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Lecture 8 Method of types

Motivation

In previous lectures, we have introduced LLN and typical sequences.
In a sense that every sequences drawn from a discrete memoryless
source is typical

Take coin tossing as example again, if Pr(Head) = 0.6, and we throw
the coin 1000 times. We expect that almost all drawn sequences with
have about 600 heads. And the rest have neglible probability

However, sometimes we are interested in the probability of getting say
400 heads, even though we know that the probability is neglible

→
method of types
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Lecture 8 Method of types

Motivation

By the end of the class, we will be able to solve the following nontrivial
puzzle

Tom throws a unbiased dice for 10,000 times and adds all values

For whatever reason, he is not happy until the sum is at least 40,000.
If not, he will just throw the dice again for 10,000

Now, by the time he eventually got a sequence with sum at least
40,000, approximately how many ones in the sequence?
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Lecture 8 Method of types

Type class

Continue with the coin-tossing example

Recall that the probability of getting a particular sequence with 600
heads is

0.66000.4400

= 2−1000(−0.6 log 0.6−0.4 log 0.4) = 2−NH(X )

How about the probability of getting a particular sequence with 400
heads? It is

0.64000.4600 = 2−1000(−0.4 log 0.6−0.6 log 0.4)

= 2−1000(−0.4 log 0.4−0.6 log 0.6+0.4 log 0.4
0.6

+0.6 log 0.6
0.4

)

= 2−N(H(X )+KL((0.4,0.6)||(0.6,0.4))

Every sequence with 400 heads has the same probability. And in
general, sequences with the same fraction of outcomes have same
probability and we can put them into the same (type) class
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Lecture 8 Method of types

Type class

For convenience, let us denote the number of a in the sequence xN as
N (a|xN)

Then for any valid distribution of X , p(x), we will define a type class

T (pX ) as the set containing all sequences such that N (a|xN)
N ≈ p(a),

∀a ∈ X
Let us reserve q(x) as the true distribution of x (i.e., q(Head) = 0.6
and q(Tail) = 0.4). And in general, we expect all sequences drawn
from the source should belongs to T (q) asymptotically

Let’s also refer pxN as the empirical distribution of xN . That is

pxN (a) =
N (a|xN)

N . So T (pxN ) is the type class containing xN
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Lecture 8 Method of types

Example

Let X ∈ {1, 2, 3} and xN = 11321

pxN (1) =
3
5 ,

pxN (2) =
1
5 , pxN (3) =

1
5

T (pxN ) = {11123, 11132, 11231, 11321, · · · } containing all sequences
with three 1’s, one 2, and one 3

|T (pxN )| = 5!
3!1!1! = 20.

In general,

|T (p)| = N!

(Np(x1))!(Np(x2))!(Np(x3))! · · ·

Actually we don’t care too much what |T (p)| is exactly. We will
provide bounds for |T (p)| as we come back later on

And for any sequence y in T (pxN ), p(y) = q(1)3q(2)q(3), where q(·)
is the true distribution
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Lecture 8 Method of types

Type sequence probability

Even though we have seen that in the coin toss example, let’s restate it
more formally.

Theorem 1

If xN ∈ T (p) and q(·) is the true distribution of X , the probability of
getting xN from sampling q(·) for N times, as denoted as qN(xN), is given
by

2−N(H(p)+KL(p||q))

Proof

qN(xN) =
N∏
i=1

q(xi ) = 2
∑N

i=1 log q(xi )

= 2
∑

a∈X N (a|xN ) log q(a)

= 2−N
∑

a∈X −pxN (a) log q(a) = 2
−N

(
−

∑
a∈X p(a) log p(a)−

∑
a∈X p(a) log p(a)

q(a)

)
= 2−N(H(p)+KL(p||q))
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Lecture 8 Method of types

Probability of a sequence in the “typical” class

If xN ∈ T (q), where q(·) is the true distribution of X , then

qN(xN) = 2−NH(q) = 2−NH(X )

Remarks

Note that the probability is exactly equal to 2−NH(X )

Recall that this is the probability of a typical sequence supposed to
be. Therefore, any xN in T (q) is a typical sequence (T (q) ⊂ AN

ε (X ))
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Lecture 8 Method of types

Set of all empirical distribution PN(X )

Denote PN(X ) as the set of all empirical distribution of X in a length-N
sequence

Example

If X ∈ {0, 1},

PN(X ) =

{
(pX (0), pX (1)) :

(
0

N
,
N

N

)
,

(
1

N
,
N − 1

N

)
, · · · ,

(
N

N
,
0

N

)}
Note that |PN(X )| = N + 1

Since a type is uniquely characterized by a distribution of X in a
length-N sequence

Each element p of PN(X ) corresponds a type T (p)

Number of types is |PN(X )|
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Lecture 8 Method of types

Number of types

It is not too difficult to count the exact number of types. But in practice,
we don’t quite bother with it as long as we know that the number is
relatively “small”

Theorem 2

|PN(X )| ≤ (N + 1)|X |

Proof

Note that each type is specified by the empirical probability of each
outcome of X . And the possible values of the empirical probabilities are
0
N ,

1
N , · · · ,

N
N (N + 1 of them).

Since there are |X | elements, the number

of types is bounded by (N + 1)|X |
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Lecture 8 Method of types

Size of a type class

Recall that |T (p)| = N!
(Np(x1))!(Np(x2))!(Np(x3))!··· but the following bounds

are much more useful in practice

Theorem 3

1

(N + 1)|X | 2
NH(p) ≤ |T (p)| ≤ 2NH(p)

Proof

Let’s assume p(·) is the actual distribution of X here

1 ≥
∑

xN∈T (p)

pN(xN)

=
∑

xN∈T (p)

2−NH(p) = |T (p)|2−NH(p)

1 =
∑
p̂∈PN

Pr(T (p̂)) ≤
∑
p̂∈PN

max
p̃

Pr(T (p̃)) =
∑
p̂∈PN

Pr(T (p)) ≤ (N + 1)|X |Pr(T (p))

= (N + 1)|X ||T (p)|2−NH(p)
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Lecture 8 Method of types

Probability of a type class

Theorem 4

Let the true distribution of X is q(·), then

2−N(KL(p||q))

(N + 1)|X | ≤ Pr(T (p)) ≤ 2−N(KL(p||q))

Proof

From Theorem 1, each sequence in T (p) has probability 2−N(H(p)+KL(p||q))

and since 1
(N+1)|X| 2

NH(p) ≤ |T (p)| ≤ 2NH(p) from Theorem 3,

1

(N + 1)|X | 2
NH(p)2−N(H(p)+KL(p||q)) ≤ Pr(T (p)) ≤ 2NH(p)2−N(H(p)+KL(p||q))
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Lecture 8 Method of types

Summary of type

Type class T (p) contains all sequences with empirical distribution of p.
That is,

T (p) =

{
xN :

N (a|xN)
N

= p(a)

}

All sequences in the type class T (p) has the same probability (q(·) is the
true distribution)

qN(xN) = 2−N(H(p)+KL(p||q)

There are about 2NH(p) sequences in T (p)

1

(N + 1)|X | 2
NH(p) ≤ |T (p)| ≤ 2NH(p)

Probability of getting a sequence in T (p) is about 2−N(KL(p||q)). More
precisely,

2−N(KL(p||q))

(N + 1)|X | ≤ Pr(T (p)) ≤ 2−N(KL(p||q))

There are (N + 1)|X | types
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Lecture 8 Univesal source coding

Rationale

For the compression scheme (such as Huffmann coding) that we
discussed earlier in this class, one needs to know the source
distribution ahead to design the encoder and decoder

Question: Is it possible to construct compression scheme without
knowing the source distribution and still performs as good?

Answer: Yes. At least theoretically → universal source coding
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Lecture 8 Univesal source coding

Theory of universal source coding

Given any source Q with H(Q) < R, there exists a length-N universal
code of rate R such that the source can be decoded losslessly as N →∞

Proof

Let RN = R − |X | log(N+1)
N , and consider the set of sequences

A = {xN : H(pxN ) < RN} as the code book.

Note that the rate is < R as

|A| =
∑

p:H(p)<RN

|T (p)| ≤
∑

p:H(p)<RN

2NH(p) <
∑

p:H(p)<RN

2NRN

≤ (N + 1)|X |2NRN = 2
N
(
RN+|X | log(N+1)

N

)
= 2NR

Encoder: given input, check if input is in A, output index if so.
Otherwise, declare failure

Decoder: simply map index back to the sequence
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Lecture 8 Univesal source coding

Theory of universal source coding

Proof (con’t)

Note that the probability of error Pe is given by

Pe =
∑

p:H(p)>RN

Pr(T (p))

≤
∑

p:H(p)>RN

max
p̃:H(p̃)>RN

Pr(T (p̃))

≤ (1 + N)|X |2
−N

(
minp̃:H(p̃)>RN

KL(p̃||q)
)

If H(q) < R, as RN → R as N increases, we can find some N0 such
that H(q) < RN for all N ≥ N0

Therefore, any p in {p : H(p) > RN} cannot be the same as q

⇒ minp̃:H(p̃)>RN
KL(p̃||q) > 0 for N ≥ N0

Hence, Pe → 0 as N →∞
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Lecture 8 Univesal source coding

Lempel-Ziv coding

Its variants are widely used by compression tools almost everywhere
(zip, pkzip, tiff, etc.)

Main ideas

Construct a dictionary including all previously seen segments

Bits needed to send a new segment can be reduced taking advantage
known segment in the dictionary

Example: let’s compress 10110111011110111

First parse segment into segments that haven’t seen before ⇒

1
1,

2
0,

3
11,

4
01,

5
110,

6
111,

7
10,

8
111

Encode each segment into representation containing a pair of numbers:

1) index of segment (excluding the last bit) in the dictionary; 2) the
last bit ⇒ (0, 1), (0, 0), (1, 1), (2, 1), (3, 0), (3, 1), (1, 0), (6,∅)

Encode representation to bit stream. Note that as the dictionary
grows, number of bits needed to store the index increases ⇒
0100011101011001110010110
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Lecture 8 Univesal source coding

Lempel-Ziv decoding

Decode bitstream back to representation
0100011101011001110010110 ⇒
(0, 1), (0, 0), (1, 1), (2, 1), (3, 0), (3, 1), (1, 0), (6,∅)

Build dictionary and decode

1 2 3 4 5 6 7 8
1 0 11 01 110 111 10 111

⇒ 10110111011110111
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1 0

11 01 110 111 10 111

⇒ 10

110111011110111
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Lecture 8 Large deviation theory

Motivation

Let’s revisit some coin tossing example. Say if a coin is fair, and we
toss if for 1000 times, we know that we will almost always get 500
heads. So getting, say, 400 heads has neglible probability

However, if we insist finding the probability of getting 400 heads,
from discussion up to now, we know that it is just

Pr(T ((0.4, 0.6))) ≈ 2−1000(KL((0.4,0.6)||(0.5,0.5)))

Now, what if we are interested in the probability of a more general
case? Say what is the probability of getting > 300 and < 400 heads?
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Lecture 8 Large deviation theory

Sanov’s Theorem

Let E = {p : 0.3 ≤ p(Head) ≤ 0.4} and q(·) = (0.5, 0.5) is the true distribution,
then

Pr(E) = Pr(E ∩ P1000)

=
∑

p∈E∩P1000

Pr(T (p)) ≈
∑

p∈E∩P1000

2−1000(KL(p||q))

= 2−1000(KL((0.4,0.6)||(0.5,0.5))) + 2−1000(KL((0.399,0.601)||(0.5,0.5))) +

2−1000(KL((0.398,0.602)||(0.5,0.5))) + · · ·+ 2−1000(KL((0.3,0.7)||(0.5,0.5)))

≤ |P1000|2−1000(KL((0.4,0.6)||(0.5,0.5)))

Sanov’s Theorem

Let X1,X2, · · · ,XN be i.i.d. ∼ q(·) and E be a set of distribution. Then

Pr(E) = Pr(E ∩ PN) ≤ (N + 1)|X |2−N(KL(p∗||q)),

where p∗ = argminp∈E KL(p||q).

