
Lecture 4

Review

ML: x̂ = argmaxx p(x |θ̂), θ̂ = argmaxθ p(o|θ)
MAP: x̂ = argmaxx p(x |θ̂), θ̂ = argmaxθ p(θ|o)
Bayesian: x̂ =

∑
θ p(θ|o)

∑
x xp(x |θ)

For zero-mean X, ΣX = E [XXT ] and say we have PTΣXP = D. The
transformed Y = PTX are independent to each other

Note that the transform is just principal component analysis

Marginalization of a normal distribution is still a normal distribution

(a) Σ−1
XX = ΛXX − ΛXYΛ

−1
YYΛYX

(b) det(aΣ) = det(aΣYY) det(aΛ
−1
XX) for any constant a
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Lecture 4 Principal component analysis

Principal component analysis (PCA)

Recall that Σ = E [XXT ] (assume X is zero-mean) and Y = PTX
with E [YYT ] = PTΣP = D

Assume that the diagonal of D (note that those are eigenvalues) are
arranged in descending order that λ1 ≥ λ2 ≥ · · · ≥ λn

Generate an approximate Ŷ of Y by setting all components except first
k as 0
The mean square error (mse) of1 Ŷ = E [(Y − Ŷ)T (Y − Ŷ)]
= tr(E [(Y − Ŷ)T (Y − Ŷ)]) = E [tr((Y − Ŷ)T (Y − Ŷ))]
= E [tr((Y − Ŷ)(Y − Ŷ)T )] = tr(E [(Y − Ŷ)(Y − Ŷ)T ]) =

∑n
i=k+1 λi

Similarly, if we “reconstruct” X as X̂ = PŶ. The mse of
X̂ = E [(X− X̂)T (X− X̂)] = tr(E [(X− X̂)(X− X̂)T ])=
tr(PE [(Y − Ŷ)(Y − Ŷ)T ]PT )= tr(PTPE [(Y − Ŷ)(Y − Ŷ)T ])
=
∑n

i=k+1 λi

Note that the eigenvectors of Σ (columns of P) are known as the
principal components

1tr(AB) =
∑

i

∑
j ai,jbj,i =

∑
j

∑
i bj,iai,j = tr(BA)
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∑n

i=k+1 λi

Similarly, if we “reconstruct” X as X̂ = PŶ. The mse of
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=
∑n

i=k+1 λi

Note that the eigenvectors of Σ (columns of P) are known as the
principal components

1tr(AB) =
∑

i

∑
j ai,jbj,i =

∑
j

∑
i bj,iai,j = tr(BA)

September 12, 2017 2 / 29



Lecture 4 Principal component analysis

Practical PCA

In practice, we typically are given a dataset with samples of X instead of
the distribution or covariance matrix of X. Denote the data as X with
each row is a data point and a total of m data points. Thus X is an m by
n matrix

Data are rarely zero-mean to begin with, but we can easily preprocess
it by subtracting the mean. That is2 X ← X − ones(m, 1)mean(X )
Note that Σ̂ ≈ 1

mX
TX . We could directly compute the eigenvectors

and eigenvalues of Σ̂ as discussed previously. But in many cases,
m < n making Σ̂ a bad approximate3

A more common approach is to decompose X with singular value
decomposition (SVD) instead

2I used the matlab notations for ones(·) and mean(·) here
3Note that Σ̂ won’t be full rank and positive definite as one would hope
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Lecture 4 Principal component analysis

Singular value decomposition (SVD)

Every matrix M can be decomposed as
M = UDV †, where D is diagonal and U,V
are unitary. The diagonal terms in Σ are
known to be the singular values

For real matrix M, we can write
M = UDV T instead. U,V are now “real
unitary” or orthogonal

Note that
MTM = VDTUTUDV T = VD2V T .
Therefore, V are really eigenvectors of
MTM with eigenvalues equal to the
square of the singular values
Similar, we have MMT = UD2UT
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Lecture 4 Principal component analysis

PCA with SVD

So from previous slides, instead of first estimating the covariance matrix
and then diagonalize it. We should directly decompose the data X with
SVD instead. The process is summarized below

