Review

PCA (assume zero mean) • Via eigen-decomposition $\mathbf{D} \Sigma \approx \frac{1}{m} \mathcal{X}^T \mathcal{X}$ $P^T \Sigma P = D$ $Y = P^T X$ Via SVD \mathbf{D} $U^T \mathcal{X} V = D$ $Y = V^T X$

Marginalization of a normal distribution is still a normal distribution

- Conditioning of normal distribution: X $|{\bf y}\sim\mathcal{N}(\mu_{\bf X}+\Sigma_{\bf XY}\Sigma^{-1}_{\bf YY}({\bf y}-\mu_{\bf Y}),\Sigma_{\bf XX}-\Sigma_{\bf XY}\Sigma^{-1}_{\bf YY}\Sigma_{\bf YX})$
- **•** Product of normal distribution: $\mathcal{N}(\mathsf{y}_1;\mathsf{x},\Sigma_{\mathsf{Y}_1})\mathcal{N}(\mathsf{y}_2;\mathsf{x},\Sigma_{\mathsf{Y}_2})=$ $\mathcal{N}(\mathsf{y}_1; \mathsf{y}_2, \Sigma_{\mathsf{Y}_2} + \Sigma_{\mathsf{Y}_1}) \mathcal{N}(\mathsf{x}; (\Lambda_{\mathsf{Y}_1} + \Lambda_{\mathsf{Y}_2})^{-1}(\Lambda_{\mathsf{Y}_2} \mathsf{y}_2 + \Lambda_{\mathsf{Y}_1} y), (\Lambda_{\mathsf{Y}_2} + \Lambda_{\mathsf{Y}_1})^{-1})$

 200

Correction: product of normal distributions

One can compute the scaling factor $\mathcal{K}(\mathsf{y}_1,\mathsf{y}_2,\Sigma_{\mathsf{Y}_1},\Sigma_{\mathsf{Y}_2})$ directly

 \leftarrow

Correction: product of normal distributions

- One can compute the scaling factor $\mathcal{K}(\mathsf{y}_1,\mathsf{y}_2,\Sigma_{\mathsf{Y}_1},\Sigma_{\mathsf{Y}_2})$ directly
- However, recall that $Y_1 \perp Y_2 | X$, it is model the variables as shown below

Correction: product of normal distributions

- One can compute the scaling factor $\mathcal{K}(\mathsf{y}_1,\mathsf{y}_2,\Sigma_{\mathsf{Y}_1},\Sigma_{\mathsf{Y}_2})$ directly
- However, recall that $Y_1 \perp Y_2 | X$, it is model the variables as shown below

Correction: product of normal distributions

• Then, marginalizing **x** out from $p(\mathbf{y}_1, \mathbf{x} | \mathbf{y}_2)$, we have

Ù

 $\rightarrow x \rightarrow$ $Y_2 \rightarrow$ $+Y_1$

 $p(\mathsf{y}_1|\mathsf{y}_2) = \int p(\mathsf{y}_1,\mathsf{x}|\mathsf{y}_2)d\mathsf{x}$. However, from the figure,

$$
\mathbf{U} \sim \mathcal{N}(0, \Sigma_{\mathbf{Y}_2}) \quad \mathbf{V} \sim \mathcal{N}(0, \Sigma_{\mathbf{Y}_1})
$$

$$
\int \rho(\mathsf{y}_1,\mathsf{x}|\mathsf{y}_2) d\mathsf{x} = \rho(\mathsf{y}_1|\mathsf{y}_2) = \mathcal{N}(\mathsf{y}_1;\mathsf{y}_2,\Sigma_{\mathsf{Y}_2} + \Sigma_{\mathsf{Y}_1})
$$

つくへ

Correction: product of normal distributions

• Then, marginalizing **x** out from $p(\mathbf{y}_1, \mathbf{x} | \mathbf{y}_2)$, we have

 $p(\mathsf{y}_1|\mathsf{y}_2) = \int p(\mathsf{y}_1,\mathsf{x}|\mathsf{y}_2)d\mathsf{x}$. However, from the figure,

$$
Y_2 \longrightarrow \bigoplus_i \longrightarrow X \longrightarrow \bigoplus_i \longrightarrow Y_1
$$

$$
\int p(\mathbf{y}_1, \mathbf{x} | \mathbf{y}_2) d\mathbf{x} = p(\mathbf{y}_1 | \mathbf{y}_2) = \mathcal{N}(\mathbf{y}_1; \mathbf{y}_2, \Sigma_{\mathbf{Y}_2} + \Sigma_{\mathbf{Y}_1})
$$

On the other hand,

$$
\int p(\mathbf{y}_1, \mathbf{x} | \mathbf{y}_2) d\mathbf{x} = \int \mathcal{N}(\mathbf{y}_1; \mathbf{x}, \Sigma_{\mathbf{Y}_1}) \mathcal{N}(\mathbf{y}_2; \mathbf{x}, \Sigma_{\mathbf{Y}_2}) d\mathbf{x}
$$
\n
$$
= \int K(\mathbf{y}_1, \mathbf{y}_2, \Sigma_{\mathbf{Y}_1}, \Sigma_{\mathbf{Y}_2}) \mathcal{N}(\mathbf{x}; (\Lambda_{\mathbf{Y}_1} + \Lambda_{\mathbf{Y}_2})^{-1} (\Lambda_{\mathbf{Y}_2} \mathbf{y}_2 + \Lambda_{\mathbf{Y}_1} \mathbf{y}), (\Lambda_{\mathbf{Y}_2} + \Lambda_{\mathbf{Y}_1})^{-1}) d\mathbf{x}
$$
\n
$$
= K(\mathbf{y}_1, \mathbf{y}_2, \Sigma_{\mathbf{Y}_1}, \Sigma_{\mathbf{Y}_2}).
$$

Correction: product of normal distributions

• Then, marginalizing x out from $p(y_1, x|y_2)$, we have

 $p(\mathsf{y}_1|\mathsf{y}_2) = \int p(\mathsf{y}_1,\mathsf{x}|\mathsf{y}_2)d\mathsf{x}$. However, from the figure,

$$
Y_2 \longrightarrow \bigoplus_i X \longrightarrow \bigoplus_i X_1
$$

$$
\int p(\mathbf{y}_1, \mathbf{x} | \mathbf{y}_2) d\mathbf{x} = p(\mathbf{y}_1 | \mathbf{y}_2) = \mathcal{N}(\mathbf{y}_1; \mathbf{y}_2, \Sigma_{\mathbf{Y}_2} + \Sigma_{\mathbf{Y}_1})
$$

On the other hand,

$$
\int p(\mathbf{y}_1, \mathbf{x} | \mathbf{y}_2) d\mathbf{x} = \int \mathcal{N}(\mathbf{y}_1; \mathbf{x}, \Sigma_{\mathbf{Y}_1}) \mathcal{N}(\mathbf{y}_2; \mathbf{x}, \Sigma_{\mathbf{Y}_2}) d\mathbf{x}
$$
\n
$$
= \int K(\mathbf{y}_1, \mathbf{y}_2, \Sigma_{\mathbf{Y}_1}, \Sigma_{\mathbf{Y}_2}) \mathcal{N}(\mathbf{x}; (\Lambda_{\mathbf{Y}_1} + \Lambda_{\mathbf{Y}_2})^{-1} (\Lambda_{\mathbf{Y}_2} \mathbf{y}_2 + \Lambda_{\mathbf{Y}_1} \mathbf{y}), (\Lambda_{\mathbf{Y}_2} + \Lambda_{\mathbf{Y}_1})^{-1}) d\mathbf{x}
$$
\n
$$
= K(\mathbf{y}_1, \mathbf{y}_2, \Sigma_{\mathbf{Y}_1}, \Sigma_{\mathbf{Y}_2}).
$$

Thus we have $\mathcal{K}(\mathsf{y}_1,\mathsf{y}_2,\Sigma_{\mathsf{Y}_1},\Sigma_{\mathsf{Y}_2})=\mathcal{N}(\mathsf{y}_1;\mathsf{y}_2,\Sigma_{\mathsf{Y}_2}+\Sigma_{\mathsf{Y}_1})$

