
Conjugate prior summary

Distribution Likelihood p(x|θ) Prior p(θ) Distribution

Bernoulli (1− θ)(1−x)θx ∝ (1− θ)(a−1)θ(b−1) Beta

Binomial ∝ (1− θ)(N−x)θx ∝ (1− θ)(a−1)θ(b−1) Beta

Multinomial ∝ θx11 θx22 θx33 ∝ θα1−1
1 θα2−1

2 θα3−1
3 Dirichlet

Normal
(fixed σ2)

∝ exp
(
− (x−θ)2

2σ2

)
∝ exp

(
− (θ−µ0)2

2σ2
0

)
Normal

Normal
(fixed µ)

∝
√
θ exp

(
− θ(x−µ)2

2

)
∝ θa−1exp(−bθ) Gamma

Poisson ∝ θx exp(−θ) ∝ θa−1exp(−bθ) Gamma
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Lecture 7 Constraint optimization

An example

Simple economy: m prosumers, n different goods1

Each individual: production pi ∈ Rn , consumption ci ∈ Rn

Expense of producing “p” for agent i = ei (p)

Utility (happiness) of consuming “c” units for agent i = ui (c)

Maximize happiness

max
pi ,ci

∑
i

(ui (ci )− ei (pi )) s.t.
∑
i

ci =
∑
i

pi

1Example borrowed from the first lecture of Prof Gordon’s CMU CS 10-725
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Lecture 7 Constraint optimization

Walrasian equilibrium

max
pi ,ci

∑
i

(ui (ci )− ei (pi )) s.t.
∑
i

ci =
∑
i

pi

Idea: introduce price λj to each good j . Let the market decide

Price λj ↑ : consumption of good j ↓, production of good j ↑
Price λj ↓ : consumption of good j ↑, production of good j ↓
Can adjust price until consumption = production for each good
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Lecture 7 Constraint optimization

Algorithm: tâtonnement

Assume that the appropriate prices are found, we can ignore the equality
constraint, then the problem becomes

max
pi ,ci

∑
i

(ui (ci )− ei (pi )) ⇒
∑
i

max
pi ,ci

(ui (ci )− ei (pi ))

So we can simply optimize production and consumption of each individual
independently

Algorithm 1 tâtonnement

1: procedure FindBestPrices
2: λ← [0, 0, · · · , 0]
3: for k = 1, 2, · · · do
4: Each individual solves for its ci and pi for the given λ
5: λ← λ+ δk

∑
i (ci − pi )
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Lecture 7 Constraint optimization

Lagrange multiplier

Problem

max
x

f (x)

g(x) = 0

Consider L(x, λ) = f (x)− λg(x) and let f̃ (x) = minλ L(x, λ).

Note that

f̃ (x) =

{
f (x) if g(x) = 0

−∞ otherwise

Therefore, the problem is identical to maxx f̃ (x) or

max
x

min
λ

(f (x)− λg(x)),

where λ is known to be the Lagrange multiplier.
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Lecture 7 Constraint optimization

Lagrange multiplier (con’t)

Assume the optimum is a saddle point,

max
x

min
λ

(f (x)− λg(x)) = min
λ

max
x

(f (x)− λg(x)),

the R.H.S. implies

∇f (x) = λ∇g(x)
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Lecture 7 Constraint optimization

Inequality constraint

Problem

max
x

f (x)

g(x) ≤ 0

Consider f̃ (x) = minλ≥0(f (x)− λg(x)),

note that

f̃ (x) =

{
f (x) if g(x) ≤ 0

−∞ otherwise

Therefore, we can rewrite the problem as

max
x

min
λ≥0

(f (x)− λg(x))

S. Cheng (OU-Tulsa) October 3, 2017 7 / 22



Lecture 7 Constraint optimization

Inequality constraint

Problem

max
x

f (x)

g(x) ≤ 0

Consider f̃ (x) = minλ≥0(f (x)− λg(x)), note that

f̃ (x) =

{
f (x) if g(x) ≤ 0

−∞ otherwise

Therefore, we can rewrite the problem as

max
x

min
λ≥0

(f (x)− λg(x))

S. Cheng (OU-Tulsa) October 3, 2017 7 / 22



Lecture 7 Constraint optimization

Inequality constraint

Problem

max
x

f (x)

g(x) ≤ 0

Consider f̃ (x) = minλ≥0(f (x)− λg(x)), note that

f̃ (x) =

{
f (x) if g(x) ≤ 0

−∞ otherwise

Therefore, we can rewrite the problem as

max
x

min
λ≥0

(f (x)− λg(x))

S. Cheng (OU-Tulsa) October 3, 2017 7 / 22



Lecture 7 Constraint optimization

Inequality constraint (con’t)

