L _x=n)
o Univariate Normal: N(x; u,02) = 21 e 207
o
o ) TE (x
e Multivariate Normal: N(x; p, X) = me 2(—p) T (x—p)

Note that N'(x; u, %) = N (w; x, X). It is trivial but quite useful
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Symmetric matrices
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Symmetric matrices

(M~)TMT = (MM—1T =1 = (M~1)T is inverse of MT [

If M is symmetric, so is M1

(M—I)T — (MT)—l —_ M—l
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Lecture 2 Warmup

Hermitian matrices

@ An extension of transpose operation to complex matrices is the
hermitian transpose operation, which is simply the transpose and
conjugate of a matrix (vector)

o We denote the hermitian transpose of M as Mt £ M, when M is
the complex conjugate of M

o A matrix is Hermitian if MT = M. Note that a real symmetric matrix
is Hermitian
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Lecture 2 Warmup

Eigenvalues of Hermitian matrices

If M is Hermitian (MT = M), all eigenvalues are real
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Eigenvalues of Hermitian matrices

If M is Hermitian (MT = M), all eigenvalues are real

AMxTx) = (Ax)Tx = (Mx)Tx = xTMTx = xTMx = xT(Ax) = A\(xTx) O

If M is Hermitian, eigenvectors of different eigenvalues are orthogonal
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Lecture 2~ Warmup

Eigenvalues of Hermitian matrices

If M is Hermitian (MT = M), all eigenvalues are real

AMxTx) = (Ax)Tx = (Mx)Tx = xTMTx = xTMx = xT(Ax) = A\(xTx) O

If M is Hermitian, eigenvectors of different eigenvalues are orthogonal

Alxing = (MX]_)TXQ = XIMXQ = )\2XIX2

:>>\1 75)\2 :>XIX2 =0

August 28, 2017 4 /40



Lecture 2~ Warmup

Hermitian matrices are diagonizable

Hermitian matrices are diagonizable

Proof.

We will sketch the proof by construction. For any n-d Hermitian matrix M,
consider an eigenvalue A and corresponding eigenvector u, without loss of
generality, let's also normalize u such that ||u|| = 1. Consider the subspace
orthogonal to u, UL, and let vy, - -, v,_1 be arbitrary orthonormal basis of U~.
Note that for any k, Avy will be orthogonal to u since

ut My, = ut Mty = (Mu)Tvk = \fve=0.

Thus, (u,v1,--- ,v,,_l)Jr M (u,vi,--+ ,vo1) = (3 ). Moreover, M' is also a

Hermitian matrix with one less dimension. We can apply the same process on M’

and “diagonalize” one more row/column. That is,
(18) PtMP (1 9) = (o 7). We can repeat this until the entire M i
b op )= oy ) We can repeat this until the entire M is

diagonalized O




Lecture 2 Warmup

Hermitian matrices are diagonalizable

A Hermitian matrix is diagonalized by its eigenvectors and the diagonalized
matrix is composed of the corresponding eigenvalues. That is,

A1 0 -
(V].?"'7VI1)TM(V17"'7VH):(0)\2 >

v

Moreover, V is unitary (orthogonal), i.e., VIV = I and thus V=1 = V1

Recall that real-symmetric matrices are Hermitian, thus can be
diagonalized by its eigenvectors also
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Lecture 2 Warmup

Positive definite matrices

Definition (Positive definite)

For a Hermitian matrix M, it is positive definite iff Vx, xtMx >0

Definition (Positive semi-definite)

For a Hermitian matrix M, it is positive semi-definite iff Vx, xtMx >0

M is positive definite (semi-definite) iff all its eigenvalue is larger (larger or
equal to) 0
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Lecture 2~ Warmup

Positive definite matrices

Definition (Positive definite)

For a Hermitian matrix M, it is positive definite iff Vx, xtMx >0

Definition (Positive semi-definite)

For a Hermitian matrix M, it is positive semi-definite iff Vx, xtMx >0

M is positive definite (semi-definite) iff all its eigenvalue is larger (larger or
equal to) 0

=-: assume positive definite but some eigenvalue < 0, WLOG, let A\; < 0, then
vlT Mv; = A1 < 0 contradicts that M is positive definite
< If Yk, A\ > 0, for any x,

A1 O
xtMx = (VTX)T< - ) Vix =3 M(Vix)32 >0 O
0o .

August 28, 2017 7 /40




Lecture 2 More detour

Some probability basic

@ Probability mass function (pmf) for discrete random variable (r.v.) X
e p(x)>0
e p(x)<1

o 3, plx) =1
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Some probability basic

@ Probability mass function (pmf) for discrete random variable (r.v.) X
e p(x)>0
e p(x)<1
o 3 p(x) =
@ Probability density function (pdf) for continuous r.v. X
e p(x) =0
o p(x) can be larger than 1
Pr(a < X < b) = fab p(x) (Area between p(x) and x-axis)

o Jon(
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Some probability basic

@ Probability mass function (pmf) for discrete random variable (r.v.) X

e p(x)>0
e p(x)<1
o 3 plx) =1
@ Probability density function (pdf) for continuous r.v. X
e p(x) =0

o p(x) can be larger than 1
o Pr(a< X <b)= fab p(x) (Area between p(x) and x-axis)
° fX p(x)=1

e Marginalization: >, p(x,y) = p(y)
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@ Probability density function (pdf) for continuous r.v. X
e p(x) =0

o p(x) can be larger than 1
o Pr(a< X <b)= fab p(x) (Area between p(x) and x-axis)
° fX p(x)=1

e Marginalization: >, p(x,y) = p(y)

e Conditional probability: p(x|y) = p,(;)(%)

o NB. X, plxly) = 1 but X3, plxly) # 1
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Lecture 2 More detour

Some probability basic

@ Probability mass function (pmf) for discrete random variable (r.v.) X

e p(x)>0
e p(x)<1
o 3 plx) =1
@ Probability density function (pdf) for continuous r.v. X
e p(x) =0
o p(x) can be larger than 1
o Pr(a< X <b)= fab p(x) (Area between p(x) and x-axis)
° fX p(x)=1
e Marginalization: >, p(x,y) = p(y)
e Conditional probability: p(x|y) = pf())((}’};)

o NB. X, plxly) = 1 but X3, plxly) # 1
Chain rule: p(x,y.2) = p(x)p(y|x)p(z|x, )
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Lecture 2 More detour