Correction: product of normal distributions

• Then, marginalizing x out from $p(y_1, x|y_2)$, we have

 $p(\mathsf{y}_1|\mathsf{y}_2) = \int p(\mathsf{y}_1,\mathsf{x}|\mathsf{y}_2)d\mathsf{x}$. However, from the figure,

$$
Y_2 \longrightarrow \bigoplus_i \longrightarrow X \longrightarrow \bigoplus_i \longrightarrow Y_1
$$

$$
\int p(\mathbf{y}_1, \mathbf{x} | \mathbf{y}_2) d\mathbf{x} = p(\mathbf{y}_1 | \mathbf{y}_2) = \mathcal{N}(\mathbf{y}_1; \mathbf{y}_2, \Sigma_{\mathbf{Y}_2} + \Sigma_{\mathbf{Y}_1})
$$

On the other hand,

J.

$$
\int p(\mathbf{y}_1, \mathbf{x} | \mathbf{y}_2) d\mathbf{x} = \int \mathcal{N}(\mathbf{y}_1; \mathbf{x}, \Sigma_{\mathbf{Y}_1}) \mathcal{N}(\mathbf{y}_2; \mathbf{x}, \Sigma_{\mathbf{Y}_2}) d\mathbf{x}
$$
\n
$$
= \int K(\mathbf{y}_1, \mathbf{y}_2, \Sigma_{\mathbf{Y}_1}, \Sigma_{\mathbf{Y}_2}) \mathcal{N}(\mathbf{x}; (\Lambda_{\mathbf{Y}_1} + \Lambda_{\mathbf{Y}_2})^{-1} (\Lambda_{\mathbf{Y}_2} \mathbf{y}_2 + \Lambda_{\mathbf{Y}_1} \mathbf{y}), (\Lambda_{\mathbf{Y}_2} + \Lambda_{\mathbf{Y}_1})^{-1}) d\mathbf{x}
$$
\n
$$
= K(\mathbf{y}_1, \mathbf{y}_2, \Sigma_{\mathbf{Y}_1}, \Sigma_{\mathbf{Y}_2}).
$$

• Thus we have
$$
K(\mathbf{y}_1, \mathbf{y}_2, \Sigma_{\mathbf{Y}_1}, \Sigma_{\mathbf{Y}_2}) = \mathcal{N}(\mathbf{y}_1; \mathbf{y}_2, \Sigma_{\mathbf{Y}_2} + \Sigma_{\mathbf{Y}_1})
$$
 and so

$$
\begin{array}{l} \mathcal{N}(\textbf{y}_1; \textbf{x}, \Sigma_{\textbf{Y}_1}) \mathcal{N}(\textbf{y}_2; \textbf{x}, \Sigma_{\textbf{Y}_2}) \\ = \mathcal{N}(\textbf{y}_1; \textbf{y}_2, \Sigma_{\textbf{Y}_2} + \Sigma_{\textbf{Y}_1}) \mathcal{N}(\textbf{x}; (\Lambda_{\textbf{Y}_1} + \Lambda_{\textbf{Y}_2})^{-1} (\Lambda_{\textbf{Y}_2} \textbf{y}_2 + \Lambda_{\textbf{Y}_1} \textbf{y}), (\Lambda_{\textbf{Y}_2} + \Lambda_{\textbf{Y}_1})^{-1}) \\ \end{array}
$$

Division of normal distributions

To compute $\frac{\mathcal{N}(\mathbf{x};\bm{\mu}_1, \bm{\Sigma}_1)}{\mathcal{N}(\mathbf{x};\bm{\mu}_2, \bm{\Sigma}_2)},$ note that from the product formula earlier $\mathcal{N}(\mathsf{x};\boldsymbol\mu_2, \Sigma_2) \mathcal{N}(\mathsf{x}; (\mathsf{\Lambda}_1-\mathsf{\Lambda}_2)^{-1}(\mathsf{\Lambda}_1\boldsymbol\mu_1-\mathsf{\Lambda}_2\boldsymbol\mu_2), (\mathsf{\Lambda}_1-\mathsf{\Lambda}_2)^{-1})$ $=\mathcal{N}(\mu_2; (\Lambda_1 - \Lambda_2)^{-1}(\Lambda_1\mu_1 - \Lambda_2\mu_2), \Lambda_2^{-1} + (\Lambda_1 - \Lambda_2)^{-1})\mathcal{N}(\mathbf{x}; \mu_1, \Sigma_1)$

 200

Division of normal distributions

- To compute $\frac{\mathcal{N}(\mathbf{x};\bm{\mu}_1, \bm{\Sigma}_1)}{\mathcal{N}(\mathbf{x};\bm{\mu}_2, \bm{\Sigma}_2)},$ note that from the product formula earlier $\mathcal{N}(\mathsf{x};\boldsymbol\mu_2, \Sigma_2) \mathcal{N}(\mathsf{x}; (\mathsf{\Lambda}_1-\mathsf{\Lambda}_2)^{-1}(\mathsf{\Lambda}_1\boldsymbol\mu_1-\mathsf{\Lambda}_2\boldsymbol\mu_2), (\mathsf{\Lambda}_1-\mathsf{\Lambda}_2)^{-1})$ $=\mathcal{N}(\mu_2; (\Lambda_1 - \Lambda_2)^{-1}(\Lambda_1\mu_1 - \Lambda_2\mu_2), \Lambda_2^{-1} + (\Lambda_1 - \Lambda_2)^{-1})\mathcal{N}(\mathbf{x}; \mu_1, \Sigma_1)$
- Therefore,

$$
\frac{\mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_{1}, \boldsymbol{\Sigma}_{1})}{\mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_{2}, \boldsymbol{\Sigma}_{2})} = \frac{\mathcal{N}(\mathbf{x}; (\Lambda_{1} - \Lambda_{2})^{-1}(\Lambda_{1} \boldsymbol{\mu}_{1} - \Lambda_{2} \boldsymbol{\mu}_{2}), (\Lambda_{1} - \Lambda_{2})^{-1})}{\mathcal{N}(\boldsymbol{\mu}_{2}; (\Lambda_{1} - \Lambda_{2})^{-1}(\Lambda_{1} \boldsymbol{\mu}_{1} - \Lambda_{2} \boldsymbol{\mu}_{2}), \Lambda_{2}^{-1} + (\Lambda_{1} - \Lambda_{2})^{-1})}
$$

=
$$
\frac{\mathcal{N}(\mathbf{x}; \boldsymbol{\mu}, (\Lambda_{1} - \Lambda_{2})^{-1})}{\mathcal{N}(\boldsymbol{\mu}_{2}; \boldsymbol{\mu}, \Lambda_{2}^{-1} + (\Lambda_{1} - \Lambda_{2})^{-1})},
$$

where
$$
\boldsymbol{\mu} = (\Lambda_{1} - \Lambda_{2})^{-1}(\Lambda_{1} \boldsymbol{\mu}_{1} - \Lambda_{2} \boldsymbol{\mu}_{2})
$$

Division of normal distributions

- To compute $\frac{\mathcal{N}(\mathbf{x};\bm{\mu}_1, \bm{\Sigma}_1)}{\mathcal{N}(\mathbf{x};\bm{\mu}_2, \bm{\Sigma}_2)},$ note that from the product formula earlier $\mathcal{N}(\mathsf{x};\boldsymbol\mu_2, \Sigma_2) \mathcal{N}(\mathsf{x}; (\mathsf{\Lambda}_1-\mathsf{\Lambda}_2)^{-1}(\mathsf{\Lambda}_1\boldsymbol\mu_1-\mathsf{\Lambda}_2\boldsymbol\mu_2), (\mathsf{\Lambda}_1-\mathsf{\Lambda}_2)^{-1})$ $=\mathcal{N}(\mu_2; (\Lambda_1 - \Lambda_2)^{-1}(\Lambda_1\mu_1 - \Lambda_2\mu_2), \Lambda_2^{-1} + (\Lambda_1 - \Lambda_2)^{-1})\mathcal{N}(\mathbf{x}; \mu_1, \Sigma_1)$
- Therefore,

$$
\frac{\mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1)}{\mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_2, \boldsymbol{\Sigma}_2)} = \frac{\mathcal{N}(\mathbf{x}; (\Lambda_1 - \Lambda_2)^{-1} (\Lambda_1 \boldsymbol{\mu}_1 - \Lambda_2 \boldsymbol{\mu}_2), (\Lambda_1 - \Lambda_2)^{-1})}{\mathcal{N}(\boldsymbol{\mu}_2; (\Lambda_1 - \Lambda_2)^{-1} (\Lambda_1 \boldsymbol{\mu}_1 - \Lambda_2 \boldsymbol{\mu}_2), \Lambda_2^{-1} + (\Lambda_1 - \Lambda_2)^{-1})}
$$

