. Cheng (OU-Tulsa) November 1, 2017 6 / 26



Lecture 12 Capacity of non-white Gaussian channels

Color channels

We look into capacity of white Gaussian channel last time

But sometimes noise power can be different for different band,
consequently, “color” channels

Intuitively, we should assign different amount of power to different
band. Hence, we have an allocation problem

Without loss of generality, let’s consider the discrete approximation,
parallel Gaussian channel

S. Cheng (OU-Tulsa) November 1, 2017 6 / 26



Lecture 12 Capacity of non-white Gaussian channels

Color channels

We look into capacity of white Gaussian channel last time

But sometimes noise power can be different for different band,
consequently, “color” channels

Intuitively, we should assign different amount of power to different
band. Hence, we have an allocation problem

Without loss of generality, let’s consider the discrete approximation,
parallel Gaussian channel

S. Cheng (OU-Tulsa) November 1, 2017 6 / 26



Lecture 12 Capacity of non-white Gaussian channels

Parallel Gaussian channels

Consider that we have K parallel channels (K bands) and the
corresponding noise powers are σ2

1, σ
2
2, · · · , σ2

K

And say, we can allocate a total of P power to all channels. The
powers assigned to the channels are P1,P2, · · · ,PK . So we need∑K

i=1 Pi ≤ P

Therefore, for the k-th channel, we can transmit 1
2 log

(
1 + Pk

σ2
k

)
bits

per channel use

So our goal is to assign P1,P2, · · · ,PK ≥ 0 (
∑K

k=1 Pk ≤ P) such
that the total capacity

K∑
k=1

1

2
log

(
1 +

Pk

σ2
k

)
is maximize
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Lecture 12 Capacity of non-white Gaussian channels

KKT conditions

Let’s list all the KKT conditions for the optimization problem

max
K∑

k=1

1

2
log

(
1 +

Pk

σ2
k

)
such that

P1, · · · ,PK ≥ 0,
K∑

k=1

Pk ≤ P

∂

∂Pi

[
K∑

k=1

1

2
log

(
1 +

Pk

σ2
k

)
+

K∑
k=1

λkPk − µ

(
K∑

k=1

Pk − P

)]
= 0

µ, λ1, · · · , λK ≥ 0,P1, · · · ,PK ≥ 0,
K∑

k=1

Pk ≤ P

µ

(
K∑

k=1

Pk − P

)
= 0, λkPk = 0,∀k
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Lecture 12 Capacity of non-white Gaussian channels

Capacity of parallel channels

∂

∂Pi

[
K∑

k=1

1
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Lecture 12 Capacity of non-white Gaussian channels

Water-filling interpretation

From Pi + σ2
i = const, power can be allocated intuitively as filling water

to a pond (hence “water-filling”)

Example

P1 = 0,P2 = 0.3,P3 = 0.6,P4 = 0,P5 = 0

P1 = 0,P2 = 0.8,P3 = 1.1,P4 = 0.3,P5 = 0

P1 = 0.5,P2 = 1.5,P3 = 1.8,P4 = 1,P5 = 0
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Lecture 12 Rate-distortion problem

Rate-distortion problem

p(x) Encoder Decoder X̂N
XN m

We know that H(X ) bits are needed on average to represent each
sample of a source X

If X is continuous, there is no way to recover X precisely

Let say we are satisfied as long as we can recover X up to certain
fidelity, how many bits are needed per sample?