Some probability basic

@ Probability mass function (pmf) for discrete random variable (r.v.) X

e p(x)>0
e p(x)<1
o 3 plx) =1
@ Probability density function (pdf) for continuous r.v. X
e p(x) =0
o p(x) can be larger than 1
o Pr(a< X <b)= fab p(x) (Area between p(x) and x-axis)
° fX p(x)=1
e Marginalization: >, p(x,y) = p(y)
e Conditional probability: p(x|y) = pf())((}’};)

o NB. S, p(xly) = 1 but 32, plxly) # 1
Chain rule: p(x, v, 2) = p(x)p(y[x)p(z|x, )
Independence: p(x,y) = p(x)p(y), X LY
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Lecture 2 More detour

Some probability basic

@ Probability mass function (pmf) for discrete random variable (r.v.) X

e p(x)>0
e p(x)<1
o 3 plx) =1
@ Probability density function (pdf) for continuous r.v. X
e p(x) =0
o p(x) can be larger than 1
o Pr(a< X <b)= fab p(x) (Area between p(x) and x-axis)
° fX p(x)=1
e Marginalization: >, p(x,y) = p(y)
e Conditional probability: p(x|y) = pf())((}’};)

o N.B. Y, p(xly) = 1 but 32, p(xly) # 1
Chain rule: p(x,y,z) = p(x)p(y|x)p(z|x, y)
Independence: p(x,y) = p(x)p(y), X LY
Markov property and conditional independence:
p(x,y|z) = p(x|2)p(y|z), X LY|Z, X < Z <Y
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Lecture 2 More detour

Some probability basic

@ Probability mass function (pmf) for discrete random variable (r.v.) X

e p(x)>0
e p(x)<1
o 3 plx) =1
@ Probability density function (pdf) for continuous r.v. X
e p(x) =0

o p(x) can be larger than 1
o Pr(a< X <b)= fab p(x) (Area between p(x) and x-axis)
° fX p(x)=1

e Marginalization: >, p(x,y) = p(y)

e Conditional probability: p(x|y) = p,(;)(%)

o N.B. Y, p(xly) =1 but ¥, p(xly) # 1
o Chain rule: p(x,,2) = p(x)p(yx)p(zIx,¥)
e Independence: p(x,y) = p(x)p(y), X LY
@ Markov property and conditional independence:
p(x,y|z) = p(x|2)p(y|z), X LY|Z, X < Z <Y
@ Inference: ML, MAP, Bayesian




Lecture 2 More detour

Inference

o: (Observed) evidence, #: Parameter, x: prediction

Maximum Likelihood (ML)
£ = arg maxy p(x|0), 0 = arg maxy p(ol0)

Maximum A Posteriori (MAP)
£ = arg max, p(x|0), 0 = arg maxg p(6]0)

Bayesian

p(xlo)
where p(f|o) = % x p(o|8)p(8
~—

prior
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Lecture 2 Multivariate normal distributions

Covariance matrices

Definition (Covariance matrices)

Recall that for a vector random variable X = [X1, X2,--- , X,] ", the
covariance matrix ¥ £ E[(X — p)(X — p) "]

Remark

Covariance matrices are always positive semi-definite since Vu,
uTSu = E[uT(X — p)(X — p)Tu] = E[(X — )T u[]?] > 0

| \

Remark

In general, we usually would like to assume ¥ to be strictly positive definite.
Because otherwise it means that some of its eigenvalues are zero and so in some
dimension, there is actually no variation and is just constant along that
dimension. Representing those dimension as random variable is troublesome since
“1/a®" which occurs often will become infinite. Instead we can always simply
strip away those dimensions to avoid complications

v
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Lecture 2 Multivariate normal distributions

Marginalization of normal distribution

e Consider Z ~ N(pz,Xz) and let say X is a segment of Z. That is,
Z= <)Y(> for some Y. Then how should X behave?
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Lecture 2 Multivariate normal distributions

Marginalization of normal distribution

e Consider Z ~ N(pz,Xz) and let say X is a segment of Z. That is,
Z= <)Y(> for some Y. Then how should X behave?

@ We can find the pdf of X by just marginalizing that of Z. That is

p(x) = / p(x,y)dy

g oo (G s () ) o
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Lecture 2 Multivariate normal distributions

Marginalization of normal distribution

@ Denote ¥~ ! as A (also known as the precision matrix). And partition

- 2 xx va) </\xx /\XY>
both ¥ and A into ¥ = and A =
! (zyx Tyy Avx  Avy
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Lecture 2 Multivariate normal distributions

Marginalization of normal distribution

@ Denote ¥~ ! as A (also known as the precision matrix). And partition

- 2 xx va) </\xx /\XY>
both ¥ and A into ¥ = and A =
! (zvx Tyy Avx  Avy

@ Then we have

1 1
p(x) = \/ﬁ /eXP <—2 [(X - MX)T/\xx(X — px)

+(y = my) T Ayx(x = px) + (x — px) T Axy (¥ — py)
(= 1) A (y = )| > dy

) hlemig)

\/m / < (y — 12v) TAyx (x — px)

+(x — 1x) "Axy (¥ — py) + (Y — v) "TAyy (y — MY)D dy
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Lecture 2 Multivariate normal distributions

Marginalization of normal distribution

To proceed, let's apply the completing square trick on

(¥ —1v) TAyx (x = px) + (x = px) T Ay (Y = 1v) + (¥ = pov) T Ayy (¥ — ).
For the ease of exposition, let us denote X as x — ux and y as y — py. We
have
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Lecture 2 Multivariate normal distributions

Marginalization of normal distribution

To proceed, let's apply the completing square trick on

(¥ —1v) TAyx (x = px) + (x = px) T Ay (Y = 1v) + (¥ = pov) T Ayy (¥ — ).
For the ease of exposition, let us denote X as x — ux and y as y — py. We
have

§ Ayx& + & Axy ¥ + 5 Ayy§
=(F + ApyAvx%) T Ayy (§ + Ay Avx®) — %7 Axy Ayy AvxX,

where we use the fact that A = X1 is symmetric and so Axy = Ayx
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Lecture 2 Multivariate normal distributions

Marginalization of normal distribution

s —1 <
5T (Agy —Axy Ayy Ay
I E—

/ _ FAgy Ayx®) T Ayy (FHApy AyxX) J
2 y
det(27Y)
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Lecture 2 Multivariate normal distributions