Estimate mean from data and subtract mean from that

Decomposed the mean subtracted data with SVD. We get
X = UDV T

Note that column of V are now the principal components, and we can
transform a data column as V T x . The entire data set can be
transformed as Y = XV

The first few columns of Y will contain most “information” regarding
the original X
For example, they can be taken as features for recognition or one can
omit other columns besides the first few for “compression” as discussed
earlier
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Lecture 4 Processing multivariate normal distribution

Review

ML: x̂ = argmaxx p(x |θ̂), θ̂ = argmaxθ p(o|θ)
MAP: x̂ = argmaxx p(x |θ̂), θ̂ = argmaxθ p(θ|o)
Bayesian: x̂ =

∑
θ p(θ|o)

∑
x xp(x |θ)

For zero-mean X, ΣX = E [XXT ] and say we have PTΣXP = D. The
transformed Y = PTX are independent to each other

Note that the transform is just principal component analysis

Marginalization of a normal distribution is still a normal distribution

(a) Σ−1
XX = ΛXX − ΛXYΛ

−1
YYΛYX

(b) det(aΣ) = det(aΣYY) det(aΛ
−1
XX) for any constant a
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Lecture 4 Processing multivariate normal distribution

Conditioning of normal distribution

Consider the same Z ∼ N (µZ,ΣZ) and Z =

(
X
Y

)
. What will X be

like if Y is observed to be y?

Basically, we want to find p(x|y) = p(x, y)/p(y)

From previous result, we have p(y) = N (y;µY,ΣYY). Therefore,

p(x|y) ∝ exp

(
−1

2

[(
x̃
ỹ

)T

Σ−1

(
x̃
ỹ

)
− ỹTΣ−1

YYỹ

])

∝ exp

(
−1

2
[x̃TΛXXx̃+ x̃TΛXYỹ + ỹTΛYXx̃]
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Lecture 4 Processing multivariate normal distribution

Conditioning of normal distribution

Completing the square for x̃, we have

p(x|y) ∝ exp

(
−1

2
(x̃+ Λ−1

XXΛXYỹ)
TΛXX(x̃+ Λ−1

XXΛXYỹ)

)
= exp

(
−1

2
(x− µX + Λ−1

XXΛXY(y − µY))
TΛXX

(x− µX + Λ−1
XXΛXY(y − µY))

)

Therefore X|y is Gaussian distributed with mean
µX − Λ−1

XXΛXY(y − µY) and covariance Λ−1
XX

Note that since ΛXXΣXY + ΛXYΣYY = 0 ⇒Λ−1
XXΛXY = −ΣXYΣ

−1
YY

and from (a), we have

X|y ∼ N (µX +ΣXYΣ
−1
YY(y − µY),ΣXX − ΣXYΣ

−1
YYΣYX)
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Lecture 4 Processing multivariate normal distribution

Interpretation of conditioning

X|y ∼ N (µX +ΣXYΣ
−1
YY(y − µY),ΣXX − ΣXYΣ

−1
YYΣYX)

When the observation of Y is exactly the mean, the conditioned mean
does not change

Otherwise, it needs to be modified and the size of the adjustment
decreases with ΣYY, the variance of Y for the 1-D case.

The observation is less reliable with the increase of ΣYY. The
adjustment is finally scaled by ΣXY, which translates the variation of Y
to the variation of X
In particular, if X and Y are negatively correlated, the sign of the
adjustment will be reversed

As for the variance of the conditioned variable, it always decreases
and the decrease is larger if ΣYY is smaller and ΣXY is larger (X and
Y are more correlated)
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Lecture 4 Processing multivariate normal distribution

X ⊥⊥ Y |Z if ρXZρYZ = ρXY

Corollary

Given multivariate Gaussian variables X ,Y and Z, we have X and Y are
conditionally independent given Z if ρXZρYZ = ρXY , where
ρXZ = E [(X−E(X ))(Z−E(Z))]√

E [(X−E(X ))2]E [(Z−E(Z))2]
is the correlation coefficent between X

and Z. Similarly, ρYZ and ρXY are the correlation coefficients between Y
and Z, and X and Y , respectively.
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Lecture 4 Processing multivariate normal distribution

X ⊥⊥ Y |Z if ρXZρYZ = ρXY

Proof.