There is an apparent rate (bits per sample) and distortion (fidelity)
trade-off. We expect that needed rate is smaller if we allow a lower
fidelity (higher distortion). What we are really interested in is a
rate-distortion function
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Lecture 12 Rate-distortion problem

Rate-distortion function

p(x) Encoder Decoder X̂N

m ∈ {1, 2, · · · ,M}

XN m

R =
logM

N
, D = E [d(X̂N ,XN)] =

1

N

N∑
i=1

d(X̂i ,Xi )

Maybe you can guess at this point. For given X and X̂ , the required
rate is simply I (X ; X̂ )
How is it related to the distortion though?
Note that we have a freedom to pick p(x̂ |x) such that E [d(X̂N ,XN)]
(less than or) equal to the desired D
Therefore given D, the rate-distortion function is simply

R(D) = minp(x̂ |x)I (X̂ ;X )

such that E [d(X̂N ,XN)] ≤ D
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Lecture 12 Rate-distortion problem

Binary symmetric source

Let’s try to compress outcome from a fair coin toss

We know that we need 1 bit to compress the outcome losslessly, what
if we have only 0.5 bit per sample?
In this case, we can’t losslessly recover the outcome. But how good
will we do?
We need to introduce a distortion measure first. Note that we have
two types of errors: taking head as tail and taking tail as head. A
natural measure will just weights both error equally

d(X = H, X̂ = T ) = d(X = T , X̂ = H) = 1

d(X = H, X̂ = H) = d(X = T , X̂ = T ) = 0

If rate is > 1 bit, we know that distortion is 0. How about rate is 0,
what distortion suppose to be?
If decoders know nothing, the best bet will be just always decode
head (or tail). Then D = E [d(X ,H)] = 0.5
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Lecture 12 Rate-distortion problem

Binary symmetric source

For 0 < D < 0.5, denote Z as the prediction error such that X = X̂ + Z .

Note that
Pr(Z = 1) = D

R = minp(x̂ |x)I (X̂ ;X ) = minp(x̂ |x)H(X )− H(X |X̂ )

= minp(x̂ |x)H(X )− H(X̂ + Z |X̂ )

= minp(x̂ |x)H(X )− H(Z |X̂ )

= minp(x̂ |x)H(X )− H(Z )

= 1− H(D)

S. Cheng (OU-Tulsa) November 1, 2017 14 / 26
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Lecture 12 Rate-distortion problem

Gaussian source

Consider X ∼ N (0, σ2
X ). To determine the rate-distortion function,

we need first to decide the distortion measure. An intuitive will be
just the square error. That is,

d(X̂ ,X ) = (X̂ − X )2

Given E [d(X̂ ,X )] = D, what is the minimum rate required?

Like before, let us denote Z = X − X̂ as the prediction error. Note
that Var(Z ) = D

R(D) = minp(x̂ |x)I (X̂ ;X ) = minp(x̂ |x)h(X )− h(X |X̂ )

= minp(x̂ |x)h(X )− h(Z + X̂ |X̂ )

= minp(x̂ |x)h(X )− h(Z |X̂ )

= minp(x̂ |x)h(X )− h(Z )

= log
σ2
X

D
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Lecture 12 Rate-distortion Theorem

Forward proof

Forward statement

Given distortion constraint D, we can find scheme such that the require
rate is no bigger than

R(D) = min
p(x̂ |x)

I (X ; X̂ ),

where the X̂ introduced by p(x̂ |x) should satisfy E [d(X , X̂ )] ≤ D

Code book construction

Let say p∗(x̂ |x) is the distribution that achieve the rate-distortion
optimiation problem. Randomly construct 2NR codewords as follows

Sample X from the source and pass X into p∗(x̂ |x) to obtain X̂

Repeat this N time to get a length-N codeword

Store the i-th codeword as C(i)

Note that the code rate is log 2NR

N = R as desired
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Lecture 12 Rate-distortion Theorem

Covering lemma and distortion typical sequences

We say joint typical sequences xN and x̂N are distortion typical
((xN , x̂N) ∈ AN

d ,ε) if |d(xN , x̂N)− E [d(X , X̂ )]| ≤ ε

By LLN, every pair of sequences sampled from the joint source will
virtually be distortion typical