Marginalization of normal distribution

s —1 <
5T (Agy —Axy Ayy Ay
e 2

- -1 - - —1 -
(+Agy Avx®) T Ayy G+Agy Avx5)
- 2

e d
\/det(27T) / g
det(27Ayy) ( - /\XY/\;¢AYX)§>
exp

/det(2nT) 2

p(x) =

August 28, 2017 14 / 40



Lecture 2 Multivariate normal distributions

Marginalization of normal distribution

s —1 <
2T (Aex —Axy Ayy Myx)%

S —|
e
det(27X)
det(2mAyY) %7 (A — AXYA;\I(AYX)i)
= ——eXx
det2nr) 7 :
det(27Ayy)

)
det(27X)

- -1 - - —1 -
(+Agy Avx®) T Ayy G+Agy Avx5)
- 2

p(x) =

dy

@)

2

<_
(%)
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Lecture 2 Multivariate normal distributions

Marginalization of normal distribution

(Axx /\xv/\yy Ayx)%

e a—1 o e a—1 o
_ FHAYy Ayx®) T/\yy(Y+/\YY AyxX)
e 2 dy

det(27Y)
\/det(27r/\ v)
v/det(27X)

(@) det(27Ayy) ( TZxxx>

——————exp

/\XY/\yy/\Yx) >

S exp
det(2ﬂ'Z

—~

) exp

\/det 271'2)()(

TZxx")
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Lecture 2 Multivariate normal distributions

Marginalization of normal distribution

s —1 <
2T (Aex —Axy Ayy Myx)%

e~z
x) = e
P(x) det(2rx /
det(27AY) & (A — AXYA;\I(AYX)i)

- -1 - - —1 -
(+Agy Avx®) T Ayy G+Agy Avx5)
- 2

dy

=1 ———ex
detarz) P 2

)
det(27Ayy)
—F——— €X

det(27X)
(5) 1 exp <>"(T)Z>&>“<>
det(27erx) 2
= L exp ( (X_HX)TZ)Z}((X—MX)) )

\/ det(27erx) 2

where (a) and (b) will be shown next

@)

©

—~
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Lecture 2 Multivariate normal distributions

(a) Txx = Axx — AxyAyyAvx

Proof.

Since A = X1, we have TxxAxy + ZxyAyy = 0 and

> xxAxx + xyAyx = I. Insert an identity into the latter equation, we
have TxxAxx + Zxy (AvyAyy)Avx = TxxAxx — (ZxxAxy)AyyAvx =
ZXX(AXX — Axy/\;i/\yx) = /. ]

Remark

| \

By symmetry, we also have

Aix = xx — ZxyZyy Zyx
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Lecture 2 Multivariate normal distributions

(b") det(X) = det(Zyy) det(Agx)

2 xx ZXY>
det(X) = det
etz) = de <ZYX Yyy

Ol

v
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Lecture 2 Multivariate normal distributions

(b") det(X) = det(Zyy) det(Agx)

2 xx ZXY>
det(X) = det
etz) = de (ZYX Yyy

(s 58) (5 )
0 Tvy) \ZyyZvx |/

Ol

v

August 28, 2017 16 / 40



Lecture 2 Multivariate normal distributions

(b") det(X) = det(Zyy) det(Agx)

2 xx ZXY>
det(X) = det
etz) = de (ZYX Yyy

(s 58) (3 )
0 Tvy) \ZyyZvx |/

et (!0 I Txv) (Zxx — IxyZyyZvyx O
- 0 Zyy/\0 [/ Yoy Zyx /

Ol

v
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Lecture 2 Multivariate normal distributions

(b") det(X) = det(Zyy) det(Agx)

I 0 Txx  Xxy

0 Tvy) \ZyyZvx |/

I 0 I Ixy) (Zxx — IxyZyyZyx 0
0 Tyy)\0 [ Yoy Zyx !

IO o (1 2y o zxx—awz;\l(zyx 0
0 I Y yeTyx /

Ol

v
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Lecture 2 Multivariate normal distributions

(b") det(X) = det(Zyy) det(Agx)

Zxx va)
YX 2yy

Zdet(( o) (et 1))
0 Zyy ZYYZYX /
Yxy) (Ixx — IxyZyyZyx O
0 ZYY / Z;&ZYX /

0 I Yxy Yxx — IxyZyyZyx O
_ de t(o ZW>dt<0 / >det< e :

= det Xyy det(ZXx — nyz;¢ZYx)

det(X) = det

Ol

v
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Lecture 2 Multivariate normal distributions

(b") det(X) = det(Zyy) det(Agx)

Zxx va)
YX 2yy

Zdet(( o) (et 1))
0 Zyy ZYYZYX /
Yxy) (Ixx — IxyZyyZyx O
0 ZYY / Z;&ZYX /

0 I Yxy Yxx — IxyZyyZyx O
_ de t(o ZW>dt<0 / >det< e :

= det Xyy det(ZXx — nyz;¢ZYx)

det(X) = det

= det Tyy det Agx,

where the last equality is from (a) O

v
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Lecture 2 Multivariate normal distributions

(b) det(aX) = det(aXyy)det(aAyy) for any constant a

Proof.
Note that since the width (height) of X is equal to the sum of the widths
of xx and Xyy. The equation below follows immediately ]

Remark

| \

Note that by symmetry, we also have det(aX) = det(aXxx) det(alyy) for
any constant a. Take a = 2w and that is exactly what we need for (b)
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Lecture 2 Multivariate normal distri

Conditioning of normal distribution

X

o Consider the same Z ~ N (pz,Xz) and Z = (Y

like if Y is observed to be y?

). What will X be
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Conditioning of normal distribution

X

o Consider the same Z ~ N (pz,Xz) and Z = (Y

like if Y is observed to be y?

). What will X be

@ Basically, we want to find p(x]y) = p(x,y)/p(y)
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Lecture 2 Multivariate normal distributions

Conditioning of normal distribution

X

o Consider the same Z ~ N (pz,Xz) and Z = <Y

). What will X be
like if Y is observed to be y?

