
Lecture 6 Review

Review multivariate normal

Marginalization of a normal distribution is still a normal distribution

Conditioning of normal distribution:
X|y ∼ N (µX +ΣXYΣ

−1
YY(y − µY),ΣXX − ΣXYΣ

−1
YYΣYX)

Product of normal distribution:
N (y1; x,ΣY1)N (y2; x,ΣY2) =
N (y1; y2,ΣY2+ΣY1)N (x; (ΛY1+ΛY2)

−1(ΛY2y2+ΛY1y), (ΛY2+ΛY1)
−1)

Mixture of Gaussian
Merge components:

w ←
∑
i

wi , ŵi =
wi∑
j wj

, µi ←
∑
i

wiµi ,

Σ←
n∑

i=1

ŵi (Σi + µiµ
T
i )−

n∑
i=1

n∑
j=1

ŵi ŵjµiµj

Similarity measure

Sim(N (µp,Σp),N (µq,Σq)) =
N (µp;µq,Σp +Σq)√
N (0; 0, 2Σp)N (0; 0, 2Σq)
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Lecture 6 Review

More from last week...

Bernoulli pdf: Bern(x |p) = px(1− p)1−x

Binomial pdf: Bin(x |p,N) ∝ px(1− p)N−x

Beta pdf: Beta(x |a, b) = xa−1(1−x)b−1

B(a,b) , where B(a, b) = Γ(a)Γ(b)
Γ(a+b)

Gamma function Γ(z)

Γ(z) = (z − 1)Γ(z − 1)
Γ(n) = (n − 1)! if n is an integer ≥ 1

Conjugate prior: a prior with same “form” as its posterior distribution

Beta distribution is conjugate prior of Bernoulli and binomial
distributions
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Lecture 6 Review

Summary of Beta distribution

Pdf:

Beta(x |a, b) = xa−1(1− x)b−1

B(a, b)

with B(a, b) = Γ(a)Γ(b)
Γ(a+b)

Mean:
a

a+ b

Variance:
ab

(a+ b)2(a+ b + 1)

Mode:
a− 1

a+ b − 2
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Lecture 6 More distributions

Posterior estimate of probability p

Consider the coin flipping example again. Let say the prior probability1 of
the coin is beta distributed with parameters a and b. And we flip the coin
once to get outcome x .

Upon observing x , we can estimate p by

p(p|x , a, b)

=Const1 · Beta(p|a, b)Bern(x |p)
=Const2 · pa−1+x(1− p)b−1+1−x

=Beta(p|ã, b̃)

So the posterior probability distribution is also beta distributed and the
parameters just changed to ã← a+ x and b̃ ← b + 1− x

1Note that this can be very confusing at the beginning. Beware that we are talking
about the distribution of the probability of some outcome
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Lecture 6 More distributions

Posterior estimate of probability p

Let say we continue our example and we flip the coin by N times and
obtain x head. So instead of the Bernoulli likelihood, we have a binomial
likelihood. Like the last slide, we have the same beta prior with parameters
a and b.

After the experiment x , we can update the distribution of our
estimated p by

p(p|x , a, b) =Const1 · Beta(p|a, b)Bin(x |p,N)

=Const2 · pa−1+x(1− p)b−1+N−x

=Beta(p|ã, b̃)

Again, the posterior distribution is still beta but with parameters updated
to ã← a+ x and b̃ ← b + N − x
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Lecture 6 More distributions

Prior and regularization

One major reason of introducing prior is for the sake of “regularizing”
the answer

Another coin example

Fall back to high school, assume that we flip a coin for 10 times and
got 3 heads. We want to estimate the chance of getting heads

3/10, right?
And if I asked you chance of getting another head in the future, you
will say the chance of getting another head is 3/10
Now, if I actually flip the coin for 10 times and got no head, what do
you expect the chance of getting a head next time?
0? Okay, the estimate is a bit extreme. We know that it is very
difficult to make a coin that always gives a tail
How about we first assumed that we actually flipped two times and got
1 head before we did experiment? We will estimate 1/12 instead of
0/10
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Lecture 6 More distributions

Prior and regularization

We can verify that this is exactly what we got for a Beta prior with
a = 2 and b = 2.

