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Lecture 13 Rate-distortion problem

Gaussian source

Consider X ∼ N (0, σ2
X ). To determine the rate-distortion function,

we need first to decide the distortion measure. An intuitive will be
just the square error. That is,

d(X̂ ,X ) = (X̂ − X )2

Given E [d(X̂ ,X )] = D, what is the minimum rate required?

Like before, let us denote Z = X − X̂ as the prediction error. Note
that Var(Z ) = D

R(D) = minp(x̂ |x)I (X̂ ;X ) = minp(x̂ |x)h(X )− h(X |X̂ )

= minp(x̂ |x)h(X )− h(Z + X̂ |X̂ )

= minp(x̂ |x)h(X )− h(Z |X̂ )

= minp(x̂ |x)h(X )− h(Z )

=
1

2
log

σ2
X

D
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Lecture 13 Rate-distortion Theorem

Forward proof

Forward statement

Given distortion constraint D, we can find scheme such that the require
rate is no bigger than

R(D) = min
p(x̂ |x)

I (X ; X̂ ),

where the X̂ introduced by p(x̂ |x) should satisfy E [d(X , X̂ )] ≤ D

Code book construction

Let say p∗(x̂ |x) is the distribution that achieve the rate-distortion
optimiation problem. Randomly construct 2NR codewords as follows

Sample X from the source and pass X into p∗(x̂ |x) to obtain X̂

Repeat this N time to get a length-N codeword

Store the i-th codeword as C(i)

Note that the code rate is log 2NR

N = R as desired
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Lecture 13 Rate-distortion Theorem

Covering lemma and distortion typical sequences

We say joint typical sequences xN and x̂N are distortion typical
((xN , x̂N) ∈ AN

d ,ε) if |d(xN , x̂N)− E [d(X , X̂ )]| ≤ ε

By LLN, every pair of sequences sampled from the joint source will
virtually be distortion typical

Consequently, (1− δ)2N(H(X ,X̂ )−ε) ≤ |AN
d ,ε| ≤ 2N(H(X ,X̂ )+ε) as before

For two independently drawn sequences X̂N and XN , the probability
for them to be distortion typical will be just the same as before. In

particular, (1− δ)2−N(I (X ;X̂ )−3ε) ≤ Pr((XN , X̂N) ∈ AN
d ,ε(X , X̂ ))
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Lecture 13 Rate-distortion Theorem

Covering lemma for distortion typical sequences

Pr((XN , X̂N(m)) /∈ A(N)
d ,ε (X , X̂ ) for all m)

=
M∏

m=1

Pr((XN , X̂N(m)) /∈ A(N)
d ,ε (X̂ ,X ))

=
M∏

m=1

[
1− Pr((XN , X̂N(m)) ∈ A(N)

d ,ε (X̂ ,X ))
]

≤(1− (1− δ)2−N(I (X̂ ;X )+3ε))M

≤ exp(−M(1− δ)2−N(I (X̂ ;X )+3ε))

≤ exp(−(1− δ)2−N(I (X̂ ;X )−R+3ε)) → 0 as N → ∞ and R > I (X ; X̂ ) + 3ε
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Lecture 13 Rate-distortion Theorem

Forward proof

Encoding

Given input XN , find out of the codewords the one that is jointly typical
with XN . And say, if the codeword is C(i), output index i to the decoder

Decoding

Upon receiving the index i , simply output C(i)

Performance analysis

First of all, the only point of failure lies on encoding, that is when the
encoder cannot find a codeword jointly typical with XN

By covering Lemma, encoding failure is negligible as long as
R > I (X ; X̂ )

If encoding is successful, C(i) and XN should be distortion typical.
Therefore, E [d(C(i);XN)] ∼ E [d(X̂ ,X )] ≤ D as desired
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Lecture 13 Rate-distortion Theorem

Converse proof

Converse statement

If rate is smaller than R(D), distortion will be larger than D

Alternative statement

If distortion is less than or equal to D, the rate must be larger than R(D)

In the proof, we need to use the convex property of R(D). That is,

R(aD1 + (1− a)D2) ≥ aR(D1) + (1− a)R(D2)

So we will digress a little bit to show this convex property first
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Lecture 13 Rate-distortion Theorem

Log-sum inequality

Log-sum inequality

For any a1, · · · , an ≥ 0 and b1, · · · , bn ≥ 0, we have∑
i

ai log2
ai
bi

≥

(∑
i

ai

)
log2

∑
i ai∑
i bi

.

Proof

We can define two distributions p(x) and q(x) with p(xi ) =
ai∑
i ai

and

q(xi ) =
bi∑
i bi

. Since p(x) and q(x) are both non-negative and sum up to

1, they are indeed valid probability mass functions.