Moreover, given a rather weak condition
(closure of interior of E is E itself), we have

1

N
logPr(E)→ −KL(p∗||q)
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Lecture 8 Large deviation theory

Conditional limit theorem

The first part of Sanov’s Theorm is easy to show as similar to the example.
However, the second half will need some more math background (mostly
mathematical analysis) to understand the proof and so we will skip it here

The latter part of Sanov’s Theorem suggests that the probability of getting
E is the same as the probability of getting T (p∗)

It turns out that we can claim something stronger. We will state the
theorem below without proof

Conditional limit theorem

Let E be a closed convex subset of P (the set of all distributions) and q(·) be the
true distribution which is /∈ E .

If x1, x2, · · · , xN are drawn from q(·) and we know
that pxN ∈ E , then

N (a|xN)
N

→ p∗(a)

in probability as N →∞
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Lecture 8 Large deviation theory

Examples

Coin toss

Let’s go back to our previous example. If we throw a fair coin 1000
times and some one tells you that there are 300 to 400 heads, recall

E = {0.3 ≤ p(Head) ≤ 0.4}

Since apparently,
p∗ = argmin

p∈E
KL(p||(0.5, 0.5)) = (0.4, 0.6)

By conditional limit theorem, knowing the the number of head is
within the range, the coin behaves like a biased coin with
p(Head) = 0.4

A best bet would be there are 400 heads
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Lecture 8 Large deviation theory

Examples

Lower bounds

Let say x1, x2, · · · , xN are drawn from q(·). And we have K functions
g1(·), g2(·), · · · , gK (·) such that for k = 1, · · · ,K ,

N∑
i=1

gk(xi )p(xi ) ≥ αk

Let E = {p :
∑

a p(a)gk(a) ≥ αk , k = 1, · · · ,K}

From conditional limit theorem, N (a|xN )
N → p∗(a), where

p∗ = argmin
p∈E

KL(p||q)

This is a simple constrained optimization problem and can be solved with
KKT conditions. If you go through the conditions, you will find that

p∗(x) ∝ q(x)2
∑K

k=1 λkgk (x),

with λk(
∑

a p(a)gk(a)− αk) = 0, λk ≥ 0, and
∑

a p(a)gk(a) ≥ αk
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Lecture 8 Large deviation theory

Examples

I think this example below gives a nice demonstration that the technique
we have learned today can solve some amazing puzzle!

Fair dice

A fair dice is thrown 10,000 times and the sum of all outcomes is larger
than 40,000, out of the 10,000 throw, how many ones do you think there
are?
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than 40,000, out of the 10,000 throw, how many ones do you think there
are?
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Lecture 8 Large deviation theory

Fair dice

From the result of previous example, let g1(x) = x and α1 = 4, we
expect

p∗(i) =
2λi∑6
j=1 2

λj

for some λ

λ 6= 0 since
∑

a p(a)g1(a) = 3.5 < 4 = α1 if so

Since λ 6= 0, by the complementary slackness constraint
λk(
∑

a p(a)gk(a)− αk) = 0,∑
a

p(a)g1(a) = α1 = 4

This gives us λ = 0.2519, and thus
p∗ = (0.103, 0.123, 0.146, 0.174, 0.207, 0.247)

# ones ≈ 0.103× 10000 = 1030
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Lecture 9 Covariance matrices

Normal distribution

Univariate Normal: N (x ;µ, σ2) = 1√
2πσ2

e−
(x−µ)2

2σ2

Multivariate Normal: N (x;µ,Σ) = 1
det(2πΣ)e

− 1
2
(x−µ)TΣ−1(x−µ)

Remark

Note that N (x;µ,Σ) = N (µ; x,Σ). It is trivial but quite useful

Remark

Σ is known to be the covariance matrices and it has to be (symmetric)
positive definite

Remark

Consequently, symmetric matrices are carefully studied and understood by
statisticians and information theorists (more discussion couple slides later)
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Lecture 9 Covariance matrices

Covariance matrices

Definition (Covariance matrices)

Recall that for a vector random variable X = [X1,X2, · · · ,Xn]
T , the

covariance matrix Σ , E [(X − µ)(X − µ)T ]

Remark

Covariance matrices are always positive semi-definite since ∀u,
uTΣu = E [uT (X − µ)(X − µ)Tu] = E [‖(X − µ)Tu‖2] ≥ 0

Remark

In general, we usually would like to assume Σ to be strictly positive definite.
Because otherwise it means that some of its eigenvalues are zero and so in some
dimension, there is actually no variation and is just constant along that
dimension. Representing those dimension as random variable is troublesome since
“1/σ2” which occurs often will become infinite. Instead we can always simply
strip away those dimensions to avoid complications
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Lecture 9 Covariance matrices

Symmetric matrices

Lemma

(MT )
−1

= (M−1)T

Proof.

(M−1)TMT = (MM−1)T = I ⇒ (M−1)T is inverse of MT

Lemma

If M is symmetric, so is M−1

Proof.

(M−1)T = (MT )−1 = M−1

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming December 1, 2020 29 / 131



Lecture 9 Covariance matrices

Symmetric matrices

Lemma

(MT )
−1

= (M−1)T

Proof.

(M−1)TMT = (MM−1)T = I ⇒ (M−1)T is inverse of MT

Lemma

If M is symmetric, so is M−1

Proof.

(M−1)T = (MT )−1 = M−1

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming December 1, 2020 29 / 131



Lecture 9 Covariance matrices

Symmetric matrices

Lemma

(MT )
−1

= (M−1)T

Proof.

(M−1)TMT = (MM−1)T = I ⇒ (M−1)T is inverse of MT

Lemma

If M is symmetric, so is M−1

Proof.

(M−1)T = (MT )−1 = M−1

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming December 1, 2020 29 / 131



Lecture 9 Covariance matrices

Hermitian matrices

An extension of transpose operation to complex matrices is the
hermitian transpose operation, which is simply the transpose and
conjugate of a matrix (vector)

We denote the hermitian transpose of M as M† , M
T
, when M is

the complex conjugate of M

A matrix is Hermitian if M† = M. Note that a real symmetric matrix
is Hermitian
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Lecture 9 Covariance matrices

Eigenvalues of Hermitian matrices

Lemma

If M is Hermitian (M† = M), all eigenvalues are real

Proof.

λ(x†x) = (λx)†x = (Mx)†x = x†M†x = x†Mx = x†(λx) = λ(x†x)

Lemma

If M is Hermitian, eigenvectors of different eigenvalues are orthogonal

Proof.

λ1x
†
1x2 = (Mx1)

†x2 = x†1Mx2 = λ2x
†
1x2

⇒λ1 6= λ2 ⇒ x†1x2 = 0
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Lecture 9 Covariance matrices

Hermitian matrices are diagonizable

Lemma

Hermitian matrices are diagonizable

Proof (*).

We will sketch the proof by construction. For any n-d Hermitian matrix M,
consider an eigenvalue λ and corresponding eigenvector u, without loss of
generality, let’s also normalize u such that ‖u‖ = 1. Consider the subspace
orthogonal to u, U⊥, and let v1, · · · , vn−1 be arbitrary orthonormal basis of U⊥.
Note that for any k, Mvk will be orthogonal to u since

u†Mvk = u†M†vk = (Mu)†vk = λu†vk = 0.

Thus,
(
u, v1, · · · , vn−1

)†
M
(
u, v1, · · · , vn−1

)
=
(
λ 0
0 M′

)
. Moreover, M ′ is also a

Hermitian matrix with one less dimension. We can apply the same process on M ′

and “diagonalize” one more row/column. That is,(
1 0
0 P′

)†
P†MP

(
1 0
0 P′

)
=
(

λ 0 ···
0 λ′

M′′

)
. We can repeat this until the entire M is

diagonalized
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Lecture 9 Covariance matrices

Hermitian matrices are diagonalizable

Remark

We can find a orthogonal set of eigenvectors that diagonalize a Hermitian matrix.
That is (

v1, · · · , vn
)†

M
(
v1, · · · , vn

)︸ ︷︷ ︸
V

=

(
λ1 0 ···
0 λ2

...
. . .

)
,

and V is unitary (orthogonal), i.e., V †V = I and thus V−1 = V †. Note that
vi⊥vj if λi 6= λj . Otherwise, we may use Gram-Schmidt

Remark

The reverse is obviously true. If a matrix can be diagonalized by a unitary matrix
into a real diagonal matrix, the matrix is Hermitian

Remark

Recall that real-symmetric matrices are Hermitian, thus can be diagonalized by its
eigenvectors also

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming December 1, 2020 33 / 131



Lecture 9 Covariance matrices

Positive definite matrices

Definition (Positive definite)

For a Hermitian matrix M, it is positive definite iff ∀x , x†Mx > 0

Definition (Positive semi-definite)

For a Hermitian matrix M, it is positive semi-definite iff ∀x , x†Mx ≥ 0

Remark

M is positive definite (semi-definite) iff all its eigenvalue is larger (larger or
equal to) 0

Proof.

⇒: assume positive definite but some eigenvalue < 0, WLOG, let λ1 < 0, then
v†
1Mv1 = λ1 < 0 contradicts that M is positive definite
⇐: If ∀k, λk > 0, for any x ,

x†Mx = (V †x)†
(

λ1 0

0
. . .

)
V †x =

∑
i λi (V

†x)2i > 0
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Lecture 9 Covariance matrices

Eigenvectors and eigenvalues of covariance matrices

WLOG, let’s assume X = [X1,X2, · · · ,Xn]
T is zero mean. So the

covariance matrix ΣX = E [XXT ]

Covariance matrices are real symmetric (hence Hermitian) and so can
be diagonalized by its eigenvectors. That is,

PTΣXP = D, where P = [u1, u2, · · · , un] with uk being eigenvectors of
Σ and D is a diagonal matrix with eigenvalues λ1, λ2, · · · , λn as the
diagonal elements

Let Y = PTX, note that the covariance matrix of Y

ΣY = E [YYT ] = E [PTXXTP] = PTE [XXT ]P = PTΣXP = D

is diagonalized

So the variance of Yk is simply λk

E [YiYj ] = 0 for i 6= j . That is, Yi ⊥⊥ Yj for i 6= j
Note that Y = PTX is just principal component analysis (PCA)
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Lecture 9 Principal component analysis

Principal component analysis (PCA)

Recall that Σ = E [XXT ] (assume X is zero-mean) and Y = PTX
with E [YYT ] = PTΣP = D

Assume that the diagonal of D (note that those are eigenvalues) are
arranged in descending order that λ1 ≥ λ2 ≥ · · · ≥ λn

Generate an approximate Ŷ of Y by setting all components except first
k as 0
The mean square error (mse) of1 Ŷ = E [(Y − Ŷ)T (Y − Ŷ)]
= tr(E [(Y − Ŷ)T (Y − Ŷ)]) = E [tr((Y − Ŷ)T (Y − Ŷ))]
= E [tr((Y − Ŷ)(Y − Ŷ)T )] = tr(E [(Y − Ŷ)(Y − Ŷ)T ]) =

∑n
i=k+1 λi

Similarly, if we “reconstruct” X as X̂ = PŶ. The mse of
X̂ = E [(X− X̂)T (X− X̂)] = tr(E [(X− X̂)(X− X̂)T ])=
tr(PE [(Y − Ŷ)(Y − Ŷ)]PT )= tr(PTPE [(Y − Ŷ)(Y − Ŷ)])
=
∑n

i=k+1 λi

Note that the eigenvectors of Σ (columns of P) are known as the
principal components

1tr(AB) =
∑

i

∑
j ai,jbj,i =

∑
j

∑
i bj,iai,j = tr(BA)
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= tr(E [(Y − Ŷ)T (Y − Ŷ)])

= E [tr((Y − Ŷ)T (Y − Ŷ))]
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= tr(E [(Y − Ŷ)T (Y − Ŷ)]) = E [tr((Y − Ŷ)T (Y − Ŷ))]
= E [tr((Y − Ŷ)(Y − Ŷ)T )] = tr(E [(Y − Ŷ)(Y − Ŷ)T ]) =

