

4 0 8 × \rightarrow Þ

An example

- Simple economy: m prosumers, n different goods¹
- **•** Each individual: production $\mathbf{p}_i \in \mathbb{R}_n$, consumption $\mathbf{c}_i \in \mathbb{R}_n$
- Expense of producing "p" for agent $i = e_i(p)$
- Utility (happiness) of consuming "c" units for agent $i = u_i(c)$
- Maximize happiness

$$
\max_{\mathbf{p}_i,\mathbf{c}_i}\sum_i(u_i(\mathbf{c}_i)-e_i(\mathbf{p}_i))\qquad s.t. \qquad \sum_i\mathbf{c}_i=\sum_i\mathbf{p}_i
$$

¹ Example borrowed from the first lecture of Prof Gor[don](#page-0-0)'[s](#page-2-0) [C](#page-0-0)[M](#page-1-0)[U](#page-2-0) [C](#page-0-0)[S](#page-1-0)[10](#page-14-0)[-](#page-0-0)[7](#page-1-0)[25](#page-63-0) つくへ S. Cheng (OU-Tulsa) Cheng (OU-Tulsa) Cheng (OU-Tulsa) Cheng (OU-Tulsa) Cheng (OU-Tulsa)

Walrasian equilibrium

$$
\max_{\mathbf{p}_i, \mathbf{c}_i} \sum_i (u_i(\mathbf{c}_i) - e_i(\mathbf{p}_i)) \qquad s.t. \qquad \sum_i \mathbf{c}_i = \sum_i \mathbf{p}_i
$$

• Idea: introduce price λ_i to each good *j*. Let the market decide

- Price $\lambda_i \uparrow$: consumption of good $j \downarrow$, production of good $j \uparrow$
- Price $\lambda_j \downarrow$: consumption of good $j \uparrow$, production of good $j \downarrow$
- Can adjust price until consumption $=$ production for each good

つくい

Algorithm: tâtonnement

Assume that the appropriate prices are found, we can ignore the equality constraint, then the problem becomes

$$
\max_{\mathbf{p}_i,\mathbf{c}_i}\sum_i(u_i(\mathbf{c}_i)-e_i(\mathbf{p}_i))\quad\Rightarrow\quad\sum_i\max_{\mathbf{p}_i,\mathbf{c}_i}(u_i(\mathbf{c}_i)-e_i(\mathbf{p}_i))
$$

So we can simply optimize production and consumption of each individual independently

Algorithm 1 tâtonnement

- 1: procedure FINDBESTPRICES
- 2: $\lambda \leftarrow [0, 0, \cdots, 0]$
- 3: **for** $k = 1, 2, \cdots$ **do**
- 4: Each individual solves for its c_i and p_i for the given λ
- 5: $\lambda \leftarrow \lambda + \delta_k \sum_i (c_i p_i)$

つくい

Lagrange multiplier

Problem

$$
\max_{\mathbf{x}} f(\mathbf{x})
$$

$$
g(\mathbf{x}) = 0
$$

Consider $L(\mathbf{x}, \lambda) = f(\mathbf{x}) - \lambda g(\mathbf{x})$ and let $\tilde{f}(\mathbf{x}) = \min_{\lambda} L(\mathbf{x}, \lambda)$.

重

4 0 8

- ∢ 何 ▶ -∢ ヨ ▶ -∢ ヨ

Lagrange multiplier

Problem

$$
\max_{\mathbf{x}} f(\mathbf{x})
$$

$$
g(\mathbf{x}) = 0
$$

Consider $L(\mathbf{x}, \lambda) = f(\mathbf{x}) - \lambda g(\mathbf{x})$ and let $\tilde{f}(\mathbf{x}) = \min_{\lambda} L(\mathbf{x}, \lambda)$. Note that

$$
\tilde{f}(\mathbf{x}) = \begin{cases} f(\mathbf{x}) \text{ if } g(\mathbf{x}) = 0\\ -\infty \text{ otherwise} \end{cases}
$$

4 0 8

→ 伊 ▶ → ヨ ▶ → ヨ

Lagrange multiplier

Problem

$$
\max_{\mathbf{x}} f(\mathbf{x})
$$

$$
g(\mathbf{x}) = 0
$$

Consider $L(\mathbf{x}, \lambda) = f(\mathbf{x}) - \lambda g(\mathbf{x})$ and let $\tilde{f}(\mathbf{x}) = \min_{\lambda} L(\mathbf{x}, \lambda)$. Note that

$$
\tilde{f}(\mathbf{x}) = \begin{cases} f(\mathbf{x}) \text{ if } g(\mathbf{x}) = 0\\ -\infty \text{ otherwise} \end{cases}
$$

Therefore, the problem is identical to max_x $\tilde{f}(\mathbf{x})$ or

$$
\max_{\mathbf{x}} \min_{\lambda} (f(\mathbf{x}) - \lambda g(\mathbf{x})),
$$

4日)

where λ is known to be the Lagrange multiplier.

