
Lecture 5

Review

PCA (assume zero mean)
Via eigen-decomposition

1 Σ ≈ 1
m
X TX

2 PTΣP = D
3 Y = PTX

Via SVD
1 UTXV = D
2 Y = V TX

Marginalization of a normal distribution is still a normal distribution

Conditioning of normal distribution:
X|y ∼ N (µX +ΣXYΣ

−1
YY(y − µY),ΣXX − ΣXYΣ

−1
YYΣYX)

Product of normal distribution:
N (y1; x,ΣY1)N (y2; x,ΣY2) =
N (y1; y2,ΣY2+ΣY1)N (x; (ΛY1+ΛY2)

−1(ΛY2y2+ΛY1y), (ΛY2+ΛY1)
−1)
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Lecture 5

Correction: product of normal distributions

One can compute the scaling factor K (y1, y2,ΣY1 ,ΣY2) directly

However, recall that Y1 ⊥⊥ Y2|X, it is model the variables as shown
below

Since N (y2; x,ΣY2) = N (x; y2,ΣY2) and Y1 ⊥⊥ Y2|X, we have

N (y1; x,ΣY1)N (y2; x,ΣY2) = N (y1; x,ΣY1)︸ ︷︷ ︸
p(y1|x)=p(y1|x,y2)

N (x; y2,ΣY2)︸ ︷︷ ︸
p(x|y2)

= p(y1, x|y2)
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Lecture 5

Correction: product of normal distributions

Then, marginalizing x out from p(y1, x|y2), we have

p(y1|y2) =
∫
p(y1, x|y2)dx. However, from the figure,∫
p(y1, x|y2)dx = p(y1|y2) = N (y1; y2,ΣY2 +ΣY1)

On the other hand,∫
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N (y1; x,ΣY1)N (y2; x,ΣY2)dx

=
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K (y1, y2,ΣY1 ,ΣY2)N (x; (ΛY1 + ΛY2)

−1(ΛY2y2 + ΛY1y), (ΛY2 + ΛY1)
−1)dx
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Lecture 5

Division of normal distributions

To compute N (x;µ1,Σ1)
N (x;µ2,Σ2)

, note that from the product formula earlier

N (x;µ2,Σ2)N (x; (Λ1 − Λ2)
−1(Λ1µ1 − Λ2µ2), (Λ1 − Λ2)

−1)

=N (µ2; (Λ1 − Λ2)
−1(Λ1µ1 − Λ2µ2),Λ

−1
2 + (Λ1 − Λ2)

−1)N (x;µ1,Σ1)

Therefore,

N (x;µ1,Σ1)

N (x;µ2,Σ2)
=

N (x; (Λ1 − Λ2)
−1(Λ1µ1 − Λ2µ2), (Λ1 − Λ2)

−1)

N (µ2; (Λ1 − Λ2)−1(Λ1µ1 − Λ2µ2),Λ
−1
2 + (Λ1 − Λ2)−1)

=
N (x;µ, (Λ1 − Λ2)

−1)

N (µ2;µ,Λ
−1
2 + (Λ1 − Λ2)−1)

,

where µ = (Λ1 − Λ2)
−1(Λ1µ1 − Λ2µ2)

Note that the final pdf will be Gaussian-like if Λ1 � Λ2. Otherwise,
one can still write out the pdf using the precision matrix. But the
covariance matrix will not be defined (Try plot some pdfs out
yourselves)
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Lecture 5 Mixture of “Gaussians”

Mixture of Gaussians

Consider an electrical system that outputs signal of different statistics
when it is on and off

When the system is on, the output signal S behaves like N (5, 1).
When the system is off is off, S behaves like N (0, 1)

If someone measuring the signal does not know the status of the
system but only knows that the system is on 40% of the time, then to
the observer, the signal S behaves like a mixture of Gaussians
The pdf of S will be 0.4N (s; 5, 1) + 0.6N (s; 0, 1) as shown below
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Lecture 5 Mixture of “Gaussians”

Mixture of Gaussians

A main limitation of normal distribution is that it is unimodal

Mixture of Gaussian distribution allows multimodal and can virtually
model any pdfs. But there is a computational cost for this gain
Let us illustrate this with the following example:

Consider two mixtures of Gaussian likelihood of x given two
observations y1 and y2 as follows:

p(y1|x) = 0.6N (x ; 0, 1) + 0.4N (x ; 5, 1);

p(y2|x) = 0.5N (x ;−2, 1) + 0.5N (x ; 4, 1).