∑n
i=k+1 λi

Similarly, if we “reconstruct” X as X̂ = PŶ. The mse of
X̂ = E [(X− X̂)T (X− X̂)] = tr(E [(X− X̂)(X− X̂)T ])

=
tr(PE [(Y − Ŷ)(Y − Ŷ)]PT )= tr(PTPE [(Y − Ŷ)(Y − Ŷ)])
=
∑n

i=k+1 λi

Note that the eigenvectors of Σ (columns of P) are known as the
principal components

1tr(AB) =
∑

i

∑
j ai,jbj,i =

∑
j

∑
i bj,iai,j = tr(BA)
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Generate an approximate Ŷ of Y by setting all components except first
k as 0
The mean square error (mse) of1 Ŷ = E [(Y − Ŷ)T (Y − Ŷ)]
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Lecture 9 Principal component analysis

Practical PCA

In practice, we typically are given a dataset with samples of X instead of
the distribution or covariance matrix of X. Denote the data as X with
each row is a data point and a total of m data points. Thus X is an m by
n matrix

Data are rarely zero-mean to begin with, but we can easily preprocess
it by subtracting the mean. That is2 X ← X − ones(m, 1)mean(X )
Note that Σ̂ ≈ 1

mX
TX . We could directly compute the eigenvectors

and eigenvalues of Σ̂ as discussed previously. But in many cases,
m < n making Σ̂ a bad approximate3

A more common approach is to decompose X with singular value
decomposition (SVD) instead

2I used the matlab notations for ones(·) and mean(·) here
3Note that Σ̂ won’t be full rank and positive definite as one would hope
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Lecture 9 Principal component analysis

Singular value decomposition (SVD)

Every matrix M can be decomposed as
M = UDV †, where D is diagonal and U,V
are unitary. The diagonal terms in Σ are
known to be the singular values

For real matrix M, we can write
M = UDV T instead. U,V are now “real
unitary” or orthogonal

Note that
MTM = VDTUTUDV T = VD2V T .
Therefore, V are really eigenvectors of
MTM with eigenvalues equal to the
square of the singular values
Similar, we have MMT = UD2UT
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Lecture 9 Principal component analysis

PCA with SVD

So from previous slides, instead of first estimating the covariance matrix
and then diagonalize it. We should directly decompose the data X with
SVD instead. The process is summarized below

Estimate mean from data and subtract mean from that

Decomposed the mean subtracted data with SVD. We get
X = UDV T

Note that column of V are now the principal components, and we can
transform a data column as V T x . The entire data set can be
transformed as Y = XV

The first few columns of Y will contain most “information” regarding
the original X
For example, they can be taken as features for recognition or one can
omit other columns besides the first few for “compression” as discussed
earlier
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Lecture 9 Processing multivariate normal distribution

Marginalization of normal distribution

Consider Z ∼ N (µZ,ΣZ) and let say X is a segment of Z. That is,

Z =

(
X
Y

)
for some Y. Then how should X behave?

We can find the pdf of X by just marginalizing that of Z. That is

p(x) =

∫
p(x, y)dy

=
1√

det(2πΣ)

∫
exp

(
−1

2

(
x− µX

y − µY

)T

Σ−1

(
x− µX

y − µY

))
dy
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Lecture 9 Processing multivariate normal distribution

Marginalization of normal distribution

Denote Σ−1 as Λ (also known as the precision matrix). And partition

both Σ and Λ into Σ =

(
ΣXX ΣXY

ΣYX ΣYY

)
and Λ =

(
ΛXX ΛXY

ΛYX ΛYY

)

Then we have

p(x) =
1√

det(2πΣ)

∫
exp

(
−1

2

[
(x− µX)

TΛXX(x− µX)

+ (y − µY)
TΛYX(x− µX) + (x− µX)

TΛXY(y − µY)

+(y − µY)
TΛYY(y − µY)

])
dy

=
e−

(x−µX)T ΛXX(x−µX)

2√
det(2πΣ)

∫
exp

(
−1

2

[
(y − µY)

TΛYX(x− µX)

+(x− µX)
TΛXY(y − µY) + (y − µY)

TΛYY(y − µY)
])

dy
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Lecture 9 Processing multivariate normal distribution

Marginalization of normal distribution

To proceed, let’s apply the completing square trick on
(y−µY)

TΛYX(x−µX)+(x−µX)
TΛXY(y−µY)+(y−µY)

TΛYY(y−µY).
For the ease of exposition, let us denote x̃ as x−µX and ỹ as y−µY. We
have

ỹTΛYXx̃+ x̃TΛXYỹ + ỹTΛYYỹ

=(ỹ + Λ−1
YYΛYXx̃)

TΛYY(ỹ + Λ−1
YYΛYXx̃)− x̃TΛXYΛ

−1
YYΛYXx̃,

where we use the fact that Λ = Σ−1 is symmetric and so ΛXY = ΛYX
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Lecture 9 Processing multivariate normal distribution

Marginalization of normal distribution

p(x) =
e−

x̃T (ΛXX−ΛXYΛ
−1
YY

ΛYX)x̃

2√
det(2πΣ)

∫
e−

(ỹ+Λ
−1
YY

ΛYXx̃)T ΛYY (ỹ+Λ
−1
YY

ΛYXx̃)

2 dy

=

√
det(2πΛ−1

YY)√
det(2πΣ)

exp

(
−
x̃T (ΛXX − ΛXYΛ

−1
YYΛYX)x̃

2

)
(a)
=

√
det(2πΛ−1

YY)√
det(2πΣ)

exp

(
−
x̃TΣ−1

XXx̃

2

)
(b)
=

1√
det(2πΣXX)

exp

(
−
x̃TΣ−1

XXx̃

2

)
=

1√
det(2πΣXX)

exp

(
−
(x− µX)

TΣ−1
XX(x− µX)

2

)
,

where (a) and (b) will be shown next
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p(x) =
e−

x̃T (ΛXX−ΛXYΛ
−1
YY

ΛYX)x̃

2√
det(2πΣ)

∫
e−

(ỹ+Λ
−1
YY

ΛYXx̃)T ΛYY (ỹ+Λ
−1
YY

ΛYXx̃)

2 dy

=

√
det(2πΛ−1

YY)√
det(2πΣ)

exp

(
−
x̃T (ΛXX − ΛXYΛ

−1
YYΛYX)x̃

2

)
(a)
=

√
det(2πΛ−1

YY)√
det(2πΣ)

exp

(
−
x̃TΣ−1

XXx̃

2

)
(b)
=

1√
det(2πΣXX)

exp

(
−
x̃TΣ−1

XXx̃

2

)

=
1√

det(2πΣXX)
exp

(
−
(x− µX)

TΣ−1
XX(x− µX)

2

)
,
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Lecture 9 Processing multivariate normal distribution

(a) Σ−1XX = ΛXX − ΛXYΛ
−1
YYΛYX

Lemma

Assume

(
A B
C D

)−1

=

(
Ã B̃

C̃ D̃

)
, then A−1 = Ã− B̃D̃−1C̃

Proof.

Note that

(
A B
C D

)(
Ã B̃

C̃ D̃

)
=

(
I 0
0 I

)
. Thus AÃ+ BC̃ = I and

AB̃ + BD̃ = 0. So
A(Ã−B̃D̃−1C̃ ) = AÃ−(AB̃)D̃−1C̃ = AÃ+BD̃D̃−1C̃ = AÃ+BC̃ = I
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Lecture 9 Processing multivariate normal distribution

(b) det(aΣ) = det(aΣYY) det(aΛ
−1
XX)

Lemma

Assume

(
A B
C D

)−1

=

(
Ã B̃

C̃ D̃

)
, then det

(
A B
C D

)
= det(D)det(Ã−1)

Proof.(
A B
C D

)
=

(
I 0
0 D

)(
A B

D−1C I

)
=

(
I 0
0 D

)(
I B
0 I

)(
A− BD−1C 0

D−1C I

)
⇒ det

(
A B
C D

)
= det(D)det(A− BD−1C ) = det(D)det(Ã−1)

Remark

N.B. A− BD−1C is known as Schur complement
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Lecture 10 Processing multivariate normal distribution

Review

ML: x̂ = argmaxx p(x |θ̂), θ̂ = argmaxθ p(o|θ)
MAP: x̂ = argmaxx p(x |θ̂), θ̂ = argmaxθ p(θ|o)
Bayesian: x̂ =

∑
θ p(θ|o)

∑
x xp(x |θ)

For zero-mean X, ΣX = E [XXT ] and say we have PTΣXP = D. The
transformed Y = PTX are independent to each other

Note that the transform is just principal component analysis

Marginalization of a normal distribution is still a normal distribution

(a) Σ−1
XX = ΛXX − ΛXYΛ

−1
YYΛYX

(b) det(aΣ) = det(aΣYY) det(aΛ
−1
XX) for any constant a
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Lecture 10 Processing multivariate normal distribution

Conditioning of normal distribution

Consider the same Z ∼ N (µZ,ΣZ) and Z =

(
X
Y

)
. What will X be

like if Y is observed to be y?

Basically, we want to find p(x|y) = p(x, y)/p(y)

From previous result, we have p(y) = N (y;µY,ΣYY). Therefore,

p(x|y) ∝ exp

(
−1

2

[(
x̃
ỹ

)T

Σ−1

(
x̃
ỹ

)
− ỹTΣ−1

YYỹ

])

∝ exp

(
−1

2
[x̃TΛXXx̃+ x̃TΛXYỹ + ỹTΛYXx̃]

)
,

where we use x̃ and ỹ as shorthands of x− µX and y − µY as before
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ỹ

)T

Σ−1

(
x̃
ỹ
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Lecture 10 Processing multivariate normal distribution

Conditioning of normal distribution

Completing the square for x̃, we have

p(x|y) ∝ exp

(
−1

2
(x̃+ Λ−1

XXΛXYỹ)
TΛXX(x̃+ Λ−1

XXΛXYỹ)

)
= exp

(
−1

2
(x− µX + Λ−1

XXΛXY(y − µY))
TΛXX

(x− µX + Λ−1
XXΛXY(y − µY))

)

Therefore X|y is Gaussian distributed with mean
µX − Λ−1

XXΛXY(y − µY) and covariance Λ−1
XX

Note that since ΛXXΣXY + ΛXYΣYY = 0 ⇒Λ−1
XXΛXY = −ΣXYΣ

−1
YY

and from (a), we have

X|y ∼ N (µX +ΣXYΣ
−1
YY(y − µY),ΣXX − ΣXYΣ

−1
YYΣYX),

where ΣXX − ΣXYΣ
−1
YYΣYX , Σ|ΣYY is a Schur complement
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Lecture 10 Processing multivariate normal distribution

Interpretation of conditioning

X|y ∼ N (µX +ΣXYΣ
−1
YY(y − µY),ΣXX − ΣXYΣ

−1
YYΣYX)

When the observation of Y is exactly the mean, the conditioned mean
does not change

Otherwise, it needs to be modified and the size of the adjustment
decreases with ΣYY, the variance of Y for the 1-D case.

The observation is less reliable with the increase of ΣYY. The
adjustment is finally scaled by ΣXY, which translates the variation of Y
to the variation of X
In particular, if X and Y are negatively correlated, the sign of the
adjustment will be reversed

As for the variance of the conditioned variable, it always decreases
and the decrease is larger if ΣYY is smaller and ΣXY is larger (X and
Y are more correlated)
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Lecture 10 Processing multivariate normal distribution

Uncorrelated implies independence

X|y ∼ N (µX +ΣXYΣ
−1
YY(y − µY),ΣXX − ΣXYΣ

−1
YYΣYX)

If X and Y are uncorrelated, ΣXY = 0. Then

X|y ∼ N (µX,ΣXX)

Note that the statistics of X does not change with respect to y and so X
is independent of Y
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Lecture 10 Processing multivariate normal distribution

X ⊥⊥ Y |Z if ρXZρYZ = ρXY

Corollary

Given multivariate Gaussian variables X ,Y and Z , we have X and Y are
conditionally independent given Z if ρXZρYZ = ρXY , where
ρXZ = E [(X−E(X ))(Z−E(Z))]√

E [(X−E(X ))2]E [(Z−E(Z))2]
is the correlation coefficent between X

and Z . Similarly, ρYZ and ρXY are the correlation coefficients between Y
and Z , and X and Y , respectively.
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Lecture 10 Processing multivariate normal distribution

X ⊥⊥ Y |Z if ρXZρYZ = ρXY

Proof.