Lagrange multiplier (con't)

Assume the optimum is a saddle point,

$$
\max_{\mathbf{x}} \min_{\lambda} (f(\mathbf{x}) - \lambda g(\mathbf{x})) = \min_{\lambda} \max_{\mathbf{x}} (f(\mathbf{x}) - \lambda g(\mathbf{x})),
$$

the R.H.S. implies

 $\nabla f(\mathbf{x}) = \lambda \nabla g(\mathbf{x})$

4日)

 QQ

Inequality constraint

Problem

$$
\max_{\mathbf{x}} f(\mathbf{x})
$$

$$
g(\mathbf{x}) \le 0
$$

Consider $\tilde{f}(\mathbf{x}) = \min_{\lambda > 0} (f(\mathbf{x}) - \lambda g(\mathbf{x})),$

э

4 0 8

A + + =

Inequality constraint

Problem

 $\max_{\mathbf{x}} f(\mathbf{x})$ $g(\mathbf{x}) \leq 0$

Consider $\tilde{f}(\mathbf{x}) = \min_{\lambda > 0} (f(\mathbf{x}) - \lambda g(\mathbf{x}))$, note that

$$
\tilde{f}(\mathbf{x}) = \begin{cases} f(\mathbf{x}) & \text{if } g(\mathbf{x}) \leq 0 \\ -\infty & \text{otherwise} \end{cases}
$$

K ロ ▶ K 伊 ▶ K

Inequality constraint

Problem

 $\max_{\mathbf{x}} f(\mathbf{x})$ $g(\mathbf{x}) \leq 0$

Consider $\tilde{f}(\mathbf{x}) = \min_{\lambda > 0} (f(\mathbf{x}) - \lambda g(\mathbf{x}))$, note that

$$
\tilde{f}(\mathbf{x}) = \begin{cases} f(\mathbf{x}) & \text{if } g(\mathbf{x}) \leq 0 \\ -\infty & \text{otherwise} \end{cases}
$$

Therefore, we can rewrite the problem as

$$
\max_{\mathbf{x}} \min_{\lambda \geq 0} (f(\mathbf{x}) - \lambda g(\mathbf{x}))
$$

4日)

Inequality constraint (con't)

Assume

$$
\max_{\mathbf{x}} \min_{\lambda \geq 0} (f(\mathbf{x}) - \lambda g(\mathbf{x})) = \min_{\lambda \geq 0} \max_{\mathbf{x}} (f(\mathbf{x}) - \lambda g(\mathbf{x}))
$$

The R.H.S. implies

 $\nabla f(\mathbf{x}) = \lambda \nabla g(\mathbf{x})$

4 0 8

Inequality constraint (con't)

Assume

$$
\max_{\mathbf{x}} \min_{\lambda \geq 0} (f(\mathbf{x}) - \lambda g(\mathbf{x})) = \min_{\lambda \geq 0} \max_{\mathbf{x}} (f(\mathbf{x}) - \lambda g(\mathbf{x}))
$$

The R.H.S. implies

$$
\nabla f(\mathbf{x}) = \lambda \nabla g(\mathbf{x})
$$

Moreover, at the optimum point (x^*, λ^*) , we should have the so-called "complementary slackness" condition

$$
\lambda^*g(\mathbf{x}^*)=0
$$

since

$$
\max_{\mathbf{x}} f(\mathbf{x}) \equiv \max_{\mathbf{x}} \min_{\lambda \ge 0} (f(\mathbf{x}) - \lambda g(\mathbf{x}))
$$

4日)

つくい

Karush-Kuhn-Tucker conditions

Problem

$$
\max_{\mathbf{x}} f(\mathbf{x})
$$

$$
g(\mathbf{x}) \le 0, \quad h(\mathbf{x}) = 0
$$

Conditions

$$
\nabla f(\mathbf{x}^*) - \mu^* \nabla g(\mathbf{x}^*) - \lambda^* \nabla h(\mathbf{x}^*) = 0
$$

$$
g(\mathbf{x}^*) \le 0
$$

$$
h(\mathbf{x}^*) = 0
$$

$$
\mu^* \ge 0
$$

$$
\mu^* g(\mathbf{x}^*) = 0
$$

Þ

イロト イ母ト イヨト イ

Þ

• The objective of "source coding" is to compress some source

4日)

 QQ

- • The objective of "source coding" is to compress some source
- We can think of compression as "coding". Meaning that we replace each input by a corresponding coded sequence. So encoding is just a mapping/function process