@ Basically, we want to find p(x]y) = p(x,y)/p(y)
@ From previous result, we have p(y) = N(y; py, Lyy). Therefore,

p(x]y) o exp <_; [(;) Tz—l <§> —§Tr g )

1. . . -
X exp <—2[xT/\XXx + xT/\xyy + yT/\yxx]> ,

where we use X and ¥ as shorthands of x — px and y — ey as before
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Lecture 2 Multivariate normal distri

Conditioning of normal distribution

o Completing the square for X, we have
1. _ ~ . _ ~
p(x|y) o< exp (‘2(X + AxAxy¥) T Axx (% + /\x)l(/\XYY)>

1 _
=exp| —=(x— px + /\X)l(/\XY(Y - HY))T/\XX
2

(x — px + AgxAxy (¥ — py)))
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Lecture 2 Multivariate normal distri

Conditioning of normal distribution

o Completing the square for X, we have
1. _ ~ . _ ~
p(x|y) o< exp (‘2(X + AxAxy¥) T Axx (% + /\x)l(/\XYY)>

1 _
= exp <—2(X — px + /\X)l(/\XY(Y - HY))T/\XX

(x — px + AgxAxy (¥ — py)))

@ Therefore X|y is Gaussian distributed with mean
ux — A;)l(/\xy(y — py) and covariance /\;01(
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Lecture 2 Multivariate normal distributions

Conditioning of normal distribution

o Completing the square for X, we have
1. _ ~ . _ ~
p(x|y) o< exp (‘2(X + AxAxy¥) T Axx (% + /\x)l(/\XYY)>

1 _
= exp <—2(X — px + /\X)l(/\XY(Y - HY))T/\XX

(x — px + AgxAxy (¥ — py)))

@ Therefore X|y is Gaussian distributed with mean
ux — A;)l(/\xy(y — py) and covariance /\;01(

@ Note that since AxxXxy + AxyXyy =0, /\)_()I(AXY = —nyZ;\l, and
from (a), we have

Xy ~ N(px + Zxy gy (Y — £v), Txx — xy Zyy Zyx)
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Lecture 2 Multivariate normal distributions

Interpretation of conditioning

X]y ~ N (px + ExyZyy (¥ = bv), Txx — ZxyZyy Tvx)

@ When the observation of Y is exactly the mean, the conditioned mean
does not change
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Lecture 2 Multivariate normal distributions

Interpretation of conditioning

X]y ~ N (px + ExyZyy (¥ = bv), Txx — ZxyZyy Tvx)

@ When the observation of Y is exactly the mean, the conditioned mean
does not change

@ Otherwise, it needs to be modified and the size of the adjustment
decreases with Xyy, the variance of Y for the 1-D case.

o The observation is less reliable with the increase of Xyy. The
adjustment is finally scaled by Xxy, which translates the variation of Y
to the variation of X
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X]y ~ N (px + ExyZyy (¥ = bv), Txx — ZxyZyy Tvx)

@ When the observation of Y is exactly the mean, the conditioned mean
does not change
@ Otherwise, it needs to be modified and the size of the adjustment
decreases with Xyvy, the variance of Y for the 1-D case.
o The observation is less reliable with the increase of Xyy. The
adjustment is finally scaled by Xxy, which translates the variation of Y
to the variation of X
e In particular, if X and Y are negatively correlated, the sign of the
adjustment will be reversed
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Lecture 2 Multivariate normal distributions

Interpretation of conditioning

X]y ~ N (px + ExyZyy (¥ = bv), Txx — ZxyZyy Tvx)

@ When the observation of Y is exactly the mean, the conditioned mean
does not change
@ Otherwise, it needs to be modified and the size of the adjustment
decreases with Xyvy, the variance of Y for the 1-D case.
o The observation is less reliable with the increase of Xyy. The
adjustment is finally scaled by Xxy, which translates the variation of Y
to the variation of X
e In particular, if X and Y are negatively correlated, the sign of the
adjustment will be reversed
@ As for the variance of the conditioned variable, it always decreases
and the decrease is larger if yy is smaller and Xxy is larger (X and
Y are more correlated)
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Lecture 2 Multivariate normal distributions

X L YI|Zif pxzpyz = pxy

Corollary
Given multivariate Gaussian variables X,Y and Z, we have X and Y are

conditionally independent given Z if pxzpyz = pxy, where

PXZ = \/'_-El[:_(),(é ;fx))())g](lz‘z[(_ZE—(?()Z]))?] is the corre/at.ion coeff.ic.ent between X
and Z. Similarly, pyz and pxy are the correlation coefficients between Y

and Z, and X and Y, respectively.
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Lecture 2 Multivariate normal distributions

X L YI|Zif pxzpyz = pxy

o Without loss of generality, we can assume the variables with mean 0
. X 1 pxy pxz
and variance 1. Thus, (;) ~ N(0,X), where ¥ = (pxy 1 pvz)

pxz pyz 1
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Lecture 2 Multivariate normal distributions

X L Y|Zif pxzpyz = pxy

o Without loss of generality, we can assume the variables with mean 0
. X 1 pxy pxz
and variance 1. Thus, (Y) ~ N(0,X), where ¥ = <pxy 1 pvz)
z pxz pyz 1
@ Then from the conditioning result, we have
1 ,OXY) ~1 <sz>
Y = = o
({/)‘Z <pxy 1 (rxz pvz) oyy ovz
_ ( 1—p%z PXY — szpvz)
PXY — PXZPYZ 1-p%,
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Lecture 2 Multivariate normal distributions

X L YI|Zif pxzpyz = pxy

o Without loss of generality, we can assume the variables with mean 0
. X 1 pxy pxz
and variance 1. Thus, (;) ~ N(0,X), where ¥ = <pr 1 pvz)

pxz pyz 1

@ Then from the conditioning result, we have

1 va) 1 (sz)
¥ — — o
(¥)z <PXY 1 (oxz pvz) 7y 12%4
_ ( 1—p%z PXY — szpvz)
PXY — PXZPYZ 1-p%,

@ Therefore, X and Y are uncorrelated given Z when
oxy|z = pxy — pxzpyz = 0 or pxy = pxzpyz. Since for Gaussian
variables, uncorrelatedness implies independence. This concludes the
proof.