From the definition of correlation coefficient,

Σ =

(
σXX

√
σXXσYY ρXY

√
σXXσZZρXZ√

σXXσYY ρXY σYY
√
σYY σZZρYZ√

σXXσZZρXZ
√
σYY σZZρYZ σZZ

)

Then from the conditioning result, we have

Σ(
X
Y

)∣∣∣Z =

(
σXX

√
σXXσYY ρXY√

σXXσYY ρXY σYY

)
−

(√
σXXσZZρXZ

√
σYYσZZρYZ

)
σ−1
ZZ

(√
σXXσZZρXZ√
σYYσZZρYZ

)
=

(
σXX (1− ρ2XZ )

√
σXXσYY (ρXY − ρXZρYZ )√

σXXσYY (ρXY − ρXZρYZ ) σYY (1− ρ2YZ )

)

Therefore, X and Y are uncorrelated given Z when the off-diagonal is
zero and this gives us ρXY = ρXZρYZ . Since for Gaussian variables,
uncorrelatedness implies independence. This concludes the proof.
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Lecture 10 Processing multivariate normal distribution

Gaussian Process

Consider a 1-D discrete-time signal, and say the signal is joint
Gaussian and two points are conditional independent given points in
the middle

If the variance is stationary and say the correlation coefficent between
two adjacent points is ρ, further assume that the variance is
normalized to 1. WLOG, then

Σ =


1 ρ ρ2 · · ·
ρ 1 ρ ρ2 · · ·
ρ2 ρ 1 ρ · · ·

· · ·
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Lecture 10 Processing multivariate normal distribution

Product of normal distributions

Assume that we tries to recover some vector parameter x, which is
subject to multivariate Gaussian noise

Say we made two measurements y1 and y2, where Y1 ∼ N (x,ΣY1)
and Y2 ∼ N (x,ΣY2). Note that even though both measurements
have mean x, they have different covariance

This variation, for instance, can be due to environment change between
the two measurements

Now, if we want to compute the overall likelihood, p(y1, y2|x).
Assuming that Y1 and Y2 are conditionally independent given X, we
have

p(y1, y2|x) = p(y1|x)p(y2|x)
= N (y1; x,ΣY1)N (y2; x,ΣY2).

Essentially, we just need to compute the product of two Gaussian
pdfs. Such computation is very useful and it occurs often when one
needs to perform inference
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Lecture 10 Processing multivariate normal distribution

Product of normal distributions

As in previous cases, the product turns out to be normal also. However, unlike
them, the product is not a pdf and so it does not normalize to 1. So we have to
compute both the scaling factor and the exponent explicitly. Let us start with the
exponent.

N (y1; x,ΣY1)N (y2; x,ΣY2)

∝ exp

(
−1

2
[(x− y1)

TΛY1(x− y1) + (x− y2)
TΛY2(x− y2)]

)
∝ exp

(
−1

2
[xT (ΛY1 + ΛY2)x− (yT2 ΛY2 + yT1 ΛY1)x− xT (ΛY2y2 + ΛY1y1)]

)
∝e− 1

2 [(x−(ΛY1
+ΛY2

)−1(ΛY2
y2+ΛY1

y1))
T (ΛY1

+ΛY2
)(x−(ΛY1

+ΛY2
)−1(ΛY2

y2+ΛY1
y1))]

∝N (x; (ΛY1 + ΛY2)
−1(ΛY2y2 + ΛY1y1), (ΛY2 + ΛY1)

−1)

Therefore,

N (y1; x,ΣY1)N (y2; x,ΣY2)

=K (y1, y2,ΣY1 ,ΣY2)N (x; (ΛY1 + ΛY2)
−1(ΛY2y2 + ΛY1y1), (ΛY2 + ΛY1)

−1)

for some scaling factor K (y1, y2,ΣY1 ,ΣY2) independent of x
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)
∝e− 1

2 [(x−(ΛY1
+ΛY2

)−1(ΛY2
y2+ΛY1

y1))
T (ΛY1

+ΛY2
)(x−(ΛY1

+ΛY2
)−1(ΛY2

y2+ΛY1
y1))]

∝N (x; (ΛY1 + ΛY2)
−1(ΛY2y2 + ΛY1y1), (ΛY2 + ΛY1)
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Lecture 10 Processing multivariate normal distribution

Product of normal distributions

As in previous cases, the product turns out to be normal also. However, unlike
them, the product is not a pdf and so it does not normalize to 1. So we have to
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Lecture 10 Processing multivariate normal distribution

Product of normal distributions

One can compute the scaling factor K (y1, y2,ΣY1 ,ΣY2) directly

However, it is much easier to take advantage for the following setup
when Y1 ⊥⊥ Y2|X as shown below

Since N (y2; x,ΣY2) = N (x; y2,ΣY2) and Y1 ⊥⊥ Y2|X, we have

N (y1; x,ΣY1)N (y2; x,ΣY2) = N (y1; x,ΣY1)︸ ︷︷ ︸
p(y1|x)=p(y1|x,y2)

N (x; y2,ΣY2)︸ ︷︷ ︸
p(x|y2)

= p(y1, x|y2)
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Lecture 10 Processing multivariate normal distribution

Product of normal distributions

Then, marginalizing x out from p(y1, x|y2), we have

p(y1|y2) =
∫
p(y1, x|y2)dx. However, from the figure,∫
p(y1, x|y2)dx = p(y1|y2) = N (y1; y2,ΣY2 +ΣY1)

On the other hand,∫
p(y1, x|y2)dx =

∫
N (y1; x,ΣY1)N (y2; x,ΣY2)dx

=

∫
K (y1, y2,ΣY1 ,ΣY2)N (x; (ΛY1 + ΛY2)

−1(ΛY2y2 + ΛY1y), (ΛY2 + ΛY1)
−1)dx

=K (y1, y2,ΣY1 ,ΣY2).

Thus we have K (y1, y2,ΣY1 ,ΣY2) = N (y1; y2,ΣY2 +ΣY1) and so

N (y1; x,ΣY1)N (y2; x,ΣY2)

=N (y1; y2,ΣY2 +ΣY1)N (x; (ΛY1 + ΛY2)
−1(ΛY2y2 + ΛY1y), (ΛY2 + ΛY1)

−1)
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Lecture 10 Processing multivariate normal distribution

Product of normal distributions

Let us try to interpret the product as the overall likelihood after making
two observations. Consider the simpler case when X, Y1 and Y2 are all
scaler

The mean considering both observations,
(ΛY1 + ΛY2)

−1(ΛY2y2 + ΛY1y), is essential a weighted average of
observations y2 and y1

The weight is higher when the precision ΛY2 or ΛY1 is larger

The overall variance (ΛY2 + ΛY1)
−1 is always smaller than the

individual variance ΣY2 and ΣY1

We are more certain with x after considering both y1 and y2

The scaling factor, N (y1; y2,ΣY2 +ΣY1), can be interpreted as how
much one can believe on the overall likelihood.

The value is reasonable since when the two observations are far away
with respect to the overall variance ΣY2 +ΣY1 , the likelihood will
become less reliable
The scaling factor is especially useful when we deal with mixture of
Gaussian to be discussed next
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Lecture 11

Review

PCA (assume zero mean)
Via eigen-decomposition

1 Σ ≈ 1
m
X TX

2 PTΣP = D
3 Y = PTX

Via SVD
1 UTXV = D
2 Y = V TX

Marginalization of a normal distribution is still a normal distribution

Conditioning of normal distribution:
X|y ∼ N (µX +ΣXYΣ

−1
YY(y − µY),ΣXX − ΣXYΣ

−1
YYΣYX)

Product of normal distribution:
N (y1; x,ΣY1)N (y2; x,ΣY2) =
N (y1; y2,ΣY2+ΣY1)N (x; (ΛY1+ΛY2)

−1(ΛY2y2+ΛY1y), (ΛY2+ΛY1)
−1)
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Lecture 11

Division of normal distributions

To compute N (x;µ1,Σ1)
N (x;µ2,Σ2)

, note that from the product formula earlier

N (x;µ2,Σ2)N (x; (Λ1 − Λ2)
−1(Λ1µ1 − Λ2µ2), (Λ1 − Λ2)

−1)

=N (µ2; (Λ1 − Λ2)
−1(Λ1µ1 − Λ2µ2),Λ

−1
2 + (Λ1 − Λ2)

−1)N (x;µ1,Σ1)

Therefore,

N (x;µ1,Σ1)

N (x;µ2,Σ2)
=

N (x; (Λ1 − Λ2)
−1(Λ1µ1 − Λ2µ2), (Λ1 − Λ2)

−1)

N (µ2; (Λ1 − Λ2)−1(Λ1µ1 − Λ2µ2),Λ
−1
2 + (Λ1 − Λ2)−1)

=
N (x;µ, (Λ1 − Λ2)

−1)

N (µ2;µ,Λ
−1
2 + (Λ1 − Λ2)−1)

,

where µ = (Λ1 − Λ2)
−1(Λ1µ1 − Λ2µ2)

Note that the final pdf will be Gaussian-like if Λ1 � Λ2. Otherwise,
one can still write out the pdf using the precision matrix. But the
covariance matrix will not be defined (Try plot some pdfs out
yourselves)
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Lecture 11 Mixture of “Gaussians”

Mixture of Gaussians

Consider an electrical system that outputs signal of different statistics
when it is on and off

When the system is on, the output signal S behaves like N (5, 1).
When the system is off is off, S behaves like N (0, 1)

If someone measuring the signal does not know the status of the
system but only knows that the system is on 40% of the time, then to
the observer, the signal S behaves like a mixture of Gaussians
The pdf of S will be 0.4N (s; 5, 1) + 0.6N (s; 0, 1) as shown below

−4 −2 0 2 4 6 8
0

0.05

0.1

0.15

0.2

0.25

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming December 1, 2020 61 / 131



Lecture 11 Mixture of “Gaussians”

Mixture of Gaussians

Consider an electrical system that outputs signal of different statistics
when it is on and off

When the system is on, the output signal S behaves like N (5, 1).
When the system is off is off, S behaves like N (0, 1)
If someone measuring the signal does not know the status of the
system but only knows that the system is on 40% of the time, then to
the observer, the signal S behaves like a mixture of Gaussians

The pdf of S will be 0.4N (s; 5, 1) + 0.6N (s; 0, 1) as shown below

−4 −2 0 2 4 6 8
0

0.05

0.1

0.15

0.2

0.25

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming December 1, 2020 61 / 131



Lecture 11 Mixture of “Gaussians”

Mixture of Gaussians

Consider an electrical system that outputs signal of different statistics
when it is on and off

When the system is on, the output signal S behaves like N (5, 1).
When the system is off is off, S behaves like N (0, 1)
If someone measuring the signal does not know the status of the
system but only knows that the system is on 40% of the time, then to
the observer, the signal S behaves like a mixture of Gaussians
The pdf of S will be 0.4N (s; 5, 1) + 0.6N (s; 0, 1) as shown below

−4 −2 0 2 4 6 8
0

0.05

0.1

0.15

0.2

0.25

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming December 1, 2020 61 / 131



Lecture 11 Mixture of “Gaussians”

Mixture of Gaussians

A main limitation of normal distribution is that it is unimodal

Mixture of Gaussian distribution allows multimodal and can virtually
model any pdfs. But there is a computational cost for this gain
Let us illustrate this with the following example:

Consider two mixtures of Gaussian likelihood of x given two
observations y1 and y2 as follows:

p(y1|x) = 0.6N (x ; 0, 1) + 0.4N (x ; 5, 1);

p(y2|x) = 0.5N (x ;−2, 1) + 0.5N (x ; 4, 1).

