
Lecture 14 Review

Previously...

Forward and converse proof of the rate-distortion theorem
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Lecture 14 Overview

This time

Method of types

Universal source coding

Large deviation theory
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Lecture 14 Overview

Project presentation

Start as usual class time (12/12)

Please prepare ∼30 minutes presentation. Explain your problem
statement. Focus on your approach and result

Take a format similar to a conference presentation

Expect ∼5 minutes Q/A

Grading

Presentation: clarity, structure, references, etc. (10/40)
Technical: correctness, depth, novelty, etc. (15/40)
Evaluation and results: sound evaluation metric, thoroughness in
analysis and experimentation (if any), results and performance (15/40)

Expectation

National conference quality (4/4), reserach day quality (3/4), research
meeting quality (2/4), just show up (1/4)
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Lecture 14 Method of types

Motivation

In previous lectures, we have introduced LLN and typical sequences.
In a sense that every sequences drawn from a discrete memoryless
source is typical

Take coin tossing as example again, if Pr(Head) = 0.6, and we throw
the coin 1000 times. We expect that almost all drawn sequences with
have about 600 heads. And the rest have neglible probability

However, sometimes we are interested in the probability of getting say
400 heads, even though we know that the probability is neglible

→
method of types
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Lecture 14 Method of types

Motivation

By the end of the class, we will be able to solve the following nontrivial
puzzle

Tom throws a unbiased dice for 10,000 times and adds all values

For whatever reason, he is not happy until the sum is at least 40,000.
If not, he will just throw the dice again for 10,000

Now, by the time he eventually got a sequence with sum at least
40,000, approximately how many ones in the sequence?
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Lecture 14 Method of types

Type class

Continue with the coin-tossing example

Recall that the probability of getting a particular sequence with 600
heads is

0.66000.4400

= 2−1000(−0.6 log 0.6−0.4 log 0.4) = 2−NH(X )

How about the probability of getting a particular sequence with 400
heads? It is

0.64000.4600 = 2−1000(−0.4 log 0.6−0.6 log 0.4)

= 2−1000(−0.4 log 0.4−0.6 log 0.6+0.4 log 0.4
0.6

+0.6 log 0.6
0.4

)

= 2−N(H(X )+KL((0.4,0.6)||(0.6,0.4))

Every sequence with 400 heads has the same probability. And in
general, sequences with the same fraction of outcomes have same
probability and we can put them into the same (type) class
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Lecture 14 Method of types

Type class

For convenience, let us denote the number of a in the sequence xN as
N (a|xN)

Then for any valid distribution of X , p(x), we will define a type class

T (pX ) as the set containing all sequences such that N (a|xN)
N ≈ p(a),

∀a ∈ X
Let us reserve q(x) as the true distribution of x (i.e., q(Head) = 0.6
and q(Tail) = 0.4). And in general, we expect all sequences drawn
from the source should belongs to T (q) asymptotically

Let’s also refer pxN as the empirical distribution of xN . That is

pxN (a) =
N (a|xN)

N . So T (pxN ) is the type class containing xN
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Lecture 14 Method of types

Example

Let X ∈ {1, 2, 3} and xN = 11321

pxN (1) =
3
5 ,

pxN (2) =
1
5 , pxN (3) =

1
5

T (pxN ) = {11123, 11132, 11231, 11321, · · · } containing all sequences
with three 1’s, one 2, and one 3

|T (pxN )| = 5!
3!1!1! = 20.

In general,

|T (p)| = N!

(Np(x1))!(Np(x2))!(Np(x3))! · · ·

Actually we don’t care too much what |T (p)| is exactly. We will
provide bounds for |T (p)| as we come back later on

And for any sequence y in T (pxN ), p(y) = q(1)3q(2)q(3), where q(·)
is the true distribution
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Lecture 14 Method of types

Type sequence probability

Even though we have seen that in the coin toss example, let’s restate it
more formally.

Theorem 1

If xN ∈ T (p) and q(·) is the true distribution of X , the probability of
getting xN from sampling q(·) for N times, as denoted as qN(xN), is given
by

2−N(H(p)+KL(p||q))

Proof

qN(xN) =
N∏
i=1

q(xi ) = 2
∑N

i=1 log q(xi )

= 2
∑

a∈X N (a|xN ) log q(a)

= 2−N
∑

a∈X −pxN (a) log q(a) = 2
−N

(
−

∑
a∈X p(a) log p(a)−

∑
a∈X p(a) log p(a)

q(a)

)
= 2−N(H(p)+KL(p||q))
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Lecture 14 Method of types

Probability of a sequence in the “typical” class

If xN ∈ T (q), where q(·) is the true distribution of X , then

qN(xN) = 2−NH(q) = 2−NH(X )

Remarks

Note that the probability is exactly equal to 2−NH(X )