=
$$
\frac{\mathcal{N}(\mathbf{x}; \boldsymbol{\mu}, (\Lambda_1 - \Lambda_2)^{-1})}{\mathcal{N}(\boldsymbol{\mu}_2; \boldsymbol{\mu}, \Lambda_2^{-1} + (\Lambda_1 - \Lambda_2)^{-1})},
$$

where $\boldsymbol{\mu} = (\Lambda_1 - \Lambda_2)^{-1}(\Lambda_1 \boldsymbol{\mu}_1 - \Lambda_2 \boldsymbol{\mu}_2)$

• Note that the final pdf will be Gaussian-like if $\Lambda_1 \succeq \Lambda_2$. Otherwise, one can still write out the pdf using the precision matrix. But the covariance matrix will not be defined (Try plot some pdfs out yourselves) 200

Consider an electrical system that outputs signal of different statistics when it is on and off

• When the system is on, the output signal S behaves like $\mathcal{N}(5,1)$. When the system is off is off, S behaves like $\mathcal{N}(0,1)$

Consider an electrical system that outputs signal of different statistics when it is on and off

- When the system is on, the output signal S behaves like $\mathcal{N}(5,1)$. When the system is off is off, S behaves like $\mathcal{N}(0,1)$
- **If someone measuring the signal does not know the status of the** system but only knows that the system is on 40% of the time, then to the observer, the signal S behaves like a mixture of Gaussians

Consider an electrical system that outputs signal of different statistics when it is on and off

- When the system is on, the output signal S behaves like $\mathcal{N}(5,1)$. When the system is off is off, S behaves like $\mathcal{N}(0, 1)$
- **If someone measuring the signal does not know the status of the** system but only knows that the system is on 40% of the time, then to the observer, the signal S behaves like a mixture of Gaussians
- The pdf of S will be $0.4\mathcal{N}(s; 5, 1) + 0.6\mathcal{N}(s; 0, 1)$ as shown below

A main limitation of normal distribution is that it is unimodal

4 0 8 1

 2990

- A main limitation of normal distribution is that it is unimodal
- Mixture of Gaussian distribution allows multimodal and can virtually model any pdfs. But there is a computational cost for this gain

- A main limitation of normal distribution is that it is unimodal
- Mixture of Gaussian distribution allows multimodal and can virtually model any pdfs. But there is a computational cost for this gain
- Let us illustrate this with the following example:
	- Consider two mixtures of Gaussian likelihood of x given two observations y_1 and y_2 as follows:

$$
p(y_1|x) = 0.6\mathcal{N}(x; 0, 1) + 0.4\mathcal{N}(x; 5, 1);
$$

\n
$$
p(y_2|x) = 0.5\mathcal{N}(x; -2, 1) + 0.5\mathcal{N}(x; 4, 1).
$$

What is the overall likelihood, $p(y_1, y_2|x)$?

- A main limitation of normal distribution is that it is unimodal
- Mixture of Gaussian distribution allows multimodal and can virtually model any pdfs. But there is a computational cost for this gain
- Let us illustrate this with the following example:
	- Consider two mixtures of Gaussian likelihood of x given two observations y_1 and y_2 as follows:

$$
p(y_1|x) = 0.6\mathcal{N}(x; 0, 1) + 0.4\mathcal{N}(x; 5, 1);
$$

\n
$$
p(y_2|x) = 0.5\mathcal{N}(x; -2, 1) + 0.5\mathcal{N}(x; 4, 1).
$$

What is the overall likelihood, $p(y_1, y_2|x)$?

As usual, it is reasonable to assume the observations to be conditionally independent given x. Then,

$$
p(y_1, y_2 | x) = p(y_1 | x) p(y_2 | x)
$$

= (0.6 $\mathcal{N}(x; 0, 1)$ + 0.4 $\mathcal{N}(x; 5, 1)$)(0.5 $\mathcal{N}(x; -2, 1)$ + 0.5 $\mathcal{N}(x; 4, 1)$)
= 0.3 $\mathcal{N}(x; 0, 1)$ $\mathcal{N}(x; -2, 1)$ + 0.2 $\mathcal{N}(x; 5, 1)$ $\mathcal{N}(x; -2, 1)$
+ 0.3 $\mathcal{N}(x; 0, 1)$ $\mathcal{N}(x; 4, 1)$ + 0.2 $\mathcal{N}(x; 5, 1)$ $\mathcal{N}(x; 4, 1)$

The last step involves computing products of Gaussians but we have learned it in previous sections. Using the previous result,

 $p(y_1, y_2|x) = 0.3\mathcal{N}(-2, 0, 2)\mathcal{N}(x, -1, 0.5) + 0.2\mathcal{N}(-2, 5, 2)\mathcal{N}(x, 1.5, 0.5)$ $+ 0.3\mathcal{N}(4; 0, 2)\mathcal{N}(x; 2, 0.5) + 0.2\mathcal{N}(4; 5, 2)\mathcal{N}(x; 4.5, 0.5).$

The last step involves computing products of Gaussians but we have learned it in previous sections. Using the previous result,

 $p(y_1, y_2|x) = 0.3\mathcal{N}(-2, 0, 2)\mathcal{N}(x, -1, 0.5) + 0.2\mathcal{N}(-2, 5, 2)\mathcal{N}(x, 1.5, 0.5)$ $+ 0.3\mathcal{N}(4; 0, 2)\mathcal{N}(x; 2, 0.5) + 0.2\mathcal{N}(4; 5, 2)\mathcal{N}(x; 4.5, 0.5).$

So we have the overall likelihood is a mixture of four Gaussians

The last step involves computing products of Gaussians but we have learned it in previous sections. Using the previous result,

 $p(y_1, y_2|x) = 0.3\mathcal{N}(-2, 0, 2)\mathcal{N}(x, -1, 0.5) + 0.2\mathcal{N}(-2, 5, 2)\mathcal{N}(x, 1.5, 0.5)$ $+ 0.3\mathcal{N}(4; 0, 2)\mathcal{N}(x; 2, 0.5) + 0.2\mathcal{N}(4; 5, 2)\mathcal{N}(x; 4.5, 0.5).$

So we have the overall likelihood is a mixture of four Gaussians

- Let's repeat our discussion but with *n* observations instead. The overall likelihood will be a mixture of $2ⁿ$ Gaussians!
	- Therefore, the computation will quickly become intractable as the number of observations increases

The last step involves computing products of Gaussians but we have learned it in previous sections. Using the previous result,

 $p(y_1, y_2|x) = 0.3\mathcal{N}(-2, 0, 2)\mathcal{N}(x, -1, 0.5) + 0.2\mathcal{N}(-2, 5, 2)\mathcal{N}(x, 1.5, 0.5)$ $+ 0.3\mathcal{N}(4; 0, 2)\mathcal{N}(x; 2, 0.5) + 0.2\mathcal{N}(4; 5, 2)\mathcal{N}(x; 4.5, 0.5).$

So we have the overall likelihood is a mixture of four Gaussians

- Let's repeat our discussion but with *n* observations instead. The overall likelihood will be a mixture of $2ⁿ$ Gaussians!
	- Therefore, the computation will quickly become intractable as the number of observations increases
	- Fortunately, in reality, some of the Gaussians in the mixture tend to have a very small weight

For instance, in our previous numerical example, if we continue our numerical computation for the two observation example, we have

$$
p(y_1, y_2 | x) = 0.4163\mathcal{N}(x; -1, 0.5) + 3.5234 \times 10^{-6}\mathcal{N}(x; 1.5, 0.5) + 0.0202\mathcal{N}(x; 2, 0.5) + 0.5734\mathcal{N}(x; 4.5, 0.5).
$$

- For instance, in our previous numerical example, if we continue our numerical computation for the two observation example, we have $p(y_1, y_2|x) = 0.4163\mathcal{N}(x; -1, 0.5) + 3.5234 \times 10^{-6} \mathcal{N}(x; 1.5, 0.5)$ $+ 0.0202\mathcal{N}(x; 2, 0.5) + 0.5734\mathcal{N}(x; 4.5, 0.5).$
- We can see that the weight for the component at mean 1.5 is very small. And the component at mean 2 has a rather small weight also.

