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Lecture 15 Bayesian Net

Bayesian Net

Relationship of variables depicted by a directed graph with no loop

Given a variable’s parents, the variable is conditionally independent of
any non-descendants

Reduce model complexity

Facilitate easier inference
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Lecture 15 Bayesian Net

Burlgar and racoon

Burlgar: B; Racoon: R; Dog barked: D; Police called: P; Trash can fell: T

p(p, d , b, t, r) =p(p|d , b, t, r)p(d |b, t, r)p(b|t, r)p(t|r)p(r)

=p(p|d , �b, �t, �r)︸ ︷︷ ︸
2 parameters

p(d |b, �t, r)p(b|�t, �r)p(t|r)p(r)

P D p(p|d)
p ¬d 0.01
p d 0.4
¬p ¬d 0.99
¬p d 0.6

T R p(t|r)
t ¬r 0.05
t r 0.7
¬t ¬r 0.95
¬t r 0.3

D B R p(d |b, r)
d ¬b ¬r 0.1
d ¬b r 0.5
d b ¬r 1
d b r 1

¬d ¬b ¬r 0.9
¬d ¬b r 0.5
¬d b ¬r 0
¬d b r 0
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Lecture 15 Bayesian Net

Comparison of # parameters

# parameters of complete model: 25 − 1 = 31

# parameters of Bayesian net:

p(p|d): 2
p(d |b, r): 4
p(b): 1
p(t|r): 2
p(r): 1
Total: 2 + 4 + 1 + 2 + 1 = 10

The model size reduces to less than 1
3 !
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Lecture 15 Bayesian Net

Burglar and racoon

Question: What is the probability of a burglar visit if police was called but
trash can stayed untouched?

Let p(r) = 0.2 and p(b) = 0.01

D B R p(d |b, r)
d ¬b ¬r 0.1
d ¬b r 0.5
d b ¬r 1
d b r 1

¬d ¬b ¬r 0.9
¬d ¬b r 0.5
¬d b ¬r 0
¬d b r 0

⇒

D B R p(d , b, r)

d ¬b ¬r 0.0792
d ¬b r 0.099
d b ¬r 0.008
d b r 0.002

¬d ¬b ¬r 0.7128
¬d ¬b r 0.099
¬d b ¬r 0
¬d b r 0
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Lecture 15 Bayesian Net

Burglar and racoon

Question: What is the probability of a burglar visit if police was called but
trash can stayed untouched?

P D p(p|d)
p ¬d 0.01
p d 0.4

¬p ¬d 0.99
¬p d 0.6

P D B R p(d , b, r , p)

p d ¬b ¬r 0.0792
p d ¬b r 0.099
p d b ¬r 0.008
p d b r 0.002

p ¬d ¬b ¬r 0.7128
p ¬d ¬b r 0.099
p ¬d b ¬r 0
p ¬d b r 0

· · ·
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Lecture 15 Bayesian Net
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Lecture 15 Bayesian Net

Burglar and racoon

Question: What is the probability of a burglar visit if police was called but
trash can stayed untouched?

Normalize...

T P D B R p(d , b, r , p)
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Lecture 15 Bayesian Net

Burglar and racoon
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Lecture 15 Belief Propagation Algorithm

Belief Propagation Algorithm

It is also known to be the sum-product algorithm

The goal of belief propagation is to efficiently compute the marginal
distribution out of the joint distribution of multiple variables. This is
essential for inferring the outcome of a particular variable with
insufficient information

The belief propagation algorithm is usually applied to problems
modeled by a undirected graph (Markov random field) or a factor
graph

Rather than giving a rigorous proof of the algorithm, we will provide a
simple example to illustrate the basic idea
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Lecture 15 Belief Propagation Algorithm

Factor Graph

A factor graph is a bipartite graph describing the correlation among
several random variables. It generally contains two different types of
nodes in the graph: variable nodes and factor nodes

A variable node that is usually shown as circles corresponds to a
random variable

A factor node that is usually shown as a square connects variable
nodes whose corresponding variables are immediately related
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Lecture 15 Belief Propagation Algorithm

An Example

A factor graph example is shown below. We have 8 discrete random
variables, x41 and z41 , depicted by 8 variable nodes

Among the variable nodes, random variables x41 (indicated by light
circles) are unknown and variables z41 (indicated by dark circles) are
observed with known outcomes z̃41
The relationships among variables are captured entirely by the figure.
For example, given x41 , z1, z2, z3, and z4 are conditional independent
of each other. Moreover, (x3, x4) are conditional independent of x1
given x2
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Lecture 15 Belief Propagation Algorithm