Assume

max
x

min
λ≥0

(f (x)− λg(x)) = min
λ≥0

max
x

(f (x)− λg(x))

The R.H.S. implies

∇f (x) = λ∇g(x)

Moreover, at the optimum point (x∗, λ∗), we should have the so-called
“complementary slackness” condition

λ∗g(x∗) = 0

since

max
x

f (x)

g(x)≤0

≡ max
x

min
λ≥0

(f (x)− λg(x))
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Lecture 7 Constraint optimization

Karush-Kuhn-Tucker conditions

Problem

max
x

f (x)

g(x) ≤ 0, h(x) = 0

Conditions

∇f (x∗)− µ∗∇g(x∗)− λ∗∇h(x∗) = 0

g(x∗) ≤ 0

h(x∗) = 0

µ∗ ≥ 0

µ∗g(x∗) = 0
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Lecture 7 Overview of source coding

Overview of source coding

The objective of “source coding” is to compress some source

We can think of compression as “coding”. Meaning that we replace
each input by a corresponding coded sequence. So encoding is just a
mapping/function process

Without loss of generality, we can use binary domain for our coded
sequence. So for each input message, it is converted to a sequence of
1s and 0s

Consider encoding (compressing) a sequence x1, x2, · · · one symbol at
a time, resulting c(x1), c(x2), · · ·
Denote the lengths of x1, x2, · · · as l(x1), l(x2), · · · , one of the major
goal is to have E [l(X )] to be as small as possible

However, we want to make sure that we can losslessly decode the
message also!
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Lecture 7 Overview of source coding

Uniquely decodable code

To ensure that we can recover message without loss, we must make
sure that no message share the same codeword

We say a code is “singular” (broken) if c(x1) = c(x2) for some
different x1 and x2
Even when a code is not “singular”, we still cannot guarantee that we
can always recover the original message losslessly, consider 4 different
possible input symbols a, b, c , d and an encoding map c(·) :

a 7→ 0, b 7→ 1, c 7→ 10, d 7→ 11
What should be the message for 1110?

dba? Or bbba?

So it is not sufficient to just have c(·) to map to different output for
each input. Let’s overload the notation c(·) a little bit and for any
message sequence x = x1, x2, · · · , xn, encode sequence x1, x2, · · · , xn
to c(x) = c(x1, x2, · · · , xn) = c(x1)c(x2) · · · c(xn)

We say c(x) is uniquely decodable if all input sequences map to
different outputs
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Lecture 7 Overview of source coding

Prefix-free code

For practical purpose, we would like to be able to decode a symbol
“once it is available”. Consider a code with map

a 7→ 10, b 7→ 00, c 7→ 11, d 7→ 110

One can show that it is uniquely decodable. However, consider an
input sequence cbbb 7→ 11000000
When the decoder read the first 3 bits, it is not able to determine if the
first input symbol is c or d
Actually, it will be until the decoder read the last bit that it will be able
to confirm that the first input symbol is c . It is definitely not
something very desirable

Instead, for a mapping a 7→ 1, b 7→ 01, c 7→ 001, d 7→ 0001, I will
argue that we can always decode a symbol “once it is available”

Note that the catch is that there is no codeword being the “prefix” of
another codeword
We call such code a prefix-free code or an instantaneous code
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Lecture 7 Kraft’s Inequality

Kraft’s Inequality

Let l1, l2, · · · , lK satisfy
∑K

k=1 2
−lk ≤ 1. Then, there exists a uniquely

decodable code for symbols x1, x2, · · · , xK such that l(x1) = l1,
l(x2) = l2, · · · , l(xK ) = lK .

Intuition

Consider # “descendants” of each codeword at the “lmax”-level, then for
prefix-free code, we have

K∑
k=1

2lmax−l ≤ 2lmax

⇒
K∑

k=1

2−lk ≤ 1 a
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Lecture 7 Kraft’s Inequality

Forward Proof

Given l1, l2, · · · , lK satisfy
∑K

k=1 2
−lk ≤ 1, we can assign nodes on a tree

as previous slides. More precisely,

Assign i-th node as a node at level li , then cross out all its
descendants

Repeat the procedure for i from 1 to K

We know that there are sufficient tree nodes to be assigned since the
Kraft’s inequaltiy is satisfied

The corresponding code is apparently prefix-free and thus is uniquely
decodable
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Lecture 7 Kraft’s Inequality

Converse Proof

Consider message from coding k symbols x = x1, x2, · · · , xk(∑
x∈X

2−l(x)

)k

=

(∑
x1∈X

2−l(x1)

)(∑
x2∈X

2−l(x2)

)
· · ·

(∑
xk∈X

2−l(xk )

)
=

∑
x1,x2,··· ,xk∈X k

2−(l(x1)+l(x2)+···+l(xk ))

=
∑
x∈X k

2−l(x)