Without loss of generality, we can assume the variables with mean 0

and variance 1. Thus,
(

X
Y
Z

)
∼ N (0,Σ), where Σ =

(
1 ρXY ρXZ

ρXY 1 ρYZ
ρXZ ρYZ 1

)

Then from the conditioning result, we have

Σ(
X
Y

)∣∣∣Z =

(
1 ρXY

ρXY 1

)
−
(
ρXZ ρYZ

)
σ−1
YY

(
ρXZ
ρYZ

)
=

(
1− ρ2XZ ρXY − ρXZρYZ

ρXY − ρXZρYZ 1− ρ2YZ

)

Therefore, X and Y are uncorrelated given Z when
σXY |Z = ρXY − ρXZρYZ = 0 or ρXY = ρXZρYZ . Since for Gaussian
variables, uncorrelatedness implies independence. This concludes the
proof.
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Lecture 4 Processing multivariate normal distribution

Product of normal distributions

Assume that we tries to recover some vector parameter x, which is
subject to multivariate Gaussian noise

Say we made two measurements y1 and y2, where Y1 ∼ N (x,ΣY1)
and Y2 ∼ N (x,ΣY2). Note that even though both measurements
have mean x, they have different covariance

This variation, for instance, can be due to environment change between
the two measurements

Now, if we want to compute the overall likelihood, p(y1, y2|x).
Assuming that Y1 and Y2 are conditionally independent given X, we
have

p(y1, y2|x) = p(y1|x)p(y2|x)
= N (y1; x,ΣY1)N (y2; x,ΣY2).

Essentially, we just need to compute the product of two Gaussian
pdfs. Such computation is very useful and it occurs often when one
needs to perform inference
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Lecture 4 Processing multivariate normal distribution

Product of normal distributions

As in previous cases, the product turns out to be normal also. However, unlike
them, the product is not a pdf and so it does not normalize to 1. So we have to
compute both the scaling factor and the exponent explicitly. Let us start with the
exponent.

N (y1; x,ΣY1)N (y2; x,ΣY2)

∝ exp

(
−1

2
[(x− y1)

TΛY1(x− y1) + (x− y2)
TΛY2(x− y2)]

)
∝ exp

(
−1

2
[xT (ΛY1 + ΛY2)x− (yT2 ΛY2 + yT1 ΛY1)x− xT (ΛY2y2 + ΛY1y1)]

)
∝e− 1

2 [(x−(ΛY1
+ΛY2

)−1(ΛY2
y2+ΛY1

y1))
T (ΛY1

+ΛY2
)(x−(ΛY1

+ΛY2
)−1(ΛY2

y2+ΛY1
y1))]

∝N (x; (ΛY1 + ΛY2)
−1(ΛY2y2 + ΛY1y1), (ΛY2 + ΛY1)

−1)

Therefore,

N (y1; x,ΣY1)N (y2; x,ΣY2)

=K (y1, y2,ΣY1 ,ΣY2)N (x; (ΛY1 + ΛY2)
−1(ΛY2y2 + ΛY1y1), (ΛY2 + ΛY1)

−1)

for some scaling factor K (y1, y2,ΣY1 ,ΣY2) independent of x
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Lecture 4 Processing multivariate normal distribution

Product of normal distributions

One can compute the scaling factor K (y1, y2,ΣY1 ,ΣY2) directly

However, it is much easier to take advantage for the following setup
when Y1 ⊥⊥ Y2|X as shown below

Since N (y2; x,ΣY2) = N (x; y2,ΣY2) and Y1 ⊥⊥ Y2|X, we have

N (y1; x,ΣY1)N (y2; x,ΣY2) = N (y1; x,ΣY1)︸ ︷︷ ︸
p(y1|x)=p(y1|x,y2)

N (x; y2,ΣY2)︸ ︷︷ ︸
p(x|y2)

= p(y1, x|y2)
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Lecture 4 Processing multivariate normal distribution