Note that the posterior distribution is

Beta(p|2, 2)Bin(x = 0|p,N = 10) ∼ Beta(0+ a, 10+b) = Beta(2, 12)

Now, what is the MAP estimate? It should be the p that maximize
the posterior probability. That is the mode of Beta(2, 12). Thus,

p
(MAP)
Head =

a− 1

a+ b − 2
=

1

12

Recall that Beta(1, 1) = 1 and so likelihood function is equivalent to
Beta(p|1, 1)Bin(0|p, 10) ∼ Beta(1, 11). Thus the ML estimate is the

mode of Beta(1, 11)⇒ p
(ML)
Head = 1−1

1+11−2 = 0
10 = 0

This indeed is the same as our high school näıve estimate
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Lecture 6 More distributions

Bayesian estimation and regularization

Now let’s consider the Bayesian estimate. Even for the case with no
prior (equivalently an uniform prior or Beta prior with a = 1 and
b = 1), recall that the “posterior distribution” is Beta(1, 11)

The Bayesian estimate should be the average p summing all
possibility of p, which is essentially just,

∫
pBeta(p|1, 11)dp = E [p],

i.e., the mean. Thus

p
(Bayesian)
Head =

a

a+ b
=

1

11

Note that Bayesian estimation is “self-regularized” (i.e., giving less
extreme results) since it inherently averages out all possible cases
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Lecture 6 More distributions

Multinomial distribution

Binomial distribution models the probability of a binary outcome. For
a random event with discrete but non-binary (more than two)
outcomes, we can model the event with a multinomial distribution

Let say the probability of each possible outcome i is pi . And we have
conducted N different experiments, let say xi is the number of times
we obtain outcome i . Then the probability of such even is given by

Mult(x1, · · · , xn|p1, · · · , pn) =
(

N

x1x2 · · · xn

)
px11 px22 · · · p

xn
n ,

Just make sure we are in the same pace. Note that
p1 + p2 + · · ·+ pn = 1 and x1 + x2 + · · ·+ xn = N
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Lecture 6 More distributions

Dirichlet distribution

Note that the conjugate prior of multinomial distribution should take
the form xα1−1

1 xα2−1
2 · · · xαn−1

n

It turns out that the distribution is the so-called Dirichlet distribution.
Its pdf is given by

Dir(x1, · · · , xn|α1, · · · , αn)

=
Γ(α1 + · · ·+ αn)

Γ(α1)Γ(α2) · · · Γ(αn)
xα1−1
1 xα2−1

2 · · · xαn−1
n

As usual since pdf should be normalized to 1, we have∫
xα1−1
1 xα2−1

2 · · · xαn−1
n =

Γ(α1)Γ(α2) · · · Γ(αn)

Γ(α1 + · · ·+ αn)
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Lecture 6 More distributions

Mean, mode, variance of Dirichlet distribution

Mean:

E [X1] =
Γ(α1 + · · ·+ αn)

Γ(α1) · · · Γ(αn)

∫
xα1
1 xα2−1

2 · · · xαn−1
n

=
Γ(α1 + · · ·+ αn)

Γ(α1) · · · Γ(αn)

Γ(α1 + 1) · · · Γ(αn)

Γ(α1 + · · ·+ αn + 1)
=

α1

α1 + · · ·+ αn

Similarly, E [X 2
1 ] =

Γ(α1+···+αn)
Γ(α1)···Γ(αn)

∫
xα1+1
1 xα2−1

2 · · · xαn−1
n =

Γ(α1+···+αn)
Γ(α1)···Γ(αn)

Γ(α1+2)···Γ(αn)
Γ(α1+···+αn+2) =

(α1+1)α1

(α1+···+αn+1)(α1+···+αn)
. Thus,

Var(X1) = E [X 2
1 ]− E [X 2

1 ] =
(α1+1)α1

(α1+···+αn+1)(α1+···+αn)
− α2

1
(α1+···+αn)2

=
α1(α0−α1)
α2
0(α0+1)

, where α0 = α1 + · · ·+ αn

Mode: one can show that the mode of Dir(α1, · · · , αn) is

αi − 1

α1 + · · ·+ αn − n
.