- For instance, in our previous numerical example, if we continue our numerical computation for the two observation example, we have $p(y_1, y_2|x) = 0.4163\mathcal{N}(x; -1, 0.5) + 3.5234 \times 10^{-6} \mathcal{N}(x; 1.5, 0.5)$ $+ 0.0202\mathcal{N}(x; 2, 0.5) + 0.5734\mathcal{N}(x; 4.5, 0.5).$
- We can see that the weight for the component at mean 1.5 is very small. And the component at mean 2 has a rather small weight also.
- Even with the four Gaussian components, the overall likelihood is essentially just a bimodal distribution as shown in the figure below

• Therefore, we may approximate $p(y_1, y_2|x)$ with only two of its original component as $0.4163/(0.4163 + 0.5734)\mathcal{N}(x; -1, 0.5) + 0.5734/(0.4163 + 0.5734)\mathcal{N}(x; -1, 0.5)$ $0.5734)$ $\mathcal{N}(x; 4.5, 0.5) = 0.4206 \mathcal{N}(x; -1, 0.5) + 0.5794 \mathcal{N}(x; 4.5, 0.5)$

- • Therefore, we may approximate $p(y_1, y_2|x)$ with only two of its original component as $0.4163/(0.4163 + 0.5734)\mathcal{N}(x; -1, 0.5) + 0.5734/(0.4163 +$ 0.5734) $\mathcal{N}(x; 4.5, 0.5) = 0.4206 \mathcal{N}(x; -1, 0.5) + 0.5794 \mathcal{N}(x; 4.5, 0.5)$
- However, it is not always a good approximation strategy just to dump away the small components in a Gaussian mixture

September 19, 2017 10 / 62

Þ \rightarrow

÷.

Ξ ×.

◆ロト ◆伊ト

 299

Another example

Consider

$$
p(x) = 0.1\mathcal{N}(x; -0.2, 1) + 0.1\mathcal{N}(x; -0.1, 1) + 0.1\mathcal{N}(x; 0, 1) + 0.1\mathcal{N}(x; 0.1, 1) + 0.1\mathcal{N}(x; 0.2, 1) + 0.5\mathcal{N}(x; 5, 1).
$$

Another example

Consider

$$
p(x) = 0.1\mathcal{N}(x; -0.2, 1) + 0.1\mathcal{N}(x; -0.1, 1) + 0.1\mathcal{N}(x; 0, 1) + 0.1\mathcal{N}(x; 0.1, 1) + 0.1\mathcal{N}(x; 0.2, 1) + 0.5\mathcal{N}(x; 5, 1).
$$

• Let say we want to reduce $p(x)$ to only a mixture of two Gaussians. It is tempting to just dumping four smallest one and renormalized the weight. For example, if we choose to remove the first four components, we have

$$
\hat{p}(x) = 1/6\mathcal{N}(x; 0.2, 1) + 5/6\mathcal{N}(x; 5, 1)
$$

Another example

Consider

$$
p(x) = 0.1\mathcal{N}(x; -0.2, 1) + 0.1\mathcal{N}(x; -0.1, 1) + 0.1\mathcal{N}(x; 0, 1) + 0.1\mathcal{N}(x; 0.1, 1) + 0.1\mathcal{N}(x; 0.2, 1) + 0.5\mathcal{N}(x; 5, 1).
$$

• Let say we want to reduce $p(x)$ to only a mixture of two Gaussians. It is tempting to just dumping four smallest one and renormalized the weight. For example, if we choose to remove the first four components, we have

$$
\hat{p}(x) = 1/6\mathcal{N}(x; 0.2, 1) + 5/6\mathcal{N}(x; 5, 1)
$$

• The approximation $\hat{p}(x)$ is significantly different from $p(x)$ as shown below

Merging components

The problem is that while the first five components are all relatively small compared to the last one, they are all quite similar and their combined contribution is comparable to the latter

つくへ

Merging components

- The problem is that while the first five components are all relatively small compared to the last one, they are all quite similar and their combined contribution is comparable to the latter
- Actually the first five components are so similar that their combined contribution can be accurately modeled as one Gaussian

つくへ

Merging components

- The problem is that while the first five components are all relatively small compared to the last one, they are all quite similar and their combined contribution is comparable to the latter
- Actually the first five components are so similar that their combined contribution can be accurately modeled as one Gaussian
- So rather than discarding the components, one can get a much more accurate approximation by merging them. The approximation is illustrated as $\tilde{p}(x)$ in the figure below

റെ റ

To successfully obtain such approximation $\tilde{p}(x)$, we have to answer two questions:

- which components to merge?
- how to merge them?

 QQ

Which Components to Merge?

It is reasonable to pick similar components to merge. The question is how do will gauge the similarity between two components.

 QQ

Which Components to Merge?

It is reasonable to pick similar components to merge. The question is how do will gauge the similarity between two components.

• Consider two pdfs $p(x)$ and $q(x)$, note that we can define an inner product of $p(x)$ and $q(x)$ by

$$
\langle p(\mathbf{x}), q(\mathbf{x}) \rangle = \int p(\mathbf{x}) q(\mathbf{x}) d\mathbf{x}
$$

September 19, 2017 13 / 62

つくへ
Which Components to Merge?

It is reasonable to pick similar components to merge. The question is how do will gauge the similarity between two components.

• Consider two pdfs $p(x)$ and $q(x)$, note that we can define an inner product of $p(x)$ and $q(x)$ by

$$
\langle p(\mathbf{x}), q(\mathbf{x}) \rangle = \int p(\mathbf{x}) q(\mathbf{x}) d\mathbf{x}
$$

September 19, 2017 13 / 62

つくい

• Note that the inner product is well defined and $\langle p(x), p(x)\rangle \ge 0$

Which Components to Merge?

It is reasonable to pick similar components to merge. The question is how do will gauge the similarity between two components.

• Consider two pdfs $p(x)$ and $q(x)$, note that we can define an inner product of $p(x)$ and $q(x)$ by

$$
\langle p(\mathbf{x}), q(\mathbf{x}) \rangle = \int p(\mathbf{x}) q(\mathbf{x}) d\mathbf{x}
$$

- Note that the inner product is well defined and $\langle p(x), p(x)\rangle \ge 0$
- By Cauchy-Schwartz inequality,

$$
\frac{\langle \rho(\mathbf{x}), q(\mathbf{x}) \rangle}{\sqrt{\langle \rho(\mathbf{x}), \rho(\mathbf{x}) \rangle \langle q(\mathbf{x}), q(\mathbf{x}) \rangle}} = \frac{\int \rho(\mathbf{x}) q(\mathbf{x}) d \mathbf{x}}{\sqrt{\int \rho(\mathbf{x})^2 d \mathbf{x} \int q(\mathbf{x})^2 d \mathbf{x}}} \leq 1
$$

Which Components to Merge?

It is reasonable to pick similar components to merge. The question is how do will gauge the similarity between two components.