The joint probability p(x4, z4) of all variables can be decomposed into factor
functions with subsets of all variables as arguments in the following

p(x4, z4) = p(x4)p(z1|x1)p(z2|x2)p(z3|x3)p(z4|x4)

= p(x1, x2)︸ ︷︷ ︸
fb(x1,x2)

p(x3, x4|x2)︸ ︷︷ ︸
fd (x2,x3,x4)

p(z3|x3)︸ ︷︷ ︸
fe(x3,z3)

p(z1|x1)︸ ︷︷ ︸
fa(x1,z1)

p(z4|x4)︸ ︷︷ ︸
ff (x4,z4)

p(z2|x2)︸ ︷︷ ︸
fc (x2,z2)

= fb(x1, x2)fd(x2, x3, x4)fe(x3, z3)fa(x1, z1)ff (x4, z4)fc(x2, z2)

Note that each factor function corresponds to a factor node in the factor
graph.

The arguments of the factor function correspond to the variable nodes that
the factor node connects to.
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Lecture 15 Belief Propagation Algorithm

One common problem in probability inference is to estimate the value of a
variable given incomplete information. For example, we may want to estimate x1
given z4 as z̃4. The optimum estimate x̂1 will satisfy

x̂1 = argmax
x1

p(x1|z̃4) = argmax
x1

p(x1, z̃
4)

p(z̃4)
= argmax

x1
p(x1, z̃

4).

This requires us to compute the marginal distribution p(x1, z̃
4) out of the joint

probability p(x4, z̃4). Note that

p(x1, z̃
4) =

∑
x4
2

p(x4, z̃4)

=
∑
x4
2

fa(x1, z̃1)fb(x1, x2)fc(x2, z̃2)fd(x2, x3, x4)fe(x3, z̃3)ff (x4, z̃4)

=fa(x1, z̃1)︸ ︷︷ ︸
ma1

∑
x2

fb(x1, x2)fc(x2, z̃2)︸ ︷︷ ︸
mc2

∑
x3,x4

fd(x2, x3, x4)fe(x3, z̃3)︸ ︷︷ ︸
m3d

ff (x4, z̃4)︸ ︷︷ ︸
m4d︸ ︷︷ ︸

md2︸ ︷︷ ︸
m2b︸ ︷︷ ︸

mb1
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given z4 as z̃4. The optimum estimate x̂1 will satisfy

x̂1 = argmax
x1

p(x1|z̃4) = argmax
x1

p(x1, z̃
4)

p(z̃4)
= argmax

x1
p(x1, z̃

4).

This requires us to compute the marginal distribution p(x1, z̃
4) out of the joint

probability p(x4, z̃4). Note that
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∑
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Lecture 15 Belief Propagation Algorithm

We can see from the last equation that the joint probability can be
computed by combining a sequence of messages passing from a variable
node i to a factor node a (mia) and vice versa (mai ). More precisely, we
can write

ma1(x1)← fa(x1, z̃1) =
∑
z1

fa(x1, z1)p(z1)︸ ︷︷ ︸
m1a

,

mc2(x2)← fc(x2, z̃2) =
∑
z2

fc(x2, z2)p(z2)︸ ︷︷ ︸
m2c

,

me3(x3)← fe(x3, z̃3) =
∑
z3

fe(x3, z3)p(z3)︸ ︷︷ ︸
m3e

,

mf 4(x4)← ff (x4, z̃4) =
∑
z4

ff (x4, z4)p(z4)︸ ︷︷ ︸
m4f

,

where p(zi ) =

{
1, zi = z̃i

0, otherwise
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m3d(x3)← me3(x3) = fe(x3, z̃3),

m4d(x4)← mf 4(x4) = ff (x4, z̃4),

md2(x2)←
∑
x3,x4

fd(x2, x3, x4)m3d(x3)m4d(x4),

m2b(x2)← mc2(x2)md2(x2),

mb1(x1)←
∑
x2

fb(x1, x2)m2b(x2),

p(x1, z̃
4)← ma1(x1)mb1(x1),

p(x1, z̃
4) = fa(x1, z̃1)︸ ︷︷ ︸

ma1

∑
x2

fb(x1, x2)fc(x2, z̃2)︸ ︷︷ ︸
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m4d︸ ︷︷ ︸

md2︸ ︷︷ ︸
m2b︸ ︷︷ ︸

mb1
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Lecture 15 Belief Propagation Algorithm