Recall that this is the probability of a typical sequence supposed to
be. Therefore, any xN in T (q) is a typical sequence (T (q) ⊂ AN

ε (X ))
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Lecture 14 Method of types

Set of all empirical distribution PN(X )

Denote PN(X ) as the set of all empirical distribution of X in a length-N
sequence

Example

If X ∈ {0, 1},

PN(X ) =

{
(pX (0), pX (1)) :

(
0

N
,
N

N

)
,

(
1

N
,
N − 1

N

)
, · · · ,

(
N

N
,
0

N

)}
Note that |PN(X )| = N + 1

Since a type is uniquely characterized by a distribution of X in a
length-N sequence

Each element p of PN(X ) corresponds a type T (p)

Number of types is |PN(X )|
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Lecture 14 Method of types

Number of types

It is not too difficult to count the exact number of types. But in practice,
we don’t quite bother with it as long as we know that the number is
relatively “small”

Theorem 2

|PN(X )| ≤ (N + 1)|X |

Proof

Note that each type is specified by the empirical probability of each
outcome of X . And the possible values of the empirical probabilities are
0
N ,

1
N , · · · ,

N
N (N + 1 of them).

Since there are |X | elements, the number

of types is bounded by (N + 1)|X |
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Lecture 14 Method of types

Size of a type class

Recall that |T (p)| = N!
(Np(x1))!(Np(x2))!(Np(x3))!··· but the following bounds

are much more useful in practice

Theorem 3

1

(N + 1)|X | 2
NH(p) ≤ |T (p)| ≤ 2NH(p)

Proof

Let’s assume p(·) is the actual distribution of X here

1 ≥
∑

xN∈T (p)

pN(xN)

=
∑

xN∈T (p)

2−NH(p) = |T (p)|2−NH(p)

1 =
∑
p̂∈PN

Pr(T (p̂)) ≤
∑
p̂∈PN

max
p̃

Pr(T (p̃)) =
∑
p̂∈PN

Pr(T (p)) ≤ (N + 1)|X |Pr(T (p))

= (N + 1)|X ||T (p)|2−NH(p)
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Lecture 14 Method of types

Probability of a type class

Theorem 4

Let the true distribution of X is q(·), then

2−N(KL(p||q))

(N + 1)|X | ≤ Pr(T (p)) ≤ 2−N(KL(p||q))

Proof

From Theorem 1, each sequence in T (p) has probability 2−N(H(p)+KL(p||q))

and since 1
(N+1)|X| 2

NH(p) ≤ |T (p)| ≤ 2NH(p) from Theorem 3,

1

(N + 1)|X | 2
NH(p)2−N(H(p)+KL(p||q)) ≤ Pr(T (p)) ≤ 2NH(p)2−N(H(p)+KL(p||q))
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Lecture 14 Method of types

Summary of type

Type class T (p) contains all sequences with empirical distribution of p.
That is,

T (p) =

{
xN :

N (a|xN)
N

= p(a)

}

All sequences in the type class T (p) has the same probability (q(·) is the
true distribution)

qN(xN) = 2−N(H(p)+KL(p||q)

There are about 2NH(p) sequences in T (p)

1

(N + 1)|X | 2
NH(p) ≤ |T (p)| ≤ 2NH(p)

Probability of getting a sequence in T (p) is about 2−N(KL(p||q)). More
precisely,

2−N(KL(p||q))

(N + 1)|X | ≤ Pr(T (p)) ≤ 2−N(KL(p||q))

There are (N + 1)|X | types
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Lecture 14 Univesal source coding

Rationale

For the compression scheme (such as Huffmann coding) that we
discussed earlier in this class, one needs to know the source
distribution ahead to design the encoder and decoder

Question: Is it possible to construct compression scheme without
knowing the source distibution and still performs as good?

Answer: Yes. At least theoretically → universal source coding
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Lecture 14 Univesal source coding

Theory of universal source coding

Given any source Q with H(Q) < R, there exists a length-N universal
code of rate R such that the source can be decoded losslessly as N → ∞

Proof

Let RN = R − |X | log(N+1)
N , and consider the set of sequences

A = {xN : H(pxN ) < RN} as the code book.