What is the overall likelihood, p(y1, y2|x)?
As usual, it is reasonable to assume the observations to be
conditionally independent given x . Then,

p(y1, y2|x) = p(y1|x)p(y2|x)
= (0.6N (x ; 0, 1) + 0.4N (x ; 5, 1))(0.5N (x ;−2, 1) + 0.5N (x ; 4, 1))

= 0.3N (x ; 0, 1)N (x ;−2, 1) + 0.2N (x ; 5, 1)N (x ;−2, 1)

+ 0.3N (x ; 0, 1)N (x ; 4, 1) + 0.2N (x ; 5, 1)N (x ; 4, 1)
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Lecture 5 Mixture of “Gaussians”

Explosion of Gaussians

The last step involves computing products of Gaussians but we have
learned it in previous sections. Using the previous result,

p(y1, y2|x) = 0.3N (−2; 0, 2)N (x ;−1, 0.5) + 0.2N (−2; 5, 2)N (x ; 1.5, 0.5)

+ 0.3N (4; 0, 2)N (x ; 2, 0.5) + 0.2N (4; 5, 2)N (x ; 4.5, 0.5).

So we have the overall likelihood is a mixture of four Gaussians

Let’s repeat our discussion but with n observations instead. The overall
likelihood will be a mixture of 2n Gaussians!

Therefore, the computation will quickly become intractable as the
number of observations increases
Fortunately, in reality, some of the Gaussians in the mixture tend to
have a very small weight
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Lecture 5 Mixture of “Gaussians”

Reduce number of components in Gaussian mixtures

For instance, in our previous numerical example, if we continue our
numerical computation for the two observation example, we have

p(y1, y2|x) = 0.4163N (x ;−1, 0.5) + 3.5234× 10−6N (x ; 1.5, 0.5)

+ 0.0202N (x ; 2, 0.5) + 0.5734N (x ; 4.5, 0.5).

We can see that the weight for the component at mean 1.5 is very
small. And the component at mean 2 has a rather small weight also.
Even with the four Gaussian components, the overall likelihood is
essentially just a bimodal distribution as shown in the figure below
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Lecture 5 Mixture of “Gaussians”

Reduce number of components in Gaussian mixtures

Therefore, we may approximate p(y1, y2|x) with only two of its original
component as 0.4163/(0.4163 + 0.5734)N (x ;−1, 0.5) + 0.5734/(0.4163 +
0.5734)N (x ; 4.5, 0.5) = 0.4206N (x ;−1, 0.5) + 0.5794N (x ; 4.5, 0.5)

However, it is not always a good approximation strategy just to dump away
the small components in a Gaussian mixture
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Lecture 5 Mixture of “Gaussians”

Another example

Consider

p(x) = 0.1N (x ;−0.2, 1) + 0.1N (x ;−0.1, 1) + 0.1N (x ; 0, 1) + 0.1N (x ; 0.1, 1)

+ 0.1N (x ; 0.2, 1) + 0.5N (x ; 5, 1).

Let say we want to reduce p(x) to only a mixture of two Gaussians. It is
tempting to just dumping four smallest one and renormalized the weight.
For example, if we choose to remove the first four components, we have

p̂(x) = 1/6N (x ; 0.2, 1) + 5/6N (x ; 5, 1)

The approximation p̂(x) is significantly different from p(x) as shown below
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Lecture 5 Mixture of “Gaussians”

Merging components

The problem is that while the first five components are all relatively
small compared to the last one, they are all quite similar and their
combined contribution is comparable to the latter

Actually the first five components are so similar that their combined
contribution can be accurately modeled as one Gaussian

So rather than discarding the components, one can get a much more
accurate approximation by merging them. The approximation is
illustrated as p̃(x) in the figure below
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Lecture 5 Mixture of “Gaussians”

Merging components

To successfully obtain such approximation p̃(x), we have to answer two
questions:

which components to merge?

how to merge them?
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Lecture 5 Mixture of “Gaussians”

Which Components to Merge?

It is reasonable to pick similar components to merge. The question is how
do will gauge the similarity between two components.

