
Lecture 8

Review

Kraft’s inequality:
∑K

k=1 2
−lk ≤ 1

We showed that given a code “length-profile”, we can always find a
prefix-free code if the profile satisfies Kraft’s inequality
Conversely, if Kraft’s inequality is not satisfies, any code with that
profile is not uniquely decodable ⇒ trash

Converse proof of Source Coding Theorem: if we minimize the
expected code length subject to the Kraft’s inequality, the minimum
“code rate” is equal to the entropy of the source.

In other words, we cannot compress a source losslessly below its entropy

Forward proof of Source Coding Theorem: the obvious question now
is can we compress any source arbitrary close to its entropy?

Absolutely! And we will show it today

S. Cheng (OU-Tulsa) October 3, 2017 1 / 44

Lecture 8

Review

Kraft’s inequality:
∑K

k=1 2
−lk ≤ 1

We showed that given a code “length-profile”, we can always find a
prefix-free code if the profile satisfies Kraft’s inequality

Conversely, if Kraft’s inequality is not satisfies, any code with that
profile is not uniquely decodable ⇒ trash

Converse proof of Source Coding Theorem: if we minimize the
expected code length subject to the Kraft’s inequality, the minimum
“code rate” is equal to the entropy of the source.

In other words, we cannot compress a source losslessly below its entropy

Forward proof of Source Coding Theorem: the obvious question now
is can we compress any source arbitrary close to its entropy?

Absolutely! And we will show it today

S. Cheng (OU-Tulsa) October 3, 2017 1 / 44

Lecture 8

Review

Kraft’s inequality:
∑K

k=1 2
−lk ≤ 1

We showed that given a code “length-profile”, we can always find a
prefix-free code if the profile satisfies Kraft’s inequality
Conversely, if Kraft’s inequality is not satisfies, any code with that
profile is not uniquely decodable ⇒ trash

Converse proof of Source Coding Theorem: if we minimize the
expected code length subject to the Kraft’s inequality, the minimum
“code rate” is equal to the entropy of the source.

In other words, we cannot compress a source losslessly below its entropy

Forward proof of Source Coding Theorem: the obvious question now
is can we compress any source arbitrary close to its entropy?

Absolutely! And we will show it today

S. Cheng (OU-Tulsa) October 3, 2017 1 / 44

Lecture 8

Review

Kraft’s inequality:
∑K

k=1 2
−lk ≤ 1

We showed that given a code “length-profile”, we can always find a
prefix-free code if the profile satisfies Kraft’s inequality
Conversely, if Kraft’s inequality is not satisfies, any code with that
profile is not uniquely decodable ⇒ trash

Converse proof of Source Coding Theorem: if we minimize the
expected code length subject to the Kraft’s inequality, the minimum
“code rate” is equal to the entropy of the source.

In other words, we cannot compress a source losslessly below its entropy

Forward proof of Source Coding Theorem: the obvious question now
is can we compress any source arbitrary close to its entropy?

Absolutely! And we will show it today

S. Cheng (OU-Tulsa) October 3, 2017 1 / 44

Lecture 8

Review

Kraft’s inequality:
∑K

k=1 2
−lk ≤ 1

We showed that given a code “length-profile”, we can always find a
prefix-free code if the profile satisfies Kraft’s inequality
Conversely, if Kraft’s inequality is not satisfies, any code with that
profile is not uniquely decodable ⇒ trash

Converse proof of Source Coding Theorem: if we minimize the
expected code length subject to the Kraft’s inequality, the minimum
“code rate” is equal to the entropy of the source.

In other words, we cannot compress a source losslessly below its entropy

Forward proof of Source Coding Theorem: the obvious question now
is can we compress any source arbitrary close to its entropy?

Absolutely! And we will show it today

S. Cheng (OU-Tulsa) October 3, 2017 1 / 44

Lecture 8

Review

Kraft’s inequality:
∑K

k=1 2
−lk ≤ 1

We showed that given a code “length-profile”, we can always find a
prefix-free code if the profile satisfies Kraft’s inequality
Conversely, if Kraft’s inequality is not satisfies, any code with that
profile is not uniquely decodable ⇒ trash

Converse proof of Source Coding Theorem: if we minimize the
expected code length subject to the Kraft’s inequality, the minimum
“code rate” is equal to the entropy of the source.

In other words, we cannot compress a source losslessly below its entropy

Forward proof of Source Coding Theorem: the obvious question now
is can we compress any source arbitrary close to its entropy?

Absolutely! And we will show it today

S. Cheng (OU-Tulsa) October 3, 2017 1 / 44

Lecture 8

Review

Kraft’s inequality:
∑K

k=1 2
−lk ≤ 1

We showed that given a code “length-profile”, we can always find a
prefix-free code if the profile satisfies Kraft’s inequality
Conversely, if Kraft’s inequality is not satisfies, any code with that
profile is not uniquely decodable ⇒ trash

Converse proof of Source Coding Theorem: if we minimize the
expected code length subject to the Kraft’s inequality, the minimum
“code rate” is equal to the entropy of the source.

In other words, we cannot compress a source losslessly below its entropy

Forward proof of Source Coding Theorem: the obvious question now
is can we compress any source arbitrary close to its entropy?

Absolutely! And we will show it today

S. Cheng (OU-Tulsa) October 3, 2017 1 / 44

Lecture 8 SFE code

Shannon-Fano-Elias code

Key idea

Each codeword corresponds to an intervel of [0, 1]

Example

110 corresponds to [0.110, 0.1101·] = [0.11, 0.111) = [0.75, 0.875)

011 corresponds to [0.011, 0.0111·] = [0.011, 0.1) = [0.375, 0.5)

S. Cheng (OU-Tulsa) October 3, 2017 2 / 44

Lecture 8 SFE code

Shannon-Fano-Elias code

Key idea

Each codeword corresponds to an intervel of [0, 1]

Example

110 corresponds to [0.110, 0.1101·] = [0.11, 0.111) = [0.75, 0.875)

011 corresponds to [0.011, 0.0111·] = [0.011, 0.1) = [0.375, 0.5)

S. Cheng (OU-Tulsa) October 3, 2017 2 / 44

Lecture 8 SFE code

Example

Consider a source that
p(x1) = 0.25, p(x2) = 0.25, p(x3) = 0.2, p(x4) = 0.15, p(x5) = 0.15

S. Cheng (OU-Tulsa) October 3, 2017 3 / 44

Lecture 8 SFE code

Property

The length of the codeword of x is dlog2 1
p(x)e+ 1. This ensures that

the “code interval” of each codeword does not overlap

SFE code is prefix-free → uniquely decodable

If a codeword is prefix of another (say 10 and 1010), the corresponding
intervals must overlap each other (consider [0.10, 0.11) and
[0.101, 0.11))
Since no codeword can overlap in SFE, no code word can be prefix of
another

Average code rate is upper bounded by H(X) + 2∑
x∈X

p(x)l(x) =
∑
x∈X

p(x)

(⌈
log2

1

p(x)

⌉
+ 1

)
≤
∑
x∈X

p(x)

(
log2

1

p(x)
+ 2

)
= H(X) + 2

S. Cheng (OU-Tulsa) October 3, 2017 4 / 44

Lecture 8 SFE code

Property

The length of the codeword of x is dlog2 1
p(x)e+ 1. This ensures that

the “code interval” of each codeword does not overlap

SFE code is prefix-free → uniquely decodable

If a codeword is prefix of another (say 10 and 1010), the corresponding
intervals must overlap each other (consider [0.10, 0.11) and
[0.101, 0.11))
Since no codeword can overlap in SFE, no code word can be prefix of
another

Average code rate is upper bounded by H(X) + 2∑
x∈X

p(x)l(x) =
∑
x∈X

p(x)

(⌈
log2

1

p(x)

⌉
+ 1

)
≤
∑
x∈X

p(x)

(
log2

1

p(x)
+ 2

)
= H(X) + 2

S. Cheng (OU-Tulsa) October 3, 2017 4 / 44

Lecture 8 SFE code

Property

The length of the codeword of x is dlog2 1
p(x)e+ 1. This ensures that

the “code interval” of each codeword does not overlap

SFE code is prefix-free → uniquely decodable

If a codeword is prefix of another (say 10 and 1010), the corresponding
intervals must overlap each other (consider [0.10, 0.11) and
[0.101, 0.11))

Since no codeword can overlap in SFE, no code word can be prefix of
another

Average code rate is upper bounded by H(X) + 2∑
x∈X

p(x)l(x) =
∑
x∈X

p(x)

(⌈
log2

1

p(x)

⌉
+ 1

)
≤
∑
x∈X

p(x)

(
log2

1

p(x)
+ 2

)
= H(X) + 2

S. Cheng (OU-Tulsa) October 3, 2017 4 / 44

Lecture 8 SFE code

Property

The length of the codeword of x is dlog2 1
p(x)e+ 1. This ensures that

the “code interval” of each codeword does not overlap

SFE code is prefix-free → uniquely decodable

If a codeword is prefix of another (say 10 and 1010), the corresponding
intervals must overlap each other (consider [0.10, 0.11) and
[0.101, 0.11))
Since no codeword can overlap in SFE, no code word can be prefix of
another

Average code rate is upper bounded by H(X) + 2∑
x∈X

p(x)l(x) =
∑
x∈X

p(x)

(⌈
log2

1

p(x)

⌉
+ 1

)
≤
∑
x∈X

p(x)

(
log2

1

p(x)
+ 2

)
= H(X) + 2

S. Cheng (OU-Tulsa) October 3, 2017 4 / 44

Lecture 8 SFE code

Property

The length of the codeword of x is dlog2 1
p(x)e+ 1. This ensures that

the “code interval” of each codeword does not overlap

SFE code is prefix-free → uniquely decodable

If a codeword is prefix of another (say 10 and 1010), the corresponding
intervals must overlap each other (consider [0.10, 0.11) and
[0.101, 0.11))
Since no codeword can overlap in SFE, no code word can be prefix of
another

Average code rate is upper bounded by H(X) + 2∑
x∈X

p(x)l(x) =
∑
x∈X

p(x)

(⌈
log2

1

p(x)

⌉
+ 1

)
≤
∑
x∈X

p(x)

(
log2

1

p(x)
+ 2

)
= H(X) + 2

S. Cheng (OU-Tulsa) October 3, 2017 4 / 44

Lecture 8 Forward proof of Source Coding Theorem

“Symbol grouping” trick

Let’s consider two symbols as a super-symbol and compress the pair
at each time with SFE code
The code rate is bounded by H(XS) + 2, where

H(XS) = −
∑

x1,x2∈X 2

p(x1, x2) log2 p(x1, x2)

= −
∑

x1,x2∈X 2

p(x1, x2) log2(p(x1)p(x2))

= −
∑

x1,x2∈X 2

p(x1, x2) log2 p(x1)−
∑

x1,x2∈X 2

p(x1, x2) log2 p(x2)

= −
∑
x1∈X

p(x1) log2 p(x1)−
∑
x2∈X

p(x2) log2 p(x2)

= 2H(X)

Therefore, the code rate per original symbol is upper bounded by

1

2
(H(XS) + 2) = H(X) + 1

S. Cheng (OU-Tulsa) October 3, 2017 5 / 44

Lecture 8 Forward proof of Source Coding Theorem

“Symbol grouping” trick

Let’s consider two symbols as a super-symbol and compress the pair
at each time with SFE code
The code rate is bounded by H(XS) + 2, where

H(XS) = −
∑

x1,x2∈X 2

p(x1, x2) log2 p(x1, x2)

= −
∑

x1,x2∈X 2

p(x1, x2) log2(p(x1)p(x2))

= −
∑

x1,x2∈X 2

p(x1, x2) log2 p(x1)−
∑

x1,x2∈X 2

p(x1, x2) log2 p(x2)

= −
∑
x1∈X

p(x1) log2 p(x1)−
∑
x2∈X

p(x2) log2 p(x2)

= 2H(X)

Therefore, the code rate per original symbol is upper bounded by

1

2
(H(XS) + 2) = H(X) + 1

S. Cheng (OU-Tulsa) October 3, 2017 5 / 44

Lecture 8 Forward proof of Source Coding Theorem

“Symbol grouping” trick

Let’s consider two symbols as a super-symbol and compress the pair
at each time with SFE code
The code rate is bounded by H(XS) + 2, where

H(XS) = −
∑

x1,x2∈X 2

p(x1, x2) log2 p(x1, x2)

= −
∑

x1,x2∈X 2

p(x1, x2) log2(p(x1)p(x2))

= −
∑

x1,x2∈X 2

p(x1, x2) log2 p(x1)−
∑

x1,x2∈X 2

p(x1, x2) log2 p(x2)

= −
∑
x1∈X

p(x1) log2 p(x1)−
∑
x2∈X

p(x2) log2 p(x2)

= 2H(X)

Therefore, the code rate per original symbol is upper bounded by

1

2
(H(XS) + 2) = H(X) + 1

S. Cheng (OU-Tulsa) October 3, 2017 5 / 44

Lecture 8 Forward proof of Source Coding Theorem

“Symbol grouping” trick

Let’s consider two symbols as a super-symbol and compress the pair
at each time with SFE code
The code rate is bounded by H(XS) + 2, where

H(XS) = −
∑

x1,x2∈X 2

p(x1, x2) log2 p(x1, x2)

= −
∑

x1,x2∈X 2

p(x1, x2) log2(p(x1)p(x2))

= −
∑

x1,x2∈X 2

p(x1, x2) log2 p(x1)−
∑

x1,x2∈X 2

p(x1, x2) log2 p(x2)

= −
∑
x1∈X

p(x1) log2 p(x1)−
∑
x2∈X

p(x2) log2 p(x2)

= 2H(X)

Therefore, the code rate per original symbol is upper bounded by

1

2
(H(XS) + 2) = H(X) + 1

S. Cheng (OU-Tulsa) October 3, 2017 5 / 44

Lecture 8 Forward proof of Source Coding Theorem

“Symbol grouping” trick

Let’s consider two symbols as a super-symbol and compress the pair
at each time with SFE code
The code rate is bounded by H(XS) + 2, where

H(XS) = −
∑

x1,x2∈X 2

p(x1, x2) log2 p(x1, x2)

= −
∑

x1,x2∈X 2

p(x1, x2) log2(p(x1)p(x2))

= −
∑

x1,x2∈X 2

p(x1, x2) log2 p(x1)−
∑

x1,x2∈X 2

p(x1, x2) log2 p(x2)

= −
∑
x1∈X

p(x1) log2 p(x1)−
∑
x2∈X

p(x2) log2 p(x2)

= 2H(X)

Therefore, the code rate per original symbol is upper bounded by

1

2
(H(XS) + 2) = H(X) + 1

S. Cheng (OU-Tulsa) October 3, 2017 5 / 44

Lecture 8 Forward proof of Source Coding Theorem

Forward proof of Source Coding Theorem

In theory, we can group as many symbol as we want (we want do it in
practice, why?), say we group N symbols at a time and compress it using
SFE code.