Product of normal distributions
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Lecture 4 Processing multivariate normal distribution

Product of normal distributions

Let us try to interpret the product as the overall likelihood after making
two observations. Consider the simpler case when X, Y1 and Y2 are all
scaler

The mean considering both observations,
(ΛY1 + ΛY2)

−1(ΛY2y2 + ΛY1y), is essential a weighted average of
observations y2 and y1

The weight is higher when the precision ΛY2 or ΛY1 is larger

The overall variance (ΛY2 + ΛY1)
−1 is always smaller than the

individual variance ΣY2 and ΣY1

We are more certain with x after considering both y1 and y2

The scaling factor, N (y1; y2,ΣY2 +ΣY1), can be interpreted as how
much one can believe on the overall likelihood.

The value is reasonable since when the two observations are far away
with respect to the overall variance ΣY2 +ΣY1 , the likelihood will
become less reliable
The scaling factor is especially useful when we deal with mixture of
Gaussian to be discussed next
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Lecture 4 Processing multivariate normal distribution

Division of normal distributions

To compute N (x;µ1,Σ1)
N (x;µ2,Σ2)

, note that from the product formula earlier

N (x;µ2,Σ2)N (x; (Λ1 − Λ2)
−1(Λ1µ1 − Λ2µ2), (Λ1 − Λ2)

−1)

=N (µ1; (Λ1 − Λ2)
−1(Λ1µ1 − Λ2µ2),Λ

−1
2 + (Λ1 − Λ2)

−1)N (x;µ1,Σ1)

Therefore,

N (x;µ1,Σ1)

N (x;µ2,Σ2)
=

N (x; (Λ1 − Λ2)
−1(Λ1µ1 − Λ2µ2), (Λ1 − Λ2)

−1)

N (µ1, (Λ1 − Λ2)−1(Λ1µ1 − Λ2µ2); Λ
−1
2 + (Λ1 − Λ2)−1)

=
N (x;µ, (Λ1 − Λ2)

−1)

N (µ1;µ,Λ
−1
2 + (Λ1 − Λ2)−1)

,

where µ = (Λ1 − Λ2)
−1(Λ1µ1 − Λ2µ2)

Note that the final pdf will be Gaussian-like if Λ1 � Λ2. Otherwise,
one can still write out the pdf using the precision matrix. But the
covariance matrix will not be defined (Try plot some pdfs out
yourselves)
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Lecture 4 Mixture of “Gaussians”

Mixture of Gaussians

Consider an electrical system that outputs signal of different statistics
when it is on and off

When the system is on, the output signal S behaves like N (5, 1).
When the system is off is off, S behaves like N (0, 1)

If someone measuring the signal does not know the status of the
system but only knows that the system is on 40% of the time, then to
the observer, the signal S behaves like a mixture of Gaussians
The pdf of S will be 0.4N (s; 5, 1) + 0.6N (s; 0, 1) as shown below
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Lecture 4 Mixture of “Gaussians”

Mixture of Gaussians

A main limitation of normal distribution is that it is unimodal

Mixture of Gaussian distribution allows multimodal and can virtually
model any pdfs. But there is a computational cost for this gain
Let us illustrate this with the following example:

Consider two mixtures of Gaussian likelihood of x given two
observations y1 and y2 as follows:

p(y1|x) = 0.6N (x ; 0, 1) + 0.4N (x ; 5, 1);

p(y2|x) = 0.5N (x ;−2, 1) + 0.5N (x ; 4, 1).

What is the overall likelihood, p(y1, y2|x)?
As usual, it is reasonable to assume the observations to be
conditionally independent given x . Then,

p(y1, y2|x) = p(y1|x)p(y2|x)
= (0.6N (x ; 0, 1) + 0.4N (x ; 5, 1))(0.5N (x ;−2, 1) + 0.5N (x ; 4, 1))

= 0.3N (x ; 0, 1)N (x ;−2, 1) + 0.2N (x ; 5, 1)N (x ;−2, 1)
+ 0.3N (x ; 0, 1)N (x ; 4, 1) + 0.2N (x ; 5, 1)N (x ; 4, 1)
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Lecture 4 Mixture of “Gaussians”

Explosion of Gaussians

The last step involves computing products of Gaussians but we have
learned it in previous sections. Using the previous result,

p(y1, y2|x) = 0.3N (−2; 0, 2)N (x ;−1, 0.5) + 0.2N (−2; 5, 2)N (x ; 1.5, 0.5)

+ 0.3N (4; 0, 2)N (x ; 2, 0.5) + 0.2N (4; 5, 2)N (x ; 4.5, 0.5).