つくへ

- • The objective of "source coding" is to compress some source
- We can think of compression as "coding". Meaning that we replace each input by a corresponding coded sequence. So encoding is just a mapping/function process
- Without loss of generality, we can use binary domain for our coded sequence. So for each input message, it is converted to a sequence of 1s and 0s

 QQ

- • The objective of "source coding" is to compress some source
- We can think of compression as "coding". Meaning that we replace each input by a corresponding coded sequence. So encoding is just a mapping/function process
- Without loss of generality, we can use binary domain for our coded sequence. So for each input message, it is converted to a sequence of 1s and 0s
- Consider encoding (compressing) a sequence x_1, x_2, \cdots one symbol at a time, resulting $c(x_1), c(x_2), \cdots$

つくへ

- • The objective of "source coding" is to compress some source
- We can think of compression as "coding". Meaning that we replace each input by a corresponding coded sequence. So encoding is just a mapping/function process
- Without loss of generality, we can use binary domain for our coded sequence. So for each input message, it is converted to a sequence of 1s and 0s
- Consider encoding (compressing) a sequence x_1, x_2, \cdots one symbol at a time, resulting $c(x_1)$, $c(x_2)$, \cdots
- Denote the lengths of x_1, x_2, \cdots as $l(x_1), l(x_2), \cdots$, one of the major goal is to have $E[1(X)]$ to be as small as possible

つくい

- • The objective of "source coding" is to compress some source
- We can think of compression as "coding". Meaning that we replace each input by a corresponding coded sequence. So encoding is just a mapping/function process
- Without loss of generality, we can use binary domain for our coded sequence. So for each input message, it is converted to a sequence of 1s and 0s
- Consider encoding (compressing) a sequence x_1, x_2, \cdots one symbol at a time, resulting $c(x_1)$, $c(x_2)$, \cdots
- Denote the lengths of x_1, x_2, \cdots as $l(x_1), l(x_2), \cdots$, one of the major goal is to have $E[1(X)]$ to be as small as possible
- However, we want to make sure that we can losslessly decode the message also!

つくい

メロメ メ母メ メミメ メミメ

To ensure that we can recover message without loss, we must make sure that no message share the same codeword

 \leftarrow

 QQ

- To ensure that we can recover message without loss, we must make sure that no message share the same codeword
- We say a code is "singular" (broken) if $c(x_1) = c(x_2)$ for some different x_1 and x_2

つくへ

- To ensure that we can recover message without loss, we must make sure that no message share the same codeword
- We say a code is "singular" (broken) if $c(x_1) = c(x_2)$ for some different x_1 and x_2
- Even when a code is not "singular", we still cannot guarantee that we can always recover the original message losslessly, consider 4 different possible input symbols a, b, c, d and an encoding map $c(\cdot)$:
	- \bullet a \mapsto 0, b \mapsto 1, c \mapsto 10, d \mapsto 11
	- What should be the message for 1110?

- To ensure that we can recover message without loss, we must make sure that no message share the same codeword
- We say a code is "singular" (broken) if $c(x_1) = c(x_2)$ for some different x_1 and x_2
- Even when a code is not "singular", we still cannot guarantee that we can always recover the original message losslessly, consider 4 different possible input symbols a, b, c, d and an encoding map $c(\cdot)$:
	- \bullet a \mapsto 0, b \mapsto 1, c \mapsto 10, d \mapsto 11
	- What should be the message for 1110?
		- o dba? Or bbba?

- To ensure that we can recover message without loss, we must make sure that no message share the same codeword
- We say a code is "singular" (broken) if $c(x_1) = c(x_2)$ for some different x_1 and x_2
- Even when a code is not "singular", we still cannot guarantee that we can always recover the original message losslessly, consider 4 different possible input symbols a, b, c, d and an encoding map $c(\cdot)$:
	- \bullet a \mapsto 0, b \mapsto 1, c \mapsto 10, d \mapsto 11
	- What should be the message for 1110?

o dba? Or bbba?

• So it is not sufficient to just have $c(\cdot)$ to map to different output for each input. Let's overload the notation $c(\cdot)$ a little bit and for any message sequence $\mathbf{x} = x_1, x_2, \cdots, x_n$, encode sequence x_1, x_2, \cdots, x_n to $c(\mathbf{x}) = c(x_1, x_2, \cdots, x_n) = c(x_1)c(x_2)\cdots c(x_n)$

 Ω

イロメ イ母メ イヨメ イヨメーヨ

- To ensure that we can recover message without loss, we must make sure that no message share the same codeword
- We say a code is "singular" (broken) if $c(x_1) = c(x_2)$ for some different x_1 and x_2
- Even when a code is not "singular", we still cannot guarantee that we can always recover the original message losslessly, consider 4 different possible input symbols a, b, c, d and an encoding map $c(\cdot)$:
	- \bullet a \mapsto 0, b \mapsto 1, c \mapsto 10, d \mapsto 11
	- What should be the message for 1110?

o dba? Or bbba?