Then, we have

0 ≤ KL(p(x)‖q(x)) =
∑
i

p(xi ) log2
p(xi )

q(xi )

=
∑
i

ai∑
i ai

(
log2

ai
bi

− log2

∑
i ai∑
i bi

)
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Lecture 13 Rate-distortion Theorem

Convexity of KL-Divergence

For any four distributions p1(·), p2(·), q1(·), and q2(·), we have

λ1KL(p1‖q1) + λ2KL(p2‖q2) ≥ KL(λ1p1 + λ2p2‖λ1q1 + λ2q2),

where λ1, λ2 ≥ 0 and λ1 + λ2 = 1

Proof

λ1KL(p1‖q1) + λ2KL(p2‖q2)

=λ1

∑
x∈X

p1(x) log
p1(x)

q1(x)
+ λ2

∑
x∈X

p2(x) log
p2(x)

q2(x)

=
∑
x∈X

λ1p1(x) log
λ1p1(x)

λ1q1(x)
+ λ2p2(x) log

λ2p2(x)

λ2q2(x)

≥
∑
x∈X

(λ1p1(x) + λ2p2(x)) log
λ1p1(x) + λ2p2(x)

λ1q1(x) + λ2q2(x)
(by log-sum inequality)

=KL(λ1p1 + λ2p2‖λ1q1 + λ2q2)
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Lecture 13 Rate-distortion Theorem

Convexity of I (X ;Y ) with respect to p(y |x)
For any random variables X and Y , I (X ;Y ) is a convex function of p(y |x)
for a fixed p(x)

Remark

I (X ;Y ) is concave with respect to p(x) for fixed p(y |x) though. A proof
is given in Cover and Thomas and will be omitted here

Proof

Let us write
I (X ;Y ) = KL(p(x , y)‖p(x)p(y))

= KL
(
p(x)p(y |x)

∥∥∥p(x)∑
x

p(x)p(y |x)
)
, f (p(y |x))

We want to show
λf (p1(y |x)) + (1− λ)f (p2(y |x)) ≥ f (λp1(y |x) + (1− λ)p2(y |x))
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Lecture 13 Rate-distortion Theorem

Proof

Continue from previous slide, we have

λf (p1(y |x)) + (1− λ)f (p2(y |x))

=λKL
(
p(x)p1(y |x)

∥∥∥p(x)∑
x

p(x)p1(y |x)
)

+ (1− λ)KL
(
p(x)p2(y |x)

∥∥∥p(x)∑
x

p(x)p2(y |x)
)

≥KL
(
λp(x)p1(y |x) + (1− λ)p(x)p2(y |x)

∥∥∥λp(x)∑
x

p(x)p1(y |x)

+ (1− λ)p(x)
∑
x

p(x)p2(y |x)
)

=KL
(
p(x)[λp1(y |x) + (1− λ)p2(y |x)]

∥∥∥p(x)∑
x

p(x)[λp1(y |x) + (1− λ)p2(y |x)]
)

=f (λp1(y |x) + (1− λ)p2(y |x))
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Lecture 13 Rate-distortion Theorem

Convexity of R(D)

Recall that R(D) = minp(x̂ |x) I (X̂ ;X ) with E [d(X , X̂ )] ≤ D
We want to show that

R(λD1 + (1− λ)D2) ≤ λR(D1) + (1− λ)R(D2)

Proof

Let p∗1(x̂ |x) and p∗2(x̂ |x) be the distributions that optimize R(D1) and
R(D2). Let’s try to time share between the two distributions.

That is,
using p∗1(x̂ |x) with λ fraction of time and p∗2(x̂ |x) with (1− λ) fraction of
time. The resulting distortion will be λD1 + (1− λ)D2. Therefore,

λR(D1) + (1− λ)R(D2) = λI (X̂1;X ) + (1− λ)I (X̂2;X )

=λf (p∗1(x̂ |x)) + (1− λ)f (p∗2(x̂ |x)) ≥ f (λp∗1(x̂ |x) + (1− λ)p∗2(x̂ |x))
=I (X̃ ;X ) ≥ R(λD1 + (1− λ)D2),

where X̃ =

{
X̂1 with λ fraction of time

X̂2 with (1− λ) fraction of time
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Lecture 13 Rate-distortion Theorem

Converse proof

p(x) Encoder Decoder X̂N
XN m

H(M)

≥ H(M)− H(M|XN) = I (M;XN) ≥ I (X̂N ;XN)

= H(XN)− H(XN |X̂N) =
N∑
i=1

H(Xi )−
N∑
i=1

H(Xi |X̂N ,X i−1)

≥
N∑
i=1

H(Xi )−
N∑
i=1

H(Xi |X̂i ) =
N∑
i=1

I (Xi ; X̂i )

≥
N∑
i=1

R(E [d(Xi , X̂i )]) = N

(
1

N

N∑
i=1

R(E [d(Xi ; X̂i )])

)

≥ NR

(
1

N

N∑
i=1

E [d(Xi ; X̂i )]

)
= NR

(
E

[
1

N

N∑
i=1

d(Xi ; X̂i )

])
= NR(E [d(XN ; X̂N)]) ≥ NR(D)
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