We will not show it now but will leave as an exercise

September 26, 2017 11 / 39



Lecture 6 More distributions

Mean, mode, variance of Dirichlet distribution

Mean:

E [X1] =
Γ(α1 + · · ·+ αn)

Γ(α1) · · · Γ(αn)

∫
xα1
1 xα2−1

2 · · · xαn−1
n

=
Γ(α1 + · · ·+ αn)

Γ(α1) · · · Γ(αn)

Γ(α1 + 1) · · · Γ(αn)

Γ(α1 + · · ·+ αn + 1)
=

α1

α1 + · · ·+ αn

Similarly, E [X 2
1 ] =

Γ(α1+···+αn)
Γ(α1)···Γ(αn)

∫
xα1+1
1 xα2−1

2 · · · xαn−1
n =

Γ(α1+···+αn)
Γ(α1)···Γ(αn)

Γ(α1+2)···Γ(αn)
Γ(α1+···+αn+2) =

(α1+1)α1

(α1+···+αn+1)(α1+···+αn)
.

Thus,

Var(X1) = E [X 2
1 ]− E [X 2

1 ] =
(α1+1)α1

(α1+···+αn+1)(α1+···+αn)
− α2

1
(α1+···+αn)2

=
α1(α0−α1)
α2
0(α0+1)

, where α0 = α1 + · · ·+ αn

Mode: one can show that the mode of Dir(α1, · · · , αn) is

αi − 1

α1 + · · ·+ αn − n
.

We will not show it now but will leave as an exercise
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Lecture 6 More distributions

Summary of Dirichlet distribution

Pdf:

Dir(x|α) =
Γ(α1 + · · ·+ αn)

Γ(α1)Γ(α2) · · · Γ(αn)
xα1−1
1 xα2−1

2 · · · xαn−1
n

Mean:
αi

α1 + · · ·+ αn

Variance:
αi (α0 − αi )

α2
0(α0 + 1)

Mode:
αi − 1

α1 + · · ·+ αn − n
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Lecture 6 More distributions

Posterior probability given Multinomial likelihood and
Dirichlet prior

Upon observing x1, · · · , xn, the posterior distribution of p1, · · · , pn
becomes

p(p1, · · · , pn|x1, · · · , xn, α1, · · · , αn)

=Const1 · Dir(p1, · · · , pn|α1, · · · , αn)Mult(x1, · · · , xn|p1, · · · , pn)
=Const2 · px1+α1

1 · · · pxn+αn
n

=Dir(p1, · · · , pn|α̃1, · · · , α̃n)

So the posterior distribution is Dirichlet with parameters updated to
α̃1 ← x1 + α1, · · · , α̃n ← xn + αn
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Lecture 6 More distributions

Poisson distribution

Poisson distribution describes the number of arrival K within some period.
For example, one can use Poisson distribution to model the arrival process
(Poisson process) of customers into a store.

Its pdf is given by

Poisson(k|λT ) =
e−λT (λT )k

k!
,

where k is a non-negative integer, λ is rate of arrival and T is the length
of the observed period. It is easy to check that (please verify)

Mean = λT

Variance = λT

N.B. the parameters λT comes as a group and so we can consider it as a
single parameter
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Lecture 6 More distributions

Poisson process

Poisson process is probably the simplest random process to model event
arrivals. It is based on two simple assumptions

1 Arrival rate is invariant over time

That is, λ is a constant that does not change with time

2 Each arrival is independent of the other

For example, even though we just have one customer coming in, the
probability that the next customer to come in immediately should not
decrease
It makes sense to model say customers to a department store
It can be less perfect to model the times my car broke down. The
events are likely to be related
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Lecture 6 More distributions

Poisson process and Poisson distribution

Consider a period T and let’s the arrival rate be λ as before. Let’s
partition T into N different very short intervals of length ∆.