[]
R ———————.—.—————,
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Lecture 2 Multivariate normal distributions

Product of normal distributions

@ Assume that we tries to recover some vector parameter x, which is
subject to multivariate Gaussian noise
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@ Assume that we tries to recover some vector parameter x, which is
subject to multivariate Gaussian noise
@ Say we made two measurements y; and y», where Y1 ~ N (x, Xvy,)
and Yz ~ N (x,Xy,). Note that even though both measurements
have mean x, they have different covariance
e This variation, for instance, can be due to environment change between
the two measurements
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@ Assume that we tries to recover some vector parameter x, which is
subject to multivariate Gaussian noise
@ Say we made two measurements y; and y», where Y1 ~ N (x, Xvy,)
and Yz ~ N (x,Xy,). Note that even though both measurements
have mean x, they have different covariance
e This variation, for instance, can be due to environment change between
the two measurements

e Now, if we want to compute the overall likelihood, p(y1,y2|x).
Assuming that Y3 and Y5 are conditionally independent given X, we
have

p(y1,y2|x) = p(y1[x)p(y2[x)
= N(yl, X, ZYl)N(YZ X, ng)'
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Lecture 2 Multivariate normal distributions

Product of normal distributions

@ Assume that we tries to recover some vector parameter x, which is
subject to multivariate Gaussian noise
@ Say we made two measurements y; and y», where Y1 ~ N (x, Xvy,)
and Yz ~ N (x,Xy,). Note that even though both measurements
have mean x, they have different covariance
e This variation, for instance, can be due to environment change between
the two measurements

e Now, if we want to compute the overall likelihood, p(y1, y2|x).
Assuming that Y3 and Y5 are conditionally independent given X, we
have

p(y1,y2|x) = p(y1[x)p(y2[x)
= N(y1, X, ZYl)N(YZ X, ng)'

o Essentially, we just need to compute the product of two Gaussian
pdfs. Such computation is very useful and it occurs often when one
needs to perform inference
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Lecture 2 Multivariate normal distributions

Product of normal distributions

As in previous cases, the product turns out to be normal also. However, unlike
them, the product is not a pdf and so it does not normalize to 1. So we have to
compute both the scaling factor and the exponent explicitly. Let us start with the
exponent.

N(y1: %, Xy, )N (y2; %, X,)
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Lecture 2 Multivariate normal distributions

Product of normal distributions

As in previous cases, the product turns out to be normal also. However, unlike
them, the product is not a pdf and so it does not normalize to 1. So we have to
compute both the scaling factor and the exponent explicitly. Let us start with the
exponent.

N(y1: %, Xy, )N (y2; %, X,)

cerp (=310 y0) v, (x = 31) + (x - y2) s - v
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Lecture 2 Multivariate normal distributions

Product of normal distributions

As in previous cases, the product turns out to be normal also. However, unlike
them, the product is not a pdf and so it does not normalize to 1. So we have to
compute both the scaling factor and the exponent explicitly. Let us start with the
exponent.

N(y1: %, Xy, )N (y2; %, X,)

cerp (=310 y0) v, (x = 31) + (x - y2) s - v

1
xexp <_2[XT(/\Y1 + /\Yz )X - (y2T/\Y2 + le/\Yl )X - xT(AY2y2 + /\Y1y1)]>

oce 3=y, +Av,) T (Av,¥2+Av, ¥1)) T (Avy v, ) (k= (Avy +Av, ) T (A, y2+Avy y1))]
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Lecture 2 Multivariate normal distributions

Product of normal distributions

As in previous cases, the product turns out to be normal also. However, unlike
them, the product is not a pdf and so it does not normalize to 1. So we have to
compute both the scaling factor and the exponent explicitly. Let us start with the
exponent.

N(y1: %, Xy, )N (y2; %, X,)

cerp (=310 y0) v, (x = 31) + (x - y2) s - v

1
xexp <_2[XT(/\Y1 + /\Yz )X - (yZT/\Yz + le/\Yl )X - xT(AY2y2 + /\Y1y1)]>

oce_%[(x_(AYl +Av,) T (A, Yo+ A ¥1)) T (A, +0v, ) (x— (Av, +Av,) T H(Av, Yo+, 1))
O(N(X; (AY1 + /\Yz)_l(/\Y2y2 + /\Y1y1)7 (AY2 + /\Yl)_l)
Therefore,

N(yl; X, ZYI )N(va X, ZYz)
=K(y1,¥2, Zv,, Ty, )N (% (Ay, + Ay,) THAY,Y2 + Av,yn), (A, + Ay,) )

for some scaling factor K(y1,y2, Xv,, Ly,) independent of x
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Lecture 2 Multivariate normal distributions

Product of normal distributions

@ One can compute the scaling factor K(y1,y2, Xy, , Xy, ) directly
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Lecture 2 Multivariate normal distributions

Product of normal distributions

@ One can compute the scaling factor K(y1,y2, Xy, , Xy, ) directly

@ However, it is much easier to take advantage for the following setup
when X 1L Y1]Y3 as shown below

Yo—>» —» X—» —»Y,

!

U~N(0,2y,) V~N02y,)
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Lecture 2 Multivariate normal distri

Product of normal distributions

@ One can compute the scaling factor K(y1,y2, Xy, , Xy, ) directly

@ However, it is much easier to take advantage for the following setup
when X 1L Y1]Y3 as shown below

Yo—>» —» X—» —»Y,

!

U~ N(0,%y,) V~N(0,2y,)
@ Since N (y2:x,Xy,) = N(x;y2,Zy,) and X L Y;1|Y2, we have

Ny %, Ty )N (y2: X, Zv,) = Ny x, Zv, )N (X y2, Zv,) = p(y1, x]y2)
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Lecture 2 Multivariate normal distributions

Product of normal distributions

@ Then, marginalizing x out from p(y1,x|y2), we have

p(y1ly2) = | p(y1,x|y2)dx. However, from the figure, —v~x0.5v) v~xosv)

/P(Y1,X|Y2)dx = p(y1ly2) = N(y1;y2, Zv, + Xv,)
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Lecture 2 Multivariate normal distributions

Product of normal distributions

@ Then, marginalizing x out from p(y1,x|y2), we have

p(y1ly2) = | p(y1,x|y2)dx. However, from the figure, —v~x0.5v) v~xosv)

/P(Y1,X|Y2)dx = p(y1ly2) = N(y1;y2, Zv, + Xv,)

@ On the other hand,
/P(Y17X\Y2)dxz /N(Yl;xvzvl)/\/(yzx,zvz)dx

- / K(y1.¥2 Ty, Ty N0 (v, + Ava) (Avaya + Avoy). (A, + Avy)H)dx

:K(yla y2, ZYlv ZYQ)'
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Lecture 2 Multivariate normal distributions

Product of normal distributions

@ Then, marginalizing x out from p(y1,x|y2), we have

p(y1ly2) = | p(y1,x|y2)dx. However, from the figure, —v~x0.5v) v~xosv)

/P(Y1,X|Y2)dx = p(y1ly2) = N(y1;y2, Zv, + Xv,)