- So it is not sufficient to just have $c(\cdot)$ to map to different output for each input. Let's overload the notation $c(\cdot)$ a little bit and for any message sequence $\mathbf{x} = x_1, x_2, \cdots, x_n$, encode sequence x_1, x_2, \cdots, x_n to $c(\mathbf{x}) = c(x_1, x_2, \cdots, x_n) = c(x_1)c(x_2)\cdots c(x_n)$
	- \bullet We say $c(x)$ is uniquely decodable if all input sequences map to different outputs

 200

イロメ イ母メ イヨメ イヨメー

- For practical purpose, we would like to be able to decode a symbol "once it is available". Consider a code with map
	- $a \mapsto 10, b \mapsto 00, c \mapsto 11, d \mapsto 110$

4日)

- For practical purpose, we would like to be able to decode a symbol "once it is available". Consider a code with map
	- $a \mapsto 10, b \mapsto 00, c \mapsto 11, d \mapsto 110$
	- One can show that it is uniquely decodable. However, consider an input sequence $cbbb \mapsto 11000000$

つくへ

- For practical purpose, we would like to be able to decode a symbol "once it is available". Consider a code with map
	- $a \mapsto 10, b \mapsto 00, c \mapsto 11, d \mapsto 110$
	- One can show that it is uniquely decodable. However, consider an input sequence $cbbb \mapsto 11000000$
	- When the decoder read the first 3 bits, it is not able to determine if the first input symbol is c or d

つくい

- For practical purpose, we would like to be able to decode a symbol "once it is available". Consider a code with map
	- $a \mapsto 10, b \mapsto 00, c \mapsto 11, d \mapsto 110$
	- One can show that it is uniquely decodable. However, consider an input sequence $cbbb \mapsto 11000000$
	- When the decoder read the first 3 bits, it is not able to determine if the first input symbol is c or d
	- Actually, it will be until the decoder read the last bit that it will be able to confirm that the first input symbol is c. It is definitely not something very desirable

- For practical purpose, we would like to be able to decode a symbol "once it is available". Consider a code with map
	- $a \mapsto 10, b \mapsto 00, c \mapsto 11, d \mapsto 110$
	- One can show that it is uniquely decodable. However, consider an input sequence $cbbb \mapsto 11000000$
	- When the decoder read the first 3 bits, it is not able to determine if the first input symbol is c or d
	- Actually, it will be until the decoder read the last bit that it will be able to confirm that the first input symbol is c. It is definitely not something very desirable
- Instead, for a mapping $a \mapsto 1$, $b \mapsto 01$, $c \mapsto 001$, $d \mapsto 0001$, I will argue that we can always decode a symbol "once it is available"

つくい

- For practical purpose, we would like to be able to decode a symbol "once it is available". Consider a code with map
	- $a \mapsto 10, b \mapsto 00, c \mapsto 11, d \mapsto 110$
	- One can show that it is uniquely decodable. However, consider an input sequence $cbbb \mapsto 11000000$
	- When the decoder read the first 3 bits, it is not able to determine if the first input symbol is c or d
	- Actually, it will be until the decoder read the last bit that it will be able to confirm that the first input symbol is c. It is definitely not something very desirable
- Instead, for a mapping $a \mapsto 1$, $b \mapsto 01$, $c \mapsto 001$, $d \mapsto 0001$, I will argue that we can always decode a symbol "once it is available"
	- Note that the catch is that there is no codeword being the "prefix" of another codeword
	- We call such code a prefix-free code or an instantaneous code

Kraft's Inequality

Let l_1, l_2, \cdots, l_K satisfy $\sum_{k=1}^K 2^{-l_k} \leq 1$. Then, there exists a uniquely decodable code for symbols x_1, x_2, \dots, x_K such that $l(x_1) = l_1$, $l(x_2) = l_2, \cdots, l(x_K) = l_K$.

Kraft's Inequality

Let l_1, l_2, \cdots, l_K satisfy $\sum_{k=1}^K 2^{-l_k} \leq 1$. Then, there exists a uniquely decodable code for symbols x_1, x_2, \cdots, x_k such that $l(x_1) = l_1$, $l(x_2) = l_2, \cdots, l(x_K) = l_K$.