What is the overall likelihood, p(y1, y2|x)?
As usual, it is reasonable to assume the observations to be
conditionally independent given x . Then,

p(y1, y2|x) = p(y1|x)p(y2|x)
= (0.6N (x ; 0, 1) + 0.4N (x ; 5, 1))(0.5N (x ;−2, 1) + 0.5N (x ; 4, 1))

= 0.3N (x ; 0, 1)N (x ;−2, 1) + 0.2N (x ; 5, 1)N (x ;−2, 1)
+ 0.3N (x ; 0, 1)N (x ; 4, 1) + 0.2N (x ; 5, 1)N (x ; 4, 1)
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Lecture 11 Mixture of “Gaussians”

Explosion of Gaussians

The last step involves computing products of Gaussians but we have
learned it in previous sections. Using the previous result,

p(y1, y2|x) = 0.3N (−2; 0, 2)N (x ;−1, 0.5) + 0.2N (−2; 5, 2)N (x ; 1.5, 0.5)

+ 0.3N (4; 0, 2)N (x ; 2, 0.5) + 0.2N (4; 5, 2)N (x ; 4.5, 0.5).

So we have the overall likelihood is a mixture of four Gaussians

Let’s repeat our discussion but with n observations instead. The overall
likelihood will be a mixture of 2n Gaussians!

Therefore, the computation will quickly become intractable as the
number of observations increases
Fortunately, in reality, some of the Gaussians in the mixture tend to
have a very small weight
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Lecture 11 Mixture of “Gaussians”

Reduce number of components in Gaussian mixtures

For instance, in our previous numerical example, if we continue our
numerical computation for the two observation example, we have

p(y1, y2|x) = 0.4163N (x ;−1, 0.5) + 3.5234× 10−6N (x ; 1.5, 0.5)

+ 0.0202N (x ; 2, 0.5) + 0.5734N (x ; 4.5, 0.5).

We can see that the weight for the component at mean 1.5 is very
small. And the component at mean 2 has a rather small weight also.
Even with the four Gaussian components, the overall likelihood is
essentially just a bimodal distribution as shown in the figure below
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Lecture 11 Mixture of “Gaussians”

Reduce number of components in Gaussian mixtures

Therefore, we may approximate p(y1, y2|x) with only two of its original
component as 0.4163/(0.4163 + 0.5734)N (x ;−1, 0.5) + 0.5734/(0.4163 +
0.5734)N (x ; 4.5, 0.5) = 0.4206N (x ;−1, 0.5) + 0.5794N (x ; 4.5, 0.5)

However, it is not always a good approximation strategy just to dump away
the small components in a Gaussian mixture
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Lecture 11 Mixture of “Gaussians”

Another example

Consider

p(x) = 0.1N (x ;−0.2, 1) + 0.1N (x ;−0.1, 1) + 0.1N (x ; 0, 1) + 0.1N (x ; 0.1, 1)

+ 0.1N (x ; 0.2, 1) + 0.5N (x ; 5, 1).

Let say we want to reduce p(x) to only a mixture of two Gaussians. It is
tempting to just dumping four smallest one and renormalized the weight.
For example, if we choose to remove the first four components, we have

p̂(x) = 1/6N (x ; 0.2, 1) + 5/6N (x ; 5, 1)

The approximation p̂(x) is significantly different from p(x) as shown below
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Lecture 11 Mixture of “Gaussians”

Merging components

The problem is that while the first five components are all relatively
small compared to the last one, they are all quite similar and their
combined contribution is comparable to the latter

Actually the first five components are so similar that their combined
contribution can be accurately modeled as one Gaussian

So rather than discarding the components, one can get a much more
accurate approximation by merging them. The approximation is
illustrated as p̃(x) in the figure below
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Lecture 11 Mixture of “Gaussians”

Merging components

To successfully obtain such approximation p̃(x), we have to answer two
questions:

which components to merge?

how to merge them?
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Lecture 11 Mixture of “Gaussians”

Which Components to Merge?

It is reasonable to pick similar components to merge. The question is how
do will gauge the similarity between two components.

Consider two pdfs p(x) and q(x), note that we can define an inner
product of p(x) and q(x) by

〈p(x), q(x)〉 =
∫

p(x)q(x)dx

Note that the inner product is well defined and 〈p(x), p(x)〉 ≥ 0

By Cauchy-Schwartz inequality,

〈p(x), q(x)〉√
〈p(x), p(x)〉〈q(x), q(x)〉

=

∫
p(x)q(x)dx√∫

p(x)2dx
∫
q(x)2dx

≤ 1

The inner product maximizes (= 1) when p(x) = q(x). This suggests
a very reasonable similarity measure between two pdfs
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Lecture 11 Mixture of “Gaussians”

Similarity measure

Let’s define

Sim(p(x), q(x)) ,

∫
p(x)q(x)dx√∫

p(x)2dx
∫
q(x)2dx

In particular, if p(x) = N (x;µp,Σp) and q(x) = N (x;µq,Σq), we
have (please verify)

Sim(N (µp,Σp),N (µq,Σq)) =
N (µp;µq,Σp +Σq)√
N (0; 0, 2Σp)N (0; 0, 2Σq)

,

which can be computed very easily and is equal to one only when
means and covariances are the same
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Lecture 11 Mixture of “Gaussians”

How to Merge Components?

Say we have n components N (µ1,Σ1), N (µ2,Σ2), · · · , N (µn,Σn) with
weights w1,w2, · · · ,wn. What should the combined component be like?

Combined component weight should equal to total weight
∑n

i=1 wi

Combined mean will simply be
∑n

i=1 ŵiµi , where ŵi =
wi∑n
i=1 wi

For combined covariance, it may be tempting to approximate it as∑n
i=1 ŵiΣi .

However, it is an underestimate
Because the weighted sum only counted the contribution of variation
among each component, it did not take into account the variation due
to different means across components.
Instead, let’s denote X as the variable sampled from the mixture. That
is, X ∼ N (µi ,Σi ) with probability ŵi . Then, we have (please verify)

Σ = E [XXT ]− E [X]E [X]T

=
n∑

i=1

ŵi (Σi + µiµ
T
i )−

n∑
i=1

n∑
j=1

ŵi ŵjµiµ
T
j .
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For combined covariance, it may be tempting to approximate it as∑n
i=1 ŵiΣi .

However, it is an underestimate
Because the weighted sum only counted the contribution of variation
among each component, it did not take into account the variation due
to different means across components.
Instead, let’s denote X as the variable sampled from the mixture. That
is, X ∼ N (µi ,Σi ) with probability ŵi . Then, we have (please verify)

Σ = E [XXT ]− E [X]E [X]T

=
n∑

i=1

ŵi (Σi + µiµ
T
i )−

n∑
i=1

n∑
j=1

ŵi ŵjµiµ
T
j .
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ŵi (Σi + µiµ
T
i )−

n∑
i=1

n∑
j=1
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ŵi (Σi + µiµ
T
i )−

n∑
i=1

n∑
j=1
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Lecture 11 Mixture of “Gaussians”

Now, go back to our previous numerical example

Recall that p(x) = 0.1N (x ;−0.2, 1) + 0.1N (x ;−0.1, 1) +
0.1N (x ; 0, 1) + 0.1N (x ; 0.1, 1) + 0.1N (x ; 0.2, 1) + 0.5N (x ; 5, 1)

If we merge the five smallest components (one can easily check that
they are also more similar to each other than to the last component),
we have p̃(x) = 0.5N (x ; 0, 1.02) + 0.5N (x ; 5, 1) as shown again
below. The approximate pdf is virtually indistinguishable from the
original
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Lecture 11 Mixture of “Gaussians”

Review multivariate normal

Marginalization of a normal distribution is still a normal distribution

Conditioning of normal distribution:
X|y ∼ N (µX +ΣXYΣ

−1
YY(y − µY),ΣXX − ΣXYΣ

−1
YYΣYX)

Product of normal distribution:
N (y1; x,ΣY1)N (y2; x,ΣY2) =
N (y1; y2,ΣY2+ΣY1)N (x; (ΛY1+ΛY2)

−1(ΛY2y2+ΛY1y), (ΛY2+ΛY1)
−1)

Division of normal distribution:

N (x;µ1,Σ1)

N (x;µ2,Σ2)
=

N (x;µ, (Λ1 − Λ2)
−1)

N (µ2;µ,Λ
−1
2 + (Λ1 − Λ2)−1)

,

where µ = (Λ1 − Λ2)
−1(Λ1µ1 − Λ2µ2)

Similarity measure

Sim(N (µp,Σp),N (µq,Σq)) =
N (µp;µq,Σp +Σq)√
N (0; 0, 2Σp)N (0; 0, 2Σq)

,
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Lecture 11 More distributions

Bernoulli distribution

Consider someone flips a biased coin. The probability of the outcome
is described by the Bernoulli distribution. Denote X = 1 for a head
and X = 0 for a tail. Let Pr(X = 1) = p.

Then the Bernoulli
distribution is simply

Bern(x |p) =

{
p, x = 1

1− p, x = 0

More concisely, we can write it as

Bern(x |p) = px(1− p)1−x ,

The mean and variance are

E [X ] = p · 1 + (1− p) · 0 = p

Var [X ] = p · (1− p)2 + (1− p) · p2 = p(1− p)
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Lecture 11 More distributions

Binomial distribution (N trials)

Repeat the experiment for N times, the probability of the outcome
will now be described by the binomial distribution. Note that x is now
the number of obtained heads, we have

Bin(x |p,N) =

(
N

x

)
px(1− p)N−x ,

Mean and variances are given by

E [X ] =
∑N

x=0 Bin(x |p)x =
∑N

x=1
N!

(x−1)!(N−x)!p
x(1− p)N−x

= Np
∑N

x=1
(N−1)!

(x−1)!(N−x)!p
x−1(1− p)N−x= Np

∑N−1
x=0 Bin(x |p,N − 1)

= Np
Similar, E [X (X − 1)] =

∑N
x=2

N!
(x−2)!(N−x)!p

x(1− p)N−x

= N(N − 1)p2
∑N−2

x=0 Bin(x |p,N − 2) = N(N − 1)p2

Therefore, Var [X ] = E [X 2]− E [X ]2= E [X (X − 1)] + E [X ]− E [X ]2 =
N(N − 1)p2 + Np − (Np)2 = Np(1− p)
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N(N − 1)p2 + Np − (Np)2 = Np(1− p)
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Lecture 11 More distributions

Binomial distribution

As shown below, the binomial distribution can be model well with a
normal distribution N (Np,Np(1− p)) for large N

The binomial distribution is shown in blue and an approximation by normal
distribution is shown in red
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Lecture 11 More distributions

Conjugate prior

Note that both Bernoulli and binomial distributions have the form
pu(1− p)v

To estimate p, recall that the ML estimator will try to compute

p̂ = argmax
p

p(u, v |p) = argmax
p

pu(1− p)v

Now if we would like to use the MAP estimator instead, we need to
introduce a prior p(p) and solve instead

p̂ = argmax
p

p(u, v |p)p(p) = argmax
p

pu(1− p)vp(p)

It is very difficult to determine the prior unanimously. Actually it can
be controversial just to determine the form of it
However, if we select p(p) of a form p(p) ∝ pa(1− p)b, then the
resulting posterior distribution with the same form as before. This
choice is often chosen for practical purposes, and a prior with same
“form” as its likelihood (and thus posterior) is known as the
conjugate prior
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Lecture 11 More distributions

Beta distribution

The conjugate prior of both Bernoulli and binomial distributions is the
beta distribution. Its pdf is given by

Beta(x |a, b) = xa−1(1− x)b−1

B(a, b)
,

where X ∈ [0, 1] and B(a, b) = Γ(a)Γ(b)
Γ(a+b)

Note that with a = b = 1, Beta(x |1, 1) = 1. It is the same as no prior
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Lecture 11 More distributions

Gamma function

Note that Γ(z) =

∫ ∞

0
xz−1e−x dx

Γ(1) =

∫ ∞

0
e−x dx = −e−x |∞0 = 1

For z > 1, we have Γ(z) = (z − 1)Γ(z − 1)

Proof.