Hence,
T = N∆. We will also assume N →∞ and thus ∆→ 0. The
probability of getting an arrival in any interval ∆ is thus λ∆.
Moreover, since ∆→ 0, the probability of getting two arrivals ∝ ∆2

and is negligible compared to λ∆

Then, the probability of k arrivals
Pr(k arrivals in T ) =

(N
k

)
(λ∆)k(1− λ∆)N−k

= N(N−1)···(N−k+1)
k! (λ∆)k(1− λ∆)N−k ≈ Nk

k! λ
k T k

Nk (1− λ∆)N−k

= (λT )k

k! (1− λT
N )N−k≈ (λT )k

k! (1− λT
N )N= (λT )k

k! exp(−λT ),
where we use (1 + a/N)N = exp(a) for the last equality

Note that indeed Pr(k arrivals in T ) = Poisson(k |λT )
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Lecture 6 More distributions

Interarrival time of Poisson process

Using the similar analysis, we can also easily evaluate the distribution of
interarrival time, the time that the next event will happen given that an
event just happened. Let t = n∆ and use the same notation as before

Note that t > 0 and ∆→ 0 and so n→∞. Now,
Pr(next event happened within in time [t, t +∆])
= Pr(next event happened within in time [n∆, (n + 1)∆])
= Pr(no event in first n intervals)Pr(event happened in n + 1 interval)
= (1− λ∆)n(λ∆)
Let fT (t) be the pdf of the interval time. Then,

fT (t) =
(1−λ∆)n(λ∆)

∆ = λ(1− λ t
n )

n = λ exp(−λt), where we use
(1 + a/n)n = exp(a) again for n→∞

Exponential distribution

fT (t) = λ exp(−λt) , Exp(t|λ) is the pdf of the exponential distribution
with parameter λ. It is easy to verify that (as exercise)

E [T ] = 1/λ

Var(T ) = 1/λ2
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Lecture 6 More distributions

Normal distribution revisit

For a univariate normal random variable, the pdf is given by

Norm(x |µ, σ2) =
1√
2πσ2

exp

(
−(x − µ)2

2σ2

)
=

√
λ

2π
exp

(
−λ(x − µ)2

2

)
with

E [X |µ, σ2] = µ,

E [(X − µ)2|µ, σ2] = σ2,

Recall that λ = 1
σ2 is the precision parameter that simplifies computations

in many cases
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Lecture 6 More distributions

Conjugate prior of normal distribution for fixed σ2

Consider σ2 fixed and µ as the model parameter, then the posterior
probability is given by

p(µ|x ;σ2) ∝ p(µ, x ;σ2)

=p(µ)Norm(x |µ;σ2)

∝p(µ)exp
(
−(x − µ)2

2σ2

)
It is apparent that the posterior will keep the same form if p(µ) is also
normal. Therefore, normal distribution is the conjugate prior of itself for
fixed variance
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Lecture 6 More distributions

Posterior distribution of normal variable for fixed σ2

Given prior p(µ) = Norm(µ|µ0, σ
2
0) and likelihood Norm(x |µ;σ2). Let’s

find the posterior probability,

p(µ|x ;σ2, µ0, σ
2
0)

=Const · Norm(µ|µ0, σ
2
0)Norm(x |µ;σ2)

=Const2 · exp
(
−(x − µ)2

2σ2
− (µ− µ0)

2

2σ2
0

)
=Norm

(
µ; µ̃, σ̃2

)
,

where µ̃ =
σ2
0x+µ0σ

2

σ2
0+σ2 and σ̃2 =

σ2
0σ

2

σ2
0+σ2 . Alternatively, λ̃ = λ0 + λ and

µ̃ = λ
λ̃
x + λ0

λ̃
µ0. Note that we have already came across the more general

expression when we studied product of multivariate normal distribution
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Lecture 6 More distributions

Conjugate prior of normal distribution for fixed µ

Consider µ fixed and λ as the model parameter

p(x |λ;µ) ∝p(x , λ;µ) = p(λ)Norm(x |λ;µ)

∝p(λ)
√
λ exp

(
−λ(x − µ)2

2

)
More generally, when we have N observations from the same source,

p(x1, · · · , xN , λ;µ) =p(λ)
N∏
i=1

Norm(xi |λ;µ)

∝p(λ)λ
N
2 exp

(
−λ

N∑
i=1

(xi − µ)2

2

)

From inspection, the conjugate prior should have a form λa exp(−bλ)