Consequently, (1− δ)2N(H(X ,X̂ )−ε) ≤ |AN
d ,ε| ≤ 2N(H(X ,X̂ )+ε) as before

For two independently drawn sequences X̂N and XN , the probability
for them to be distortion typical will be just the same as before. In

particular, (1− δ)2−N(I (X ;X̂ )−3ε) ≤ Pr((XN , X̂N) ∈ AN
d ,ε(X , X̂ ))
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Lecture 12 Rate-distortion Theorem

Covering lemma for distortion typical sequences

Pr((XN(m), X̂N) /∈ A(N)
d ,ε (X , X̂ ) for all m)

=
M∏

m=1

Pr((XN(m), X̂N) /∈ A(N)
d ,ε (X̂ ,X ))

=
M∏

m=1

[
1− Pr((XN(m), X̂N) ∈ A(N)

d ,ε (X̂ ,X ))
]

≤(1− (1− δ)2−N(I (X̂ ;X )+3ε))M

≤ exp(−M(1− δ)2−N(I (X̂ ;X )+3ε))

≤ exp(−(1− δ)2−N(I (X̂ ;X )−R+3ε)) → 0 as N → ∞ and R > I (X ; X̂ )

S. Cheng (OU-Tulsa) November 1, 2017 18 / 26
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Lecture 12 Rate-distortion Theorem

Forward proof

Encoding

Given input XN , find out of the codewords the one that is jointly typical
with XN . And say, if the codeword is C(i), output index i to the decoder

Decoding

Upon receiving the index i , simply output C(i)

Performance analysis

First of all, the only point of failure lies on encoding, that is when the
encoder cannot find a codeword jointly typical with XN

By covering Lemma, encoding failure is neglible as long as
R > I (X ; X̂ )

If encoding is successful, C(i) and XN should be distortion typical.
Therefore, E [d(C(i);XN)] ∼ E [d(X̂ ,X )] ≤ D as desired
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Lecture 12 Rate-distortion Theorem

Converse proof

Converse statement

If rate is smaller than R(D), distortion will be larger than D

Alternative statement

If distortion is less than or equal to D, the rate must be larger than R(D)

In the proof, we need to use the convex property of R(D). That is,

R(aD1 + (1− a)D2) ≥ aR(D1) + (1− a)R(D2)

So we will digress a little bit to show this convex property first
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Lecture 12 Rate-distortion Theorem

Log-sum inequality

Log-sum inequality

For any a1, · · · , an ≥ 0 and b1, · · · , bn ≥ 0, we have∑
i

ai log2
ai
bi

≥
∑
i

ai log2

∑
i ai∑
i bi

.

Proof

We can define two distributions p(x) and q(x) with p(xi ) =
ai∑
i ai

and

q(xi ) =
bi∑
i bi

. Since p(x) and q(x) are both non-negative and sum up to

1, they are indeed valid probability mass functions.

Then, we have

0 ≤ KL(p(x)‖q(x)) =
∑
i

p(xi ) log2
p(xi )

q(xi )

=
∑
i

ai∑
i ai

(
log2

ai
bi

− log2

∑
i ai∑
i bi

)
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Lecture 12 Rate-distortion Theorem

Convexity of KL-Divergence

For any four distributions p1(·), p2(·), q1(·), and q2(·), we have

λ1KL(p1‖q1) + λ2KL(p2‖q2) ≥ KL(λ1p1 + λ2p2‖λ1q1 + λ2q2),

where λ1, λ2 ≥ 0 and λ1 + λ2 = 1

Proof

λ1KL(p1‖q1) + λ2KL(p2‖q2)

=λ1

∑
x∈X

p1(x) log
p1(x)

q1(x)
+ λ2

∑
x∈X

p2(x) log
p2(x)

q2(x)

=
∑
x∈X

λ1p1(x) log
λ1p1(x)

λ1q1(x)
+ λ2p2(x) log

λ2p2(x)

λ2q2(x)

≥
∑
x∈X

(λ1p1(x) + λ2p2(x)) log
λ1p1(x) + λ2p2(x)

λ1q1(x) + λ2q2(x)
(by log-sum inequality)