So we have the overall likelihood is a mixture of four Gaussians

Let’s repeat our discussion but with n observations instead. The overall
likelihood will be a mixture of 2n Gaussians!

Therefore, the computation will quickly become intractable as the
number of observations increases
Fortunately, in reality, some of the Gaussians in the mixture tend to
have a very small weight
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Lecture 4 Mixture of “Gaussians”

Reduce number of components in Gaussian mixtures

For instance, in our previous numerical example, if we continue our
numerical computation for the two observation example, we have

p(y1, y2|x) = 0.4163N (x ;−1, 0.5) + 3.5234× 10−6N (x ; 1.5, 0.5)

+ 0.0202N (x ; 2, 0.5) + 0.5734N (x ; 4.5, 0.5).

We can see that the weight for the component at mean 1.5 is very
small. And the component at mean 2 has a rather small weight also.
Even with the four Gaussian components, the overall likelihood is
essentially just a bimodal distribution as shown in the figure below
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Even with the four Gaussian components, the overall likelihood is
essentially just a bimodal distribution as shown in the figure below
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Lecture 4 Mixture of “Gaussians”

Reduce number of components in Gaussian mixtures

Therefore, we may approximate p(y1, y2|x) with only two of its original
component as 0.4163/(0.4163 + 0.5734)N (x ;−1, 0.5) + 0.5734/(0.4163 +
0.5734)N (x ; 4.5, 0.5) = 0.4206N (x ;−1, 0.5) + 0.5794N (x ; 4.5, 0.5)

However, it is not always a good approximation strategy just to dump away
the small components in a Gaussian mixture
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Lecture 4 Mixture of “Gaussians”

Another example

Consider

p(x) = 0.1N (x ;−0.2, 1) + 0.1N (x ;−0.1, 1) + 0.1N (x ; 0, 1) + 0.1N (x ; 0.1, 1)

+ 0.1N (x ; 0.2, 1) + 0.5N (x ; 5, 1).

Let say we want to reduce p(x) to only a mixture of two Gaussians. It is
tempting to just dumping four smallest one and renormalized the weight.
For example, if we choose to remove the first four components, we have

p̂(x) = 1/6N (x ; 0.2, 1) + 5/6N (x ; 5, 1)

The approximation p̂(x) is significantly different from p(x) as shown below
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Lecture 4 Mixture of “Gaussians”

Merging components

The problem is that while the first five components are all relatively
small compared to the last one, they are all quite similar and their
combined contribution is comparable to the latter

Actually the first five components are so similar that their combined
contribution can be accurately modeled as one Gaussian

So rather than discarding the components, one can get a much more
accurate approximation by merging them. The approximation is
illustrated as p̃(x) in the figure below
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Lecture 4 Mixture of “Gaussians”

Merging components

To successfully obtain such approximation p̃(x), we have to answer two
questions:

which components to merge?

how to merge them?

September 12, 2017 25 / 29



Lecture 4 Mixture of “Gaussians”

Which Components to Merge?

It is reasonable to pick similar components to merge. The question is how
do will gauge the similarity between two components.