September 26, 2017 21 / 39



Lecture 6 More distributions

Conjugate prior of normal distribution for fixed µ

Consider µ fixed and λ as the model parameter

p(x |λ;µ) ∝p(x , λ;µ) = p(λ)Norm(x |λ;µ)

∝p(λ)
√
λ exp

(
−λ(x − µ)2

2

)

More generally, when we have N observations from the same source,

p(x1, · · · , xN , λ;µ) =p(λ)
N∏
i=1

Norm(xi |λ;µ)

∝p(λ)λ
N
2 exp

(
−λ

N∑
i=1

(xi − µ)2

2

)

From inspection, the conjugate prior should have a form λa exp(−bλ)

September 26, 2017 21 / 39



Lecture 6 More distributions

Conjugate prior of normal distribution for fixed µ

Consider µ fixed and λ as the model parameter

p(x |λ;µ) ∝p(x , λ;µ) = p(λ)Norm(x |λ;µ)

∝p(λ)
√
λ exp

(
−λ(x − µ)2

2

)
More generally, when we have N observations from the same source,

p(x1, · · · , xN , λ;µ) =p(λ)
N∏
i=1

Norm(xi |λ;µ)

∝p(λ)λ
N
2 exp

(
−λ

N∑
i=1

(xi − µ)2

2

)

From inspection, the conjugate prior should have a form λa exp(−bλ)

September 26, 2017 21 / 39



Lecture 6 More distributions

Conjugate prior of normal distribution for fixed µ

Consider µ fixed and λ as the model parameter

p(x |λ;µ) ∝p(x , λ;µ) = p(λ)Norm(x |λ;µ)

∝p(λ)
√
λ exp

(
−λ(x − µ)2

2

)
More generally, when we have N observations from the same source,

p(x1, · · · , xN , λ;µ) =p(λ)
N∏
i=1

Norm(xi |λ;µ)

∝p(λ)λ
N
2 exp

(
−λ

N∑
i=1

(xi − µ)2

2

)

From inspection, the conjugate prior should have a form λa exp(−bλ)
September 26, 2017 21 / 39



Lecture 6 More distributions

Gamma distribution

The distribution with the desired form described in previous slide turns out
to be the Gamma distribution. Its pdf, mean, and variance (please verify
the mean and variance) are given by

Gamma(λ|a, b) = 1

Γ(a)
baλa−1exp(−bλ)

E [λ] =
a

b

Var [λ] =
a

b2
,

where a, b > 0 and λ ≥ 0

N.B. when a = 1, Gamma reduces to the exponential distribution. When a
is integer, it reduces to Erlang distribution
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Lecture 6 More distributions

Posterior distribution of normal variable for fixed µ

Posterior probability given Normal likelihood (fixed mean) and Gamma
prior

p(λ|x , a, b;µ) =Const1 · Gamma(λ|a, b)Norm(x |λ;µ)

=Const2 · λa−1 exp(−bλ)
√
λ exp

(
−λ(x − µ)2

2

)
=Gamma

(
λ; ã, b̃

)
,

where ã← a+ 1
2 and b̃ ← b + (x−µ)2

2
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Lecture 6 More distributions

Conjugate prior summary

Distribution Likelihood p(x|θ) Prior p(θ) Distribution

Bernoulli (1− θ)(1−x)θx ∝ (1− θ)(a−1)θ(b−1) Beta

Binomial ∝ (1− θ)(N−x)θx ∝ (1− θ)(a−1)θ(b−1) Beta

Multinomial ∝ θx11 θx22 θx33 ∝ θα1−1
1 θα2−1

2 θα3−1
3 Dirichlet

Normal
(fixed σ2)

∝ exp
(
− (x−θ)2

2σ2

)
∝ exp

(
− (θ−µ0)2

2σ2
0

)
Normal

Normal
(fixed µ)

∝
√
θ exp

(
− θ(x−µ)2

2

)
∝ θa−1exp(−bθ) Gamma

Poisson ∝ θx exp(−θ) ∝ θa−1exp(−bθ) Gamma
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Lecture 6 Constraint optimization

Lagrange multiplier

Problem

max
x

f (x)

g(x) = 0

Consider L(x, λ) = f (x)− λg(x) and let f̃ (x) = minλ L(x, λ).