@ On the other hand,
/P(Y17X\Y2)dxz /N(Yl;xvzvl)/\/(yzx,zvz)dx

- / K(y1.¥2 Ty, Ty N0 (v, + Ava) (Avaya + Avoy). (A, + Avy)H)dx

:K(ylay%zYlszg)'
@ Thus we have K(y1,¥2,Xv,,Zv,) = N(y1;¥2, Xy, + Zv,)
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Lecture 2 Multivariate normal distributions

Product of normal distributions

@ Then, marginalizing x out from p(y1,x|y2), we have

p(y1ly2) = | p(y1,x|y2)dx. However, from the figure, —v~x0.5v) v~xosv)

/P(Y1,X|Y2)dx = p(y1ly2) = N(y1;y2, Zv, + Xv,)

@ On the other hand,
/P(Y17X\Y2)dxz /N(Yl;xvzvl)/\/(yzx,zvz)dx

= / K(y1,¥2, Ty, T, )NV (% (Ay, + Av,) THAY,Y2 + Avyy), (Ay, + Ay,) ) dx
=K(y1,¥2, Zv,, Zv,)-
@ Thus we have K(y1,¥2,Xv,,2y,) = N(y1;¥2, Xy, + Zy,) and so
Ny % Ty, )V (y2i x, Iy, )
=N(y1:¥2, Zv, + Ty )N (x; (Av; + Av,) TH(ALY2 + Avey), (Ay, + Av,) ™)



Lecture 2 Multivariate normal distributions

Product of normal distributions

Let us try to interpret the product as the overall likelihood after making
two observations. Consider the simpler case when X, Y1 and Y5 are all
scaler
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Let us try to interpret the product as the overall likelihood after making
two observations. Consider the simpler case when X, Y1 and Y5 are all
scaler
@ The mean considering both observations,
(Ay, + Ay,) H(Av,y2 + Ay, ), is essential a weighted average of
observations y> and y;
o The weight is higher when the precision Ay, or Ay, is larger
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Product of normal distributions

Let us try to interpret the product as the overall likelihood after making
two observations. Consider the simpler case when X, Y1 and Y5 are all
scaler
@ The mean considering both observations,
(Ay, + Ay,) H(Av,y2 + Ay, ), is essential a weighted average of
observations y, and y;
o The weight is higher when the precision Ay, or Ay, is larger
@ The overall variance (Ay, + Ay,) ! is always smaller than the
individual variance Xy, and Xy,
e We are more certain with x after considering both y; and y;
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Lecture 2 Multivariate normal distributions

Product of normal distributions

Let us try to interpret the product as the overall likelihood after making
two observations. Consider the simpler case when X, Y1 and Y5 are all
scaler

@ The mean considering both observations,
(Ay, + Ay,) H(Av,y2 + Ay, ), is essential a weighted average of
observations y> and y;
o The weight is higher when the precision Ay, or Ay, is larger

@ The overall variance (Ay, + Ay,) ! is always smaller than the
individual variance Xy, and Xy,

e We are more certain with x after considering both y; and y;
@ The scaling factor, N(y1;y2, Xy, + Xv, ), can be interpreted as how
much one can believe on the overall likelihood.
e The value is reasonable since when the two observations are far away

with respect to the overall variance Xy, + Xy, , the likelihood will
become less reliable

e The scaling factor is especially useful when we deal with mixture of
Gaussian to be discussed next

August 28, 2017 27 / 40



Lecture 2 Multivariate normal distributions

Division of normal distributions

@ To compute % note that from the product formula earlier

N(x; p2, T2)N (x; (A1 = A2) H(Arps — Aaprz), (A — A2) 1)
=N(p1; (A — A2) H(Arpr — Aop2), A3 T+ (A — A2) THN(x; e, T1)
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Lecture 2 Multivariate normal distributions

Division of normal distributions

@ To compute % note that from the product formula earlier

N(x; p2, T2)N (x; (A1 = A2) H(Arps — Aaprz), (A — A2) 1)
=N(p1; (M = No) H(Arpr — Mapo), AT+ (A — Ao) HN(x; pa, 1)
@ Therefore,
NOGpL,T1) NG (A= A) (A — Mapa), (M — Ag) 1)

N p2,T2)  N(pr, (M — M) H(Arps — Aap)i A1 + (A — Ao) L)
N(x; g, (M= A2) ™)

N, A+ (A= M)
where = (A1 — Ap) (A — Aopo)
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Lecture 2 Multivariate normal distributions

Division of normal distributions

@ To compute % note that from the product formula earlier

N(x; p2, 22N (% (M = A2) " (Arpr = Aapaa), (A — A2) ™)
=N(p1; (M = No) H(Arpr — Mapo), AT+ (A — Ao) HN(x; pa, 1)
@ Therefore,
N p1, L) N (A= A2) M (Apn — Aopa), (M — A2) 1)

N p2,T2)  N(pr, (M — M) H(Arps — Aap)i A1 + (A — Ao) L)
N(x; g, (M= A2) ™)

T N AT+ (A - ALY

where = (A1 — Ap) (A — Aopo)

@ Note that the final pdf will be Gaussian-like if Ay = As. Otherwise,
one can still write out the pdf using the precision matrix. But the
covariance matrix will not be defined (Try plot some pdfs out
yourselves)
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Lecture 2 Mixture of “Gaussians”

Mixture of Gaussians

Consider an electrical system that outputs signal of different statistics
when it is on and off
@ When the system is on, the output signal S behaves like N'(5,1).
When the system is off is off, S behaves like A/(0,1)
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Mixture of Gaussians

Consider an electrical system that outputs signal of different statistics
when it is on and off
@ When the system is on, the output signal S behaves like N'(5,1).
When the system is off is off, S behaves like A/(0,1)
@ If someone measuring the signal does not know the status of the
system but only knows that the system is on 40% of the time, then to
the observer, the signal S behaves like a mixture of Gaussians
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Lecture 2 Mixture of “Gaussians”

Mixture of Gaussians

Consider an electrical system that outputs signal of different statistics
when it is on and off

@ When the system is on, the output signal S behaves like N'(5,1).
When the system is off is off, S behaves like A/(0,1)

@ If someone measuring the signal does not know the status of the
system but only knows that the system is on 40% of the time, then to
the observer, the signal S behaves like a mixture of Gaussians

@ The pdf of S will be 0.4N/(s;5,1) + 0.6/ (s;0,1) as shown below
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Lecture 2 Mixture of “Gaussians”