Intuition

Consider $#$ "descendants" of each codeword at the " l_{max} "-level, then for prefix-free code, we have

$$
\sum_{k=1}^K 2^{l_{max}-l} \leq 2^{l_{max}}
$$

イロト イ母 トイヨ トイヨ トー

Kraft's Inequality

Let l_1, l_2, \cdots, l_K satisfy $\sum_{k=1}^K 2^{-l_k} \leq 1$. Then, there exists a uniquely decodable code for symbols x_1, x_2, \cdots, x_k such that $l(x_1) = l_1$, $l(x_2) = l_2, \cdots, l(x_K) = l_K$.

Intuition

Consider $\#$ "descendants" of each codeword at the " l_{max} "-level, then for prefix-free code, we have

$$
\sum_{k=1}^{K} 2^{l_{max}-l} \leq 2^{l_{max}}
$$
\n
$$
\Rightarrow \sum_{k=1}^{K} 2^{-l_k} \leq 1
$$
\n
$$
\sum_{k=1}^{N} 2^{-l_k} \leq 1
$$
\n
$$
\sum_{k=1}^{N} 2^{-l_k} \leq 1
$$
\n
$$
\sum_{k=1}^{N} 2^{-l_k} \leq 1
$$

Given l_1, l_2, \cdots, l_K satisfy $\sum_{k=1}^K 2^{-l_k} \leq 1$, we can assign nodes on a tree as previous slides. More precisely,

- Assign *i-*th node as a node at level l_i , then cross out all its descendants
- Repeat the procedure for i from 1 to K
- We know that there are sufficient tree nodes to be assigned since the Kraft's inequaltiy is satisfied

The corresponding code is apparently prefix-free and thus is uniquely decodable

Consider message from coding k symbols $\mathbf{x} = x_1, x_2, \cdots, x_k$

$$
\left(\sum_{x \in \mathcal{X}} 2^{-l(x)}\right)^k = \left(\sum_{x_1 \in \mathcal{X}} 2^{-l(x_1)}\right) \left(\sum_{x_2 \in \mathcal{X}} 2^{-l(x_2)}\right) \cdots \left(\sum_{x_k \in \mathcal{X}} 2^{-l(x_k)}\right)
$$

$$
= \sum_{x_1, x_2, \dots, x_k \in \mathcal{X}^k} 2^{-l(x_1) + l(x_2) + \dots + l(x_k)}
$$

$$
=\sum_{\mathbf{x}\in\mathcal{X}^k}2^{-l(\mathbf{x})}
$$

э

K ロ ▶ K 伊 ▶ K

Consider message from coding k symbols $\mathbf{x} = x_1, x_2, \dots, x_k$

$$
\left(\sum_{x \in \mathcal{X}} 2^{-l(x)}\right)^k = \left(\sum_{x_1 \in \mathcal{X}} 2^{-l(x_1)}\right) \left(\sum_{x_2 \in \mathcal{X}} 2^{-l(x_2)}\right) \cdots \left(\sum_{x_k \in \mathcal{X}} 2^{-l(x_k)}\right)
$$

$$
= \sum_{x_1, x_2, \dots, x_k \in \mathcal{X}^k} 2^{-l(x_1) + l(x_2) + \dots + l(x_k)}
$$

$$
= \sum_{\mathbf{x} \in \mathcal{X}^k} 2^{-l(\mathbf{x})} = \sum_{m=1}^{kl_{max}} a(m) 2^{-m},
$$

where $a(m)$ is the number of codeword with length m. However, for the code to be uniquely decodable, $a(m) \leq 2^m$, where 2^m is the number of available codewords with length m.

Consider message from coding k symbols $\mathbf{x} = x_1, x_2, \dots, x_k$

$$
\left(\sum_{x \in \mathcal{X}} 2^{-l(x)}\right)^k = \left(\sum_{x_1 \in \mathcal{X}} 2^{-l(x_1)}\right) \left(\sum_{x_2 \in \mathcal{X}} 2^{-l(x_2)}\right) \cdots \left(\sum_{x_k \in \mathcal{X}} 2^{-l(x_k)}\right)
$$

$$
= \sum_{x_1, x_2, \dots, x_k \in \mathcal{X}^k} 2^{-l(x_1) + l(x_2) + \dots + l(x_k)}
$$

$$
= \sum_{\mathbf{x} \in \mathcal{X}^k} 2^{-l(\mathbf{x})} = \sum_{m=1}^{kl_{max}} a(m) 2^{-m},
$$

where $a(m)$ is the number of codeword with length m. However, for the code to be uniquely decodable, $a(m) \leq 2^m$, where 2^m is the number of available codewords with length m. Therefore,