Note that

f̃ (x) =

{
f (x) if g(x) = 0

−∞ otherwise

Therefore, the problem is identical to maxx f̃ (x) or

max
x

min
λ

f (x)− λg(x),

where λ is known to be the Lagrange multiplier.
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Lecture 6 Constraint optimization

Lagrange multiplier (con’t)

Assume the optimum is a saddle point,

max
x

min
λ

f (x)− λg(x) = min
λ

max
x

f (x)− λg(x),

the R.H.S. implies

∇f (x) = λ∇g(x)
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Lecture 6 Constraint optimization

Inequality constraint

Problem

max
x

f (x)

g(x) ≤ 0

Consider f̃ (x) = minλ≥0 f (x)− λg(x),

note that

f̃ (x) =

{
f (x) if g(x) ≤ 0

−∞ otherwise

Therefore, we can rewrite the problem as

max
x

min
λ≥0

f (x)− λg(x)
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Lecture 6 Constraint optimization

Inequality constraint (con’t)

Assume

max
x

min
λ≥0

f (x)− λg(x) = min
λ≥0

max
x

f (x)− λg(x)

The R.H.S. implies

∇f (x) = λ∇g(x)

Moreover, at the optimum point (x∗, λ∗), we should have

λ∗g(x∗) = 0

since

max
x

f (x)

g(x)≤0

≡ max
x

min
λ≥0

f (x)− λg(x)
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Lecture 6 Constraint optimization

Karush-Kuhn-Tucker conditions

Problem

max
x

f (x)

g(x) ≤ 0, h(x) = 0

Conditions

∇f (x∗)− µ∗∇g(x∗)− λ∗∇h(x∗) = 0

g(x∗) ≤ 0

h(x∗) = 0

µ∗ ≥ 0

µ∗g(x∗) = 0
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Lecture 6 Kraft’s Inequality

Kraft’s Inequality

Let l1, l2, · · · , lK satisfy
∑K

k=1 2
−lk ≤ 1. Then, there exists a uniquely

decodable code for symbols x1, x2, · · · , xK such that l(x1) = l1,
l(x2) = l2, · · · , l(xK ) = lK .

Intuition

Consider # “descendants” of each codeword at the “lmax”-level, then for
prefix-free code, we have

K∑
k=1

2lmax−l ≤ 2lmax

⇒
K∑

k=1

2−lk ≤ 1 a
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Lecture 6 Kraft’s Inequality

Forward Proof

Given l1, l2, · · · , lK satisfy
∑K

k=1 2
−lk ≤ 1, we can assign nodes on a tree

as previous slides. More precisely,

Assign i-th node as a node at level li , then cross out all its
descendants

Repeat the procedure for i from 1 to K

We know that there are sufficient tree nodes to be assigned since the
Kraft’s inequaltiy is satisfied

The corresponding code is apparently prefix-free and thus is uniquely
decodable
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Lecture 6 Kraft’s Inequality

Converse Proof

Consider message from coding k symbols x = x1, x2, · · · , xk(∑
x∈X

2−l(x)

)k

=

(∑
x1∈X

2−l(x1)

)(∑
x2∈X

2−l(x2)

)
· · ·

(∑
x3∈X

2−l(x3)

)
=

∑
x1,x2,··· ,xk∈X k

2−(l(x1)+l(x2)+···+l(xk ))

=
∑
x∈X k

2−l(x)

=
klmax∑
m=1

a(m)2−m,

where a(m) is the number of codeword with length m. However, for the
code to be uniquely decodable, a(m) ≤ 2m, where 2m is the number of
available codewords with length m. Therefore,∑

x∈X
2−l(x) ≤ (klmax)

1/k ≈ 1 as k →∞
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Lecture 6 Converse proof of Source Coding Theorem