Mixture of Gaussians

@ A main limitation of normal distribution is that it is unimodal
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@ A main limitation of normal distribution is that it is unimodal
@ Mixture of Gaussian distribution allows multimodal and can virtually
model any pdfs. But there is a computational cost for this gain
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Lecture 2 Mixture of “Gaussians”

Mixture of Gaussians

@ A main limitation of normal distribution is that it is unimodal
@ Mixture of Gaussian distribution allows multimodal and can virtually

model any pdfs. But there is a computational cost for this gain
@ Let us illustrate this with the following example:

o Consider two mixtures of Gaussian likelihood of x given two
observations y; and y, as follows:

p(y1|x) = 0.6N(x;0,1) + 0.4N(x;5,1);
p(y2|x) = 0.5N(x; —2,1) + 0.5N (x; 4,1).
What is the overall likelihood, p(y1, y2|x)?
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Lecture 2 Mixture of “Gaussians”

Mixture of Gaussians

@ A main limitation of normal distribution is that it is unimodal
@ Mixture of Gaussian distribution allows multimodal and can virtually
model any pdfs. But there is a computational cost for this gain
@ Let us illustrate this with the following example:
o Consider two mixtures of Gaussian likelihood of x given two
observations y; and y, as follows:
p(y1|x) = 0.6N(x;0,1) + 0.4N(x;5,1);
p(y2|x) = 0.5N(x; —2,1) + 0.5N (x; 4,1).
What is the overall likelihood, p(y1, y2|x)?
@ As usual, it is reasonable to assume the observations to be
conditionally independent given x. Then,
P(y1, y21x) = p(y1|x)p(y2|x)
= (0.6N(x;0,1) + 0.4N(x; 5,1))(0.5N (x; —2,1) + 0.5N (x; 4, 1))
= 0.3NM(x; 0, )N (x; =2,1) + 0.2N(x; 5, 1)V (x; —2,1)
+ 0.3N(x;0,1)N(x;4,1) + 0.2N(x; 5, 1)N(x; 4,1)



Lecture 2 Mixture of “Gaussians”

Explosion of Gaussians

@ The last step involves computing products of Gaussians but we have
learned it in previous sections. Using the previous result,

p(y1, y2|x) = 0.3N(—2;0,2)N(x; —1,0.5) + 0.2NM(—2; 5,2)N(x; 1.5,0.5)
+0.3NV(4;0,2)N(x;2,0.5) + 0.2\ (4;5,2)N(x; 4.5,0.5).
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@ The last step involves computing products of Gaussians but we have
learned it in previous sections. Using the previous result,
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August 28, 2017 31/ 40



Lecture 2 Mixture of “Gaussians”

Explosion of Gaussians

@ The last step involves computing products of Gaussians but we have
learned it in previous sections. Using the previous result,

p(y1, y2|x) = 0.3N(—2;0,2)N(x; —1,0.5) + 0.2NM(—2; 5,2)N(x; 1.5,0.5)
+0.3NV(4;0,2)N(x;2,0.5) + 0.2\ (4;5,2)N(x; 4.5,0.5).

So we have the overall likelihood is a mixture of four Gaussians

@ Let's repeat our discussion but with n observations instead. The overall
likelihood will be a mixture of 2" Gaussians!

o Therefore, the computation will quickly become intractable as the
number of observations increases
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Lecture 2 Mixture of “Gaussians”

Explosion of Gaussians

@ The last step involves computing products of Gaussians but we have
learned it in previous sections. Using the previous result,

p(y1, y2|x) = 0.3N(—2;0,2)N(x; —1,0.5) + 0.2NM(—2; 5,2)N(x; 1.5,0.5)
+0.3NV(4;0,2)N(x;2,0.5) + 0.2\ (4;5,2)N(x; 4.5,0.5).

So we have the overall likelihood is a mixture of four Gaussians
@ Let's repeat our discussion but with n observations instead. The overall
likelihood will be a mixture of 2" Gaussians!
o Therefore, the computation will quickly become intractable as the
number of observations increases

e Fortunately, in reality, some of the Gaussians in the mixture tend to
have a very small weight
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Lecture 2 Mixture of “Gaussians”

Reduce number of components in Gaussian mixtures

@ For instance, in our previous numerical example, if we continue our
numerical computation for the two observation example, we have

p(y1, y2|x) = 0.4163N(x; —1,0.5) + 3.5234 x 10 °N(x; 1.5,0.5)
+ 0.0202N(x; 2,0.5) + 0.5734N/(x; 4.5,0.5).
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Reduce number of components in Gaussian mixtures

@ For instance, in our previous numerical example, if we continue our
numerical computation for the two observation example, we have

p(y1, y2|x) = 0.4163N(x; —1,0.5) + 3.5234 x 10 °N(x; 1.5,0.5)
+ 0.0202N(x; 2,0.5) + 0.5734N/(x; 4.5,0.5).

@ We can see that the weight for the component at mean 1.5 is very
small. And the component at mean 2 has a rather small weight also.
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Lecture 2 Mixture of “Gaussians”

Reduce number of components in Gaussian mixtures

@ For instance, in our previous numerical example, if we continue our
numerical computation for the two observation example, we have

p(y1, y2|x) = 0.4163N(x; —1,0.5) + 3.5234 x 10 °N(x; 1.5,0.5)
+ 0.0202N(x; 2,0.5) + 0.5734N/(x; 4.5,0.5).
@ We can see that the weight for the component at mean 1.5 is very
small. And the component at mean 2 has a rather small weight also.

@ Even with the four Gaussian components, the overall likelihood is
essentially just a bimodal distribution as shown in the figure below
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Lecture 2 Mixture of “Gaussians”

Reduce number of components in Gaussian mixtures

@ Therefore, we may approximate p(y1, y2|x) with only two of its original
component as 0.4163/(0.4163 + 0.5734)N (x; —1,0.5) + 0.5734/(0.4163 +
0.5734)N(x;4.5,0.5) = 0.4206N (x; —1,0.5) 4+ 0.5794N/(x; 4.5,0.5)
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Lecture 2 Mixture of “Gaussians”

Reduce number of components in Gaussian mixtures

@ Therefore, we may approximate p(y1, y2|x) with only two of its original
component as 0.4163/(0.4163 + 0.5734)N (x; —1,0.5) + 0.5734/(0.4163 +
0.5734)N(x;4.5,0.5) = 0.4206N (x; —1,0.5) 4+ 0.5794N/(x; 4.5,0.5)

@ However, it is not always a good approximation strategy just to dump away
the small components in a Gaussian mixture
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Lecture 2 Mixture of “Gaussians”