$$
\sum_{x \in \mathcal{X}} 2^{-l(x)} \le (k l_{max})^{1/k}
$$

Consider message from coding k symbols $\mathbf{x} = x_1, x_2, \dots, x_k$

$$
\left(\sum_{x \in \mathcal{X}} 2^{-l(x)}\right)^k = \left(\sum_{x_1 \in \mathcal{X}} 2^{-l(x_1)}\right) \left(\sum_{x_2 \in \mathcal{X}} 2^{-l(x_2)}\right) \cdots \left(\sum_{x_k \in \mathcal{X}} 2^{-l(x_k)}\right)
$$

$$
= \sum_{x_1, x_2, \dots, x_k \in \mathcal{X}^k} 2^{-l(x_1) + l(x_2) + \dots + l(x_k)}
$$

$$
= \sum_{\mathbf{x} \in \mathcal{X}^k} 2^{-l(\mathbf{x})} = \sum_{m=1}^{kl_{max}} a(m) 2^{-m},
$$

where $a(m)$ is the number of codeword with length m. However, for the code to be uniquely decodable, $a(m) \leq 2^m$, where 2^m is the number of available codewords with length m. Therefore,

$$
\sum_{x \in \mathcal{X}} 2^{-l(x)} \le (kl_{\text{max}})^{1/k} \approx 1 \text{ as } k \to \infty
$$

$$
\min_{l_1, l_2, \cdots, l_K} \sum_{k=1}^K p_k l_k
$$
 subject to
$$
\sum_{k=1}^K 2^{-l_k} \le 1
$$
 and $l_1, \cdots, l_K \ge 0$

$$
\equiv \max_{l_1, l_2, \cdots, l_K} - \sum_{k=1}^K p_k l_k
$$
 subject to
$$
\sum_{k=1}^K 2^{-l_k} - 1 \le 0
$$
 and $-l_1, \cdots, -l_K \le 0$

KKT conditions

$$
-\nabla\left(\sum_{k=1}^K p_k l_k\right) - \mu_0 \nabla\left(\sum_{k=1}^K 2^{-l_k} - 1\right) + \sum_{k=1}^K \mu_k \nabla l_k = 0
$$

$$
\min_{l_1, l_2, \cdots, l_K} \sum_{k=1}^K p_k l_k
$$
 subject to
$$
\sum_{k=1}^K 2^{-l_k} \le 1
$$
 and $l_1, \cdots, l_K \ge 0$

$$
\equiv \max_{l_1, l_2, \cdots, l_K} - \sum_{k=1}^K p_k l_k
$$
 subject to
$$
\sum_{k=1}^K 2^{-l_k} - 1 \le 0
$$
 and $-l_1, \cdots, -l_K \le 0$

KKT conditions

$$
-\nabla \left(\sum_{k=1}^{K} p_k l_k\right) - \mu_0 \nabla \left(\sum_{k=1}^{K} 2^{-l_k} - 1\right) + \sum_{k=1}^{K} \mu_k \nabla l_k = 0
$$

$$
\sum_{k=1}^{K} 2^{-l_k} - 1 \le 0, \quad l_1, \dots, l_K \ge 0, \quad \mu_0, \mu_1, \dots, \mu_K \ge 0
$$

$$
\min_{l_1, l_2, \cdots, l_K} \sum_{k=1}^K p_k l_k
$$
 subject to
$$
\sum_{k=1}^K 2^{-l_k} \le 1
$$
 and $l_1, \cdots, l_K \ge 0$

$$
\equiv \max_{l_1, l_2, \cdots, l_K} - \sum_{k=1}^K p_k l_k
$$
 subject to
$$
\sum_{k=1}^K 2^{-l_k} - 1 \le 0
$$
 and $-l_1, \cdots, -l_K \le 0$

KKT conditions

$$
-\nabla \left(\sum_{k=1}^{K} p_k I_k\right) - \mu_0 \nabla \left(\sum_{k=1}^{K} 2^{-l_k} - 1\right) + \sum_{k=1}^{K} \mu_k \nabla I_k = 0
$$

$$
\sum_{k=1}^{N} 2^{-l_k} - 1 \leq 0, \quad l_1, \cdots, l_K \geq 0, \quad \mu_0, \mu_1, \cdots, \mu_K \geq 0
$$

$$
\mu_0 \left(\sum_{k=1}^K 2^{-l_k} - 1 \right) = 0, \quad \mu_k l_k = 0
$$

K

4日)

Minimum rate required to compress a source

Since we expect $l_k > 0$, $\mu_k = 0$.