Belief propagation algorithm

Initialization: For any variable node i , if the prior probability of xi is known
and equal to p(xi ), for a ∈ N(i),

mia(xi )← p(xi )

Message passing:

mia(xi )←
∏

b∈N(i)\a

mbi (xi ),

mai (xi )←
∑
xa

fa(xa)
∏

j∈N(a)\i

mja(xj) (“sum-product”)

Belief update:

βi (xi )←
∏

a∈N(i)

mai (xi )

Stopping criteria: repeat message update and/or belief update until the
algorithm stops when maximum number of iterations is reached or some
other conditions are satisfied.
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Lecture 15 Belief Propagation Algorithm

Remark

We have not assumed the precise phyical meanings of the factor
functions themselves. The only assumption we made is that the joint
probability can be decomposed into the factor functions and
apparently this decomposition is not unique

The belief propagation algorithm as shown above is exact only
because the corresponding graph is a tree and has no loop. If loop
exists, the algorithm is not exact and generally the final belief may
not even converge

While the result is no longer exact, applying BP algorithm for general
graphs (sometimes refer to as loopy BP) works well in many
applications such as LDPC decoding
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Lecture 15 Belief Propagation Algorithm

Burglar and racoon revisit

Question: What is the probability of a burglar visit if police was called but
trash can stayed untouched?

B

D

P

R

T

B

D

P

RT

T

fT ,R

R

fB,D,R

D

fD,P

P

B

fP

fT
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Lecture 15 Belief Propagation Algorithm

Using belief propagation...

{
fP(p) = 1

fP(¬p) = 0

{
fT (t) = 0

fT (¬t) = 1

fB,D,R(b, d , r) = p(b, d , r)

fT ,R(t, r) = p(t|r)
fD,P(d , p) = p(p|d)

T

fT ,R

R

fB,D,R

D

fD,P

P

B

fP

fT
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Lecture 15 LDPC Codes

Some History of LDPC Codes

Before 1990’s, the strategy for channel code has always been looking for
codes that can be decoded optimally. This leads to a wide range of so-called
algebraic codes. It turns out the “optimally-decodable” codes are usually
poor codes

Until early 1990’s, researchers had basically agreed that the Shannon
capacity was restricted to theoretical interest and could hardly be reached in
practice

The introduction of turbo codes gave a huge shock to the research
community. The community were so dubious about the amazing
performance of turbo codes that they did not accept the finding initially
until independent researchers had verified the results

The low-density parity-check (LDPC) codes were later rediscovered and both
LDPC codes and turbo codes are based on the same philosophy differs from
codes in the past. Instead of designing and using codes that can be decoded
“optimally”, let us just pick some random codes and perform decoding
“sub-optimally”
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Lecture 15 LDPC Codes

LDPC Codes

As its name suggests, LDPC codes refer to codes that with sparse
(low-density) parity check matrices. In other words, there are only few
ones in a parity check matrix and the rest are all zeros

We learn from the proof of Channel Coding Theorem that random
code is asymptotically optimum. This suggests that if we just
generate a code randomly with a very long code length. It is likely
that we will get a very good code.

The problem is: how do we perform decoding? Due to the lack of
structure of a random code, tricks that enable fast decoding for
structured algebraic codes that were widely used before 1990’s are
unrealizable here

Solution: Belief propagation!
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Lecture 15 LDPC Codes

Tanner Graph

An LDPC code can be represented using a Tanner
graph as shown on the right

Each circle xi represents a code bit sent to the decoder

Each square represents a check bit with value equal to
the sum of code bit connecting to it

The vector x1, x2, · · · , xN is a codeword only if all
checks are zero

By default, the mapping between a codeword to the
actual message is non-trivial for an LDPC code

It would be great if the actual message is included in
the codeword. That is, some of the bits in the
codeword spell out the actual message ⇒ IRA codes
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Lecture 15 LDPC Codes

IRA Codes

Irregular repeated accumulate (IRA) code a type of
systematic LDPC code, i.e., each codeword can be
partitioned into message bits and syndrome bits

As shown on the right, light blue circles correspond to
the input message bits and the dark blue circle
correspond to the syndrome bits

To ensure the top check bit is satisfied, the top
syndrome bit will be set to be the sum of message bits
connecting to the check

The computed syndrome bit will then pass to the next
check and again we can ensure the next check bit is
satisfied by setting that second syndrome bit as the
sum of message bits conecting to the check + last
syndrome bit. All (dark blue) syndrome bits can be
assigned in similar token

...