=
klmax∑
m=1

a(m)2−m,

where a(m) is the number of codeword with length m. However, for the
code to be uniquely decodable, a(m) ≤ 2m, where 2m is the number of
available codewords with length m. Therefore,∑

x∈X
2−l(x) ≤ (klmax)

1/k ≈ 1 as k →∞
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Lecture 7 Converse proof of Source Coding Theorem

Minimum rate required to compress a source

minl1,l2,··· ,lK

K∑
k=1

pk lk subject to
K∑

k=1

2−lk ≤ 1 and l1, · · · , lK ≥ 0

≡maxl1,l2,··· ,lK −
K∑

k=1

pk lk subject to
K∑

k=1

2−lk − 1 ≤ 0 and − l1, · · · ,−lK ≤ 0

KKT conditions

−∇

(
K∑

k=1

pk lk

)
− µ0∇

(
K∑

k=1

2−lk − 1

)
+

K∑
k=1

µk∇lk = 0

K∑
k=1

2−lk − 1 ≤ 0, l1, · · · , lK ≥ 0, µ0, µ1, · · · , µK ≥ 0

µ0

(
K∑

k=1

2−lk − 1

)
= 0, µk lk = 0
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Lecture 7 Converse proof of Source Coding Theorem

Minimum rate required to compress a source

Since we expect lk > 0, µk = 0.

Expand the first equation, we get

−pj + µ02
−lj log 2 = 0⇒ 2−lj =

pj
µ0 log 2

And by
∑K

k=1 2
−lk ≤ 1, we have

K∑
k=1

pj
µ0 log 2

=
1

µ0 log 2
≤ 1⇒ µ0 ≥

1

log 2

Note that as µ0 ↓,
pj

µ0 log 2 ↑ and lj ↓. Therefore, if we want to decrease

code rate, we should reduce µ0 as much as possible. Thus, take µ0 =
1

log 2 .

Then 2−lj = pj ⇒ lj = − log2 pj . Thus, the minimum rate becomes

K∑
k=1

pk lk = −
K∑

k=1

pk log2 pk , H(p1, · · · , pK )
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Lecture 7 SFE code

Shannon-Fano-Elias code

Key idea

Each codeword corresponds to an intervel of [0, 1]

Example

110 corresponds to [0.110, 0.1101· ] = [0.11, 0.111) = [0.75, 0.875)

011 corresponds to [0.011, 0.0111· ] = [0.011, 0.1) = [0.375, 0.5)
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Lecture 7 SFE code

Example

Consider a source that
p(x1) = 0.25, p(x2) = 0.25, p(x3) = 0.2, p(x4) = 0.15, p(x5) = 0.15
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Lecture 7 SFE code

Property

The length of the codeword of x is dlog2 1
p(x)e+ 1. This ensures that

the “code interval” of each codeword does not overlap

SFE code is prefix-free → uniquely decodable

If a codeword is prefix of another (say 10 and 1010), the corresponding
intervals must overlap each other (consider [0.10, 0.11) and
[0.101, 0.11))
Since no codeword can overlap in SFE, no code word can be prefix of
another

Average code rate is upper bounded by H(X ) + 2∑
x∈X

p(x)l(x) =
∑
x∈X

p(x)

(⌈
log2

1

p(x)

⌉
+ 1

)
≤
∑
x∈X

p(x)

(
log2

1

p(x)
+ 2

)
= H(X ) + 2
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Lecture 7 Forward proof of Source Coding Theorem

“Symbol grouping” trick

Let’s consider two symbols as a super-symbol and compress the pair
at each time with SFE code
The code rate is bounded by H(XS) + 2, where

H(XS) = −
∑

x1,x2∈X 2

p(x1, x2) log2 p(x1, x2)

= −
∑

x1,x2∈X 2

p(x1, x2) log2(p(x1)p(x2))

= −
∑

x1,x2∈X 2

p(x1, x2) log2 p(x1)−
∑

x1,x2∈X 2

p(x1, x2) log2 p(x2)

= −
∑
x1∈X

p(x1) log2 p(x1)−
∑
x2∈X

p(x2) log2 p(x2)

= 2H(X )

Therefore, the code rate per original symbol is upper bounded by

1

2
(H(XS) + 2) = H(X ) + 1
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Lecture 7 Forward proof of Source Coding Theorem

Forward proof of Source Coding Theorem

In theory, we can group as many symbol as we want (we want do it in
practice, why?), say we group N symbols at a time and compress it using
SFE code.

The code rate per original symbol is upper bounded by

1

N
(H(XS) + 2) =

1

N
(NH(X ) + 2) = H(X ) +

2

N

Therefore as long as a given rate R > H(X ), we can always find a large
enough N such that the code rate using the “grouping trick” and SFE
code is below R. This concludes the forward proof
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