Γ(z) =

∫ ∞

0
xz−1e−x dx= −

∫ ∞

0
xz−1de−x

= −xz−1e−x |∞0 + (z − 1)

∫ ∞

0
xz−2e−x dx

= (z − 1)

∫ ∞

0
xz−2e−x dx = (z − 1)Γ(z − 1)

Therefore, for integer z > 1, Γ(z) = (z − 1)!
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Lecture 11 More distributions

Mode of beta distribution

The mode is the peak of a distribution. Recall that

Beta(x |a, b) = xa−1(1−x)b−1

B(a,b) . Set

∂Beta(x |a, b)
∂x

=
(a− 1)xa−2(1− x)b−1 − (b − 1)xa−1(1− x)b−2

B(a, b)
= 0,

we have (a− 1)(1− x) = (b − 1)x ⇒ x = a−1
a+b−2 when a, b > 1

Note that when a or b is less than or equal to 1, the peak appears at
either x = 0 or x = 1
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Lecture 11 More distributions

Mean and variance of Beta distribution

Note that
∫ 1
x=0 p(x |a, b) = 1⇒

∫ 1
x=0 x

a−1(1− x)b−1 = B(a, b) = Γ(a)Γ(b)
Γ(a+b) .

This gives us a handy trick to manipulate beta distribution

E [X ] =

∫ 1

x=0
xBeta(x |a, b)dx =

Γ(a+ b)

Γ(a)Γ(b)

∫ 1

x=0
xa(1− x)b−1dx

=
Γ(a+ b)

Γ(a)Γ(b)

Γ(a+ 1)Γ(b)

Γ(a+ b + 1)
=

a

a+ b

Similarly, E [X 2] = Γ(a+b)
Γ(a)Γ(b)

∫ 1
x=0 x

a+1(1− x)b−1dx= Γ(a+b)
Γ(a)Γ(b)

Γ(a+2)Γ(b)
Γ(a+b+2) =

a(a+1)
(a+b)(a+b+1) . Thus,

Var [X ] =E [X 2]− E [X ]2 =
a(a+ 1)

(a+ b)(a+ b + 1)
− a2

(a+ b)2

=
a(a+ 1)(a+ b)− a2(a+ b + 1)

(a+ b)2(a+ b + 1)
=

ab

(a+ b)2(a+ b + 1)
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Lecture 11 More distributions

Posterior estimate of probability p

Consider the coin flipping example again. Let say the prior probability4 of
the coin is beta distributed with parameters a and b. And we flip the coin
once to get outcome x .

Upon observing x , we can estimate p by

p(p|x , a, b)

=Const1 · Beta(p|a, b)Bern(x |p)
=Const2 · pa−1+x(1− p)b−1+1−x

=Beta(p|ã, b̃)

So the posterior probability distribution is also beta distributed and the
parameters just changed to ã← a+ x and b̃ ← b + 1− x

4Note that this can be very confusing at the beginning. Beware that we are talking
about the distribution of the probability of some outcome
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Lecture 11 More distributions

Posterior estimate of probability p

Let say we continue our example and we flip the coin by N times and
obtain x head. So instead of the Bernoulli likelihood, we have a binomial
likelihood. Like the last slide, we have the same beta prior with parameters
a and b.

After the experiment x , we can update the distribution of our
estimated p by

p(p|x , a, b) =Const1 · Beta(p|a, b)Bin(x |p,N)

=Const2 · pa−1+x(1− p)b−1+N−x

=Beta(p|ã, b̃)

Again, the posterior distribution is still beta but with parameters updated
to ã← a+ x and b̃ ← b + N − x
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Again, the posterior distribution is still beta but with parameters updated
to ã← a+ x and b̃ ← b + N − x
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Lecture 11 More distributions

Prior and regularization

One major reason of introducing prior is for the sake of “regularizing”
the answer

Another coin example

Fall back to high school, assume that we flip a coin for 10 times and
got 3 heads. We want to estimate the chance of getting heads

3/10, right?
And if I asked you chance of getting another head in the future, you
will say the chance of getting another head is 3/10
Now, if I actually flip the coin for 10 times and got no head, what do
you expect the chance of getting a head next time?
0? Okay, the estimate is a bit extreme. We know that it is very
difficult to make a coin that always gives a tail
How about we first assumed that we actually flipped two times and got
1 head before we did experiment? We will estimate 1/12 instead of
0/10
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Lecture 11 More distributions

Prior and regularization

We can verify that this is exactly what we got for a Beta prior with
a = 2 and b = 2.

Note that the posterior distribution is

Beta(p|2, 2)Bin(x = 0|p,N = 10) ∼ Beta(0+ a, 10+b) = Beta(2, 12)

Now, what is the MAP estimate? It should be the p that maximize
the posterior probability. That is the mode of Beta(2, 12). Thus,

p
(MAP)
Head =

a− 1

a+ b − 2
=

1

12

Recall that Beta(1, 1) = 1 and so likelihood function is equivalent to
Beta(p|1, 1)Bin(0|p, 10) ∼ Beta(1, 11). Thus the ML estimate is the

mode of Beta(1, 11)⇒ p
(ML)
Head = 1−1

1+11−2 = 0
10 = 0

This indeed is the same as our high school näıve estimate
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Lecture 11 More distributions

Bayesian estimation and regularization

Now let’s consider the Bayesian estimate. Even for the case with no
prior (equivalently an uniform prior or Beta prior with a = 1 and
b = 1), recall that the “posterior distribution” is Beta(1, 11)

The Bayesian estimate should be the average p summing all
possibility of p, which is essentially just,

∫
pBeta(p|1, 11)dp = E [p],

i.e., the mean. Thus

p
(Bayesian)
Head =

a

a+ b
=

1

11

Note that Bayesian estimation is “self-regularized” (i.e., giving less
extreme results) since it inherently averages out all possible cases

Remark

Note that we used the non-informative prior above just to illustrate the
self-regularization property of Bayesian estimation. When you are given a
prior, you should always use the given prior instead for an actual problem
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Lecture 11 More distributions

Multinomial distribution

Binomial distribution models the probability of a binary outcome. For
a random event with discrete but non-binary (more than two)
outcomes, we can model the event with a multinomial distribution

Let say the probability of each possible outcome i is pi . And we have
conducted N different experiments, let say xi is the number of times
we obtain outcome i . Then the probability of such even is given by

Mult(x1, · · · , xn|p1, · · · , pn) =
(

N

x1x2 · · · xn

)
px11 px22 · · · p

xn
n ,

Just make sure we are in the same pace. Note that
p1 + p2 + · · ·+ pn = 1 and x1 + x2 + · · ·+ xn = N
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Lecture 11 More distributions

Dirichlet distribution

Note that the conjugate prior of multinomial distribution should take
the form xα1−1

1 xα2−1
2 · · · xαn−1

n

It turns out that the distribution is the so-called Dirichlet distribution.
Its pdf is given by

Dir(x1, · · · , xn|α1, · · · , αn)

=
Γ(α1 + · · ·+ αn)

Γ(α1)Γ(α2) · · · Γ(αn)
xα1−1
1 xα2−1

2 · · · xαn−1
n

As usual since pdf should be normalized to 1, we have∫
xα1−1
1 xα2−1

2 · · · xαn−1
n =

Γ(α1)Γ(α2) · · · Γ(αn)

Γ(α1 + · · ·+ αn)
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Lecture 11 More distributions

Mean, mode, variance of Dirichlet distribution

Mean:

E [X1] =
Γ(α1 + · · ·+ αn)

Γ(α1) · · · Γ(αn)

∫
xα1
1 xα2−1

2 · · · xαn−1
n

=
Γ(α1 + · · ·+ αn)

Γ(α1) · · · Γ(αn)

Γ(α1 + 1) · · · Γ(αn)

Γ(α1 + · · ·+ αn + 1)
=

α1

α1 + · · ·+ αn

Similarly, E [X 2
1 ] =

Γ(α1+···+αn)
Γ(α1)···Γ(αn)

∫
xα1+1
1 xα2−1

2 · · · xαn−1
n =

Γ(α1+···+αn)
Γ(α1)···Γ(αn)

Γ(α1+2)···Γ(αn)
Γ(α1+···+αn+2) =

(α1+1)α1

(α1+···+αn+1)(α1+···+αn)
. Thus,

Var(X1) = E [X 2
1 ]− E [X 2

1 ] =
(α1+1)α1

(α1+···+αn+1)(α1+···+αn)
− α2

1
(α1+···+αn)2

=
α1(α0−α1)
α2
0(α0+1)

, where α0 = α1 + · · ·+ αn

Mode: one can show that the mode of Dir(α1, · · · , αn) for
α1, · · · , αn > 1 is

αi − 1

α1 + · · ·+ αn − n
.

We will not show it now but will leave as an exercise
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1 ] =
(α1+1)α1

(α1+···+αn+1)(α1+···+αn)
− α2

1
(α1+···+αn)2

=
α1(α0−α1)
α2
0(α0+1)

, where α0 = α1 + · · ·+ αn

Mode: one can show that the mode of Dir(α1, · · · , αn) for
α1, · · · , αn > 1 is

αi − 1

α1 + · · ·+ αn − n
.

We will not show it now but will leave as an exercise
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Lecture 11 More distributions

Summary of Dirichlet distribution

Pdf:

Dir(x|α) =
Γ(α1 + · · ·+ αn)

Γ(α1)Γ(α2) · · · Γ(αn)
xα1−1
1 xα2−1

2 · · · xαn−1
n

Mean:
αi

α1 + · · ·+ αn

Variance:
αi (α0 − αi )

α2
0(α0 + 1)

Mode:
αi − 1

α1 + · · ·+ αn − n
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Lecture 11 More distributions

Posterior probability given Multinomial likelihood and
Dirichlet prior

Upon observing x1, · · · , xn, the posterior distribution of p1, · · · , pn
becomes

p(p1, · · · , pn|x1, · · · , xn, α1, · · · , αn)

=Const1 · Dir(p1, · · · , pn|α1, · · · , αn)Mult(x1, · · · , xn|p1, · · · , pn)
=Const2 · px1+α1

1 · · · pxn+αn
n

=Dir(p1, · · · , pn|α̃1, · · · , α̃n)

So the posterior distribution is Dirichlet with parameters updated to
α̃1 ← x1 + α1, · · · , α̃n ← xn + αn
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Lecture 11 More distributions

Poisson distribution

Poisson distribution describes the number of arrival K within some period.
For example, one can use Poisson distribution to model the arrival process
(Poisson process) of customers into a store.

Its pdf is given by

Poisson(k|λT ) =
e−λT (λT )k

k!
,

where k is a non-negative integer, λ is rate of arrival and T is the length
of the observed period. It is easy to check that (please verify)

Mean = λT

Variance = λT

N.B. the parameters λT comes as a group and so we can consider it as a
single parameter
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Lecture 11 More distributions

Poisson process

Poisson process is probably the simplest random process to model event
arrivals. It is based on two simple assumptions

1 Arrival rate is invariant over time

That is, λ is a constant that does not change with time

2 Each arrival is independent of the other

For example, even though we just have one customer coming in, the
probability that the next customer to come in immediately should not
decrease
It makes sense to model say customers to a department store
It can be less perfect to model the times my car broke down. The
events are likely to be related
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Lecture 11 More distributions

Poisson process and Poisson distribution

Consider a period T and let’s the arrival rate be λ as before. Let’s
partition T into N different very short intervals of length ∆.