The code rate per original symbol is upper bounded by

1

N
(H(XS) + 2) =

1

N
(NH(X) + 2) = H(X) +

2

N

Therefore as long as a given rate R > H(X), we can always find a large
enough N such that the code rate using the “grouping trick” and SFE
code is below R. This concludes the forward proof

S. Cheng (OU-Tulsa) October 3, 2017 6 / 44

Lecture 8 Forward proof of Source Coding Theorem

Forward proof of Source Coding Theorem

In theory, we can group as many symbol as we want (we want do it in
practice, why?), say we group N symbols at a time and compress it using
SFE code. The code rate per original symbol is upper bounded by

1

N
(H(XS) + 2) =

1

N
(NH(X) + 2) = H(X) +

2

N

Therefore as long as a given rate R > H(X), we can always find a large
enough N such that the code rate using the “grouping trick” and SFE
code is below R. This concludes the forward proof

S. Cheng (OU-Tulsa) October 3, 2017 6 / 44

Lecture 8 Forward proof of Source Coding Theorem

Forward proof of Source Coding Theorem

In theory, we can group as many symbol as we want (we want do it in
practice, why?), say we group N symbols at a time and compress it using
SFE code. The code rate per original symbol is upper bounded by

1

N
(H(XS) + 2) =

1

N
(NH(X) + 2) = H(X) +

2

N

Therefore as long as a given rate R > H(X), we can always find a large
enough N such that the code rate using the “grouping trick” and SFE
code is below R. This concludes the forward proof

S. Cheng (OU-Tulsa) October 3, 2017 6 / 44

Lecture 8 Entropy: another peek

Entropy for discrete random variable

Von Neumman to Shannon

”You should call it entropy for two reasons: first because that is what the formula
is in statistical mechanics but second and more important, as nobody knows what
entropy is, whenever you use the term you will always be at an advantage!” -John
von Neumman

H(X) = −
∑
x∈X

p(x) log p(x) = E [− log p(X)]

From the expression, it suggests that there is log 1
p(x) bits of

information for the outcome x
This actually comes with no surprise! Consider a uniform random
variable with 4 outcomes, each outcome will have probalility
1/4 = 0.25 of happening it. And to represent each outcome, we need
log 4 = log 1

0.25 bits
A less likely event has “more” information and requires more bits to
store. H(X) is just the average number of bits required

S. Cheng (OU-Tulsa) October 3, 2017 7 / 44

Lecture 8 Entropy: another peek

Entropy for discrete random variable

Von Neumman to Shannon

”You should call it entropy for two reasons: first because that is what the formula
is in statistical mechanics but second and more important, as nobody knows what
entropy is, whenever you use the term you will always be at an advantage!” -John
von Neumman

H(X) = −
∑
x∈X

p(x) log p(x) = E [− log p(X)]

From the expression, it suggests that there is log 1
p(x) bits of

information for the outcome x

This actually comes with no surprise! Consider a uniform random
variable with 4 outcomes, each outcome will have probalility
1/4 = 0.25 of happening it. And to represent each outcome, we need
log 4 = log 1

0.25 bits
A less likely event has “more” information and requires more bits to
store. H(X) is just the average number of bits required

S. Cheng (OU-Tulsa) October 3, 2017 7 / 44

Lecture 8 Entropy: another peek

Entropy for discrete random variable

Von Neumman to Shannon

”You should call it entropy for two reasons: first because that is what the formula
is in statistical mechanics but second and more important, as nobody knows what
entropy is, whenever you use the term you will always be at an advantage!” -John
von Neumman

H(X) = −
∑
x∈X

p(x) log p(x) = E [− log p(X)]

From the expression, it suggests that there is log 1
p(x) bits of

information for the outcome x
This actually comes with no surprise! Consider a uniform random
variable with 4 outcomes, each outcome will have probalility
1/4 = 0.25 of happening it. And to represent each outcome, we need
log 4 = log 1

0.25 bits

A less likely event has “more” information and requires more bits to
store. H(X) is just the average number of bits required

S. Cheng (OU-Tulsa) October 3, 2017 7 / 44

Lecture 8 Entropy: another peek

Entropy for discrete random variable

Von Neumman to Shannon

”You should call it entropy for two reasons: first because that is what the formula
is in statistical mechanics but second and more important, as nobody knows what
entropy is, whenever you use the term you will always be at an advantage!” -John
von Neumman

H(X) = −
∑
x∈X

p(x) log p(x) = E [− log p(X)]

From the expression, it suggests that there is log 1
p(x) bits of

information for the outcome x
This actually comes with no surprise! Consider a uniform random
variable with 4 outcomes, each outcome will have probalility
1/4 = 0.25 of happening it. And to represent each outcome, we need
log 4 = log 1

0.25 bits
A less likely event has “more” information and requires more bits to
store. H(X) is just the average number of bits required
S. Cheng (OU-Tulsa) October 3, 2017 7 / 44

Lecture 8 Entropy: another peek

Biased coin with Pr(Head) = p

S. Cheng (OU-Tulsa) October 3, 2017 8 / 44

H(X) = −Pr(Head) logPr(Head)− Pr(Tail) logPr(Tail)

= −p log p − (1− p) log(1− p)

Entropy is largest (=1)
when p = 0.5

Entropy is 0 when p = 0
or p = 1

Entropy can be
interpreted as the average
uncertainty of the
outcome or the amount of
information “gained” after
the outcome is revealed

0 0.2 0.4 0.6 0.8 1

Pr(Head)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

E
nt

ro
py

Lecture 8 Entropy: another peek

Biased coin with Pr(Head) = p

S. Cheng (OU-Tulsa) October 3, 2017 8 / 44

H(X) = −Pr(Head) logPr(Head)− Pr(Tail) logPr(Tail)

= −p log p − (1− p) log(1− p)

Entropy is largest (=1)
when p = 0.5

Entropy is 0 when p = 0
or p = 1

Entropy can be
interpreted as the average
uncertainty of the
outcome or the amount of
information “gained” after
the outcome is revealed

0 0.2 0.4 0.6 0.8 1

Pr(Head)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

E
nt

ro
py

Lecture 8 Differential entropy

Differential entropy

H(X) = −
∑
x∈X

p(x) log p(x) = E [− log p(X)]

The definition makes little sense for a continuous X . Since the probability
of an outcome x is always 0, we may define instead the differential entropy
for X as

h(X) = −
∫
x∈X

p(x) log p(x)dx

= E [− log p(x)],

where p(x) is now the pdf rather than the pmf

S. Cheng (OU-Tulsa) October 3, 2017 9 / 44

Lecture 8 Differential entropy

Differential entropy

H(X) = −
∑
x∈X

p(x) log p(x) = E [− log p(X)]

The definition makes little sense for a continuous X . Since the probability
of an outcome x is always 0, we may define instead the differential entropy
for X as

h(X) = −
∫
x∈X

p(x) log p(x)dx = E [− log p(x)],

where p(x) is now the pdf rather than the pmf

S. Cheng (OU-Tulsa) October 3, 2017 9 / 44

Lecture 8 Differential entropy

Differential entropy of common distributions

Uniform Distribution

If p(X) =

{
1/a 0 ≤ x ≤ a

0 otherwise

h(X) = −
∫ a

x=0

1

a
log

1

a
dx = log a

Exponential distribution

For exponentially distributed T ∼ Exp(λ),
h(T) = E [− log p(T)]

= E [− log (λ exp(−λT))]

= E [λT − log λ]

= 1− log λ

S. Cheng (OU-Tulsa) October 3, 2017 10 / 44

Lecture 8 Differential entropy

Differential entropy of common distributions

Uniform Distribution

If p(X) =

{
1/a 0 ≤ x ≤ a

0 otherwise

h(X) = −
∫ a

x=0

1

a
log

1

a
dx = log a

Exponential distribution

For exponentially distributed T ∼ Exp(λ),
h(T) = E [− log p(T)] = E [− log (λ exp(−λT))]

= E [λT − log λ]

= 1− log λ

S. Cheng (OU-Tulsa) October 3, 2017 10 / 44

Lecture 8 Differential entropy

Differential entropy of common distributions

Uniform Distribution

If p(X) =

{
1/a 0 ≤ x ≤ a

0 otherwise

h(X) = −
∫ a

x=0

1

a
log

1

a
dx = log a

Exponential distribution

For exponentially distributed T ∼ Exp(λ),
h(T) = E [− log p(T)] = E [− log (λ exp(−λT))]

= E [λT − log λ]

= 1− log λ

S. Cheng (OU-Tulsa) October 3, 2017 10 / 44

Lecture 8 Differential entropy

Differential entropy of common distributions

Uniform Distribution

If p(X) =

{
1/a 0 ≤ x ≤ a

0 otherwise

h(X) = −
∫ a

x=0

1

a
log

1

a
dx = log a

Exponential distribution

For exponentially distributed T ∼ Exp(λ),
h(T) = E [− log p(T)] = E [− log (λ exp(−λT))]

= E [λT − log λ]

= 1− log λ

S. Cheng (OU-Tulsa) October 3, 2017 10 / 44

Lecture 8 Differential entropy

Differential entropy of common distributions

Univariate Normal distribution

For univariate normally distributed X ∼ N (µ, σ2),

h(X) = E [− log p(X)]

= E

[
− log

(
1√
2πσ2

exp
−(X − µ)2

2σ2

)]
= E

[
log

√
2πσ2 +

(X − µ)2

2σ2
log e

]
= log

√
2πσ2 +

1

2
log e

= log
√
2πeσ2

N.B. h(X) only depends on σ2 and is independent of µ as one would
expect

S. Cheng (OU-Tulsa) October 3, 2017 11 / 44

Lecture 8 Differential entropy

Differential entropy of common distributions

Univariate Normal distribution

For univariate normally distributed X ∼ N (µ, σ2),

h(X) = E [− log p(X)] = E

[
− log

(
1√
2πσ2

exp
−(X − µ)2

2σ2

)]

= E

[
log

√
2πσ2 +

(X − µ)2

2σ2
log e

]
= log

√
2πσ2 +

1

2
log e

= log
√
2πeσ2

N.B. h(X) only depends on σ2 and is independent of µ as one would
expect

S. Cheng (OU-Tulsa) October 3, 2017 11 / 44

Lecture 8 Differential entropy

Differential entropy of common distributions

Univariate Normal distribution

For univariate normally distributed X ∼ N (µ, σ2),

h(X) = E [− log p(X)] = E

[
− log

(
1√
2πσ2

exp
−(X − µ)2

2σ2

)]
= E

[
log

√
2πσ2 +

(X − µ)2

2σ2
log e

]

= log
√
2πσ2 +

1

2
log e

= log
√
2πeσ2

N.B. h(X) only depends on σ2 and is independent of µ as one would
expect

S. Cheng (OU-Tulsa) October 3, 2017 11 / 44

Lecture 8 Differential entropy

Differential entropy of common distributions

Univariate Normal distribution

For univariate normally distributed X ∼ N (µ, σ2),

h(X) = E [− log p(X)] = E

[
− log

(
1√
2πσ2

exp
−(X − µ)2

2σ2

)]
= E

[
log

√
2πσ2 +

(X − µ)2

2σ2
log e

]
= log

√
2πσ2 +

1

2
log e

= log
√
2πeσ2

N.B. h(X) only depends on σ2 and is independent of µ as one would
expect

S. Cheng (OU-Tulsa) October 3, 2017 11 / 44

Lecture 8 Differential entropy

Multivariate Normal distribution

For N-dim multivariate normal distributed X ∼ N (µ,Σ),

h(X) = E [− log p(X)]