• Consider two pdfs $p(x)$ and $q(x)$, note that we can define an inner product of $p(x)$ and $q(x)$ by

$$
\langle p(\mathbf{x}), q(\mathbf{x}) \rangle = \int p(\mathbf{x}) q(\mathbf{x}) d\mathbf{x}
$$

- Note that the inner product is well defined and $\langle p(\mathbf{x}), p(\mathbf{x}) \rangle \ge 0$
- By Cauchy-Schwartz inequality,

$$
\frac{\langle \rho(\mathbf{x}), q(\mathbf{x}) \rangle}{\sqrt{\langle \rho(\mathbf{x}), \rho(\mathbf{x}) \rangle \langle q(\mathbf{x}), q(\mathbf{x}) \rangle}} = \frac{\int \rho(\mathbf{x}) q(\mathbf{x}) d \mathbf{x}}{\sqrt{\int \rho(\mathbf{x})^2 d \mathbf{x} \int q(\mathbf{x})^2 d \mathbf{x}}} \leq 1
$$

• The inner product maximizes (= 1) when $p(x) = q(x)$. This suggests a very reasonable similarity measure betwe[en](#page-37-0)t[w](#page-39-0)[o](#page-33-0)[p](#page-34-0)[df](#page-39-0)[s](#page-10-0) QQ

Similarity measure

• Let's define

$$
Sim(p(\mathbf{x}), q(\mathbf{x})) \triangleq \frac{\int p(\mathbf{x})q(\mathbf{x})d\mathbf{x}}{\sqrt{\int p(\mathbf{x})^2 d\mathbf{x} \int q(\mathbf{x})^2 d\mathbf{x}}}
$$

September 19, 2017 14 / 62

э

∍

∢ ロ ▶ (印

 \rightarrow

 299

Similarity measure

• Let's define

$$
Sim(p(\mathbf{x}), q(\mathbf{x})) \triangleq \frac{\int p(\mathbf{x})q(\mathbf{x})d\mathbf{x}}{\sqrt{\int p(\mathbf{x})^2 d\mathbf{x} \int q(\mathbf{x})^2 d\mathbf{x}}}
$$

In particular, if $p(\mathbf{x}) = \mathcal{N}(\mathbf{x}; \mu_{p}, \Sigma_{p})$ **and** $q(\mathbf{x}) = \mathcal{N}(\mathbf{x}; \mu_{q}, \Sigma_{q})$ **, we** have (please verify)

$$
Sim(\mathcal{N}(\boldsymbol{\mu}_{p}, \boldsymbol{\Sigma}_{p}), \mathcal{N}(\boldsymbol{\mu}_{q}, \boldsymbol{\Sigma}_{q})) = \frac{\mathcal{N}(\boldsymbol{\mu}_{p}; \boldsymbol{\mu}_{q}, \boldsymbol{\Sigma}_{p} + \boldsymbol{\Sigma}_{q})}{\sqrt{\mathcal{N}(0; 0, 2\boldsymbol{\Sigma}_{p})\mathcal{N}(0; 0, 2\boldsymbol{\Sigma}_{q})}},
$$

which can be computed very easily and is equal to one only when means and covariances are the same

 200

メロメ メ母メ メミメ メミメ

Say we have *n* components $\mathcal{N}(\mu_1, \Sigma_1)$, $\mathcal{N}(\mu_2, \Sigma_2)$, \cdots , $\mathcal{N}(\mu_n, \Sigma_n)$ with weights w_1, w_2, \dots, w_n . What should the combined component be like?

 299

Say we have *n* components $\mathcal{N}(\mu_1, \Sigma_1)$, $\mathcal{N}(\mu_2, \Sigma_2)$, \cdots , $\mathcal{N}(\mu_n, \Sigma_n)$ with weights w_1, w_2, \dots, w_n . What should the combined component be like?

Combined component weight should equal to total weight $\sum_{i=1}^n w_i$

つくへ

Say we have *n* components $\mathcal{N}(\mu_1, \Sigma_1)$, $\mathcal{N}(\mu_2, \Sigma_2)$, \cdots , $\mathcal{N}(\mu_n, \Sigma_n)$ with weights w_1, w_2, \dots, w_n . What should the combined component be like?

- Combined component weight should equal to total weight $\sum_{i=1}^n w_i$
- Combined mean will simply be $\sum_{i=1}^n \hat{w}_i \mu_i$, where $\hat{w}_i = \frac{w_i}{\sum_{i=1}^n w_i}$

つくへ

Say we have *n* components $\mathcal{N}(\mu_1, \Sigma_1)$, $\mathcal{N}(\mu_2, \Sigma_2)$, \cdots , $\mathcal{N}(\mu_n, \Sigma_n)$ with weights w_1, w_2, \dots, w_n . What should the combined component be like?

- Combined component weight should equal to total weight $\sum_{i=1}^n w_i$
- Combined mean will simply be $\sum_{i=1}^n \hat{w}_i \mu_i$, where $\hat{w}_i = \frac{w_i}{\sum_{i=1}^n w_i}$
- **•** For combined covariance, it may be tempting to approximate it as $\sum_{i=1}^n \hat{w}_i \Sigma_i$.

Say we have *n* components $\mathcal{N}(\mu_1, \Sigma_1)$, $\mathcal{N}(\mu_2, \Sigma_2)$, \cdots , $\mathcal{N}(\mu_n, \Sigma_n)$ with weights w_1, w_2, \dots, w_n . What should the combined component be like?

- Combined component weight should equal to total weight $\sum_{i=1}^n w_i$
- Combined mean will simply be $\sum_{i=1}^n \hat{w}_i \mu_i$, where $\hat{w}_i = \frac{w_i}{\sum_{i=1}^n w_i}$
- **•** For combined covariance, it may be tempting to approximate it as $\sum_{i=1}^n \hat{w}_i \Sigma_i$.
	- However, it is an underestimate

つくへ

Say we have *n* components $\mathcal{N}(\mu_1, \Sigma_1)$, $\mathcal{N}(\mu_2, \Sigma_2)$, \cdots , $\mathcal{N}(\mu_n, \Sigma_n)$ with weights w_1, w_2, \dots, w_n . What should the combined component be like?

- Combined component weight should equal to total weight $\sum_{i=1}^n w_i$
- Combined mean will simply be $\sum_{i=1}^n \hat{w}_i \mu_i$, where $\hat{w}_i = \frac{w_i}{\sum_{i=1}^n w_i}$
- For combined covariance, it may be tempting to approximate it as $\sum_{i=1}^n \hat{w}_i \Sigma_i$.
	- However, it is an underestimate
	- Because the weighted sum only counted the contribution of variation among each component, it did not take into account the variation due to different means across components.

 Ω

Say we have *n* components $\mathcal{N}(\mu_1, \Sigma_1)$, $\mathcal{N}(\mu_2, \Sigma_2)$, \cdots , $\mathcal{N}(\mu_n, \Sigma_n)$ with weights w_1, w_2, \dots, w_n . What should the combined component be like?

- Combined component weight should equal to total weight $\sum_{i=1}^n w_i$
- Combined mean will simply be $\sum_{i=1}^n \hat{w}_i \mu_i$, where $\hat{w}_i = \frac{w_i}{\sum_{i=1}^n w_i}$
- For combined covariance, it may be tempting to approximate it as $\sum_{i=1}^n \hat{w}_i \Sigma_i$.
	- However, it is an underestimate
	- Because the weighted sum only counted the contribution of variation among each component, it did not take into account the variation due to different means across components.
	- \bullet Instead, let's denote **X** as the variable sampled from the mixture. That is, $\mathsf{X} \sim \mathcal{N}(\boldsymbol{\mu}_i, \Sigma_i)$ with probability \hat{w}_i . Then, we have (please verify)

$$
\Sigma = E[\mathbf{XX}^T] - E[\mathbf{X}]E[\mathbf{X}]^T
$$

=
$$
\sum_{i=1}^n \hat{w}_i(\Sigma_i + \mu_i \mu_i^T) - \sum_{i=1}^n \sum_{j=1}^n \hat{w}_i \hat{w}_j \mu_i \mu_j^T.
$$

 200

イロメ イ母メ イヨメ イヨメーヨ

Now, go back to our previous numerical example

• Recall that $p(x) = 0.1 \mathcal{N}(x; -0.2, 1) + 0.1 \mathcal{N}(x; -0.1, 1) +$ $0.1\mathcal{N}(x; 0, 1) + 0.1\mathcal{N}(x; 0.1, 1) + 0.1\mathcal{N}(x; 0.2, 1) + 0.5\mathcal{N}(x; 5, 1)$

 Ω

∢ ロ ▶ (印

Now, go back to our previous numerical example

- Recall that $p(x) = 0.1 \mathcal{N}(x; -0.2, 1) + 0.1 \mathcal{N}(x; -0.1, 1) +$ $0.1\mathcal{N}(x; 0, 1) + 0.1\mathcal{N}(x; 0.1, 1) + 0.1\mathcal{N}(x; 0.2, 1) + 0.5\mathcal{N}(x; 5, 1)$
- If we merge the five smallest components (one can easily check that they are also more similar to each other than to the last component), we have $\tilde{p}(x) = 0.5 \mathcal{N}(x; 0, 1.02) + 0.5 \mathcal{N}(x; 5, 1)$ as shown again below. The approximate pdf is virtually indistinguishable from the original