 QQ

 \leftarrow

Minimum rate required to compress a source

Since we expect $l_k > 0$, $\mu_k = 0$. Expand the first equation, we get

$$
-p_j + \mu_0 2^{-l_j} \log 2 = 0 \Rightarrow 2^{-l_j} = \frac{p_j}{\mu_0 \log 2}
$$

 $2Q$

Since we expect $l_k > 0$, $\mu_k = 0$. Expand the first equation, we get

$$
-p_j + \mu_0 2^{-l_j} \log 2 = 0 \Rightarrow 2^{-l_j} = \frac{p_j}{\mu_0 \log 2}
$$

And by $\sum_{k=1}^K 2^{-l_k} \leq 1$, we have

$$
\sum_{k=1}^K \frac{p_j}{\mu_0 \log 2} = \frac{1}{\mu_0 \log 2} \le 1 \Rightarrow \mu_0 \ge \frac{1}{\log 2}
$$

 $2Q$

Since we expect $l_k > 0$, $\mu_k = 0$. Expand the first equation, we get

$$
-p_j + \mu_0 2^{-l_j} \log 2 = 0 \Rightarrow 2^{-l_j} = \frac{p_j}{\mu_0 \log 2}
$$

And by $\sum_{k=1}^K 2^{-l_k} \leq 1$, we have

$$
\sum_{k=1}^K \frac{p_j}{\mu_0 \log 2} = \frac{1}{\mu_0 \log 2} \le 1 \Rightarrow \mu_0 \ge \frac{1}{\log 2}
$$

Note that as $\mu_0 \downarrow$, $\frac{p_j}{\mu_0 \log 2} \uparrow$ and $l_j \downarrow$.

Since we expect $l_k > 0$, $\mu_k = 0$. Expand the first equation, we get

$$
-p_j + \mu_0 2^{-l_j} \log 2 = 0 \Rightarrow 2^{-l_j} = \frac{p_j}{\mu_0 \log 2}
$$

And by $\sum_{k=1}^K 2^{-l_k} \leq 1$, we have

$$
\sum_{k=1}^K \frac{p_j}{\mu_0 \log 2} = \frac{1}{\mu_0 \log 2} \leq 1 \Rightarrow \mu_0 \geq \frac{1}{\log 2}
$$

Note that as $\mu_0 \downarrow$, $\frac{p_j}{\mu_0 \log 2}$ \uparrow and $l_j \downarrow$. Therefore, if we want to decrease code rate, we should reduce μ_0 as much as possible. Thus, take $\mu_0 = \frac{1}{\log 2}.$ Then $2^{-l_j}=p_j \Rightarrow l_j=-\log_2 p_j.$ Thus, the minimum rate becomes

$$
\sum_{k=1}^K p_k l_k = -\sum_{k=1}^K p_k \log_2 p_k \triangleq H(p_1,\cdots,p_K)
$$

ാം

Shannon-Fano-Elias code

Key idea

Each codeword corresponds to an intervel of $[0, 1]$

Example

110 corresponds to $[0.110, 0.1101] = [0.11, 0.111) = [0.75, 0.875)$

Shannon-Fano-Elias code

Key idea

Each codeword corresponds to an intervel of $[0, 1]$

Example

110 corresponds to $[0.110, 0.1101] = [0.11, 0.111) = [0.75, 0.875)$

011 corresponds to $[0.011, 0.0111] = [0.011, 0.1) = [0.375, 0.5)$

Consider a source that

$$
p(x_1) = 0.25, p(x_2) = 0.25, p(x_3) = 0.2, p(x_4) = 0.15, p(x_5) = 0.15
$$

Þ

 299

イロメ イ母メ イヨメ イヨ

The length of the codeword of x is $\lceil \log_2 \frac{1}{p(x)} \rceil$ $\frac{1}{p(x)}$ \mid $+$ 1. This ensures that the "code interval" of each codeword does not overlap

4日)

- The length of the codeword of x is $\lceil \log_2 \frac{1}{p(x)} \rceil$ $\frac{1}{p(x)}$ \mid $+$ 1. This ensures that the "code interval" of each codeword does not overlap
- SFE code is prefix-free \rightarrow uniquely decodable

つくい

- The length of the codeword of x is $\lceil \log_2 \frac{1}{p(x)} \rceil$ $\frac{1}{p(x)}$ \mid $+$ 1. This ensures that the "code interval" of each codeword does not overlap
- SFE code is prefix-free \rightarrow uniquely decodable
	- If a codeword is prefix of another (say 10 and 1010), the corresponding intervals must overlap each other (consider [0.10, 0.11) and $[0.101, 0.11)]$

- The length of the codeword of x is $\lceil \log_2 \frac{1}{p(x)} \rceil$ $\frac{1}{p(x)}$ \mid $+$ 1. This ensures that the "code interval" of each codeword does not overlap
- SFE code is prefix-free \rightarrow uniquely decodable
	- If a codeword is prefix of another (say 10 and 1010), the corresponding intervals must overlap each other (consider [0.10, 0.11) and $[0.101, 0.11)]$
	- Since no codeword can overlap in SFE, no code word can be prefix of another