= −E

[
log

(
1√

det (2πΣ)
exp

(
−1

2
(X − µ)TΣ−1(X − µ)

))]

= log
√

det (2πΣ) +
log e

2
E

∑
i ,j

(xi − µi)
[
Σ−1

]
i ,j
(xj − µj)

= log

√
det (2πΣ) +

log e

2

∑
i ,j

[
Σ−1

]
i ,j
E [(xj − µj)(xi − µi)]

= log
√

det (2πΣ) +
log e

2

∑
i ,j

[
Σ−1

]
i ,j
Σj ,i

= log
√

det (2πΣ) +
N log e

2
= log

√
eN det (2πΣ) = log

√
det (2πeΣ)

S. Cheng (OU-Tulsa) October 3, 2017 12 / 44

Lecture 8 Differential entropy

Multivariate Normal distribution

For N-dim multivariate normal distributed X ∼ N (µ,Σ),

h(X) = E [− log p(X)]

= −E

[
log

(
1√

det (2πΣ)
exp

(
−1

2
(X − µ)TΣ−1(X − µ)

))]

= log
√
det (2πΣ) +

log e

2
E

∑
i ,j

(xi − µi)
[
Σ−1

]
i ,j
(xj − µj)

= log
√

det (2πΣ) +
log e

2

∑
i ,j

[
Σ−1

]
i ,j
E [(xj − µj)(xi − µi)]

= log
√

det (2πΣ) +
log e

2

∑
i ,j

[
Σ−1

]
i ,j
Σj ,i

= log
√

det (2πΣ) +
N log e

2
= log

√
eN det (2πΣ) = log

√
det (2πeΣ)

S. Cheng (OU-Tulsa) October 3, 2017 12 / 44

Lecture 8 Differential entropy

Multivariate Normal distribution

For N-dim multivariate normal distributed X ∼ N (µ,Σ),

h(X) = E [− log p(X)]

= −E

[
log

(
1√

det (2πΣ)
exp

(
−1

2
(X − µ)TΣ−1(X − µ)

))]

= log
√
det (2πΣ) +

log e

2
E

∑
i ,j

(xi − µi)
[
Σ−1

]
i ,j
(xj − µj)

= log

√
det (2πΣ) +

log e

2

∑
i ,j

[
Σ−1

]
i ,j
E [(xj − µj)(xi − µi)]

= log
√

det (2πΣ) +
log e

2

∑
i ,j

[
Σ−1

]
i ,j
Σj ,i

= log
√

det (2πΣ) +
N log e

2
= log

√
eN det (2πΣ) = log

√
det (2πeΣ)

S. Cheng (OU-Tulsa) October 3, 2017 12 / 44

Lecture 8 Differential entropy

Multivariate Normal distribution

For N-dim multivariate normal distributed X ∼ N (µ,Σ),

h(X) = E [− log p(X)]

= −E

[
log

(
1√

det (2πΣ)
exp

(
−1

2
(X − µ)TΣ−1(X − µ)

))]

= log
√
det (2πΣ) +

log e

2
E

∑
i ,j

(xi − µi)
[
Σ−1

]
i ,j
(xj − µj)

= log

√
det (2πΣ) +

log e

2

∑
i ,j

[
Σ−1

]
i ,j
E [(xj − µj)(xi − µi)]

= log
√
det (2πΣ) +

log e

2

∑
i ,j

[
Σ−1

]
i ,j
Σj ,i

= log
√

det (2πΣ) +
N log e

2
= log

√
eN det (2πΣ) = log

√
det (2πeΣ)

S. Cheng (OU-Tulsa) October 3, 2017 12 / 44

Lecture 8 Differential entropy

Multivariate Normal distribution

For N-dim multivariate normal distributed X ∼ N (µ,Σ),

h(X) = E [− log p(X)]

= −E

[
log

(
1√

det (2πΣ)
exp

(
−1

2
(X − µ)TΣ−1(X − µ)

))]

= log
√
det (2πΣ) +

log e

2
E

∑
i ,j

(xi − µi)
[
Σ−1

]
i ,j
(xj − µj)

= log

√
det (2πΣ) +

log e

2

∑
i ,j

[
Σ−1

]
i ,j
E [(xj − µj)(xi − µi)]

= log
√
det (2πΣ) +

log e

2

∑
i ,j

[
Σ−1

]
i ,j
Σj ,i

= log
√
det (2πΣ) +

N log e

2
= log

√
eN det (2πΣ)

= log
√
det (2πeΣ)

S. Cheng (OU-Tulsa) October 3, 2017 12 / 44

Lecture 8 Differential entropy

Multivariate Normal distribution

For N-dim multivariate normal distributed X ∼ N (µ,Σ),

h(X) = E [− log p(X)]

= −E

[
log

(
1√

det (2πΣ)
exp

(
−1

2
(X − µ)TΣ−1(X − µ)

))]

= log
√
det (2πΣ) +

log e

2
E

∑
i ,j

(xi − µi)
[
Σ−1

]
i ,j
(xj − µj)

= log

√
det (2πΣ) +

log e

2

∑
i ,j

[
Σ−1

]
i ,j
E [(xj − µj)(xi − µi)]

= log
√
det (2πΣ) +

log e

2

∑
i ,j

[
Σ−1

]
i ,j
Σj ,i

= log
√
det (2πΣ) +

N log e

2
= log

√
eN det (2πΣ) = log

√
det (2πeΣ)

S. Cheng (OU-Tulsa) October 3, 2017 12 / 44

Lecture 8 Differential entropy

Differential entropy and entropy

How differential entropy is related to its discrete counterpart?

Consider a continuous random variable X

Let X∆ is a “quantized” version of it with quantization stepsize of ∆

H(X∆) =
∑

−pX∆(x∆) log pX∆(x∆)

≈
∑

−pX (x
∆)∆ log(pX (x

∆)∆)

≈
∫

−pX (x) log(pX (x)∆)dx

=

∫
−pX (x) log pX (x)−

∫
pX (x) log∆dx

= h(X)− log∆

S. Cheng (OU-Tulsa) October 3, 2017 13 / 44

Lecture 8 Differential entropy

Differential entropy and entropy

How differential entropy is related to its discrete counterpart?

Consider a continuous random variable X

Let X∆ is a “quantized” version of it with quantization stepsize of ∆

H(X∆) =
∑

−pX∆(x∆) log pX∆(x∆) ≈
∑

−pX (x
∆)∆ log(pX (x

∆)∆)

≈
∫

−pX (x) log(pX (x)∆)dx

=

∫
−pX (x) log pX (x)−

∫
pX (x) log∆dx

= h(X)− log∆

S. Cheng (OU-Tulsa) October 3, 2017 13 / 44

Lecture 8 Differential entropy

Differential entropy and entropy

How differential entropy is related to its discrete counterpart?

Consider a continuous random variable X

Let X∆ is a “quantized” version of it with quantization stepsize of ∆

H(X∆) =
∑

−pX∆(x∆) log pX∆(x∆) ≈
∑

−pX (x
∆)∆ log(pX (x

∆)∆)

≈
∫

−pX (x) log(pX (x)∆)dx

=

∫
−pX (x) log pX (x)−

∫
pX (x) log∆dx

= h(X)− log∆

S. Cheng (OU-Tulsa) October 3, 2017 13 / 44

Lecture 8 Differential entropy

Differential entropy and entropy

How differential entropy is related to its discrete counterpart?

Consider a continuous random variable X

Let X∆ is a “quantized” version of it with quantization stepsize of ∆

H(X∆) =
∑

−pX∆(x∆) log pX∆(x∆) ≈
∑

−pX (x
∆)∆ log(pX (x

∆)∆)

≈
∫

−pX (x) log(pX (x)∆)dx

=

∫
−pX (x) log pX (x)−

∫
pX (x) log∆dx

= h(X)− log∆

S. Cheng (OU-Tulsa) October 3, 2017 13 / 44

Lecture 8 Differential entropy

Example

Consider the processing time of a packet follow an exponential distribution
with an average of 1 ms. If we want to store the time with the precision of
0.01 ms, about how many bits are needed to store the result?

Answer

The processing time T follows an exponential distribution with
parameter λ = 1/1 = 1ms−1

The corresponding differential entropy h(T) = 1− log(λ) = 1

If we want to store with precision of 0.01 ms, we need
h(T)− log 0.01 ≈ 7.64bits

S. Cheng (OU-Tulsa) October 3, 2017 14 / 44

Lecture 8 Differential entropy

Example

Consider the processing time of a packet follow an exponential distribution
with an average of 1 ms. If we want to store the time with the precision of
0.01 ms, about how many bits are needed to store the result?

Answer

The processing time T follows an exponential distribution with
parameter λ = 1/1 = 1ms−1

The corresponding differential entropy h(T) = 1− log(λ) = 1

If we want to store with precision of 0.01 ms, we need
h(T)− log 0.01 ≈ 7.64bits

S. Cheng (OU-Tulsa) October 3, 2017 14 / 44

Lecture 8 Differential entropy

Example

Consider the processing time of a packet follow an exponential distribution
with an average of 1 ms. If we want to store the time with the precision of
0.01 ms, about how many bits are needed to store the result?

Answer

The processing time T follows an exponential distribution with
parameter λ = 1/1 = 1ms−1

The corresponding differential entropy h(T) = 1− log(λ) = 1

If we want to store with precision of 0.01 ms, we need
h(T)− log 0.01 ≈ 7.64bits

S. Cheng (OU-Tulsa) October 3, 2017 14 / 44

Lecture 8 Differential entropy

Example

Consider the processing time of a packet follow an exponential distribution
with an average of 1 ms. If we want to store the time with the precision of
0.01 ms, about how many bits are needed to store the result?

Answer

The processing time T follows an exponential distribution with
parameter λ = 1/1 = 1ms−1

The corresponding differential entropy h(T) = 1− log(λ) = 1

If we want to store with precision of 0.01 ms, we need
h(T)− log 0.01 ≈ 7.64bits

S. Cheng (OU-Tulsa) October 3, 2017 14 / 44

Lecture 8 Properties of entropy and differential entropy

Lower bound of entropy

H(X) ≥ 0

Since p(X) ≤ 1, − log p(X) ≥ 0, therefore
H(X) = E [− log p(X)] ≥ 0

After all, H(X) represents the required bits to compress the source X

Caveat

It does NOT need to be true for differential entropy. It is possible that
h(X) < 0

For example, for a uniformly distributed X from 0 to 0.5,
h(X) = log 0.5 = −1

S. Cheng (OU-Tulsa) October 3, 2017 15 / 44

Lecture 8 Properties of entropy and differential entropy

Lower bound of entropy

H(X) ≥ 0

Since p(X) ≤ 1, − log p(X) ≥ 0, therefore
H(X) = E [− log p(X)] ≥ 0

After all, H(X) represents the required bits to compress the source X

Caveat

It does NOT need to be true for differential entropy. It is possible that
h(X) < 0

For example, for a uniformly distributed X from 0 to 0.5,
h(X) = log 0.5 = −1

S. Cheng (OU-Tulsa) October 3, 2017 15 / 44

Lecture 8 Properties of entropy and differential entropy

Jensen’s Inequality

For a convex (bowl-shape) function f

E [f (X)] ≥ f (E [X])

Let us consider X with only two outcomes x1 and x2 with probabilities p
and 1− p. Easy to see that

E [f (X)] = pf (x1) + (1− p)f (x2) ≥ f (px1 + (1− p)x2) = f (E [X])

Result can be extended to variables with more than two outcomes easily

S. Cheng (OU-Tulsa) October 3, 2017 16 / 44

Lecture 8 Properties of entropy and differential entropy

Jensen’s Inequality

For a convex (bowl-shape) function f

E [f (X)] ≥ f (E [X])

Let us consider X with only two outcomes x1 and x2 with probabilities p
and 1− p. Easy to see that

E [f (X)] = pf (x1) + (1− p)f (x2) ≥ f (px1 + (1− p)x2) = f (E [X])

Result can be extended to variables with more than two outcomes easily

S. Cheng (OU-Tulsa) October 3, 2017 16 / 44

Lecture 8 Properties of entropy and differential entropy

Jensen’s Inequality

For a convex (bowl-shape) function f

E [f (X)] ≥ f (E [X])

Let us consider X with only two outcomes x1 and x2 with probabilities p
and 1− p. Easy to see that

E [f (X)] = pf (x1) + (1− p)f (x2) ≥ f (px1 + (1− p)x2) = f (E [X])

Result can be extended to variables with more than two outcomes easily

S. Cheng (OU-Tulsa) October 3, 2017 16 / 44

Lecture 8 Properties of entropy and differential entropy

Upper bound of entropy

H(X) ≤ log |X |

H(X) = E [− log p(X)] = E

[
log

1

p(X)

]

≤ log E

[
1

p(X)

]
(by Jensen’s inequality)