Note that the rate is < R as

|A| =
∑

p:H(p)<RN

|T (p)| ≤
∑

p:H(p)<RN

2NH(p) <
∑

p:H(p)<RN

2NRN

≤ (N + 1)|X |2NRN = 2
N
(
RN+|X | log(N+1)

N

)
= 2NR

Encoder: given input, check if input is in A, output index if so.
Otherwise, declare failure

Decoder: simply map index back to the sequence
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Lecture 14 Univesal source coding

Theory of universal source coding

Proof (con’t)

Note that the probability of error Pe is given by

Pe =
∑

p:H(p)>RN

Pr(T (p))

≤
∑

p:H(p)>RN

max
p̃:H(p̃)>RN

Pr(T (p̃))

≤ (1 + N)|X |2
−N

(
minp̃:H(p̃)>RN

KL(p̃||q)
)

If H(q) < R, as RN → R as N increases, we can find some N0 such
that H(q) < RN for all N ≥ N0

Therefore, any p in {p : H(p) > RN} cannot be the same as q

⇒ minp̃:H(p̃)>RN
KL(p̃||q) > 0 for N ≥ N0

Hence, Pe → 0 as N → ∞
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Lecture 14 Univesal source coding

Lempel-Ziv coding

Its variants are widely used by compression tools almost everywhere
(zip, pkzip, tiff, etc.)

Main ideas

Construct a dictionary including all previously seen segments

Bits needed to send a new segment can be reduced taking advantage
known segment in the dictionary

Example: let’s compress 10110111011110111

First parse segment into segments that haven’t seen before ⇒

1
1,

2
0,

3
11,

4
01,

5
110,

6
111,

7
10,

8
111

Encode each segment into representation containing a pair of numbers:

1) index of segment (excluding the last bit) in the dictionary; 2) the
last bit ⇒ (0, 1), (0, 0), (1, 1), (2, 1), (3, 0), (3, 1), (1, 0), (6,∅)

Encode representation to bit stream. Note that as the dictionary
grows, number of bits needed to store the index increases ⇒
0100011101011001110010110
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Lecture 14 Univesal source coding

Lempel-Ziv decoding

Decode bitstream back to representation
0100011101011001110010110 ⇒
(0, 1), (0, 0), (1, 1), (2, 1), (3, 0), (3, 1), (1, 0), (6,∅)

Build dictionary and decode

1 2 3 4 5 6 7 8
1 0 11 01 110 111 10 111

⇒ 10110111011110111

S. Cheng (OU-Tulsa) November 28, 2017 20 / 27
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Lecture 14 Large deviation theory

Motivation

Let’s revisit some coin tossing example. Say if a coin is fair, and we
toss if for 1000 times, we know that we will almost always get 500
heads. So getting, say, 400 heads has neglible probability

However, if we insist finding the probability of getting 400 heads,
from discussion up to now, we know that it is just

Pr(T ((0.4, 0.6))) ≈ 2−1000(KL((0.4,0.6)||(0.5,0.5)))

Now, what if we are interested in the probability of a more general
case? Say what is the probability of getting > 300 and < 400 heads?
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Lecture 14 Large deviation theory

Sanov’s Theorem

Let E = {p : 0.3 ≤ p(Head) ≤ 0.4} and q(·) = (0.5, 0.5) is the true distribution,
then

Pr(E) = Pr(E ∩ P1000)

=
∑

p∈E∩P1000

Pr(T (p)) ≈
∑

p∈E∩P1000

2−1000(KL(p||q))

= 2−1000(KL((0.4,0.6)||(0.5,0.5))) + 2−1000(KL((0.399,0.601)||(0.5,0.5))) +

2−1000(KL((0.398,0.602)||(0.5,0.5))) + · · ·+ 2−1000(KL((0.3,0.7)||(0.5,0.5)))

≤ |P1000|2−1000(KL((0.4,0.6)||(0.5,0.5)))

Sanov’s Theorem

Let X1,X2, · · · ,XN be i.i.d. ∼ q(·) and E be a set of distribution. Then

Pr(E) = Pr(E ∩ PN) ≤ (N + 1)|X |2−N(KL(p∗||q)),

where p∗ = argminp∈E KL(p||q).

Moreover, given a rather weak condition
(closure of interior of E is E itself), we have

1

N
logPr(E) → −KL(p∗||q)
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Lecture 14 Large deviation theory

Conditional limit theorem

The first part of Sanov’s Theorm is easy to show as similar to the example.
However, the second half will need some more math background (mostly
mathematical analysis) to understand the proof and so we will skip it here

The latter part of Sanov’s Theorem suggests that the probability of getting
E is the same as the probability of getting T (p∗)

It turns out that we can claim something stronger. We will state the
theorem below without proof

Conditional limit theorem

Let E be a closed convex subset of P (the set of all distributions) and q(·) be the
true distribution which is /∈ E .