S. Cheng (OU-Tulsa) December 5, 2017 23 / 27



Lecture 15 LDPC Codes

IRA Codes

Irregular repeated accumulate (IRA) code a type of
systematic LDPC code, i.e., each codeword can be
partitioned into message bits and syndrome bits

As shown on the right, light blue circles correspond to
the input message bits and the dark blue circle
correspond to the syndrome bits

To ensure the top check bit is satisfied, the top
syndrome bit will be set to be the sum of message bits
connecting to the check

The computed syndrome bit will then pass to the next
check and again we can ensure the next check bit is
satisfied by setting that second syndrome bit as the
sum of message bits conecting to the check + last
syndrome bit. All (dark blue) syndrome bits can be
assigned in similar token

...

S. Cheng (OU-Tulsa) December 5, 2017 23 / 27



Lecture 15 LDPC Codes

IRA Codes

Irregular repeated accumulate (IRA) code a type of
systematic LDPC code, i.e., each codeword can be
partitioned into message bits and syndrome bits

As shown on the right, light blue circles correspond to
the input message bits and the dark blue circle
correspond to the syndrome bits

To ensure the top check bit is satisfied, the top
syndrome bit will be set to be the sum of message bits
connecting to the check

The computed syndrome bit will then pass to the next
check and again we can ensure the next check bit is
satisfied by setting that second syndrome bit as the
sum of message bits conecting to the check + last
syndrome bit. All (dark blue) syndrome bits can be
assigned in similar token

...

S. Cheng (OU-Tulsa) December 5, 2017 23 / 27



Lecture 15 LDPC Codes

IRA Codes

Irregular repeated accumulate (IRA) code a type of
systematic LDPC code, i.e., each codeword can be
partitioned into message bits and syndrome bits

As shown on the right, light blue circles correspond to
the input message bits and the dark blue circle
correspond to the syndrome bits

To ensure the top check bit is satisfied, the top
syndrome bit will be set to be the sum of message bits
connecting to the check

The computed syndrome bit will then pass to the next
check and again we can ensure the next check bit is
satisfied by setting that second syndrome bit as the
sum of message bits conecting to the check + last
syndrome bit. All (dark blue) syndrome bits can be
assigned in similar token

...

S. Cheng (OU-Tulsa) December 5, 2017 23 / 27



Lecture 15 LDPC Codes

LDPC Decoding

x1, · · · , xN (light blue): transmitted bits

y1, · · · , yN (dark grey): received bits

p(xN , yN) =
∏

i p(yi |xi )︸ ︷︷ ︸
fi (xi ,yi )

p(xN)︸ ︷︷ ︸∏
A fA(xA)

fi (xi , yi ) = p(yi |xi ) and

fA(x) =

{
0, x contains even number of 1,
1, x contains odd number of 1.

...

f 1 x1, y1 x1y1 f A x Am1Am11

mA2
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Lecture 15 LDPC Codes

Variable Node Update

Since the unknown variables are binary, it is more convenient to
represent the messages using likelihood or log-likelihood ratios. Define

lai ,
mai (0)

mai (1)
, Lai , log lai (2)

and

lia ,
mia(0)

mia(1)
, Lia , log lia (3)

for any variable node i and factor node a.

Then,

Lia ←
∑

b∈N(i)\i

Lai . (4)
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Check Node Update

Assuming that we have three variable nodes 1,2, and 3 connecting to
the check node a, then the check to variable node updates become

ma1(1)← m2a(1)m3a(0) +m2a(0)m3a(1) (5)

ma1(0)← m2a(0)m3a(0) +m2a(1)m3a(1) (6)

Substitute in the likelihood ratios and log-likelihood ratios, we have

la1 ,
ma1(0)

ma1(1)
← 1 + l2al3a

l2a + l3a
(7)

and

eLa1 = la1 ←
1 + eL2aeL3a

eL2a + eL3a
. (8)
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Lecture 15 LDPC Codes

Note that

tanh

(
La1
2

)
=

e
La1
2 − e−

La1
2

e
La1
2 + e−

La1
2

=
eLa1 − 1

eLa1 + 1
(9)

← 1 + eL2aeL3a − eL2a − eL3a

1 + eL2aeL3a + eL2a + eL3a
(10)

=
(eL2a − 1)(eL3a − 1)

(eL2a + 1)(eL3a + 1)
(11)

= tanh

(
L2a
2

)
tanh

(
L3a
2

)
. (12)

When we have more than 3 variable nodes connecting to the check
node a, it is easy to show using induction that

tanh

(
Lai
2

)
←

∏
j∈N(a)\i

tanh

(
Lja
2

)
. (13)
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