= log
∑
x∈X

p(x)
1

p(x)
= log |X |

N.B. The upper bound is attained when the distribution is uniform

Examples

You should know this bound long alone. Think of the maximum number of
bits needed:

to store the outcome of flipping a coin: log 2 = 1 bit

to store the outcome of throwing a dice: log 6 ≤ 3 bits

S. Cheng (OU-Tulsa) October 3, 2017 17 / 44

Lecture 8 Properties of entropy and differential entropy

Upper bound of entropy

H(X) ≤ log |X |

H(X) = E [− log p(X)] = E

[
log

1

p(X)

]
≤ log E

[
1

p(X)

]
(by Jensen’s inequality)

= log
∑
x∈X

p(x)
1

p(x)
= log |X |

N.B. The upper bound is attained when the distribution is uniform

Examples

You should know this bound long alone. Think of the maximum number of
bits needed:

to store the outcome of flipping a coin: log 2 = 1 bit

to store the outcome of throwing a dice: log 6 ≤ 3 bits

S. Cheng (OU-Tulsa) October 3, 2017 17 / 44

Lecture 8 Properties of entropy and differential entropy

Upper bound of entropy

H(X) ≤ log |X |

H(X) = E [− log p(X)] = E

[
log

1

p(X)

]
≤ log E

[
1

p(X)

]
(by Jensen’s inequality)

= log
∑
x∈X

p(x)
1

p(x)
= log |X |

N.B. The upper bound is attained when the distribution is uniform

Examples

You should know this bound long alone. Think of the maximum number of
bits needed:

to store the outcome of flipping a coin: log 2 = 1 bit

to store the outcome of throwing a dice: log 6 ≤ 3 bits

S. Cheng (OU-Tulsa) October 3, 2017 17 / 44

Lecture 8 Properties of entropy and differential entropy

Upper bound of entropy

H(X) ≤ log |X |

H(X) = E [− log p(X)] = E

[
log

1

p(X)

]
≤ log E

[
1

p(X)

]
(by Jensen’s inequality)

= log
∑
x∈X

p(x)
1

p(x)
= log |X |

N.B. The upper bound is attained when the distribution is uniform

Examples

You should know this bound long alone. Think of the maximum number of
bits needed:

to store the outcome of flipping a coin: log 2 = 1 bit

to store the outcome of throwing a dice: log 6 ≤ 3 bits
S. Cheng (OU-Tulsa) October 3, 2017 17 / 44

Lecture 8 Properties of entropy and differential entropy

Upper bound of differential entropy

h(X) ≤ log E

[
1

p(X)

]
= log

∫
x∈X

p(x)
1

p(x)
dx = log |X |

The expression still makes sense but it is not useful usually since the
sampling space can be unbounded |X | = ∞ (for example, normally
distributed X)

Thus it makes much more sense to consider upper bound of a
differential entropy constrained on the variance of the variable (why
not constrained on mean?)

It turns out that for a fixed variance σ2, the variable will have largest
differential entropy if it is normally distributed (will show later). Thus

h(X) ≤ log
√
2πeσ2

S. Cheng (OU-Tulsa) October 3, 2017 18 / 44

Lecture 8 Properties of entropy and differential entropy

Upper bound of differential entropy

h(X) ≤ log E

[
1

p(X)

]
= log

∫
x∈X

p(x)
1

p(x)
dx = log |X |

The expression still makes sense but it is not useful usually since the
sampling space can be unbounded |X | = ∞ (for example, normally
distributed X)

Thus it makes much more sense to consider upper bound of a
differential entropy constrained on the variance of the variable (why
not constrained on mean?)

It turns out that for a fixed variance σ2, the variable will have largest
differential entropy if it is normally distributed (will show later). Thus

h(X) ≤ log
√
2πeσ2

S. Cheng (OU-Tulsa) October 3, 2017 18 / 44

Lecture 8 Properties of entropy and differential entropy

Upper bound of differential entropy

h(X) ≤ log E

[
1

p(X)

]
= log

∫
x∈X

p(x)
1

p(x)
dx = log |X |

The expression still makes sense but it is not useful usually since the
sampling space can be unbounded |X | = ∞ (for example, normally
distributed X)

Thus it makes much more sense to consider upper bound of a
differential entropy constrained on the variance of the variable (why
not constrained on mean?)

It turns out that for a fixed variance σ2, the variable will have largest
differential entropy if it is normally distributed (will show later). Thus

h(X) ≤ log
√
2πeσ2

S. Cheng (OU-Tulsa) October 3, 2017 18 / 44

Lecture 8 Joint entropy and conditional entropy

Joint entropy

For multivariate random variable, we can extend the definition of entropy
naturally as follows:

Entropy

H(X ,Y) = E [− log p(X ,Y)]

and
H(X1,X2, · · · ,XN) = E [− log p(X1, · · · ,XN)]

Differential entropy

h(X ,Y) = E [− log p(X ,Y)]

and
h(X1,X2, · · · ,XN) = E [− log p(X1, · · · ,XN)]

S. Cheng (OU-Tulsa) October 3, 2017 19 / 44

Lecture 8 Joint entropy and conditional entropy

Joint entropy

For multivariate random variable, we can extend the definition of entropy
naturally as follows:

Entropy

H(X ,Y) = E [− log p(X ,Y)]

and
H(X1,X2, · · · ,XN) = E [− log p(X1, · · · ,XN)]

Differential entropy

h(X ,Y) = E [− log p(X ,Y)]

and
h(X1,X2, · · · ,XN) = E [− log p(X1, · · · ,XN)]

S. Cheng (OU-Tulsa) October 3, 2017 19 / 44

Lecture 8 Joint entropy and conditional entropy

Conditional entropy

H(X ,Y) = E [− log p(X ,Y)] = E [− log p(X)− log p(Y |X)]

= H(X) + E [− log p(Y |X)]︸ ︷︷ ︸
H(Y |X)

Entropy

H(Y |X) , H(X ,Y)− H(X)

Differential entropy

h(Y |X) , h(X ,Y)− h(X)

Interpretation

Total Info. of X and Y = Info. of X + Info. of Y knowing X

S. Cheng (OU-Tulsa) October 3, 2017 20 / 44

Lecture 8 Joint entropy and conditional entropy

Conditional entropy

H(X ,Y) = E [− log p(X ,Y)] = E [− log p(X)− log p(Y |X)]

= H(X) + E [− log p(Y |X)]︸ ︷︷ ︸
H(Y |X)

Entropy

H(Y |X) , H(X ,Y)− H(X)

Differential entropy

h(Y |X) , h(X ,Y)− h(X)

Interpretation

Total Info. of X and Y = Info. of X + Info. of Y knowing X

S. Cheng (OU-Tulsa) October 3, 2017 20 / 44

Lecture 8 Joint entropy and conditional entropy

Conditional entropy

H(X ,Y) = E [− log p(X ,Y)] = E [− log p(X)− log p(Y |X)]

= H(X) + E [− log p(Y |X)]︸ ︷︷ ︸
H(Y |X)

Entropy

H(Y |X) , H(X ,Y)− H(X)

Differential entropy

h(Y |X) , h(X ,Y)− h(X)

Interpretation

Total Info. of X and Y = Info. of X + Info. of Y knowing X

S. Cheng (OU-Tulsa) October 3, 2017 20 / 44

Lecture 8 Joint entropy and conditional entropy

Expanding conditional entropy

H(Y |X) = E [− log p(Y |X)]

=
∑
x ,y

−p(x , y) log p(y |x)

=
∑
x

p(x)
∑
y

−p(y |x) log p(y |x)

=
∑
x

p(x)H(Y |x)

The conditional entropy H(Y |X) is essentially the average of H(Y |x) over
all possible value of x

S. Cheng (OU-Tulsa) October 3, 2017 21 / 44

Lecture 8 Joint entropy and conditional entropy

Expanding conditional entropy

H(Y |X) = E [− log p(Y |X)]

=
∑
x ,y

−p(x , y) log p(y |x)

=
∑
x

p(x)
∑
y

−p(y |x) log p(y |x)

=
∑
x

p(x)H(Y |x)

The conditional entropy H(Y |X) is essentially the average of H(Y |x) over
all possible value of x

S. Cheng (OU-Tulsa) October 3, 2017 21 / 44

Lecture 8 Joint entropy and conditional entropy

Expanding conditional entropy

H(Y |X) = E [− log p(Y |X)]

=
∑
x ,y

−p(x , y) log p(y |x)

=
∑
x

p(x)
∑
y

−p(y |x) log p(y |x)

=
∑
x

p(x)H(Y |x)

The conditional entropy H(Y |X) is essentially the average of H(Y |x) over
all possible value of x

S. Cheng (OU-Tulsa) October 3, 2017 21 / 44

Lecture 8 Joint entropy and conditional entropy

Expanding conditional entropy

H(Y |X) = E [− log p(Y |X)]

=
∑
x ,y

−p(x , y) log p(y |x)

=
∑
x

p(x)
∑
y

−p(y |x) log p(y |x)

=
∑
x

p(x)H(Y |x)

The conditional entropy H(Y |X) is essentially the average of H(Y |x) over
all possible value of x

S. Cheng (OU-Tulsa) October 3, 2017 21 / 44

Lecture 8 Joint entropy and conditional entropy

Expanding conditional entropy

H(Y |X) = E [− log p(Y |X)]

=
∑
x ,y

−p(x , y) log p(y |x)

=
∑
x

p(x)
∑
y

−p(y |x) log p(y |x)

=
∑
x

p(x)H(Y |x)

The conditional entropy H(Y |X) is essentially the average of H(Y |x) over
all possible value of x

S. Cheng (OU-Tulsa) October 3, 2017 21 / 44

Lecture 8 Joint entropy and conditional entropy

Chain rule

Entropy

H(X1,X2, · · · ,XN) =H(X1) + H(X2|X1) + H(X3|X1,X2) + · · ·
+ H(XN |X1,X2, · · · ,XN−1).

Differential entropy

h(X1,X2, · · · ,XN) =h(X1) + h(X2|X1) + h(X3|X1,X2) + · · ·
+ h(XN |X1,X2, · · · ,XN−1).

S. Cheng (OU-Tulsa) October 3, 2017 22 / 44

Lecture 8 Joint entropy and conditional entropy

Chain rule

Entropy

H(X1,X2, · · · ,XN) =H(X1) + H(X2|X1) + H(X3|X1,X2) + · · ·
+ H(XN |X1,X2, · · · ,XN−1).

Differential entropy

h(X1,X2, · · · ,XN) =h(X1) + h(X2|X1) + h(X3|X1,X2) + · · ·
+ h(XN |X1,X2, · · · ,XN−1).

S. Cheng (OU-Tulsa) October 3, 2017 22 / 44

Lecture 8 Joint entropy and conditional entropy

Example

Pr(Rain,With umbrella) = 0.2 Pr(Rain,No umbrella) = 0.1

Pr(Sunny ,With umbrella) = 0.2 Pr(Sunny ,No umbrella) = 0.5

W ∈ {Rain, Sunny} U ∈ {With umbrella,No umbrella}

Entropies

H(W ,U) = −0.2 log 0.2− 0.1 log 0.1− 0.2 log 0.2− 0.5 log 0.5 = 1.76 bits

H(W) = −0.3 log 0.3− 0.7 log 0.7 = 0.88 bits

H(U) = −0.4 log 0.4− 0.6 log 0.6 = 0.97 bits

H(W |U) = H(W ,U)− H(U) = 0.79 bits

H(U|W) = H(W ,U)− H(W) = 0.88 bits

S. Cheng (OU-Tulsa) October 3, 2017 23 / 44

Lecture 8 KL-divergence

Definition

It is often useful to gauge the difference between two distributions.
KL-divergence is also known to be relative entropy. It is a way to measure
the difference between two distributions. For two distributions of X , p(x)
and p(y),

KL(p(x)‖q(x)) ,
∑
x∈X

p(x) log2
p(x)

q(x)
.

N.B. If p(x) = q(x) for all x , KL(p(x)‖q(x)) = 0 as desired

N.B. KL(p(x)‖q(x)) 6= KL(q(x)‖p(x)) in general

S. Cheng (OU-Tulsa) October 3, 2017 24 / 44

Lecture 8 KL-divergence

Definition

It is often useful to gauge the difference between two distributions.
KL-divergence is also known to be relative entropy. It is a way to measure
the difference between two distributions. For two distributions of X , p(x)
and p(y),

KL(p(x)‖q(x)) ,
∑
x∈X

p(x) log2
p(x)

q(x)
.

N.B. If p(x) = q(x) for all x , KL(p(x)‖q(x)) = 0 as desired

N.B. KL(p(x)‖q(x)) 6= KL(q(x)‖p(x)) in general

S. Cheng (OU-Tulsa) October 3, 2017 24 / 44

Lecture 8 KL-divergence

Definition

It is often useful to gauge the difference between two distributions.
KL-divergence is also known to be relative entropy. It is a way to measure
the difference between two distributions. For two distributions of X , p(x)
and p(y),

KL(p(x)‖q(x)) ,
∑
x∈X

p(x) log2
p(x)

q(x)
.