Hence,
T = N∆. We will also assume N →∞ and thus ∆→ 0. The
probability of getting an arrival in any interval ∆ is thus λ∆.
Moreover, since ∆→ 0, the probability of getting two arrivals ∝ ∆2

and is negligible compared to λ∆

Then, the probability of k arrivals
Pr(k arrivals in T ) =

(N
k

)
(λ∆)k(1− λ∆)N−k

= N(N−1)···(N−k+1)
k! (λ∆)k(1− λ∆)N−k ≈ Nk

k! λ
k T k

Nk (1− λ∆)N−k

= (λT )k

k! (1− λT
N )N−k≈ (λT )k

k! (1− λT
N )N= (λT )k

k! exp(−λT ),
where we use (1 + a/N)N = exp(a) for the last equality

Note that indeed Pr(k arrivals in T ) = Poisson(k |λT )
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Lecture 11 More distributions

Interarrival time of Poisson process

Using the similar analysis, we can also easily evaluate the distribution of
interarrival time, the time that the next event will happen given that an
event just happened. Let t = n∆ and use the same notation as before

Note that t > 0 and ∆→ 0 and so n→∞. Now,
Pr(next event happened within in time [t, t +∆])
= Pr(next event happened within in time [n∆, (n + 1)∆])
= Pr(no event in first n intervals)Pr(event happened in n + 1 interval)
= (1− λ∆)n(λ∆)
Let fT (t) be the pdf of the interval time. Then,

fT (t) =
(1−λ∆)n(λ∆)

∆ = λ(1− λ t
n )

n = λ exp(−λt), where we use
(1 + a/n)n = exp(a) again for n→∞

Exponential distribution

fT (t) = λ exp(−λt) , Exp(t|λ) is the pdf of the exponential distribution
with parameter λ. It is easy to verify that (as exercise)

E [T ] = 1/λ

Var(T ) = 1/λ2
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Lecture 11 More distributions

Normal distribution revisit

For a univariate normal random variable, the pdf is given by

Norm(x |µ, σ2) =
1√
2πσ2

exp

(
−(x − µ)2

2σ2

)
=

√
λ

2π
exp

(
−λ(x − µ)2

2

)
with

E [X |µ, σ2] = µ,

E [(X − µ)2|µ, σ2] = σ2,

Recall that λ = 1
σ2 is the precision parameter that simplifies computations

in many cases
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Lecture 11 More distributions

Conjugate prior of normal distribution for fixed σ2

Consider σ2 fixed and µ as the model parameter, then the posterior
probability is given by

p(µ|x ;σ2) ∝ p(µ, x ;σ2)

=p(µ)Norm(x |µ;σ2)

∝p(µ)exp
(
−(x − µ)2

2σ2

)
It is apparent that the posterior will keep the same form if p(µ) is also
normal. Therefore, normal distribution is the conjugate prior of itself for
fixed variance
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Lecture 11 More distributions

Posterior distribution of normal variable for fixed σ2

Given prior p(µ) = Norm(µ|µ0, σ
2
0) and likelihood Norm(x |µ;σ2). Let’s

find the posterior probability,

p(µ|x ;σ2, µ0, σ
2
0)

=Const · Norm(µ|µ0, σ
2
0)Norm(x |µ;σ2)

=Const2 · exp
(
−(x − µ)2

2σ2
− (µ− µ0)

2

2σ2
0

)
=Norm

(
µ; µ̃, σ̃2

)
,

where µ̃ =
σ2
0x+µ0σ

2

σ2
0+σ2 and σ̃2 =

σ2
0σ

2

σ2
0+σ2 . Alternatively, λ̃ = λ0 + λ and

µ̃ = λ
λ̃
x + λ0

λ̃
µ0. Note that we have already came across the more general

expression when we studied product of multivariate normal distribution
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Lecture 11 More distributions

Conjugate prior of normal distribution for fixed µ

Consider µ fixed and λ as the model parameter

p(x |λ;µ) ∝p(x , λ;µ) = p(λ)Norm(x |λ;µ)

∝p(λ)
√
λ exp

(
−λ(x − µ)2

2

)
More generally, when we have N observations from the same source,

p(x1, · · · , xN , λ;µ) =p(λ)
N∏
i=1

Norm(xi |λ;µ)

∝p(λ)λ
N
2 exp

(
−λ

N∑
i=1

(xi − µ)2

2

)

From inspection, the conjugate prior should have a form λa exp(−bλ)
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Lecture 11 More distributions

Gamma distribution

The distribution with the desired form described in previous slide turns out
to be the Gamma distribution. Its pdf, mean, and variance (please verify
the mean and variance) are given by

Gamma(λ|a, b) = 1

Γ(a)
baλa−1exp(−bλ)

E [λ] =
a

b

Var [λ] =
a

b2
,

where a, b > 0 and λ ≥ 0

N.B. when a = 1, Gamma reduces to the exponential distribution. When a
is integer, it reduces to Erlang distribution
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Lecture 11 More distributions

Posterior distribution of normal variable for fixed µ

Posterior probability given Normal likelihood (fixed mean) and Gamma
prior

p(λ|x , a, b;µ) =Const1 · Gamma(λ|a, b)Norm(x |λ;µ)

=Const2 · λa−1 exp(−bλ)
√
λ exp

(
−λ(x − µ)2

2

)
=Gamma

(
λ; ã, b̃

)
,

where ã← a+ 1
2 and b̃ ← b + (x−µ)2

2
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λ; ã, b̃

)
,

where ã← a+ 1
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Lecture 11 More distributions

Conjugate prior summary

Distribution Likelihood p(x|θ) Prior p(θ) Distribution

Bernoulli (1− θ)(1−x)θx ∝ (1− θ)(a−1)θ(b−1) Beta

Binomial ∝ (1− θ)(N−x)θx ∝ (1− θ)(a−1)θ(b−1) Beta

Multinomial ∝ θx11 θx22 θx33 ∝ θα1−1
1 θα2−1

2 θα3−1
3 Dirichlet

Normal
(fixed σ2)

∝ exp
(
− (x−θ)2

2σ2

)
∝ exp

(
− (θ−µ0)2

2σ2
0

)
Normal

Normal
(fixed µ)

∝
√
θ exp

(
− θ(x−µ)2

2

)
∝ θa−1exp(−bθ) Gamma

Poisson ∝ θx exp(−θ) ∝ θa−1exp(−bθ) Gamma
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Lecture 12 Overview

This time...

Bayesian Net

Belief Propagation Algorithm

LDPC/IRA Codes
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Lecture 12 Bayesian Net

Bayesian Net

Relationship of variables depicted by a directed graph with no loop

Given a variable’s parents, the variable is conditionally independent of
any non-descendants

Reduce model complexity

Facilitate easier inference
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Lecture 12 Bayesian Net

Burlgar and racoon

Burlgar: B; Racoon: R; Dog barked: D; Police called: P; Trash can fell: T

p(p, d , b, t, r) =p(p|d , b, t, r)p(d |b, t, r)p(b|t, r)p(t|r)p(r)

=p(p|d , �b, �t, �r)︸ ︷︷ ︸
2 parameters

p(d |b, �t, r)p(b|�t, �r)p(t|r)p(r)

P D p(p|d)
p ¬d 0.01
p d 0.4
¬p ¬d 0.99
¬p d 0.6

T R p(t|r)
t ¬r 0.05
t r 0.7
¬t ¬r 0.95
¬t r 0.3

D B R p(d |b, r)
d ¬b ¬r 0.1
d ¬b r 0.5
d b ¬r 1
d b r 1

¬d ¬b ¬r 0.9
¬d ¬b r 0.5
¬d b ¬r 0
¬d b r 0
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Lecture 12 Bayesian Net

Comparison of # parameters

# parameters of complete model: 25 − 1 = 31

# parameters of Bayesian net:

p(p|d): 2
p(d |b, r): 4
p(b): 1
p(t|r): 2
p(r): 1
Total: 2 + 4 + 1 + 2 + 1 = 10

The model size reduces to less than 1
3 !
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Lecture 12 Bayesian Net

Burglar and racoon

Question: What is the probability of a burglar visit if police was called but
trash can stayed untouched?

Let p(r) = 0.2 and p(b) = 0.01

D B R p(d |b, r)
d ¬b ¬r 0.1
d ¬b r 0.5
d b ¬r 1
d b r 1

¬d ¬b ¬r 0.9
¬d ¬b r 0.5
¬d b ¬r 0
¬d b r 0

⇒

D B R p(d , b, r)

d ¬b ¬r 0.0792
d ¬b r 0.099
d b ¬r 0.008
d b r 0.002

¬d ¬b ¬r 0.7128
¬d ¬b r 0.099
¬d b ¬r 0
¬d b r 0
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Lecture 12 Bayesian Net

Burglar and racoon

Question: What is the probability of a burglar visit if police was called but
trash can stayed untouched?

P D p(p|d)
p ¬d 0.01
p d 0.4

¬p ¬d 0.99
¬p d 0.6

P D B R p(d , b, r , p)

p d ¬b ¬r 0.0792
p d ¬b r 0.099
p d b ¬r 0.008
p d b r 0.002

p ¬d ¬b ¬r 0.7128
p ¬d ¬b r 0.099
p ¬d b ¬r 0
p ¬d b r 0

· · ·
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P D B R p(d , b, r , p)

p d ¬b ¬r 0.0792
p d ¬b r 0.099
p d b ¬r 0.008
p d b r 0.002

p ¬d ¬b ¬r 0.007128
p ¬d ¬b r 0.00099
p ¬d b ¬r 0
p ¬d b r 0

· · ·
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Lecture 12 Bayesian Net

Burglar and racoon

Question: What is the probability of a burglar visit if police was called but
trash can stayed untouched?

T R p(t|r)
t ¬r 0.05
t r 0.7

¬t ¬r 0.95
¬t r 0.3

T P D B R p(d , b, r , p, t)
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¬t p ¬d ¬b ¬r 0.007128
¬t p ¬d ¬b r 0.00099
¬t p ¬d b ¬r 0
¬t p ¬d b r 0
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Lecture 12 Bayesian Net

Burglar and racoon

Question: What is the probability of a burglar visit if police was called but
trash can stayed untouched?

Normalize...

T P D B R p(d , b, r , p)

¬t p d ¬b ¬r 0.030096
¬t p d ¬b r 0.01188
¬t p d b ¬r 0.00304
¬t p d b r 0.00024

¬t p ¬d ¬b ¬r 0.0067716
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¬t p ¬d b ¬r 0
¬t p ¬d b r 0
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Burglar and racoon

Question: What is the probability of a burglar visit if police was called but
trash can stayed untouched?

Normalize...

T P D B R p(d , b, r , p)

¬t p d ¬b ¬r 0.57518
¬t p d ¬b r 0.22704
¬t p d b ¬r 0.058099
¬t p d b r 0.0045868

¬t p ¬d ¬b ¬r 0.12942
¬t p ¬d ¬b r 0.0056761
¬t p ¬d b ¬r 0
¬t p ¬d b r 0

· · ·
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Lecture 12 Bayesian Net

Burglar and racoon

Question: What is the probability of a burglar visit if police was called but
trash can stayed untouched?

p(b|¬t, p)
=0.058099 + 0.0045868

≈0.0626

T P D B R p(d , b, r , p)

¬t p d ¬b ¬r 0.57518
¬t p d ¬b r 0.22704
¬t p d b ¬r 0.058099
¬t p d b r 0.0045868

¬t p ¬d ¬b ¬r 0.12942
¬t p ¬d ¬b r 0.0056761
¬t p ¬d b ¬r 0
¬t p ¬d b r 0

· · ·
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Lecture 12 Belief Propagation Algorithm

Belief Propagation Algorithm

It is also known to be the sum-product algorithm

The goal of belief propagation is to efficiently compute the marginal
distribution out of the joint distribution of multiple variables. This is
essential for inferring the outcome of a particular variable with
insufficient information

The belief propagation algorithm is usually applied to problems
modeled by a undirected graph (Markov random field) or a factor
graph

Rather than giving a rigorous proof of the algorithm, we will provide a
simple example to illustrate the basic idea
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Lecture 12 Belief Propagation Algorithm

Factor Graph

A factor graph is a bipartite graph describing the correlation among
several random variables. It generally contains two different types of
nodes in the graph: variable nodes and factor nodes

A variable node that is usually shown as circles corresponds to a
random variable

A factor node that is usually shown as a square connects variable
nodes whose corresponding variables are immediately related
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Lecture 12 Belief Propagation Algorithm

An Example

A factor graph example is shown below. We have 8 discrete random
variables, x41 and z41 , depicted by 8 variable nodes

Among the variable nodes, random variables x41 (indicated by light
circles) are unknown and variables z41 (indicated by dark circles) are
observed with known outcomes z̃41
The relationships among variables are captured entirely by the figure.
For example, given x41 , z1, z2, z3, and z4 are conditional independent
of each other. Moreover, (x3, x4) are conditional independent of x1
given x2
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Lecture 12 Belief Propagation Algorithm

The joint probability p(x4, z4) of all variables can be decomposed into factor
functions with subsets of all variables as arguments in the following

p(x4, z4) = p(x4)p(z1|x1)p(z2|x2)p(z3|x3)p(z4|x4)

= p(x1, x2)︸ ︷︷ ︸
fb(x1,x2)

p(x3, x4|x2)︸ ︷︷ ︸
fd (x2,x3,x4)

p(z3|x3)︸ ︷︷ ︸
fe(x3,z3)

p(z1|x1)︸ ︷︷ ︸
fa(x1,z1)

p(z4|x4)︸ ︷︷ ︸
ff (x4,z4)

p(z2|x2)︸ ︷︷ ︸
fc (x2,z2)

= fb(x1, x2)fd(x2, x3, x4)fe(x3, z3)fa(x1, z1)ff (x4, z4)fc(x2, z2)

Note that each factor function corresponds to a factor node in the factor
graph.