If x1, x2, · · · , xN are drawn from q(·) and we know
that pxN ∈ E , then

N (a|xN)
N

→ p∗(a)

in probability as N → ∞
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Lecture 14 Large deviation theory

Examples

Coin toss

Let’s go back to our previous example. If we throw a fair coin 1000
times and some one tells you that there are 300 to 400 heads, recall

E = {0.3 ≤ p(Head) ≤ 0.4}

Since apparently,
p∗ = argmin

p∈E
KL(p||(0.5, 0.5)) = (0.4, 0.6)

By conditional limit theorem, knowing the the number of head is
within the range, the coin behaves like a biased coin with
p(Head) = 0.4

A best bet would be there are 400 heads
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Lecture 14 Large deviation theory

Examples

Lower bounds

Let say x1, x2, · · · , xN are drawn from q(·). And we have K functions
g1(·), g2(·), · · · , gK (·) such that for k = 1, · · · ,K ,

1

N

N∑
i=1

gk(xi ) ≥ αk

Let E = {p :
∑

a p(a)gk(a) ≥ αk , k = 1, · · · ,K}

From conditional limit theorem, N (a|xN )
N → p∗(a), where

p∗ = argmin
p∈E

KL(p||q)

This is a simple constrained optimization problem and can be solved with
KKT conditions. If you go through the conditions, you will find that

p∗(x) ∝ q(x)2
∑K

k=1 λkgk (x),

with λk(
∑

a p(a)gk(a)− αk) = 0, λk ≥ 0, and
∑

a p(a)gk(a) ≥ αk
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Lecture 14 Large deviation theory

Examples

Lower bounds

Let say x1, x2, · · · , xN are drawn from q(·). And we have K functions
g1(·), g2(·), · · · , gK (·) such that for k = 1, · · · ,K ,

1

N

N∑
i=1

gk(xi ) ≥ αk

Let E = {p :
∑

a p(a)gk(a) ≥ αk , k = 1, · · · ,K}

From conditional limit theorem, N (a|xN )
N → p∗(a), where

p∗ = argmin
p∈E

KL(p||q)

This is a simple constrained optimization problem and can be solved with
KKT conditions. If you go through the conditions, you will find that

p∗(x) ∝ q(x)2
∑K

k=1 λkgk (x),

with λk(
∑

a p(a)gk(a)− αk) = 0, λk ≥ 0, and
∑

a p(a)gk(a) ≥ αk

S. Cheng (OU-Tulsa) November 28, 2017 25 / 27



Lecture 14 Large deviation theory

Examples

Lower bounds

Let say x1, x2, · · · , xN are drawn from q(·). And we have K functions
g1(·), g2(·), · · · , gK (·) such that for k = 1, · · · ,K ,

1

N

N∑
i=1

gk(xi ) ≥ αk

Let E = {p :
∑

a p(a)gk(a) ≥ αk , k = 1, · · · ,K}

From conditional limit theorem, N (a|xN )
N → p∗(a), where

p∗ = argmin
p∈E

KL(p||q)

This is a simple constrained optimization problem and can be solved with
KKT conditions. If you go through the conditions, you will find that

p∗(x) ∝ q(x)2
∑K

k=1 λkgk (x),

with λk(
∑

a p(a)gk(a)− αk) = 0, λk ≥ 0, and
∑

a p(a)gk(a) ≥ αk

S. Cheng (OU-Tulsa) November 28, 2017 25 / 27



Lecture 14 Large deviation theory

Examples

Lower bounds

Let say x1, x2, · · · , xN are drawn from q(·). And we have K functions
g1(·), g2(·), · · · , gK (·) such that for k = 1, · · · ,K ,

1

N

N∑
i=1

gk(xi ) ≥ αk

Let E = {p :
∑

a p(a)gk(a) ≥ αk , k = 1, · · · ,K}

From conditional limit theorem, N (a|xN )
N → p∗(a), where

p∗ = argmin
p∈E

KL(p||q)

This is a simple constrained optimization problem and can be solved with
KKT conditions. If you go through the conditions, you will find that

p∗(x) ∝ q(x)2
∑K

k=1 λkgk (x),

with λk(
∑

a p(a)gk(a)− αk) = 0, λk ≥ 0, and
∑

a p(a)gk(a) ≥ αk

S. Cheng (OU-Tulsa) November 28, 2017 25 / 27



Lecture 14 Large deviation theory

Examples

I think this example below gives a nice demonstration that the technique
we have learned today can solve some amazing puzzle!

Fair dice

A fair dice is thrown 10,000 times and the sum of all outcomes is larger
than 40,000, out of the 10,000 throw, how many ones do you think there
are?
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Lecture 14 Large deviation theory

Fair dice

From the result of previous example, let g1(x) = x and α1 = 4, we
expect

p∗(i) =
2λi∑6
j=1 2

λj

for some λ

λ 6= 0 since
∑

a p(a)g1(a) = 3.5 < 4 = α1 if so

Since λ 6= 0, by the complementary slackness constraint
λk(

∑
a p(a)gk(a)− αk) = 0,∑

a

p(a)g1(a) = α1 = 4

This gives us λ = 0.2519, and thus
p∗ = (0.103, 0.123, 0.146, 0.174, 0.207, 0.247)

# ones ≈ 0.103× 10000 = 1030
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