Consider two pdfs p(x) and q(x), note that we can define an inner
product of p(x) and q(x) by

〈p(x), q(x)〉 =
∫

p(x)q(x)dx

Note that the inner product is well defined and 〈p(x), p(x)〉 ≥ 0

By Cauchy-Schwartz inequality,

〈p(x), q(x)〉√
〈p(x), p(x)〉〈q(x), q(x)〉

=

∫
p(x)q(x)dx√∫

p(x)2dx
∫
q(x)2dx

≤ 1

The inner product maximizes (= 1) when p(x) = q(x). This suggests
a very reasonable similarity measure between two pdfs
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Lecture 5 Mixture of “Gaussians”

Similarity measure

Let’s define

Sim(p(x), q(x)) ,

∫
p(x)q(x)dx√∫

p(x)2dx
∫
q(x)2dx

In particular, if p(x) = N (x;µp,Σp) and q(x) = N (x;µq,Σq), we
have (please verify)

Sim(N (µp,Σp),N (µq,Σq)) =
N (µp;µq,Σp +Σq)√

N (0; 0, 2Σp)N (0; 0, 2Σq)
,

which can be computed very easily and is equal to one only when
means and covariances are the same
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Lecture 5 Mixture of “Gaussians”

How to Merge Components?

Say we have n components N (µ1,Σ1), N (µ2,Σ2), · · · , N (µn,Σn) with
weights w1,w2, · · · ,wn. What should the combined component be like?

Combined component weight should equal to total weight
∑n

i=1 wi

Combined mean will simply be
∑n

i=1 ŵiµi , where ŵi =
wi∑n
i=1 wi

For combined covariance, it may be tempting to approximate it as∑n
i=1 ŵiΣi .

However, it is an underestimate
Because the weighted sum only counted the contribution of variation
among each component, it did not take into account the variation due
to different means across components.
Instead, let’s denote X as the variable sampled from the mixture. That
is, X ∼ N (µi ,Σi ) with probability ŵi . Then, we have (please verify)

Σ = E [XXT ]− E [X]E [X]T

=
n∑

i=1

ŵi (Σi + µiµ
T
i )−

n∑
i=1

n∑
j=1

ŵi ŵjµiµ
T
j .
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ŵi ŵjµiµ
T
j .

September 19, 2017 15 / 62



Lecture 5 Mixture of “Gaussians”

How to Merge Components?

Say we have n components N (µ1,Σ1), N (µ2,Σ2), · · · , N (µn,Σn) with
weights w1,w2, · · · ,wn. What should the combined component be like?

Combined component weight should equal to total weight
∑n

i=1 wi

Combined mean will simply be
∑n
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Lecture 5 Mixture of “Gaussians”

Now, go back to our previous numerical example

Recall that p(x) = 0.1N (x ;−0.2, 1) + 0.1N (x ;−0.1, 1) +
0.1N (x ; 0, 1) + 0.1N (x ; 0.1, 1) + 0.1N (x ; 0.2, 1) + 0.5N (x ; 5, 1)

If we merge the five smallest components (one can easily check that
they are also more similar to each other than to the last component),
we have p̃(x) = 0.5N (x ; 0, 1.02) + 0.5N (x ; 5, 1) as shown again
below. The approximate pdf is virtually indistinguishable from the
original
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Lecture 5 Mixture of “Gaussians”

Review multivariate normal

Marginalization of a normal distribution is still a normal distribution

Conditioning of normal distribution:
X|y ∼ N (µX +ΣXYΣ

−1
YY(y − µY),ΣXX − ΣXYΣ

−1
YYΣYX)

Product of normal distribution:
N (y1; x,ΣY1)N (y2; x,ΣY2) =
N (y1; y2,ΣY2+ΣY1)N (x; (ΛY1+ΛY2)

−1(ΛY2y2+ΛY1y), (ΛY2+ΛY1)
−1)

Division of normal distribution:

N (x;µ1,Σ1)

N (x;µ2,Σ2)
=

N (x;µ, (Λ1 − Λ2)
−1)

N (µ2;µ,Λ
−1
2 + (Λ1 − Λ2)−1)

,

where µ = (Λ1 − Λ2)
−1(Λ1µ1 − Λ2µ2)

Similarity measure

Sim(N (µp,Σp),N (µq,Σq)) =
N (µp;µq,Σp +Σq)√

N (0; 0, 2Σp)N (0; 0, 2Σq)
,
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Lecture 5 More distributions

Bernoulli distribution

Consider someone flips a biased coin. The probability of the outcome
is described by the Bernoulli distribution. Denote X = 1 for a head
and X = 0 for a tail. Let Pr(X = 1) = p.