- The length of the codeword of x is $\lceil \log_2 \frac{1}{p(x)} \rceil$ $\frac{1}{p(x)}$ \mid $+$ 1. This ensures that the "code interval" of each codeword does not overlap
- SFE code is prefix-free \rightarrow uniquely decodable
	- If a codeword is prefix of another (say 10 and 1010), the corresponding intervals must overlap each other (consider [0.10, 0.11) and $[0.101, 0.11)]$
	- Since no codeword can overlap in SFE, no code word can be prefix of another
- Average code rate is upper bounded by $H(X) + 2$

$$
\sum_{x \in \mathcal{X}} p(x)l(x) = \sum_{x \in \mathcal{X}} p(x) \left(\left\lceil \log_2 \frac{1}{p(x)} \right\rceil + 1 \right)
$$

$$
\leq \sum_{x \in \mathcal{X}} p(x) \left(\log_2 \frac{1}{p(x)} + 2 \right) = H(X) + 2
$$

- Let's consider two symbols as a super-symbol and compress the pair at each time with SFE code
- The code rate is bounded by $H(X_S) + 2$, where

- Let's consider two symbols as a super-symbol and compress the pair at each time with SFE code
- The code rate is bounded by $H(X_S) + 2$, where

$$
H(X_S) = -\sum_{x_1, x_2 \in \mathcal{X}^2} p(x_1, x_2) \log_2 p(x_1, x_2)
$$

- Let's consider two symbols as a super-symbol and compress the pair at each time with SFE code
- The code rate is bounded by $H(X_S) + 2$, where

$$
H(X_S) = -\sum_{x_1, x_2 \in \mathcal{X}^2} p(x_1, x_2) \log_2 p(x_1, x_2)
$$

=
$$
-\sum_{x_1, x_2 \in \mathcal{X}^2} p(x_1, x_2) \log_2(p(x_1)p(x_2))
$$

- Let's consider two symbols as a super-symbol and compress the pair at each time with SFE code
- The code rate is bounded by $H(X_S) + 2$, where

$$
H(X_S) = -\sum_{x_1, x_2 \in \mathcal{X}^2} p(x_1, x_2) \log_2 p(x_1, x_2)
$$

=
$$
-\sum_{x_1, x_2 \in \mathcal{X}^2} p(x_1, x_2) \log_2(p(x_1)p(x_2))
$$

=
$$
-\sum_{x_1, x_2 \in \mathcal{X}^2} p(x_1, x_2) \log_2 p(x_1) - \sum_{x_1, x_2 \in \mathcal{X}^2} p(x_1, x_2) \log_2 p(x_2)
$$

- Let's consider two symbols as a super-symbol and compress the pair at each time with SFE code
- The code rate is bounded by $H(X_S) + 2$, where

$$
H(X_S) = -\sum_{x_1, x_2 \in \mathcal{X}^2} p(x_1, x_2) \log_2 p(x_1, x_2)
$$

=
$$
-\sum_{x_1, x_2 \in \mathcal{X}^2} p(x_1, x_2) \log_2(p(x_1)p(x_2))
$$

=
$$
-\sum_{x_1, x_2 \in \mathcal{X}^2} p(x_1, x_2) \log_2 p(x_1) - \sum_{x_1, x_2 \in \mathcal{X}^2} p(x_1, x_2) \log_2 p(x_2)
$$

=
$$
-\sum_{x_1 \in \mathcal{X}} p(x_1) \log_2 p(x_1) - \sum_{x_2 \in \mathcal{X}} p(x_2) \log_2 p(x_2)
$$

=
$$
2H(X)
$$

Therefore, the code rate per original symbol is upper bounded by

$$
\frac{1}{2}(H(X_5)+2)=H(X)+1
$$

Forward proof of Source Coding Theorem

In theory, we can group as many symbol as we want (we want do it in practice, why?), say we group N symbols at a time and compress it using SFE code.

つくい

つくい

Forward proof of Source Coding Theorem

In theory, we can group as many symbol as we want (we want do it in practice, why?), say we group N symbols at a time and compress it using SFE code. The code rate per original symbol is upper bounded by

$$
\frac{1}{N}(H(X_5) + 2) = \frac{1}{N}(NH(X) + 2) = H(X) + \frac{2}{N}
$$

Forward proof of Source Coding Theorem

In theory, we can group as many symbol as we want (we want do it in practice, why?), say we group N symbols at a time and compress it using SFE code. The code rate per original symbol is upper bounded by

$$
\frac{1}{N}(H(X_5) + 2) = \frac{1}{N}(NH(X) + 2) = H(X) + \frac{2}{N}
$$

Therefore as long as a given rate $R > H(X)$, we can always find a large enough N such that the code rate using the "grouping trick" and SFE code is below R. This concludes the forward proof