N.B. If p(x) = q(x) for all x , KL(p(x)‖q(x)) = 0 as desired

N.B. KL(p(x)‖q(x)) 6= KL(q(x)‖p(x)) in general

S. Cheng (OU-Tulsa) October 3, 2017 24 / 44

Lecture 8 KL-divergence

KL-divergence is non-negative

KL(p(x)‖q(x)) =
∑
x∈X

p(x) log2
p(x)

q(x)

= −
∑
x∈X

p(x) log2
q(x)

p(x)

= −
∑
x∈X

p(x)

ln 2
ln

q(x)

p(x)

≥ −
∑
x∈X

p(x)

ln 2

(
q(x)

p(x)
− 1

)

=
1

ln 2

(∑
x∈X

p(x)−
∑
x∈X

q(x)

)
= 0

Fact

For any real x , ln(x) ≤ x − 1. Moreover, the equality only holds when
x = 1

S. Cheng (OU-Tulsa) October 3, 2017 25 / 44

0 0.5 1 1.5 2
-2

-1

0

1

y = lnx
y = x! 1

Lecture 8 KL-divergence

KL-divergence is non-negative

KL(p(x)‖q(x)) =
∑
x∈X

p(x) log2
p(x)

q(x)

= −
∑
x∈X

p(x) log2
q(x)

p(x)

= −
∑
x∈X

p(x)

ln 2
ln

q(x)

p(x)

≥ −
∑
x∈X

p(x)

ln 2

(
q(x)

p(x)
− 1

)

=
1

ln 2

(∑
x∈X

p(x)−
∑
x∈X

q(x)

)
= 0

Fact

For any real x , ln(x) ≤ x − 1. Moreover, the equality only holds when
x = 1

S. Cheng (OU-Tulsa) October 3, 2017 25 / 44

0 0.5 1 1.5 2
-2

-1

0

1

y = lnx
y = x! 1

Lecture 8 KL-divergence

KL-divergence is non-negative

KL(p(x)‖q(x)) =
∑
x∈X

p(x) log2
p(x)

q(x)

= −
∑
x∈X

p(x) log2
q(x)

p(x)

= −
∑
x∈X

p(x)

ln 2
ln

q(x)

p(x)

≥ −
∑
x∈X

p(x)

ln 2

(
q(x)

p(x)
− 1

)

=
1

ln 2

(∑
x∈X

p(x)−
∑
x∈X

q(x)

)
= 0

Fact

For any real x , ln(x) ≤ x − 1. Moreover, the equality only holds when
x = 1

S. Cheng (OU-Tulsa) October 3, 2017 25 / 44

0 0.5 1 1.5 2
-2

-1

0

1

y = lnx
y = x! 1

Lecture 8 KL-divergence

KL-divergence is non-negative

KL(p(x)‖q(x)) =
∑
x∈X

p(x) log2
p(x)

q(x)

= −
∑
x∈X

p(x) log2
q(x)

p(x)

= −
∑
x∈X

p(x)

ln 2
ln

q(x)

p(x)

≥ −
∑
x∈X

p(x)

ln 2

(
q(x)

p(x)
− 1

)

=
1

ln 2

(∑
x∈X

p(x)−
∑
x∈X

q(x)

)
= 0

Fact

For any real x , ln(x) ≤ x − 1. Moreover, the equality only holds when
x = 1

S. Cheng (OU-Tulsa) October 3, 2017 25 / 44

0 0.5 1 1.5 2
-2

-1

0

1

y = lnx
y = x! 1

Lecture 8 KL-divergence

KL-divergence is non-negative

KL(p(x)‖q(x)) =
∑
x∈X

p(x) log2
p(x)

q(x)

= −
∑
x∈X

p(x) log2
q(x)

p(x)

= −
∑
x∈X

p(x)

ln 2
ln

q(x)

p(x)

≥ −
∑
x∈X

p(x)

ln 2

(
q(x)

p(x)
− 1

)

=
1

ln 2

(∑
x∈X

p(x)−
∑
x∈X

q(x)

)
= 0

Fact

For any real x , ln(x) ≤ x − 1. Moreover, the equality only holds when
x = 1

S. Cheng (OU-Tulsa) October 3, 2017 25 / 44

0 0.5 1 1.5 2
-2

-1

0

1

y = lnx
y = x! 1

Lecture 8 KL-divergence

Continuous variables

We can define KL-divergence for continuous variables in a similar manner

KL(p(x)‖q(x)) ,
∫
x∈X

p(x) log2
p(x)

q(x)
dx

= −
∫
x∈X

p(x) log2
q(x)

p(x)
dx

= −
∫
x∈X

p(x)

ln 2
ln

q(x)

p(x)
dx

≥ −
∫
x∈X

p(x)

ln 2

(
q(x)

p(x)
− 1

)
dx

= − 1

ln 2

(∫
x∈X

q(x)dx −
∫
x∈X

p(x)dx

)
= 0

S. Cheng (OU-Tulsa) October 3, 2017 26 / 44

Lecture 8 KL-divergence

Continuous variables

We can define KL-divergence for continuous variables in a similar manner

KL(p(x)‖q(x)) ,
∫
x∈X

p(x) log2
p(x)

q(x)
dx

= −
∫
x∈X

p(x) log2
q(x)

p(x)
dx

= −
∫
x∈X

p(x)

ln 2
ln

q(x)

p(x)
dx

≥ −
∫
x∈X

p(x)

ln 2

(
q(x)

p(x)
− 1

)
dx

= − 1

ln 2

(∫
x∈X

q(x)dx −
∫
x∈X

p(x)dx

)
= 0

S. Cheng (OU-Tulsa) October 3, 2017 26 / 44

Lecture 8 KL-divergence

Continuous variables

We can define KL-divergence for continuous variables in a similar manner

KL(p(x)‖q(x)) ,
∫
x∈X

p(x) log2
p(x)

q(x)
dx

= −
∫
x∈X

p(x) log2
q(x)

p(x)
dx

= −
∫
x∈X

p(x)

ln 2
ln

q(x)

p(x)
dx

≥ −
∫
x∈X

p(x)

ln 2

(
q(x)

p(x)
− 1

)
dx

= − 1

ln 2

(∫
x∈X

q(x)dx −
∫
x∈X

p(x)dx

)
= 0

S. Cheng (OU-Tulsa) October 3, 2017 26 / 44

Lecture 8 KL-divergence

Normal distribution has highest entropy

For fixed variance (covariance matrix), normal distribution has highest
entropy

Proof

Let’s consider the multivariate case with a fixed covariance matrix Σ, the
univariate (scalar) case is a special case thus automatically taken care of.

Without loss of generality, let’s consider zero mean. Denote
N (x; 0,Σ) = φ(x). For any other distribution f (x) with the same
covariance matrix Σ, first note that

∫
x f (x) log φ(x)dx =

∫
x φ(x) log φ(x)dx

(to be show in the next slide). Then,

0 ≤KL(f ‖φ) =
∫
x
f (x) log

f (x)

φ(x)
dx = −h(f)−

∫
x
f (x) log φ(x)dx

=− h(f)−
∫
x
φ(x) log φ(x)dx = −h(f) + h(φ)

S. Cheng (OU-Tulsa) October 3, 2017 27 / 44

Lecture 8 KL-divergence

Normal distribution has highest entropy

For fixed variance (covariance matrix), normal distribution has highest
entropy

Proof

Let’s consider the multivariate case with a fixed covariance matrix Σ, the
univariate (scalar) case is a special case thus automatically taken care of.

Without loss of generality, let’s consider zero mean. Denote
N (x; 0,Σ) = φ(x). For any other distribution f (x) with the same
covariance matrix Σ, first note that

∫
x f (x) log φ(x)dx =

∫
x φ(x) log φ(x)dx

(to be show in the next slide). Then,

0 ≤KL(f ‖φ) =
∫
x
f (x) log

f (x)

φ(x)
dx = −h(f)−

∫
x
f (x) log φ(x)dx

=− h(f)−
∫
x
φ(x) log φ(x)dx = −h(f) + h(φ)

S. Cheng (OU-Tulsa) October 3, 2017 27 / 44

Lecture 8 KL-divergence

Normal distribution has highest entropy

For fixed variance (covariance matrix), normal distribution has highest
entropy

Proof

Let’s consider the multivariate case with a fixed covariance matrix Σ, the
univariate (scalar) case is a special case thus automatically taken care of.
Without loss of generality, let’s consider zero mean. Denote
N (x; 0,Σ) = φ(x).

For any other distribution f (x) with the same
covariance matrix Σ, first note that

∫
x f (x) log φ(x)dx =

∫
x φ(x) log φ(x)dx

(to be show in the next slide). Then,

0 ≤KL(f ‖φ) =
∫
x
f (x) log

f (x)

φ(x)
dx = −h(f)−

∫
x
f (x) log φ(x)dx

=− h(f)−
∫
x
φ(x) log φ(x)dx = −h(f) + h(φ)

S. Cheng (OU-Tulsa) October 3, 2017 27 / 44

Lecture 8 KL-divergence

Normal distribution has highest entropy

For fixed variance (covariance matrix), normal distribution has highest
entropy

Proof

Let’s consider the multivariate case with a fixed covariance matrix Σ, the
univariate (scalar) case is a special case thus automatically taken care of.
Without loss of generality, let’s consider zero mean. Denote
N (x; 0,Σ) = φ(x). For any other distribution f (x) with the same
covariance matrix Σ, first note that

∫
x f (x) log φ(x)dx =

∫
x φ(x) log φ(x)dx

(to be show in the next slide).

Then,

0 ≤KL(f ‖φ) =
∫
x
f (x) log

f (x)

φ(x)
dx = −h(f)−

∫
x
f (x) log φ(x)dx

=− h(f)−
∫
x
φ(x) log φ(x)dx = −h(f) + h(φ)

S. Cheng (OU-Tulsa) October 3, 2017 27 / 44

Lecture 8 KL-divergence

Normal distribution has highest entropy

For fixed variance (covariance matrix), normal distribution has highest
entropy

Proof

Let’s consider the multivariate case with a fixed covariance matrix Σ, the
univariate (scalar) case is a special case thus automatically taken care of.
Without loss of generality, let’s consider zero mean. Denote
N (x; 0,Σ) = φ(x). For any other distribution f (x) with the same
covariance matrix Σ, first note that

∫
x f (x) log φ(x)dx =

∫
x φ(x) log φ(x)dx

(to be show in the next slide). Then,

0 ≤KL(f ‖φ) =
∫
x
f (x) log

f (x)

φ(x)
dx

= −h(f)−
∫
x
f (x) log φ(x)dx

=− h(f)−
∫
x
φ(x) log φ(x)dx = −h(f) + h(φ)

S. Cheng (OU-Tulsa) October 3, 2017 27 / 44

Lecture 8 KL-divergence

Normal distribution has highest entropy

For fixed variance (covariance matrix), normal distribution has highest
entropy

Proof

Let’s consider the multivariate case with a fixed covariance matrix Σ, the
univariate (scalar) case is a special case thus automatically taken care of.
Without loss of generality, let’s consider zero mean. Denote
N (x; 0,Σ) = φ(x). For any other distribution f (x) with the same
covariance matrix Σ, first note that

∫
x f (x) log φ(x)dx =

∫
x φ(x) log φ(x)dx

(to be show in the next slide). Then,

0 ≤KL(f ‖φ) =
∫
x
f (x) log

f (x)

φ(x)
dx = −h(f)−

∫
x
f (x) log φ(x)dx

=− h(f)−
∫
x
φ(x) log φ(x)dx = −h(f) + h(φ)

S. Cheng (OU-Tulsa) October 3, 2017 27 / 44

Lecture 8 KL-divergence

Normal distribution has highest entropy

For fixed variance (covariance matrix), normal distribution has highest
entropy

Proof

Let’s consider the multivariate case with a fixed covariance matrix Σ, the
univariate (scalar) case is a special case thus automatically taken care of.
Without loss of generality, let’s consider zero mean. Denote
N (x; 0,Σ) = φ(x). For any other distribution f (x) with the same
covariance matrix Σ, first note that

∫
x f (x) log φ(x)dx =

∫
x φ(x) log φ(x)dx

(to be show in the next slide). Then,

0 ≤KL(f ‖φ) =
∫
x
f (x) log

f (x)

φ(x)
dx = −h(f)−

∫
x
f (x) log φ(x)dx

=− h(f)−
∫
x
φ(x) log φ(x)dx = −h(f) + h(φ)

S. Cheng (OU-Tulsa) October 3, 2017 27 / 44

Lecture 8 KL-divergence∫
x f (x) log φ(x)dx =

∫
x φ(x) log φ(x)dx

∫
x
φ(x) log φ(x)dx =

∫
x
φ(x)

[
− log

√
det(2πΣ)− 1

2
xTΣ−1x

]
dx

=

∫
x
φ(x)

− log
√

det(2πΣ)− 1

2

∑
i ,j

xi
[
Σ−1

]
i ,j
xj

 dx

=

∫
x
φ(x)

− log
√

det(2πΣ)− 1

2

∑
i ,j

[
Σ−1

]
i ,j
xixj

 dx

=

∫
x
f (x)

− log
√

det(2πΣ)− 1

2

∑
i ,j

[
Σ−1

]
i ,j
xixj

 dx

=

∫
x
f (x) log φ(x)dx

S. Cheng (OU-Tulsa) October 3, 2017 28 / 44

Lecture 8 KL-divergence∫
x f (x) log φ(x)dx =

∫
x φ(x) log φ(x)dx

∫
x
φ(x) log φ(x)dx =

∫
x
φ(x)