Then the Bernoulli
distribution is simply

Bern(x |p) =

{
p, x = 1

1− p, x = 0

More concisely, we can write it as

Bern(x |p) = px(1− p)1−x ,

The mean and variance are

E [X ] = p · 1 + (1− p) · 0 = p

Var [X ] = p · (1− p)2 + (1− p) · p2 = p(1− p)
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Lecture 5 More distributions

Binomial distribution (N trials)

Repeat the experiment for N times, the probability of the outcome
will now be described by the binomial distribution. Note that x is now
the number of obtained heads, we have

Bin(x |p,N) =

(
N

x

)
px(1− p)N−x ,

Mean and variances are given by

E [X ] =
∑N

x=0 Bin(x |p)x =
∑N

x=1
N!

(x−1)!(N−x)!p
x(1− p)N−x
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Lecture 5 More distributions

Binomial distribution

As shown below, the binomial distribution can be model well with a
normal distribution N (Np,Np(1− p)) for large N

The binomial distribution is shown in blue and an approximation by normal
distribution is shown in red
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Lecture 5 More distributions

Conjugate prior

Note that both Bernoulli and binomial distributions have the form
pu(1− p)v

To estimate p, recall that the ML estimator will try to compute

p̂ = argmax
p

p(u, v |p) = argmax
p

pu(1− p)v

Now if we would like to use the MAP estimator instead, we need to
introduce a prior p(p) and solve instead

p̂ = argmax
p

p(u, v |p)p(p) = argmax
p

pu(1− p)vp(p)

It is very difficult to determine the prior unanimously. Actually it can
be controversial just to determine the form of it
However, if we select p(p) of a form p(p) ∝ pa(1− p)b, then the
resulting posterior distribution with the same form as before. This
choice is often chosen for practical purposes, and a prior with same
“form” as its likelihood (and thus posterior) is known as the
conjugate prior

September 19, 2017 21 / 62



Lecture 5 More distributions

Conjugate prior

Note that both Bernoulli and binomial distributions have the form
pu(1− p)v

To estimate p, recall that the ML estimator will try to compute

p̂ = argmax
p

p(u, v |p) = argmax
p

pu(1− p)v

Now if we would like to use the MAP estimator instead, we need to
introduce a prior p(p) and solve instead

p̂ = argmax
p

p(u, v |p)p(p) = argmax
p

pu(1− p)vp(p)

It is very difficult to determine the prior unanimously. Actually it can
be controversial just to determine the form of it
However, if we select p(p) of a form p(p) ∝ pa(1− p)b, then the
resulting posterior distribution with the same form as before. This
choice is often chosen for practical purposes, and a prior with same
“form” as its likelihood (and thus posterior) is known as the
conjugate prior

September 19, 2017 21 / 62



Lecture 5 More distributions

Conjugate prior

Note that both Bernoulli and binomial distributions have the form
pu(1− p)v

To estimate p, recall that the ML estimator will try to compute

p̂ = argmax
p

p(u, v |p) = argmax
p

pu(1− p)v

Now if we would like to use the MAP estimator instead, we need to
introduce a prior p(p) and solve instead

p̂ = argmax
p

p(u, v |p)p(p) = argmax
p

pu(1− p)vp(p)

It is very difficult to determine the prior unanimously. Actually it can
be controversial just to determine the form of it
However, if we select p(p) of a form p(p) ∝ pa(1− p)b, then the
resulting posterior distribution with the same form as before. This
choice is often chosen for practical purposes, and a prior with same
“form” as its likelihood (and thus posterior) is known as the
conjugate prior

September 19, 2017 21 / 62



Lecture 5 More distributions

Conjugate prior

Note that both Bernoulli and binomial distributions have the form
pu(1− p)v

To estimate p, recall that the ML estimator will try to compute

p̂ = argmax
p

p(u, v |p) = argmax
p

pu(1− p)v

Now if we would like to use the MAP estimator instead, we need to
introduce a prior p(p) and solve instead

p̂ = argmax
p

p(u, v |p)p(p) = argmax
p

pu(1− p)vp(p)