Minimum rate required to compress a source

minl1,l2,··· ,lK

K∑
k=1

pk lk subject to
K∑

k=1

2−lk ≤ 1 and l1, · · · , lK ≥ 0

≡maxl1,l2,··· ,lK −
K∑

k=1

pk lk subject to
K∑

k=1

2−lk − 1 ≤ 0 and − l1, · · · ,−lK ≤ 0

KKT conditions

−∇

(
K∑

k=1

pk lk

)
− µ0∇

(
K∑

k=1

2−lk − 1

)
+

K∑
k=1

µk∇lk = 0

K∑
k=1

2−lk − 1 ≤ 0, l1, · · · , lK ≥ 0, µ0, µ1, · · · , µK ≥ 0

µ0

(
K∑

k=1

2−lk − 1

)
= 0, µk lk = 0
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Lecture 6 Converse proof of Source Coding Theorem

Minimum rate required to compress a source

Since we expect lk > 0, µk = 0.

Expand the first equation, we get

−pj + µ02
−lj log 2 = 0⇒ 2−lj =

pj
µ0 log 2

And by
∑K

k=1 2
−lk ≤ 1, we have

K∑
k=1

pj
µ0 log 2

=
1

µ0 log 2
≤ 1⇒ µ0 ≥

1

log 2

Note that as µ0 ↓,
pj

µ0 log 2 ↑ and lj ↓. Therefore, if we want to decrease

code rate, we should reduce µ0 as much as possible. Thus, take µ0 =
1

log 2 .

Then 2−lj = pj ⇒ lj = − log2 pj . Thus, the minimum rate becomes

K∑
k=1

pk lk = −
K∑

k=1

pk log2 pk , H(p1, · · · , pK )
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Lecture 6 SFE code

Shannon-Fano-Elias code

Key idea

Each codeword corresponds to an intervel of [0, 1].

Example

110 corresponds to [0.110, 0.1101· ] = [0.11, 0.111) = [0.75, 0.875)

011 corresponds to [0.011, 0.0111· ] = [0.011, 0.1) = [0.375, 0.5)
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Lecture 6 SFE code

Example

Consider a source that
p(x1) = 0.25, p(x2) = 0.25, p(x3) = 0.2, p(x4) = 0.15, p(x5) = 0.15
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Lecture 6 SFE code

Property

The length of the codeword of x is dlog2 1
p(x)e+ 1. This ensures that

the “code interval” of each codeword does not overlap

SFE code is prefix-free → uniquely decodable

If a codeword is prefix of another (say 10 and 1010), the corresponding
intervals must overlap each other (consider [0.10, 0.11) and
[0.101, 0.11))
Since no codeword can overlap in SFE, no code word can be prefix of
another

Average code rate is upper bounded by H(X ) + 2∑
x∈X

p(x)l(x) =
∑
x∈X

p(x)

(⌈
log2

1

p(x)

⌉
+ 1

)
≤
∑
x∈X

p(x)

(
log2

1

p(x)
+ 2

)
= H(X ) + 2
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Lecture 6 Forward proof of Source Coding Theorem

“Symbol grouping” trick

Let’s consider two symbols as a super-symbol and compress the pair
at each time with SFE code
The code rate is bounded by H(XS) + 2, where

H(XS) = −
∑

x1,x2∈X 2

p(x1, x2) log2 p(x1, x2)

= −
∑

x1,x2∈X 2

p(x1, x2) log2(p(x1)p(x2))

= −
∑

x1,x2∈X 2

p(x1, x2) log2 p(x1)−
∑

x1,x2∈X 2

p(x1, x2) log2 p(x2)

= −
∑
x1∈X

p(x1) log2 p(x1)−
∑
x2∈X

p(x2) log2 p(x2)

= 2H(X )

Therefore, the code rate per original symbol is upper bounded by

1

2
(H(XS) + 2) = H(X ) + 1
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Lecture 6 Forward proof of Source Coding Theorem

Forward proof of Source Coding Theorem

In theory, we can group as many symbol as we want (we want do it in
practice, why?), say we group N symbols at a time and compress it using
SFE code.

The code rate per original symbol is upper bounded by

1

N
(H(XS) + 2) =

1

N
(NH(X ) + 2) = H(X ) +

2

N

Therefore as long as a given rate R > H(X ), we can always find a large
enough N such that the code rate using the “grouping trick” and SFE
code is below R. This concludes the forward proof.
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