Review multivariate normal

- Marginalization of a normal distribution is still a normal distribution
- Conditioning of normal distribution: X $|{\bf y} \sim \mathcal{N}(\mu_{\bf X} + \Sigma_{\bf XY} \Sigma_{\bf YY}^{-1}({\bf y} - \mu_{\bf Y}), \Sigma_{\bf XX} - \Sigma_{\bf XY} \Sigma_{\bf YY}^{-1} \Sigma_{\bf YX})$
- **Product of normal distribution:**
	- $\mathcal{N}(\mathsf{y}_1; \mathsf{x}, \mathsf{\Sigma}_{\mathsf{Y}_1}) \mathcal{N}(\mathsf{y}_2; \mathsf{x}, \mathsf{\Sigma}_{\mathsf{Y}_2}) =$ $\mathcal{N}(\mathsf{y}_1; \mathsf{y}_2, \Sigma_{\mathsf{Y}_2} + \Sigma_{\mathsf{Y}_1}) \mathcal{N}(\mathsf{x}; (\Lambda_{\mathsf{Y}_1} + \Lambda_{\mathsf{Y}_2})^{-1}(\Lambda_{\mathsf{Y}_2} \mathsf{y}_2 + \Lambda_{\mathsf{Y}_1} y), (\Lambda_{\mathsf{Y}_2} + \Lambda_{\mathsf{Y}_1})^{-1})$
- Division of normal distribution:

$$
\frac{\mathcal{N}(\mathbf{x};\boldsymbol{\mu}_1,\boldsymbol{\Sigma}_1)}{\mathcal{N}(\mathbf{x};\boldsymbol{\mu}_2,\boldsymbol{\Sigma}_2)}=\frac{\mathcal{N}(\mathbf{x};\boldsymbol{\mu},(\Lambda_1-\Lambda_2)^{-1})}{\mathcal{N}(\boldsymbol{\mu}_2;\boldsymbol{\mu},\Lambda_2^{-1}+(\Lambda_1-\Lambda_2)^{-1})},
$$

where $\boldsymbol{\mu} = (\mathsf{\Lambda}_1-\mathsf{\Lambda}_2)^{-1}(\mathsf{\Lambda}_1\boldsymbol{\mu}_1-\mathsf{\Lambda}_2\boldsymbol{\mu}_2)$

• Similarity measure

$$
Sim(N(\boldsymbol{\mu}_{p}, \boldsymbol{\Sigma}_{p}), \mathcal{N}(\boldsymbol{\mu}_{q}, \boldsymbol{\Sigma}_{q})) = \frac{\mathcal{N}(\boldsymbol{\mu}_{p}; \boldsymbol{\mu}_{q}, \boldsymbol{\Sigma}_{p} + \boldsymbol{\Sigma}_{q})}{\sqrt{\mathcal{N}(0; 0, 2\boldsymbol{\Sigma}_{p})\mathcal{N}(0; 0, 2\boldsymbol{\Sigma}_{q})}},
$$

Consider someone flips a biased coin. The probability of the outcome is described by the Bernoulli distribution. Denote $X = 1$ for a head and $X = 0$ for a tail. Let $Pr(X = 1) = p$.

 Ω

Consider someone flips a biased coin. The probability of the outcome is described by the Bernoulli distribution. Denote $X = 1$ for a head and $X = 0$ for a tail. Let $Pr(X = 1) = p$. Then the Bernoulli distribution is simply

$$
Bern(x|p) = \begin{cases} p, & x = 1 \\ 1 - p, & x = 0 \end{cases}
$$

September 19, 2017 18 / 62

 Ω

Consider someone flips a biased coin. The probability of the outcome is described by the Bernoulli distribution. Denote $X = 1$ for a head and $X = 0$ for a tail. Let $Pr(X = 1) = p$. Then the Bernoulli distribution is simply

$$
Bern(x|p) = \begin{cases} p, & x = 1 \\ 1 - p, & x = 0 \end{cases}
$$

• More concisely, we can write it as

$$
Bern(x|p) = p^x(1-p)^{1-x},
$$

Consider someone flips a biased coin. The probability of the outcome is described by the Bernoulli distribution. Denote $X = 1$ for a head and $X = 0$ for a tail. Let $Pr(X = 1) = p$. Then the Bernoulli distribution is simply

$$
Bern(x|p) = \begin{cases} p, & x = 1 \\ 1 - p, & x = 0 \end{cases}
$$

• More concisely, we can write it as

$$
Bern(x|p) = p^x(1-p)^{1-x},
$$

A The mean and variance are

E[X] = p · 1 + (1 − p) · 0 = p Var[X] = p · (1 − p) ² + (1 − p) · p ² = p(1 − p)

• Repeat the experiment for N times, the probability of the outcome will now be described by the binomial distribution. Note that x is now the number of obtained heads, we have

つくへ

• Repeat the experiment for N times, the probability of the outcome will now be described by the binomial distribution. Note that x is now the number of obtained heads, we have

$$
Bin(x|p, N) = {N \choose x} p^{x} (1-p)^{N-x},
$$

September 19, 2017 19 / 62

つくい

• Mean and variances are given by $E[X] = \sum_{x=0}^{N} Bin(x|p)x$

• Repeat the experiment for N times, the probability of the outcome will now be described by the binomial distribution. Note that x is now the number of obtained heads, we have

$$
Bin(x|p, N) = {N \choose x} p^{x} (1-p)^{N-x},
$$

• Mean and variances are given by $\mathcal{F}[X]=\sum_{x=0}^{N}\mathcal{B}$ in $(x|p)x=\sum_{x=1}^{N}\frac{N!}{(x-1)!(N-x)!}p^x(1-p)^{N-x}$

• Repeat the experiment for N times, the probability of the outcome will now be described by the binomial distribution. Note that x is now the number of obtained heads, we have

$$
Bin(x|p, N) = {N \choose x} p^{x} (1-p)^{N-x},
$$

• Mean and variances are given by

•
$$
E[X] = \sum_{x=0}^{N} Bin(x|p)x = \sum_{x=1}^{N} \frac{N!}{(x-1)!(N-x)!} p^x (1-p)^{N-x}
$$

= $Np \sum_{x=1}^{N} \frac{(N-1)!}{(x-1)!(N-x)!} p^{x-1} (1-p)^{N-x}$

• Repeat the experiment for N times, the probability of the outcome will now be described by the binomial distribution. Note that x is now the number of obtained heads, we have

$$
Bin(x|p, N) = {N \choose x} p^{x} (1-p)^{N-x},
$$

• Mean and variances are given by

•
$$
E[X] = \sum_{x=0}^{N} Bin(x|p)x = \sum_{x=1}^{N} \frac{N!}{(x-1)!(N-x)!} p^x (1-p)^{N-x}
$$

= $Np \sum_{x=1}^{N} \frac{(N-1)!}{(x-1)!(N-x)!} p^{x-1} (1-p)^{N-x} = Np \sum_{x=0}^{N-1} Bin(x|p, N-1)$

• Repeat the experiment for N times, the probability of the outcome will now be described by the binomial distribution. Note that x is now the number of obtained heads, we have

$$
Bin(x|p, N) = {N \choose x} p^{x} (1-p)^{N-x},
$$

• Mean and variances are given by

•
$$
E[X] = \sum_{x=0}^{N} Bin(x|p)x = \sum_{x=1}^{N} \frac{N!}{(x-1)!(N-x)!} p^x (1-p)^{N-x}
$$

= $Np \sum_{x=1}^{N} \frac{(N-1)!}{(x-1)!(N-x)!} p^{x-1} (1-p)^{N-x} = Np \sum_{x=0}^{N-1} Bin(x|p, N-1)$
= Np