It is very difficult to determine the prior unanimously. Actually it can
be controversial just to determine the form of it

However, if we select p(p) of a form p(p) ∝ pa(1− p)b, then the
resulting posterior distribution with the same form as before. This
choice is often chosen for practical purposes, and a prior with same
“form” as its likelihood (and thus posterior) is known as the
conjugate prior

September 19, 2017 21 / 62



Lecture 5 More distributions

Conjugate prior

Note that both Bernoulli and binomial distributions have the form
pu(1− p)v

To estimate p, recall that the ML estimator will try to compute

p̂ = argmax
p

p(u, v |p) = argmax
p

pu(1− p)v

Now if we would like to use the MAP estimator instead, we need to
introduce a prior p(p) and solve instead

p̂ = argmax
p

p(u, v |p)p(p) = argmax
p

pu(1− p)vp(p)

It is very difficult to determine the prior unanimously. Actually it can
be controversial just to determine the form of it
However, if we select p(p) of a form p(p) ∝ pa(1− p)b, then the
resulting posterior distribution with the same form as before. This
choice is often chosen for practical purposes, and a prior with same
“form” as its likelihood (and thus posterior) is known as the
conjugate prior

September 19, 2017 21 / 62



Lecture 5 More distributions

Beta distribution

The conjugate prior of both Bernoulli and binomial distributions is the
beta distribution. Its pdf is given by

Beta(x |a, b) = xa−1(1− x)b−1

B(a, b)
,

where X ∈ [0, 1] and B(a, b) = Γ(a)Γ(b)
Γ(a+b)

Note that with a = b = 1, Beta(x |1, 1) = 1. It is the same as no prior
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Lecture 5 More distributions

Gamma function

Note that Γ(z) =

∫ ∞

0
xz−1e−x dx

Γ(1) =

∫ ∞

0
e−x dx = −e−x |∞0 = 1

For z > 1, we have Γ(z) = (z − 1)Γ(z − 1)

Proof.

Γ(z) =

∫ ∞

0
xz−1e−x dx= −

∫ ∞

0
xz−1de−x

= −xz−1e−x |∞0 + (z − 1)

∫ ∞

0
xz−2e−x dx

= (z − 1)

∫ ∞

0
xz−2e−x dx = (z − 1)Γ(z − 1)

Therefore, for integer z > 1, Γ(z) = (z − 1)!
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Lecture 5 More distributions

Mode of beta distribution

The mode is the peak of a distribution. Recall that

Beta(x |a, b) = xa−1(1−x)b−1

B(a,b) . Set

∂Beta(x |a, b)
∂x

=
(a− 1)xa−2(1− x)b−1 − (b − 1)xa−1(1− x)b−2

B(a, b)
= 0,

we have (a− 1)(1− x) = (b − 1)x ⇒ x = a−1
a+b−2
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Lecture 5 More distributions

Mean and variance of Beta distribution

Note that
∫ 1
x=0 p(x |a, b) = 1 ⇒

∫ 1
x=0 x

a−1(1− x)b−1 = B(a, b) = Γ(a)Γ(b)
Γ(a+b) .

This gives us a handy trick to manipulate beta distribution

E [X ] =

∫ 1

x=0
xBeta(x |a, b)dx =

Γ(a+ b)

Γ(a)Γ(b)

∫ 1

x=0
xa(1− x)b−1dx

=
Γ(a+ b)

Γ(a)Γ(b)

Γ(a+ 1)Γ(b)

Γ(a+ b + 1)
=

a

a+ b

Similarly, E [X 2] = Γ(a+b)
Γ(a)Γ(b)

∫ 1
x=0 x

a+1(1− x)b−1dx= Γ(a+b)
Γ(a)Γ(b)

Γ(a+2)Γ(b)
Γ(a+b+2) =

a(a+1)
(a+b)(a+b+1) . Thus,

Var [X ] =E [X 2]− E [X ]2 =
a(a+ 1)

(a+ b)(a+ b + 1)
− a2

(a+ b)2

=
a(a+ 1)(a+ b)− a2(a+ b + 1)

(a+ b)2(a+ b + 1)
=

ab

(a+ b)2(a+ b + 1)
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