[
− log

√
det(2πΣ)− 1

2
xTΣ−1x

]
dx

=

∫
x
φ(x)

− log
√

det(2πΣ)− 1

2

∑
i ,j

xi
[
Σ−1

]
i ,j
xj

 dx

=

∫
x
φ(x)

− log
√

det(2πΣ)− 1

2

∑
i ,j

[
Σ−1

]
i ,j
xixj

 dx

=

∫
x
f (x)

− log
√

det(2πΣ)− 1

2

∑
i ,j

[
Σ−1

]
i ,j
xixj

 dx

=

∫
x
f (x) log φ(x)dx

S. Cheng (OU-Tulsa) October 3, 2017 28 / 44

Lecture 8 KL-divergence∫
x f (x) log φ(x)dx =

∫
x φ(x) log φ(x)dx

∫
x
φ(x) log φ(x)dx =

∫
x
φ(x)

[
− log

√
det(2πΣ)− 1

2
xTΣ−1x

]
dx

=

∫
x
φ(x)

− log
√

det(2πΣ)− 1

2

∑
i ,j

xi
[
Σ−1

]
i ,j
xj

 dx

=

∫
x
φ(x)

− log
√

det(2πΣ)− 1

2

∑
i ,j

[
Σ−1

]
i ,j
xixj

 dx

=

∫
x
f (x)

− log
√

det(2πΣ)− 1

2

∑
i ,j

[
Σ−1

]
i ,j
xixj

 dx

=

∫
x
f (x) log φ(x)dx

S. Cheng (OU-Tulsa) October 3, 2017 28 / 44

Lecture 8 KL-divergence∫
x f (x) log φ(x)dx =

∫
x φ(x) log φ(x)dx

∫
x
φ(x) log φ(x)dx =

∫
x
φ(x)

[
− log

√
det(2πΣ)− 1

2
xTΣ−1x

]
dx

=

∫
x
φ(x)

− log
√

det(2πΣ)− 1

2

∑
i ,j

xi
[
Σ−1

]
i ,j
xj

 dx

=

∫
x
φ(x)

− log
√

det(2πΣ)− 1

2

∑
i ,j

[
Σ−1

]
i ,j
xixj

 dx

=

∫
x
f (x)

− log
√

det(2πΣ)− 1

2

∑
i ,j

[
Σ−1

]
i ,j
xixj

 dx

=

∫
x
f (x) log φ(x)dx

S. Cheng (OU-Tulsa) October 3, 2017 28 / 44

Lecture 8 KL-divergence∫
x f (x) log φ(x)dx =

∫
x φ(x) log φ(x)dx

∫
x
φ(x) log φ(x)dx =

∫
x
φ(x)

[
− log

√
det(2πΣ)− 1

2
xTΣ−1x

]
dx

=

∫
x
φ(x)

− log
√

det(2πΣ)− 1

2

∑
i ,j

xi
[
Σ−1

]
i ,j
xj

 dx

=

∫
x
φ(x)

− log
√

det(2πΣ)− 1

2

∑
i ,j

[
Σ−1

]
i ,j
xixj

 dx

=

∫
x
f (x)

− log
√

det(2πΣ)− 1

2

∑
i ,j

[
Σ−1

]
i ,j
xixj

 dx

=

∫
x
f (x) log φ(x)dx

S. Cheng (OU-Tulsa) October 3, 2017 28 / 44

Lecture 8 KL-divergence

Application: Cross-entropy and cross-entropy error

In machine learning, it is often needed to assess the quality of a trained system.
Consider the example of classifying an the political affliation of an individual

In a first glance, both examples appear to work equally well (or bad). Both have
one classification error. However, a closer look will suggest the prediction of LHS
is worse than RHS (why?)

For a better assessment, we can treat both the
computed result and the target result as distribution and compare them with
KL-divergence. Namely

KL(ptarget‖pcomputed) =
∑
group

ptarget(group) log
ptarget(group)

pcomputed(group)

=− H(ptarget)−
∑
group

ptarget(group) log pcomputed(group)︸ ︷︷ ︸
cross entropy

(https://jamesmccaffrey.wordpress.com/2013/11/05/why-you-should-use-cross-entropy-error-instead-of-classification-error-or-
mean-squared-error-for-neural-network-classifier-training/)

S. Cheng (OU-Tulsa) October 3, 2017 29 / 44

Lecture 8 KL-divergence

Application: Cross-entropy and cross-entropy error

In machine learning, it is often needed to assess the quality of a trained system.
Consider the example of classifying an the political affliation of an individual

In a first glance, both examples appear to work equally well (or bad). Both have
one classification error. However, a closer look will suggest the prediction of LHS
is worse than RHS (why?) For a better assessment, we can treat both the
computed result and the target result as distribution and compare them with
KL-divergence. Namely

KL(ptarget‖pcomputed) =
∑
group

ptarget(group) log
ptarget(group)

pcomputed(group)

=− H(ptarget)−
∑
group

ptarget(group) log pcomputed(group)︸ ︷︷ ︸
cross entropy

(https://jamesmccaffrey.wordpress.com/2013/11/05/why-you-should-use-cross-entropy-error-instead-of-classification-error-or-
mean-squared-error-for-neural-network-classifier-training/)

S. Cheng (OU-Tulsa) October 3, 2017 29 / 44

Lecture 8 KL-divergence

Application: Cross-entropy and cross-entropy error

Cross entropy(p‖q) ,
∑
x

p(x) log
1

q(x)
= Ep[− log q(X)]

= H(p) + KL(p‖q)

To compute KL-divergence, one needs to find H(ptarget), which is
independent of the machine learning system and thus does not reflect
the performance of the system

Thus in practice, cross-entropy is commonly used instead of
KL-divergence to measure the performance of a machine learning
system

S. Cheng (OU-Tulsa) October 3, 2017 30 / 44

Lecture 8 KL-divergence

Application: Cross-entropy and cross-entropy error

Cross entropy(p‖q) ,
∑
x

p(x) log
1

q(x)
= Ep[− log q(X)]

= H(p) + KL(p‖q)

To compute KL-divergence, one needs to find H(ptarget), which is
independent of the machine learning system and thus does not reflect
the performance of the system

Thus in practice, cross-entropy is commonly used instead of
KL-divergence to measure the performance of a machine learning
system

S. Cheng (OU-Tulsa) October 3, 2017 30 / 44

Lecture 8 KL-divergence

Application: Cross-entropy and cross-entropy error

Cross entropy(p‖q) ,
∑
x

p(x) log
1

q(x)
= Ep[− log q(X)]

= H(p) + KL(p‖q)

To compute KL-divergence, one needs to find H(ptarget), which is
independent of the machine learning system and thus does not reflect
the performance of the system

Thus in practice, cross-entropy is commonly used instead of
KL-divergence to measure the performance of a machine learning
system

S. Cheng (OU-Tulsa) October 3, 2017 30 / 44

Lecture 8 KL-divergence

Application: Text processing

In text processing, it is common that one may need to measure the
similiarity between two documents D1 and D2.

How to represent documents? One may use the “bag of words”. That
is, to convert document into a vector of numbers. Each number is the
count of a corresponding word

One can then compares two documents using cross entropy

Cross entropy(p1‖p2) =
∑
w

p1(w) log
1

p2(w)
,

where p1 and p2 are the word distributions of documents D1 and D2,
respectively

S. Cheng (OU-Tulsa) October 3, 2017 31 / 44

Lecture 8 KL-divergence

Application: Text processing

In text processing, it is common that one may need to measure the
similiarity between two documents D1 and D2.

How to represent documents? One may use the “bag of words”. That
is, to convert document into a vector of numbers. Each number is the
count of a corresponding word

One can then compares two documents using cross entropy

Cross entropy(p1‖p2) =
∑
w

p1(w) log
1

p2(w)
,

where p1 and p2 are the word distributions of documents D1 and D2,
respectively

S. Cheng (OU-Tulsa) October 3, 2017 31 / 44

Lecture 8 KL-divergence

Application: Text processing

In text processing, it is common that one may need to measure the
similiarity between two documents D1 and D2.

How to represent documents? One may use the “bag of words”. That
is, to convert document into a vector of numbers. Each number is the
count of a corresponding word

One can then compares two documents using cross entropy

Cross entropy(p1‖p2) =
∑
w

p1(w) log
1

p2(w)
,

where p1 and p2 are the word distributions of documents D1 and D2,
respectively

S. Cheng (OU-Tulsa) October 3, 2017 31 / 44

Lecture 8 KL-divergence

Application: Text processing

It may be also interesting of comparing word distribution of a document to
the word distribution across all documents That is, let q be the word
distribution across all documents,

Cross entropy(p1‖q) =
∑
w

p1(w) log
1

q(w)

=
∑
w

w in D1

total # words in D1
log

total # docs

doc with w︸ ︷︷ ︸
TF-IDF (w)

,

where TF -IDF (w), short for term frequency-inverse document frequency,
can reflect how important of the word w to the target document and can
be used in search engine

S. Cheng (OU-Tulsa) October 3, 2017 32 / 44

Lecture 8 Mutual information

Definition

As H(X) is equivalent to the information revealed by X and H(X |Y) the
remaining information of X knowing Y , we expect that H(X)− H(X |Y)
is the information of X shared by Y ⇒ “mutual information”

I (X ;Y) , H(X)− H(X |Y)

Similarly, we can define the “conditional mutual information” shared
between X and Y given Z as

I (X ;Y |Z) , H(X |Z)− H(X |Y ,Z)

S. Cheng (OU-Tulsa) October 3, 2017 33 / 44

Lecture 8 Mutual information

Definition

As H(X) is equivalent to the information revealed by X and H(X |Y) the
remaining information of X knowing Y , we expect that H(X)− H(X |Y)
is the information of X shared by Y ⇒ “mutual information”

I (X ;Y) , H(X)− H(X |Y)

Similarly, we can define the “conditional mutual information” shared
between X and Y given Z as

I (X ;Y |Z) , H(X |Z)− H(X |Y ,Z)

S. Cheng (OU-Tulsa) October 3, 2017 33 / 44

Lecture 8 Mutual information

Property of mutual information

I (X ;Y) = I (Y ;X) ≥ 0

The definition is symmetric and non-negative as desired.

I (X ;Y) =H(X)− H(X |Y) = E [− log p(X)]− E [− log p(X |Y)]

=−
∑
x

p(x) log p(x) +
∑
x,y

p(x , y) log p(x |y)

=−
∑
x,y

p(x , y) log p(x) +
∑
x,y

p(x , y) log p(x |y) =
∑
x,y

p(x , y) log
p(x |y)
p(x)

=
∑
x,y

p(x , y) log
p(x , y)

p(x)p(y)
= KL(p(x , y)‖p(x)p(y)) ≥ 0

S. Cheng (OU-Tulsa) October 3, 2017 34 / 44

Lecture 8 Mutual information

Property of mutual information

I (X ;Y) = I (Y ;X) ≥ 0

The definition is symmetric and non-negative as desired.

I (X ;Y) =H(X)− H(X |Y) = E [− log p(X)]− E [− log p(X |Y)]

=−
∑
x

p(x) log p(x) +
∑
x,y

p(x , y) log p(x |y)

=−
∑
x,y

p(x , y) log p(x) +
∑
x,y

p(x , y) log p(x |y) =
∑
x,y

p(x , y) log
p(x |y)
p(x)

=
∑
x,y

p(x , y) log
p(x , y)

p(x)p(y)
= KL(p(x , y)‖p(x)p(y)) ≥ 0

S. Cheng (OU-Tulsa) October 3, 2017 34 / 44

Lecture 8 Mutual information

Property of mutual information

I (X ;Y) = I (Y ;X) ≥ 0

The definition is symmetric and non-negative as desired.

I (X ;Y) =H(X)− H(X |Y) = E [− log p(X)]− E [− log p(X |Y)]

=−
∑
x

p(x) log p(x) +
∑
x,y

p(x , y) log p(x |y)

=−
∑
x,y

p(x , y) log p(x) +
∑
x,y

p(x , y) log p(x |y) =
∑
x,y

p(x , y) log
p(x |y)
p(x)

=
∑
x,y

p(x , y) log
p(x , y)

p(x)p(y)
= KL(p(x , y)‖p(x)p(y)) ≥ 0

S. Cheng (OU-Tulsa) October 3, 2017 34 / 44

Lecture 8 Mutual information

Property of mutual information

I (X ;Y) = I (Y ;X) ≥ 0

The definition is symmetric and non-negative as desired.

I (X ;Y) =H(X)− H(X |Y) = E [− log p(X)]− E [− log p(X |Y)]

=−
∑
x

p(x) log p(x) +
∑
x,y

p(x , y) log p(x |y)

=−
∑
x,y

p(x , y) log p(x) +
∑
x,y

p(x , y) log p(x |y) =
∑
x,y

p(x , y) log
p(x |y)
p(x)

=
∑
x,y

p(x , y) log
p(x , y)

p(x)p(y)

= KL(p(x , y)‖p(x)p(y)) ≥ 0

S. Cheng (OU-Tulsa) October 3, 2017 34 / 44

Lecture 8 Mutual information

Property of mutual information

I (X ;Y) = I (Y ;X) ≥ 0

The definition is symmetric and non-negative as desired.