• Repeat the experiment for N times, the probability of the outcome will now be described by the binomial distribution. Note that x is now the number of obtained heads, we have

$$
Bin(x|p, N) = {N \choose x} p^{x} (1-p)^{N-x},
$$

• Mean and variances are given by

•
$$
E[X] = \sum_{x=0}^{N} Bin(x|p)x = \sum_{x=1}^{N} \frac{N!}{(x-1)!(N-x)!} p^x (1-p)^{N-x}
$$

= $Np \sum_{x=1}^{N} \frac{(N-1)!}{(x-1)!(N-x)!} p^{x-1} (1-p)^{N-x} = Np \sum_{x=0}^{N-1} Bin(x|p, N-1)$
= Np
• Similar, $E[X(X-1)] = \sum_{x=2}^{N} \frac{N!}{(x-2)!(N-x)!} p^x (1-p)^{N-x}$

 200

• Repeat the experiment for N times, the probability of the outcome will now be described by the binomial distribution. Note that x is now the number of obtained heads, we have

$$
Bin(x|p, N) = {N \choose x} p^{x} (1-p)^{N-x},
$$

• Mean and variances are given by

•
$$
E[X] = \sum_{x=0}^{N} Bin(x|p)x = \sum_{x=1}^{N} \frac{N!}{(x-1)!(N-x)!} p^x (1-p)^{N-x}
$$

= $Np \sum_{x=1}^{N} \frac{(N-1)!}{(x-1)!(N-x)!} p^{x-1} (1-p)^{N-x} = Np \sum_{x=0}^{N-1} Bin(x|p, N-1)$
= Np
• Similar, $E[X(X-1)] = \sum_{x=2}^{N} \frac{N!}{(x-2)!(N-x)!} p^x (1-p)^{N-x}$

$$
= N(N-1)p^2 \sum_{x=0}^{N-2} Bin(x|p, N-2) = N(N-1)p^2
$$

• Repeat the experiment for N times, the probability of the outcome will now be described by the binomial distribution. Note that x is now the number of obtained heads, we have

$$
Bin(x|p, N) = {N \choose x} p^{x} (1-p)^{N-x},
$$

• Mean and variances are given by

•
$$
E[X] = \sum_{x=0}^{N} Bin(x|p)x = \sum_{x=1}^{N} \frac{N!}{(x-1)!(N-x)!} p^x (1-p)^{N-x}
$$

= $Np \sum_{x=1}^{N} \frac{(N-1)!}{(x-1)!(N-x)!} p^{x-1} (1-p)^{N-x} = Np \sum_{x=0}^{N-1} Bin(x|p, N-1)$
= Np
• Similar, $E[X(X-1)] = \sum_{x=2}^{N} \frac{N!}{(x-2)!(N-x)!} p^x (1-p)^{N-x}$

$$
= N(N-1)p^{2} \sum_{x=0}^{N-2} Bin(x|p, N-2) = N(N-1)p^{2}
$$

Therefore $Var[X] - E[X^{2}] - E[X]^{2}$

Therefore, $Var[X] = E[X^2] - E[X]$

• Repeat the experiment for N times, the probability of the outcome will now be described by the binomial distribution. Note that x is now the number of obtained heads, we have

$$
Bin(x|p, N) = {N \choose x} p^{x} (1-p)^{N-x},
$$

• Mean and variances are given by

•
$$
E[X] = \sum_{x=0}^{N} Bin(x|p)x = \sum_{x=1}^{N} \frac{N!}{(x-1)!(N-x)!} p^x (1-p)^{N-x}
$$

\n
$$
= Np \sum_{x=1}^{N} \frac{(N-1)!}{(x-1)!(N-x)!} p^{x-1} (1-p)^{N-x} = Np \sum_{x=0}^{N-1} Bin(x|p, N-1)
$$

\n
$$
= Np
$$

\n• Similar,
$$
E[X(X-1)] = \sum_{x=2}^{N} \frac{N!}{(x-2)!(N-x)!} p^x (1-p)^{N-x}
$$

\n
$$
= N(N-1)p^2 \sum_{x=0}^{N-2} Bin(x|p, N-2) = N(N-1)p^2
$$

\n• Therefore
$$
Var[X] = E[X^2] - E[X^2] = E[X(X-1)] + E[X] - E[X]^2
$$

Therefore, $Var[X] = E[X^2] - E[X]^2 = E[X(X-1)] + E[X] - E[X]^2 =$ $N(N-1)p^2 + Np - (Np)^2 = Np(1-p)$

Binomial distribution

As shown below, the binomial distribution can be model well with a normal distribution $\mathcal{N}(Np, Np(1-p))$ for large N

The binomial distribution is shown in blue and an approximation by normal distribution is shown in red つくへ

September 19, 2017 20 / 62

Note that both Bernoulli and binomial distributions have the form $p^u(1-p)^v$

э

4 重

∢ ロ ▶ (印

 2990

- Note that both Bernoulli and binomial distributions have the form $p^u(1-p)^v$
- \bullet To estimate p , recall that the ML estimator will try to compute

$$
\hat{\rho} = \arg\max_{p} p(u, v|p) = \arg\max_{p} p^u (1-p)^v
$$

4日)

 QQ

- Note that both Bernoulli and binomial distributions have the form $p^u(1-p)^v$
- \bullet To estimate p, recall that the ML estimator will try to compute

$$
\hat{p} = \arg\max_{p} p(u, v|p) = \arg\max_{p} p^{u} (1-p)^{v}
$$

Now if we would like to use the MAP estimator instead, we need to introduce a prior $p(p)$ and solve instead

$$
\hat{p} = \arg\max_{p} p(u, v|p)p(p) = \arg\max_{p} p^{u}(1-p)^{v}p(p)
$$

 200

- Note that both Bernoulli and binomial distributions have the form $p^u(1-p)^v$
- \bullet To estimate p, recall that the ML estimator will try to compute

$$
\hat{p} = \arg\max_{p} p(u, v|p) = \arg\max_{p} p^{u} (1-p)^{v}
$$

Now if we would like to use the MAP estimator instead, we need to introduce a prior $p(p)$ and solve instead

$$
\hat{p} = \arg\max_{p} p(u, v|p)p(p) = \arg\max_{p} p^{u}(1-p)^{v}p(p)
$$

• It is very difficult to determine the prior unanimously. Actually it can be controversial just to determine the form of it

 200

- Note that both Bernoulli and binomial distributions have the form $p^u(1-p)^v$
- \bullet To estimate p, recall that the ML estimator will try to compute

$$
\hat{p} = \arg\max_{p} p(u, v|p) = \arg\max_{p} p^{u} (1-p)^{v}
$$

Now if we would like to use the MAP estimator instead, we need to introduce a prior $p(p)$ and solve instead

$$
\hat{p} = \arg\max_{p} p(u, v|p)p(p) = \arg\max_{p} p^{u}(1-p)^{v}p(p)
$$

- It is very difficult to determine the prior unanimously. Actually it can be controversial just to determine the form of it
- However, if we select $p(\rho)$ of a form $p(\rho) \propto \rho^a (1-\rho)^b$, then the resulting posterior distribution with the same form as before. This choice is often chosen for practical purposes, and a prior with same "form" as its likelihood (and thus posterior) is known as the conjugate prior 200

Beta distribution

The conjugate prior of both Bernoulli and binomial distributions is the beta distribution. Its pdf is given by

$$
Beta(x|a, b) = \frac{x^{a-1}(1-x)^{b-1}}{B(a, b)},
$$

つくい

4 0 8 \leftarrow
Beta distribution

The conjugate prior of both Bernoulli and binomial distributions is the beta distribution. Its pdf is given by

$$
Beta(x|a, b) = \frac{x^{a-1}(1-x)^{b-1}}{B(a, b)},
$$

• Note that with $a = b = 1$, $Beta(x|1, 1) = 1$. It is the same as no prior

 \leftarrow

 QQ

Note that
$$
\Gamma(z) = \int_0^\infty x^{z-1} e^{-x} dx
$$

\n• $\Gamma(1) = \int_0^\infty e^{-x} dx = -e^{-x}\Big|_0^\infty = 1$

Þ

 $\leftarrow \equiv$

4. Ξ \sim

Kロト K同下

 299

Note that
$$
\Gamma(z) = \int_0^\infty x^{z-1} e^{-x} dx
$$

\n• $\Gamma(1) = \int_0^\infty e^{-x} dx = -e^{-x}\Big|_0^\infty = 1$

• For $z > 1$, we have $\Gamma(z) = (z - 1)\Gamma(z - 1)$

- 4 重 8 3 番 8

← ロ ▶ → 何 ▶

 \equiv

 299

Note that
$$
\Gamma(z) = \int_0^\infty x^{z-1} e^{-x} dx
$$

\n• $\Gamma(1) = \int_0^\infty e^{-x} dx = -e^{-x} \Big|_0^\infty = 1$

• For $z > 1$, we have $\Gamma(z) = (z - 1)\Gamma(z - 1)$

Proof.