=KL(λ1p1 + λ2p2‖λ1q1 + λ2q2)
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Lecture 12 Rate-distortion Theorem

Convexity of I (X ;Y ) with respect to p(y |x)
For any random variables X and Y , I (X ;Y ) is a convex function of p(y |x)
for a fixed p(x)

Remark

I (X ;Y ) is concave with respect to p(x) for fixed p(y |x) though. A proof
is given in Cover and Thomas and will be omitted here

Proof

Let us write
I (X ;Y ) = KL(p(x , y)‖p(x)p(y))

= KL
(
p(x)p(y |x)

∥∥∥p(x)∑
x

p(x)p(y |x)
)
, f (p(y |x))

We want to show
λf (p1(y |x)) + (1− λ)f (p2(y |x)) ≥ f (λp1(y |x) + (1− λ)p2(y |x))
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Lecture 12 Rate-distortion Theorem

Proof

Continue from previous slide, we have

λf (p1(y |x)) + (1− λ)f (p2(y |x))

=λKL
(
p(x)p1(y |x)

∥∥∥p(x)∑
x

p(x)p1(y |x)
)

+ (1− λ)KL
(
p(x)p2(y |x)

∥∥∥p(x)∑
x

p(x)p2(y |x)
)

≥KL
(
λp(x)p1(y |x) + (1− λ)p(x)p2(y |x)

∥∥∥λp(x)∑
x

p(x)p1(y |x)

+ (1− λ)p(x)
∑
x

p(x)p2(y |x)
)

=KL
(
p(x)[λp1(y |x) + (1− λ)p2(y |x)]

∥∥∥p(x)∑
x

p(x)[λp1(y |x) + (1− λ)p2(y |x)]
)

=f (λp1(y |x) + (1− λ)p2(y |x))
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Lecture 12 Rate-distortion Theorem

Convexity of R(D)

Recall that R(D) = minp(x̂ |x) I (X̂ ;X ) with E [d(X , X̂ )] ≤ D
We want to show that

R(λD1 + (1− λ)D2) ≤ λR(D1) + (1− λ)R(D2)

Proof

Let p∗1(x̂ |x) and p∗2(x̂ |x) be the distributions that optimize R(D1) and
R(D2). Let’s try to time share between the two distributions.

That is,
using p∗1(x̂ |x) with λ fraction of time and p∗2(x̂ |x) with (1− λ) fraction of
time. The resulting distortion will be λD1 + (1− λ)D2. Therefore,

λR(D1) + (1− λ)R(D2) = λI (X̂1;X ) + (1− λ)I (X̂2;X )

=λf (p∗1(x̂ |x)) + (1− λ)f (p∗2(x̂ |x)) ≥ f (λp∗1(x̂ |x) + (1− λ)p∗2(x̂ |x))
=I (X̃ ;X ) ≥ R(λD1 + (1− λ)D2),

where X̃ =

{
X̂1 with λ fraction of time

X̂2 with (1− λ) fraction of time
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Lecture 12 Rate-distortion Theorem

Converse proof

p(x) Encoder Decoder X̂N
XN m

NR ≥ H(M)

≥ H(M)− H(M|XN) = I (M;XN) ≥ I (X̂N ;XN)

= H(XN)− H(XN |X̂N) =
N∑
i=1

H(Xi )−
N∑
i=1

H(Xi |X̂N ,X i−1)

≥
N∑
i=1

H(Xi )−
N∑
i=1

H(Xi |X̂i ) =
N∑
i=1

I (Xi ; X̂i )

≥
N∑
i=1

R(E [d(Xi , X̂i )]) = N

(
1

N

N∑
i=1

R(E [d(Xi ; X̂i )])

)

≥ NR

(
1

N

N∑
i=1

E [d(Xi ; X̂i )]

)
= NR

(
E

[
1

N

N∑
i=1

d(Xi ; X̂i )

])
= NR(E [d(XN ; X̂N)]) ≥ NR(D)
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