Consider two pdfs p(x) and q(x), note that we can define an inner
product of p(x) and q(x) by

〈p(x), q(x)〉 =
∫

p(x)q(x)dx

Note that the inner product is well defined and 〈p(x), p(x)〉 ≥ 0

By Cauchy-Schwartz inequality,

〈p(x), q(x)〉√
〈p(x), p(x)〉〈q(x), q(x)〉

=

∫
p(x)q(x)dx√∫

p(x)2dx
∫
q(x)2dx

≤ 1

The inner product maximizes (= 1) when p(x) = q(x). This suggests
a very reasonable similarity measure between two pdfs
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Lecture 4 Mixture of “Gaussians”

Similarity measure

Let’s define

Sim(p(x), q(x)) ,

∫
p(x)q(x)dx√∫

p(x)2dx
∫
q(x)2dx

In particular, if p(x) = N (x;µp,Σp) and q(x) = N (x;µq,Σq), we
have (please verify)

Sim(N (µp,Σp),N (µq,Σq)) =
N (µp;µq,Σp +Σq)√
N (0; 0, 2Σp)N (0; 0, 2Σq)

,

which can be computed very easily and is equal to one only when
means and covariances are the same
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Lecture 4 Mixture of “Gaussians”

How to Merge Components?

Say we have n components N (µ1,Σ1), N (µ2,Σ2), · · · , N (µn,Σn) with
weights w1,w2, · · · ,wn. What should the combined component be like?

Combined component weight should equal to total weight
∑n

i=1 wi

Combined mean will simply be
∑n

i=1 ŵiµi , where ŵi =
wi∑n
i=1 wi

For combined covariance, it may be tempting to approximate it as∑n
i=1 ŵiΣi .

However, it is an underestimate
Because the weighted sum only counted the contribution of variation
among each component, it did not take into account the variation due
to different means across components.
Instead, let’s denote X as the variable sampled from the mixture. That
is, X ∼ N (µi ,Σi ) with probability ŵi . Then, we have (please verify)

Σ = E [XXT ]− E [X]E [X]T

=
n∑

i=1

ŵi (Σi + µiµ
T
i )−

n∑
i=1

n∑
j=1

ŵi ŵjµiµ
T
j .
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ŵi ŵjµiµ
T
j .

September 12, 2017 28 / 29



Lecture 4 Mixture of “Gaussians”

How to Merge Components?

Say we have n components N (µ1,Σ1), N (µ2,Σ2), · · · , N (µn,Σn) with
weights w1,w2, · · · ,wn. What should the combined component be like?

Combined component weight should equal to total weight
∑n

i=1 wi

Combined mean will simply be
∑n
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i=1 ŵiΣi .

However, it is an underestimate

Because the weighted sum only counted the contribution of variation
among each component, it did not take into account the variation due
to different means across components.
Instead, let’s denote X as the variable sampled from the mixture. That
is, X ∼ N (µi ,Σi ) with probability ŵi . Then, we have (please verify)
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Lecture 4 Mixture of “Gaussians”

Now, go back to our previous numerical example

Recall that p(x) = 0.1N (x ;−0.2, 1) + 0.1N (x ;−0.1, 1) +
0.1N (x ; 0, 1) + 0.1N (x ; 0.1, 1) + 0.1N (x ; 0.2, 1) + 0.5N (x ; 5, 1)

If we merge the five smallest components (one can easily check that
they are also more similar to each other than to the last component),
we have p̃(x) = 0.5N (x ; 0, 1.02) + 0.5N (x ; 5, 1) as shown again
below. The approximate pdf is virtually indistinguishable from the
original

−4 −2 0 2 4 6 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
p(x)
p̂(x)
p̃(x)

September 12, 2017 29 / 29



Lecture 4 Mixture of “Gaussians”

Now, go back to our previous numerical example

Recall that p(x) = 0.1N (x ;−0.2, 1) + 0.1N (x ;−0.1, 1) +
0.1N (x ; 0, 1) + 0.1N (x ; 0.1, 1) + 0.1N (x ; 0.2, 1) + 0.5N (x ; 5, 1)

If we merge the five smallest components (one can easily check that
they are also more similar to each other than to the last component),
we have p̃(x) = 0.5N (x ; 0, 1.02) + 0.5N (x ; 5, 1) as shown again
below. The approximate pdf is virtually indistinguishable from the
original

−4 −2 0 2 4 6 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
p(x)
p̂(x)
p̃(x)

September 12, 2017 29 / 29


	Lecture 4
	Principal component analysis
	Processing multivariate normal distribution
	Mixture of ``Gaussians''