I (X ;Y) =H(X)− H(X |Y) = E [− log p(X)]− E [− log p(X |Y)]

=−
∑
x

p(x) log p(x) +
∑
x,y

p(x , y) log p(x |y)

=−
∑
x,y

p(x , y) log p(x) +
∑
x,y

p(x , y) log p(x |y) =
∑
x,y

p(x , y) log
p(x |y)
p(x)

=
∑
x,y

p(x , y) log
p(x , y)

p(x)p(y)
= KL(p(x , y)‖p(x)p(y)) ≥ 0

S. Cheng (OU-Tulsa) October 3, 2017 34 / 44

Lecture 8 Mutual information

Property of conditional mutual information

I (X ;Y |Z) = I (Y ;X |Z) ≥ 0

The definition is symmetric and non-negative as desired.

I (X ;Y |Z) =H(X |Z)− H(X |Y ,Z) = E [− log p(X |Z)]− E [− log p(X |Y ,Z)]

=−
∑
x,z

p(x , z) log p(x |z) +
∑
x,y ,z

p(x , y , z) log p(x |y , z)

=−
∑
x,y ,z

p(x , y , z) log p(x |z) +
∑
x,y ,z

p(x , yz) log p(x |y , z)

=
∑
x,y ,z

p(x , y , z) log
p(x |y , z)
p(x |z)

=
∑
z

p(z)
∑
x,y

p(x , y |z) log p(x , y |z)
p(x |z)p(y |z)

=
∑
z

p(z)KL(p(x , y |z)‖p(x |z)p(y |z)) ≥ 0

S. Cheng (OU-Tulsa) October 3, 2017 35 / 44

Lecture 8 Mutual information

Property of conditional mutual information

I (X ;Y |Z) = I (Y ;X |Z) ≥ 0

The definition is symmetric and non-negative as desired.

I (X ;Y |Z) =H(X |Z)− H(X |Y ,Z) = E [− log p(X |Z)]− E [− log p(X |Y ,Z)]

=−
∑
x,z

p(x , z) log p(x |z) +
∑
x,y ,z

p(x , y , z) log p(x |y , z)

=−
∑
x,y ,z

p(x , y , z) log p(x |z) +
∑
x,y ,z

p(x , yz) log p(x |y , z)

=
∑
x,y ,z

p(x , y , z) log
p(x |y , z)
p(x |z)

=
∑
z

p(z)
∑
x,y

p(x , y |z) log p(x , y |z)
p(x |z)p(y |z)

=
∑
z

p(z)KL(p(x , y |z)‖p(x |z)p(y |z)) ≥ 0

S. Cheng (OU-Tulsa) October 3, 2017 35 / 44

Lecture 8 Mutual information

Property of conditional mutual information

I (X ;Y |Z) = I (Y ;X |Z) ≥ 0

The definition is symmetric and non-negative as desired.

I (X ;Y |Z) =H(X |Z)− H(X |Y ,Z) = E [− log p(X |Z)]− E [− log p(X |Y ,Z)]

=−
∑
x,z

p(x , z) log p(x |z) +
∑
x,y ,z

p(x , y , z) log p(x |y , z)

=−
∑
x,y ,z

p(x , y , z) log p(x |z) +
∑
x,y ,z

p(x , yz) log p(x |y , z)

=
∑
x,y ,z

p(x , y , z) log
p(x |y , z)
p(x |z)

=
∑
z

p(z)
∑
x,y

p(x , y |z) log p(x , y |z)
p(x |z)p(y |z)

=
∑
z

p(z)KL(p(x , y |z)‖p(x |z)p(y |z)) ≥ 0

S. Cheng (OU-Tulsa) October 3, 2017 35 / 44

Lecture 8 Mutual information

Property of conditional mutual information

I (X ;Y |Z) = I (Y ;X |Z) ≥ 0

The definition is symmetric and non-negative as desired.

I (X ;Y |Z) =H(X |Z)− H(X |Y ,Z) = E [− log p(X |Z)]− E [− log p(X |Y ,Z)]

=−
∑
x,z

p(x , z) log p(x |z) +
∑
x,y ,z

p(x , y , z) log p(x |y , z)

=−
∑
x,y ,z

p(x , y , z) log p(x |z) +
∑
x,y ,z

p(x , yz) log p(x |y , z)

=
∑
x,y ,z

p(x , y , z) log
p(x |y , z)
p(x |z)

=
∑
z

p(z)
∑
x,y

p(x , y |z) log p(x , y |z)
p(x |z)p(y |z)

=
∑
z

p(z)KL(p(x , y |z)‖p(x |z)p(y |z)) ≥ 0

S. Cheng (OU-Tulsa) October 3, 2017 35 / 44

Lecture 8 Mutual information

Independence and mutual information

I (X ;Y) = 0 ⇔ X⊥Y

I (X ;Y) = KL(p(x , y)‖p(x)p(y)) = 0

implies p(x , y) = p(x)p(y). Therefore X⊥Y

I (X ;Y |Z) = 0 ⇔ X⊥Y |Z

I (X ;Y |Z) =
∑
z

p(z)KL(p(x , y |z)‖p(x |z)p(y |z)) = 0

implies p(x , y |z) = p(x |z)p(y |z) for all z s.t. p(z) > 0. Therefore X⊥Y |Z

Remark

This is just as what we expect. If there is no share information between X
and Y , they should be indepedent!

S. Cheng (OU-Tulsa) October 3, 2017 36 / 44

Lecture 8 Mutual information

Independence and mutual information

I (X ;Y) = 0 ⇔ X⊥Y

I (X ;Y) = KL(p(x , y)‖p(x)p(y)) = 0

implies p(x , y) = p(x)p(y). Therefore X⊥Y

I (X ;Y |Z) = 0 ⇔ X⊥Y |Z

I (X ;Y |Z) =
∑
z

p(z)KL(p(x , y |z)‖p(x |z)p(y |z)) = 0

implies p(x , y |z) = p(x |z)p(y |z) for all z s.t. p(z) > 0. Therefore X⊥Y |Z

Remark

This is just as what we expect. If there is no share information between X
and Y , they should be indepedent!

S. Cheng (OU-Tulsa) October 3, 2017 36 / 44

Lecture 8 Mutual information

Chain rule for mutual information

I (X1,X2, · · · ,XN |Y)

=H(X1,X2, · · · ,XN)− H(X1,X2, · · · ,XN |Y)

=
N∑
i=1

H(Xi |X i−1)− H(Xi |X i−1,Y)

=
N∑
i=1

I (Xi ;Y |X i−1)

N.B. XN = X1,X2, · · · ,XN

S. Cheng (OU-Tulsa) October 3, 2017 37 / 44

Lecture 8 Mutual information

Chain rule for mutual information

I (X1,X2, · · · ,XN |Y)

=H(X1,X2, · · · ,XN)− H(X1,X2, · · · ,XN |Y)

=
N∑
i=1

H(Xi |X i−1)− H(Xi |X i−1,Y)

=
N∑
i=1

I (Xi ;Y |X i−1)

N.B. XN = X1,X2, · · · ,XN

S. Cheng (OU-Tulsa) October 3, 2017 37 / 44

Lecture 8 Mutual information

Chain rule for mutual information

I (X1,X2, · · · ,XN |Y)

=H(X1,X2, · · · ,XN)− H(X1,X2, · · · ,XN |Y)

=
N∑
i=1

H(Xi |X i−1)− H(Xi |X i−1,Y)

=
N∑
i=1

I (Xi ;Y |X i−1)

N.B. XN = X1,X2, · · · ,XN

S. Cheng (OU-Tulsa) October 3, 2017 37 / 44

Lecture 8 Mutual information

Chain rule for mutual information

I (X1,X2, · · · ,XN |Y)

=H(X1,X2, · · · ,XN)− H(X1,X2, · · · ,XN |Y)

=
N∑
i=1

H(Xi |X i−1)− H(Xi |X i−1,Y)

=
N∑
i=1

I (Xi ;Y |X i−1)

N.B. XN = X1,X2, · · · ,XN

S. Cheng (OU-Tulsa) October 3, 2017 37 / 44

Lecture 8 Mutual information

Mutual information for continuous variables

For continuous X ,Y ,Z , we can define I (X ;Y) = h(X)− h(X |Y) and
I (X ;Y |Z) = h(X)− h(X |Y ,Z)
Then, the followings still hold true

I (X ;Y) = KL(p(x , y)‖p(x)p(y)) = I (Y ;X) ≥ 0

I (X ;Y |Z) =
∫
z p(z)KL(p(x , y |z)‖p(x |z)p(y |z))dz = I (Y ;X |Z) ≥ 0

I (X ;Y) = 0 ⇔ X⊥Y

I (X ;Y |Z) = 0 ⇔ X⊥Y |Z
I (X1,X2, · · · ,XN |Y) =

∑N
i=1 I (Xi ;Y |X i−1)

S. Cheng (OU-Tulsa) October 3, 2017 38 / 44

Lecture 8 Mutual information

Mutual information for continuous variables

For continuous X ,Y ,Z , we can define I (X ;Y) = h(X)− h(X |Y) and
I (X ;Y |Z) = h(X)− h(X |Y ,Z)
Then, the followings still hold true

I (X ;Y) = KL(p(x , y)‖p(x)p(y)) = I (Y ;X) ≥ 0

I (X ;Y |Z) =
∫
z p(z)KL(p(x , y |z)‖p(x |z)p(y |z))dz = I (Y ;X |Z) ≥ 0

I (X ;Y) = 0 ⇔ X⊥Y

I (X ;Y |Z) = 0 ⇔ X⊥Y |Z
I (X1,X2, · · · ,XN |Y) =

∑N
i=1 I (Xi ;Y |X i−1)

S. Cheng (OU-Tulsa) October 3, 2017 38 / 44

Lecture 8 Mutual information

Mutual information for continuous variables

For continuous X ,Y ,Z , we can define I (X ;Y) = h(X)− h(X |Y) and
I (X ;Y |Z) = h(X)− h(X |Y ,Z)
Then, the followings still hold true

I (X ;Y) = KL(p(x , y)‖p(x)p(y)) = I (Y ;X) ≥ 0

I (X ;Y |Z) =
∫
z p(z)KL(p(x , y |z)‖p(x |z)p(y |z))dz = I (Y ;X |Z) ≥ 0

I (X ;Y) = 0 ⇔ X⊥Y

I (X ;Y |Z) = 0 ⇔ X⊥Y |Z
I (X1,X2, · · · ,XN |Y) =

∑N
i=1 I (Xi ;Y |X i−1)

S. Cheng (OU-Tulsa) October 3, 2017 38 / 44

Lecture 8 Mutual information

Mutual information for continuous variables

For continuous X ,Y ,Z , we can define I (X ;Y) = h(X)− h(X |Y) and
I (X ;Y |Z) = h(X)− h(X |Y ,Z)
Then, the followings still hold true

I (X ;Y) = KL(p(x , y)‖p(x)p(y)) = I (Y ;X) ≥ 0

I (X ;Y |Z) =
∫
z p(z)KL(p(x , y |z)‖p(x |z)p(y |z))dz = I (Y ;X |Z) ≥ 0

I (X ;Y) = 0 ⇔ X⊥Y

I (X ;Y |Z) = 0 ⇔ X⊥Y |Z
I (X1,X2, · · · ,XN |Y) =

∑N
i=1 I (Xi ;Y |X i−1)

S. Cheng (OU-Tulsa) October 3, 2017 38 / 44

Lecture 8 Mutual information

Mutual information for continuous variables

For continuous X ,Y ,Z , we can define I (X ;Y) = h(X)− h(X |Y) and
I (X ;Y |Z) = h(X)− h(X |Y ,Z)
Then, the followings still hold true

I (X ;Y) = KL(p(x , y)‖p(x)p(y)) = I (Y ;X) ≥ 0

I (X ;Y |Z) =
∫
z p(z)KL(p(x , y |z)‖p(x |z)p(y |z))dz = I (Y ;X |Z) ≥ 0

I (X ;Y) = 0 ⇔ X⊥Y

I (X ;Y |Z) = 0 ⇔ X⊥Y |Z

I (X1,X2, · · · ,XN |Y) =
∑N

i=1 I (Xi ;Y |X i−1)

S. Cheng (OU-Tulsa) October 3, 2017 38 / 44

Lecture 8 Mutual information

Mutual information for continuous variables

For continuous X ,Y ,Z , we can define I (X ;Y) = h(X)− h(X |Y) and
I (X ;Y |Z) = h(X)− h(X |Y ,Z)
Then, the followings still hold true

I (X ;Y) = KL(p(x , y)‖p(x)p(y)) = I (Y ;X) ≥ 0

I (X ;Y |Z) =
∫
z p(z)KL(p(x , y |z)‖p(x |z)p(y |z))dz = I (Y ;X |Z) ≥ 0

I (X ;Y) = 0 ⇔ X⊥Y

I (X ;Y |Z) = 0 ⇔ X⊥Y |Z
I (X1,X2, · · · ,XN |Y) =

∑N
i=1 I (Xi ;Y |X i−1)

S. Cheng (OU-Tulsa) October 3, 2017 38 / 44

Lecture 8 More inequalities

Conditioning reduces entropy

Given more information, the residual information (uncertainty) should
decrease.