$$
\Gamma(z) = \int_0^\infty x^{z-1} e^{-x} dx
$$

 $E = \Omega Q$

イロン イ母ン イヨン イヨン

Note that
$$
\Gamma(z) = \int_0^\infty x^{z-1} e^{-x} dx
$$

\n• $\Gamma(1) = \int_0^\infty e^{-x} dx = -e^{-x} \Big|_0^\infty = 1$

• For $z > 1$, we have $\Gamma(z) = (z - 1)\Gamma(z - 1)$

Proof.

$$
\Gamma(z) = \int_0^\infty x^{z-1} e^{-x} \, dx = -\int_0^\infty x^{z-1} \, dx^{-x}
$$

メロメ メ母メ メミメ メミメ

 E Ω

Note that
$$
\Gamma(z) = \int_0^\infty x^{z-1} e^{-x} dx
$$

\n• $\Gamma(1) = \int_0^\infty e^{-x} dx = -e^{-x} \Big|_0^\infty = 1$

• For $z > 1$, we have $\Gamma(z) = (z - 1)\Gamma(z - 1)$

Proof.

$$
\Gamma(z) = \int_0^\infty x^{z-1} e^{-x} dx = -\int_0^\infty x^{z-1} de^{-x}
$$

= $-x^{z-1} e^{-x} \Big|_0^\infty + (z-1) \int_0^\infty x^{z-2} e^{-x} dx$

September 19, 2017 23 / 62

メロメ メ母メ メミメ メミ

(B) 2990

Note that
$$
\Gamma(z) = \int_0^\infty x^{z-1} e^{-x} dx
$$

\n• $\Gamma(1) = \int_0^\infty e^{-x} dx = -e^{-x} \Big|_0^\infty = 1$

• For $z > 1$, we have $\Gamma(z) = (z - 1)\Gamma(z - 1)$

Proof.

$$
\Gamma(z) = \int_0^\infty x^{z-1} e^{-x} dx = -\int_0^\infty x^{z-1} de^{-x}
$$

= $-x^{z-1} e^{-x} \Big|_0^\infty + (z-1) \int_0^\infty x^{z-2} e^{-x} dx$
= $(z-1) \int_0^\infty x^{z-2} e^{-x} dx = (z-1) \Gamma(z-1)$

Þ September 19, 2017 23 / 62

イロト イ伊 ト イヨ ト イヨ

 2990

Note that
$$
\Gamma(z) = \int_0^\infty x^{z-1} e^{-x} dx
$$

\n• $\Gamma(1) = \int_0^\infty e^{-x} dx = -e^{-x} \Big|_0^\infty = 1$

• For $z > 1$, we have $\Gamma(z) = (z - 1)\Gamma(z - 1)$

Proof.

$$
\Gamma(z) = \int_0^\infty x^{z-1} e^{-x} dx = -\int_0^\infty x^{z-1} de^{-x}
$$

= $-x^{z-1} e^{-x} \Big|_0^\infty + (z-1) \int_0^\infty x^{z-2} e^{-x} dx$
= $(z-1) \int_0^\infty x^{z-2} e^{-x} dx = (z-1) \Gamma(z-1)$

• Therefore, for integer $z > 1$, $\Gamma(z) = (z - 1)!$

KED KAP KED KED E LOQO

Mode of beta distribution

$$
Beta(x|a, b) = \frac{x^{a-1}(1-x)^{b-1}}{B(a,b)}.
$$
 Set

$$
\frac{\partial Beta(x|a, b)}{\partial x} = \frac{(a-1)x^{a-2}(1-x)^{b-1} - (b-1)x^{a-1}(1-x)^{b-2}}{B(a, b)} = 0,
$$

September 19, 2017 24 / 62

G.

← ロ ▶ → 何 ▶

 QQ

we have $(a-1)(1-x) = (b-1)x \Rightarrow x = \frac{a-1}{a+b}$ $a+b-2$

The mode is the peak of a distribution. Recall that

Note that $\int_{x=0}^{1} p(x|a, b) = 1 \Rightarrow \int_{x=0}^{1} x^{a-1}(1-x)^{b-1} = B(a, b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$. This gives us a handy trick to manipulate beta distribution

 Ω

Note that $\int_{x=0}^{1} p(x|a, b) = 1 \Rightarrow \int_{x=0}^{1} x^{a-1}(1-x)^{b-1} = B(a, b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$. This gives us a handy trick to manipulate beta distribution

$$
E[X] = \int_{x=0}^{1} xBeta(x|a, b) dx = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \int_{x=0}^{1} x^{a} (1-x)^{b-1} dx
$$

$$
= \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \frac{\Gamma(a+1)\Gamma(b)}{\Gamma(a+b+1)} = \frac{a}{a+b}
$$

 Ω

Note that $\int_{x=0}^{1} p(x|a, b) = 1 \Rightarrow \int_{x=0}^{1} x^{a-1}(1-x)^{b-1} = B(a, b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$. This gives us a handy trick to manipulate beta distribution

$$
E[X] = \int_{x=0}^{1} xBeta(x|a, b) dx = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \int_{x=0}^{1} x^{a} (1-x)^{b-1} dx
$$

$$
= \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \frac{\Gamma(a+1)\Gamma(b)}{\Gamma(a+b+1)} = \frac{a}{a+b}
$$

Similarly,
$$
E[X^2] = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \int_{x=0}^{1} x^{a+1} (1-x)^{b-1} dx
$$

 Ω

Note that $\int_{x=0}^{1} p(x|a, b) = 1 \Rightarrow \int_{x=0}^{1} x^{a-1}(1-x)^{b-1} = B(a, b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$. This gives us a handy trick to manipulate beta distribution

$$
E[X] = \int_{x=0}^{1} xBeta(x|a, b) dx = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \int_{x=0}^{1} x^{a} (1-x)^{b-1} dx
$$

$$
= \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \frac{\Gamma(a+1)\Gamma(b)}{\Gamma(a+b+1)} = \frac{a}{a+b}
$$

Similarly, $E[X^2] = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \int_{x=0}^1 x^{a+1} (1-x)^{b-1} dx = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)}$ Γ(a)Γ(b) $\frac{\Gamma(a+2)\Gamma(b)}{\Gamma(a+b+2)} =$ $\frac{a(a+1)}{(a+b)(a+b+1)}$

Note that $\int_{x=0}^{1} p(x|a, b) = 1 \Rightarrow \int_{x=0}^{1} x^{a-1}(1-x)^{b-1} = B(a, b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$. This gives us a handy trick to manipulate beta distribution

$$
E[X] = \int_{x=0}^{1} xBeta(x|a, b) dx = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \int_{x=0}^{1} x^{a} (1-x)^{b-1} dx
$$

$$
= \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \frac{\Gamma(a+1)\Gamma(b)}{\Gamma(a+b+1)} = \frac{a}{a+b}
$$

Similarly, $E[X^2] = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \int_{x=0}^1 x^{a+1} (1-x)^{b-1} dx = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)}$ Γ(a)Γ(b) $\frac{\Gamma(a+2)\Gamma(b)}{\Gamma(a+b+2)} =$ $\frac{a(a+1)}{(a+b)(a+b+1)}$. Thus,

$$
Var[X] = E[X2] - E[X]2 = \frac{a(a+1)}{(a+b)(a+b+1)} - \frac{a2}{(a+b)2}
$$

$$
= \frac{a(a+1)(a+b) - a2(a+b+1)}{(a+b)2(a+b+1)} = \frac{ab}{(a+b)2(a+b+1)}
$$

KID KAD KID KID KID YA GO