Another example

Consider
p(x) =0.1N(x; —0.2,1) + 0.1V (x; —0.1,1) + 0.LN(x; 0,1) + 0.1V (x; 0.1, 1)
+0.1NM(x;0.2,1) + 0.5N(x;5,1).
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Lecture 2 Mixture of “Gaussians”

Another example

Consider
p(x) = 0.1N(x; —0.2,1) + 0.1NM(x; —0.1,1) + 0.1N(x; 0,1) + 0.1N(x; 0.1, 1)
+ 0.1NV(x;0.2,1) + 0.5N(x;5,1).
@ Let say we want to reduce p(x) to only a mixture of two Gaussians. It is

tempting to just dumping four smallest one and renormalized the weight.
For example, if we choose to remove the first four components, we have

p(x) =1/6N(x;0.2,1) +5/6/N(x;5,1)
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Lecture 2 Mixture of “Gaussians”

Another example

Consider
p(x) =0.1N(x; —0.2,1) + 0.1V (x; —0.1,1) + 0.LN(x; 0,1) + 0.1V (x; 0.1, 1)
+0.1NM(x;0.2,1) + 0.5N(x;5,1).

@ Let say we want to reduce p(x) to only a mixture of two Gaussians. It is
tempting to just dumping four smallest one and renormalized the weight.
For example, if we choose to remove the first four components, we have

p(x) =1/6N(x;0.2,1) +5/6/N(x;5,1)

@ The approximation p(x) is significantly different from p(x) as shown below
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Lecture 2 Mixture of “Gaussians”

Merging components

@ The problem is that while the first five components are all relatively
small compared to the last one, they are all quite similar and their
combined contribution is comparable to the latter
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Merging components

@ The problem is that while the first five components are all relatively
small compared to the last one, they are all quite similar and their
combined contribution is comparable to the latter

o Actually the first five components are so similar that their combined
contribution can be accurately modeled as one Gaussian
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Lecture 2 Mixture of “Gaussians”

Merging components

@ The problem is that while the first five components are all relatively
small compared to the last one, they are all quite similar and their
combined contribution is comparable to the latter

o Actually the first five components are so similar that their combined
contribution can be accurately modeled as one Gaussian

@ So rather than discarding the components, one can get a much more
accurate approximation by merging them. The approximation is
illustrated as p(x) in the figure below

005,

a E) 0 2 @ © s
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Lecture 2 Mixture of “Gaussians”

Merging components

To successfully obtain such approximation 5(x), we have to answer two
questions:

@ which components to merge?

@ how to merge them?
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Lecture 2 Mixture of “Gaussians”

Which Components to Merge?
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do will gauge the similarity between two components.

e Consider two pdfs p(x) and g(x), note that we can define an inner
product of p(x) and g(x) by
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o Note that the inner product is well defined and (p(x), p(x)) > 0
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Which Components to Merge?

It is reasonable to pick similar components to merge. The question is how
do will gauge the similarity between two components.

e Consider two pdfs p(x) and g(x), note that we can define an inner
product of p(x) and g(x) by

(b a00)) = [ px)alx)dx

o Note that the inner product is well defined and (p(x), p(x)) > 0
@ By Cauchy-Schwartz inequality,

(p(x), 4(x)) _ Jex)adx
VIp0). P00 a(), a0) /] plxj2a [ a(x)2dx

@ The inner product maximizes (= 1) when p(x) = g(x). This suggests
a very reasonable similarity measure between two pdfs
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Similarity measure

@ Let's define

J p(x)q(x)dx
VI p(x)2dx [ q(x)2dx

Sim(p(x), q(x)) =
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Similarity measure

o Let’s define
J p(x)g(x)dx
VI p(x)2dx [ q(x)2dx

e In particular, if p(x) = N(x; pp, Xp) and q(x) = N(x; pg, Lq), we
have (please verify)

Sim(p(x), q(x)) =

; N(pp; pro, Xp + X
ot e ) Ml o) = VN (é'NOP 2“; )/\7 (o-oqz)z )
T P ] q

which can be computed very easily and is equal to one only when
means and covariances are the same
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How to Merge Components?

Say we have n components N'(p1,%1), N(p2,X2), -+, N(fn, ) with
weights wy, wa, - - - , w,. What should the combined component be like?
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How to Merge Components?

Say we have n components N'(p1,%1), N(p2,X2), -+, N(fn, ) with
weights wy, wa, - - - , w,. What should the combined component be like?

e Combined component weight should equal to total weight > 7 ; w;

o Combined mean will simply be Y~7 ; W;jp;, where w; = an" —
i=1 "
@ For combined covariance, it may be tempting to approximate it as
n N
Yo WX
e However, it is an underestimate

o Because the weighted sum only counted the contribution of variation

among each component, it did not take into account the variation due
to different means across components.
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How to Merge Components?

Say we have n components N'(p1,%1), N(p2,X2), -+, N(fn, ) with

weights wy, wa, - - - , w,. What should the combined component be like?
e Combined component weight should equal to total weight > 7 ; w;
o Combined mean will simply be Y~7 ; W;jp;, where w; = Z;"ivi ”

@ For combined covariance, it may be tempting to approximate it as
2 i1 Wik,
e However, it is an underestimate
o Because the weighted sum only counted the contribution of variation

among each component, it did not take into account the variation due
to different means across components.

o Instead, let's denote X as the variable sampled from the mixture. That
is, X ~ N (pj, £;) with probability W;. Then, we have (please verify)

Y = E[XXT] - E[X]E[X]"

=Y Wi(Ei + pinl) ZZW:WJHMJ'
i=1

i=1 j=1
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Now, go back to our previous numerical example

@ Recall that p(x) = 0.1N(x; —0.2,1) + 0.IN(x; —0.1,1) +
0.1N(x;0,1) + 0.1V (x;0.1,1) + 0.1N(x; 0.2,1) 4+ 0.5N(x;5,1)
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Now, go back to our previous numerical example

@ Recall that p(x) = 0.1N(x; —0.2,1) + 0.IN(x; —0.1,1) +
0.1N(x;0,1) + 0.1V (x;0.1,1) + 0.1N(x; 0.2,1) 4+ 0.5N(x;5,1)

@ If we merge the five smallest components (one can easily check that
they are also more similar to each other than to the last component),
we have p(x) = 0.5N(x;0,1.02) + 0.5M(x;5,1) as shown again
below. The approximate pdf is virtually indistinguishable from the
original
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