More precisely,

H(X) ≥ H(X |Y) H(X |Y) ≥ H(X |Y ,Z)

This is obvious from our previous discussion since
H(X)− H(X |Y) = I (X ;Y) ≥ 0 and
H(X |Y)− H(X |Y ,Z) = I (X ;Z |Y) ≥ 0

Of course, we also have

h(X) ≥ h(X |Y) h(X |Y) ≥ h(X |Y ,Z)

since h(X)− h(X |Y) = I (X ;Y) ≥ 0 and
h(X |Y)− h(X |Y) = I (X ;Z |Y) ≥ 0

S. Cheng (OU-Tulsa) October 3, 2017 39 / 44

Lecture 8 More inequalities

Conditioning reduces entropy

Given more information, the residual information (uncertainty) should
decrease. More precisely,

H(X) ≥ H(X |Y) H(X |Y) ≥ H(X |Y ,Z)

This is obvious from our previous discussion since
H(X)− H(X |Y) = I (X ;Y) ≥ 0 and
H(X |Y)− H(X |Y ,Z) = I (X ;Z |Y) ≥ 0

Of course, we also have

h(X) ≥ h(X |Y) h(X |Y) ≥ h(X |Y ,Z)

since h(X)− h(X |Y) = I (X ;Y) ≥ 0 and
h(X |Y)− h(X |Y) = I (X ;Z |Y) ≥ 0

S. Cheng (OU-Tulsa) October 3, 2017 39 / 44

Lecture 8 More inequalities

Conditioning reduces entropy

Given more information, the residual information (uncertainty) should
decrease. More precisely,

H(X) ≥ H(X |Y) H(X |Y) ≥ H(X |Y ,Z)

This is obvious from our previous discussion since
H(X)− H(X |Y) = I (X ;Y) ≥ 0 and
H(X |Y)− H(X |Y ,Z) = I (X ;Z |Y) ≥ 0

Of course, we also have

h(X) ≥ h(X |Y) h(X |Y) ≥ h(X |Y ,Z)

since h(X)− h(X |Y) = I (X ;Y) ≥ 0 and
h(X |Y)− h(X |Y) = I (X ;Z |Y) ≥ 0

S. Cheng (OU-Tulsa) October 3, 2017 39 / 44

Lecture 8 More inequalities

Data processing inequality

If random variables X ,Y ,Z satisfy X ↔ Y ↔ Z , then

I (X ;Y) ≥ I (X ;Z).

Proof

I (X ;Y) = I (X ;Y ,Z)− I (X ;Z |Y)

= I (X ;Y ,Z) (since X ↔ Y ↔ Z)

= I (X ;Z) + I (X ;Y |Z)
≥ I (X ;Z)

S. Cheng (OU-Tulsa) October 3, 2017 40 / 44

Lecture 8 More inequalities

Data processing inequality

If random variables X ,Y ,Z satisfy X ↔ Y ↔ Z , then

I (X ;Y) ≥ I (X ;Z).

Proof

I (X ;Y) = I (X ;Y ,Z)− I (X ;Z |Y)

= I (X ;Y ,Z) (since X ↔ Y ↔ Z)

= I (X ;Z) + I (X ;Y |Z)
≥ I (X ;Z)

S. Cheng (OU-Tulsa) October 3, 2017 40 / 44

Lecture 8 More inequalities

Data processing inequality

If random variables X ,Y ,Z satisfy X ↔ Y ↔ Z , then

I (X ;Y) ≥ I (X ;Z).

Proof

I (X ;Y) = I (X ;Y ,Z)− I (X ;Z |Y)

= I (X ;Y ,Z) (since X ↔ Y ↔ Z)

= I (X ;Z) + I (X ;Y |Z)
≥ I (X ;Z)

S. Cheng (OU-Tulsa) October 3, 2017 40 / 44

Lecture 8 Shannon’s perfect secrecy

Application: perfect secrecy

Example (A simple cryptography example)

Say you have a very personal letter that you don’t want to let anyone
else except some special someone to read

You will first encrypt the letter to some code. To decrypt the
message, you will need some key and you will also pass it to your
special someone. Translate to the cryptography language/symbols

Letter: plaintext message M
Code: ciphertext C
Key: key K

Remark

Shannon’s result: to ensure perfect secrecy, we can show that
H(M) ≤ H(K)

S. Cheng (OU-Tulsa) October 3, 2017 41 / 44

Lecture 8 Shannon’s perfect secrecy

Application: perfect secrecy

Example (A simple cryptography example)

Say you have a very personal letter that you don’t want to let anyone
else except some special someone to read

You will first encrypt the letter to some code. To decrypt the
message, you will need some key and you will also pass it to your
special someone.

Translate to the cryptography language/symbols

Letter: plaintext message M
Code: ciphertext C
Key: key K

Remark

Shannon’s result: to ensure perfect secrecy, we can show that
H(M) ≤ H(K)

S. Cheng (OU-Tulsa) October 3, 2017 41 / 44

Lecture 8 Shannon’s perfect secrecy

Application: perfect secrecy

Example (A simple cryptography example)

Say you have a very personal letter that you don’t want to let anyone
else except some special someone to read

You will first encrypt the letter to some code. To decrypt the
message, you will need some key and you will also pass it to your
special someone. Translate to the cryptography language/symbols

Letter: plaintext message M
Code: ciphertext C
Key: key K

Remark

Shannon’s result: to ensure perfect secrecy, we can show that
H(M) ≤ H(K)

S. Cheng (OU-Tulsa) October 3, 2017 41 / 44

Lecture 8 Shannon’s perfect secrecy

Application: perfect secrecy

Example (A simple cryptography example)

Say you have a very personal letter that you don’t want to let anyone
else except some special someone to read

You will first encrypt the letter to some code. To decrypt the
message, you will need some key and you will also pass it to your
special someone. Translate to the cryptography language/symbols

Letter: plaintext message M
Code: ciphertext C
Key: key K

Remark

Shannon’s result: to ensure perfect secrecy, we can show that
H(M) ≤ H(K)

S. Cheng (OU-Tulsa) October 3, 2017 41 / 44

Lecture 8 Shannon’s perfect secrecy

Application: perfect secrecy

Recall that M,C ,K be plaintext message, ciphertext, and key, respectively

Assumption

We will assume here that we have a non-probabilistic encryption scheme.
In other words, each plaintext message maps to a unique ciphertext given
a fixed key. So there is no ambiguity during decoding. Therefore,
H(M|C ,K) = 0

Remark (Independence)

For perfect secrecy, one should not be able to deduce anything regarding
the message from the ciphertext. Therefore, C and M should be
independent. Thus,
I (C ;M) = 0 ⇒ H(M) = H(M|C) + I (C ;M) = H(M|C)

S. Cheng (OU-Tulsa) October 3, 2017 42 / 44

Lecture 8 Shannon’s perfect secrecy

Application: perfect secrecy

Recall that M,C ,K be plaintext message, ciphertext, and key, respectively

Assumption

We will assume here that we have a non-probabilistic encryption scheme.
In other words, each plaintext message maps to a unique ciphertext given
a fixed key. So there is no ambiguity during decoding. Therefore,
H(M|C ,K) = 0

Remark (Independence)

For perfect secrecy, one should not be able to deduce anything regarding
the message from the ciphertext. Therefore, C and M should be
independent.

Thus,
I (C ;M) = 0 ⇒ H(M) = H(M|C) + I (C ;M) = H(M|C)

S. Cheng (OU-Tulsa) October 3, 2017 42 / 44

Lecture 8 Shannon’s perfect secrecy

Application: perfect secrecy

Recall that M,C ,K be plaintext message, ciphertext, and key, respectively

Assumption

We will assume here that we have a non-probabilistic encryption scheme.
In other words, each plaintext message maps to a unique ciphertext given
a fixed key. So there is no ambiguity during decoding. Therefore,
H(M|C ,K) = 0

Remark (Independence)

For perfect secrecy, one should not be able to deduce anything regarding
the message from the ciphertext. Therefore, C and M should be
independent. Thus,
I (C ;M) = 0 ⇒ H(M) = H(M|C) + I (C ;M) = H(M|C)

S. Cheng (OU-Tulsa) October 3, 2017 42 / 44

Lecture 8 Shannon’s perfect secrecy

Application: perfect secrecy

Lemma (Entropy bound)

For any non-probabilistic encryption scheme, H(M|C) ≤ H(K |C)

Proof.

Recall that for non-probabilistic encryption scheme, H(M|K ,C) = 0 ⇒
H(M|C) ≤ H(M,K |C)= H(K |C) + H(M|K ,C) = H(K |C)

Corollary (Entropy bound)

For any non-probabilistic encryption scheme, H(M|C) ≤ H(K)

Theorem (Perfect secrecy)

We have perfect secrecy if H(M) ≤ H(K)

Proof.

Combine Corollary (Entropy bound) and Remark (Independence)

S. Cheng (OU-Tulsa) October 3, 2017 43 / 44

Lecture 8 Shannon’s perfect secrecy

Application: perfect secrecy

Lemma (Entropy bound)

For any non-probabilistic encryption scheme, H(M|C) ≤ H(K |C)

Proof.

Recall that for non-probabilistic encryption scheme, H(M|K ,C) = 0 ⇒
H(M|C) ≤ H(M,K |C)

= H(K |C) + H(M|K ,C) = H(K |C)

Corollary (Entropy bound)

For any non-probabilistic encryption scheme, H(M|C) ≤ H(K)

Theorem (Perfect secrecy)

We have perfect secrecy if H(M) ≤ H(K)

Proof.

Combine Corollary (Entropy bound) and Remark (Independence)

S. Cheng (OU-Tulsa) October 3, 2017 43 / 44

Lecture 8 Shannon’s perfect secrecy

Application: perfect secrecy

Lemma (Entropy bound)

For any non-probabilistic encryption scheme, H(M|C) ≤ H(K |C)

Proof.

Recall that for non-probabilistic encryption scheme, H(M|K ,C) = 0 ⇒
H(M|C) ≤ H(M,K |C)= H(K |C) + H(M|K ,C) = H(K |C)

Corollary (Entropy bound)

For any non-probabilistic encryption scheme, H(M|C) ≤ H(K)

Theorem (Perfect secrecy)

We have perfect secrecy if H(M) ≤ H(K)

Proof.

Combine Corollary (Entropy bound) and Remark (Independence)

S. Cheng (OU-Tulsa) October 3, 2017 43 / 44

Lecture 8 Shannon’s perfect secrecy

Application: perfect secrecy

Lemma (Entropy bound)

For any non-probabilistic encryption scheme, H(M|C) ≤ H(K |C)

Proof.

Recall that for non-probabilistic encryption scheme, H(M|K ,C) = 0 ⇒
H(M|C) ≤ H(M,K |C)= H(K |C) + H(M|K ,C) = H(K |C)

Corollary (Entropy bound)

For any non-probabilistic encryption scheme, H(M|C) ≤ H(K)

Theorem (Perfect secrecy)

We have perfect secrecy if H(M) ≤ H(K)

Proof.

Combine Corollary (Entropy bound) and Remark (Independence)

S. Cheng (OU-Tulsa) October 3, 2017 43 / 44

Lecture 8 Shannon’s perfect secrecy

Application: perfect secrecy

Lemma (Entropy bound)

For any non-probabilistic encryption scheme, H(M|C) ≤ H(K |C)

Proof.

Recall that for non-probabilistic encryption scheme, H(M|K ,C) = 0 ⇒
H(M|C) ≤ H(M,K |C)= H(K |C) + H(M|K ,C) = H(K |C)

Corollary (Entropy bound)

For any non-probabilistic encryption scheme, H(M|C) ≤ H(K)

Theorem (Perfect secrecy)

We have perfect secrecy if H(M) ≤ H(K)

Proof.

Combine Corollary (Entropy bound) and Remark (Independence)

S. Cheng (OU-Tulsa) October 3, 2017 43 / 44

Lecture 8 Shannon’s perfect secrecy

Application: perfect secrecy

Lemma (Entropy bound)

For any non-probabilistic encryption scheme, H(M|C) ≤ H(K |C)

Proof.

Recall that for non-probabilistic encryption scheme, H(M|K ,C) = 0 ⇒
H(M|C) ≤ H(M,K |C)= H(K |C) + H(M|K ,C) = H(K |C)

Corollary (Entropy bound)

For any non-probabilistic encryption scheme, H(M|C) ≤ H(K)

Theorem (Perfect secrecy)

We have perfect secrecy if H(M) ≤ H(K)

Proof.

Combine Corollary (Entropy bound) and Remark (Independence)

S. Cheng (OU-Tulsa) October 3, 2017 43 / 44

Lecture 8 Shannon’s perfect secrecy

Summary

S. Cheng (OU-Tulsa) October 3, 2017 44 / 44

	Lecture 8
	SFE code
	Forward proof of Source Coding Theorem
	Entropy: another peek
	Differential entropy
	Properties of entropy and differential entropy
	Joint entropy and conditional entropy
	KL-divergence
	Mutual information
	Shannon's perfect secrecy
	More inequalities