The arguments of the factor function correspond to the variable nodes that
the factor node connects to.
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Lecture 12 Belief Propagation Algorithm

One common problem in probability inference is to estimate the value of a
variable given incomplete information. For example, we may want to estimate x1
given z4 as z̃4. The optimum estimate x̂1 will satisfy

x̂1 = argmax
x1

p(x1|z̃4) = argmax
x1

p(x1, z̃
4)

p(z̃4)
= argmax

x1
p(x1, z̃

4).

This requires us to compute the marginal distribution p(x1, z̃
4) out of the joint

probability p(x4, z̃4). Note that

p(x1, z̃
4) =

∑
x4
2

p(x4, z̃4)

=
∑
x4
2

fa(x1, z̃1)fb(x1, x2)fc(x2, z̃2)fd(x2, x3, x4)fe(x3, z̃3)ff (x4, z̃4)

=fa(x1, z̃1)︸ ︷︷ ︸
ma1

∑
x2

fb(x1, x2)fc(x2, z̃2)︸ ︷︷ ︸
mc2

∑
x3,x4

fd(x2, x3, x4)fe(x3, z̃3)︸ ︷︷ ︸
m3d

ff (x4, z̃4)︸ ︷︷ ︸
m4d︸ ︷︷ ︸

md2︸ ︷︷ ︸
m2b︸ ︷︷ ︸

mb1
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Lecture 12 Belief Propagation Algorithm

We can see from the last equation that the joint probability can be
computed by combining a sequence of messages passing from a variable
node i to a factor node a (mia) and vice versa (mai ). More precisely, we
can write

ma1(x1)← fa(x1, z̃1) =
∑
z1

fa(x1, z1)p(z1)︸ ︷︷ ︸
m1a

,

mc2(x2)← fc(x2, z̃2) =
∑
z2

fc(x2, z2)p(z2)︸ ︷︷ ︸
m2c

,

me3(x3)← fe(x3, z̃3) =
∑
z3

fe(x3, z3)p(z3)︸ ︷︷ ︸
m3e

,

mf 4(x4)← ff (x4, z̃4) =
∑
z4

ff (x4, z4)p(z4)︸ ︷︷ ︸
m4f

,

where p(zi ) =

{
1, zi = z̃i

0, otherwise
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Lecture 12 Belief Propagation Algorithm

m3d(x3)← me3(x3) = fe(x3, z̃3),

m4d(x4)← mf 4(x4) = ff (x4, z̃4),

md2(x2)←
∑
x3,x4

fd(x2, x3, x4)m3d(x3)m4d(x4),

m2b(x2)← mc2(x2)md2(x2),

mb1(x1)←
∑
x2

fb(x1, x2)m2b(x2),

p(x1, z̃
4)← ma1(x1)mb1(x1),

p(x1, z̃
4) = fa(x1, z̃1)︸ ︷︷ ︸

ma1

∑
x2

fb(x1, x2)fc(x2, z̃2)︸ ︷︷ ︸
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Lecture 12 Belief Propagation Algorithm

Belief propagation algorithm

Initialization: For any variable node i , if the prior probability of xi is known
and equal to p(xi ), for a ∈ N(i),

mia(xi )← p(xi )

Message passing:

mia(xi )←
∏

b∈N(i)\a

mbi (xi ),

mai (xi )←
∑
xa

fa(xa)
∏

j∈N(a)\i

mja(xj) (“sum-product”)

Belief update:

βi (xi )←
∏

a∈N(i)

mai (xi )

Stopping criteria: repeat message update and/or belief update until the
algorithm stops when maximum number of iterations is reached or some
other conditions are satisfied.
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Lecture 12 Belief Propagation Algorithm

Remark

We have not assumed the precise phyical meanings of the factor
functions themselves. The only assumption we made is that the joint
probability can be decomposed into the factor functions and
apparently this decomposition is not unique

The belief propagation algorithm as shown above is exact only
because the corresponding graph is a tree and has no loop. If loop
exists, the algorithm is not exact and generally the final belief may
not even converge

While the result is no longer exact, applying BP algorithm for general
graphs (sometimes refer to as loopy BP) works well in many
applications such as LDPC decoding
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Lecture 12 Belief Propagation Algorithm

Burglar and racoon revisit

Question: What is the probability of a burglar visit if police was called but
trash can stayed untouched?

B

D

P

R

T

B

D

P

RT

T

fT ,R

R

fB,D,R

D

fD,P

P

B

fP

fT
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Burglar and racoon revisit

Question: What is the probability of a burglar visit if police was called but
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Convert to factor graph..
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Using belief propagation...

{
fP(p) = 1

fP(¬p) = 0

{
fT (t) = 0

fT (¬t) = 1

fB,D,R(b, d , r) = p(b, d , r)

fT ,R(t, r) = p(t|r)
fD,P(d , p) = p(p|d)

T

fT ,R

R

fB,D,R

D

fD,P

P

B

fP

fT
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Lecture 12 LDPC Codes

Some History of LDPC Codes

Before 1990’s, the strategy for channel code has always been looking for
codes that can be decoded optimally. This leads to a wide range of so-called
algebraic codes. It turns out the “optimally-decodable” codes are usually
poor codes

Until early 1990’s, researchers had basically agreed that the Shannon
capacity was restricted to theoretical interest and could hardly be reached in
practice

The introduction of turbo codes gave a huge shock to the research
community. The community were so dubious about the amazing
performance of turbo codes that they did not accept the finding initially
until independent researchers had verified the results

The low-density parity-check (LDPC) codes were later rediscovered and both
LDPC codes and turbo codes are based on the same philosophy differs from
codes in the past. Instead of designing and using codes that can be decoded
“optimally”, let us just pick some random codes and perform decoding
“sub-optimally”
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Lecture 12 LDPC Codes

LDPC Codes

As its name suggests, LDPC codes refer to codes that with sparse
(low-density) parity check matrices. In other words, there are only few
ones in a parity check matrix and the rest are all zeros

We learn from the proof of Channel Coding Theorem that random
code is asymptotically optimum. This suggests that if we just
generate a code randomly with a very long code length. It is likely
that we will get a very good code.

The problem is: how do we perform decoding? Due to the lack of
structure of a random code, tricks that enable fast decoding for
structured algebraic codes that were widely used before 1990’s are
unrealizable here

Solution: Belief propagation!
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Lecture 12 LDPC Codes

Tanner Graph

An LDPC code can be represented using a Tanner
graph as shown on the right

Each circle xi represents a code bit sent to the decoder

Each square represents a check bit with value equal to
the sum of code bit connecting to it

The vector x1, x2, · · · , xN is a codeword only if all
checks are zero

By default, the mapping between a codeword to the
actual message is non-trivial for an LDPC code

It would be great if the actual message is included in
the codeword. That is, some of the bits in the
codeword spell out the actual message ⇒ IRA codes

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming December 1, 2020 124 / 131



Lecture 12 LDPC Codes

Tanner Graph

An LDPC code can be represented using a Tanner
graph as shown on the right

Each circle xi represents a code bit sent to the decoder

Each square represents a check bit with value equal to
the sum of code bit connecting to it

The vector x1, x2, · · · , xN is a codeword only if all
checks are zero

By default, the mapping between a codeword to the
actual message is non-trivial for an LDPC code

It would be great if the actual message is included in
the codeword. That is, some of the bits in the
codeword spell out the actual message ⇒ IRA codes

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming December 1, 2020 124 / 131



Lecture 12 LDPC Codes

Tanner Graph

An LDPC code can be represented using a Tanner
graph as shown on the right

Each circle xi represents a code bit sent to the decoder

Each square represents a check bit with value equal to
the sum of code bit connecting to it

The vector x1, x2, · · · , xN is a codeword only if all
checks are zero

By default, the mapping between a codeword to the
actual message is non-trivial for an LDPC code

It would be great if the actual message is included in
the codeword. That is, some of the bits in the
codeword spell out the actual message ⇒ IRA codes

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming December 1, 2020 124 / 131



Lecture 12 LDPC Codes

Tanner Graph

An LDPC code can be represented using a Tanner
graph as shown on the right

Each circle xi represents a code bit sent to the decoder

Each square represents a check bit with value equal to
the sum of code bit connecting to it

The vector x1, x2, · · · , xN is a codeword only if all
checks are zero

By default, the mapping between a codeword to the
actual message is non-trivial for an LDPC code

It would be great if the actual message is included in
the codeword. That is, some of the bits in the
codeword spell out the actual message ⇒ IRA codes

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming December 1, 2020 124 / 131



Lecture 12 LDPC Codes

Tanner Graph

An LDPC code can be represented using a Tanner
graph as shown on the right

Each circle xi represents a code bit sent to the decoder

Each square represents a check bit with value equal to
the sum of code bit connecting to it

The vector x1, x2, · · · , xN is a codeword only if all
checks are zero

By default, the mapping between a codeword to the
actual message is non-trivial for an LDPC code

It would be great if the actual message is included in
the codeword. That is, some of the bits in the
codeword spell out the actual message ⇒ IRA codes

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming December 1, 2020 124 / 131



Lecture 12 LDPC Codes

Tanner Graph

An LDPC code can be represented using a Tanner
graph as shown on the right

Each circle xi represents a code bit sent to the decoder

Each square represents a check bit with value equal to
the sum of code bit connecting to it

The vector x1, x2, · · · , xN is a codeword only if all
checks are zero

By default, the mapping between a codeword to the
actual message is non-trivial for an LDPC code

It would be great if the actual message is included in
the codeword. That is, some of the bits in the
codeword spell out the actual message ⇒ IRA codes

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming December 1, 2020 124 / 131



Lecture 12 LDPC Codes

IRA Codes

Irregular repeated accumulate (IRA) code a type of
systematic LDPC code, i.e., each codeword can be
partitioned into message bits and syndrome bits

As shown on the right, light blue circles correspond to
the input message bits and the dark blue circle
correspond to the syndrome bits

To ensure the top check bit is satisfied, the top
syndrome bit will be set to be the sum of message bits
connecting to the check

The computed syndrome bit will then pass to the next
check and again we can ensure the next check bit is
satisfied by setting that second syndrome bit as the
sum of message bits conecting to the check + last
syndrome bit. All (dark blue) syndrome bits can be
assigned in similar token

...
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Lecture 12 LDPC Codes

LDPC Decoding

x1, · · · , xN (light blue): transmitted bits

y1, · · · , yN (dark grey): received bits

p(xN , yN) =
∏

i p(yi |xi )︸ ︷︷ ︸
fi (xi ,yi )

p(xN)︸ ︷︷ ︸∏
A fA(xA)

fi (xi , yi ) = p(yi |xi ) and

fA(x) =

{
0, x contains even number of 1,
1, x contains odd number of 1.

...

f 1 x1, y1 x1y1 f A x Am1Am11

mA2
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Lecture 12 LDPC Codes

Variable Node Update

Since the unknown variables are binary, it is more convenient to
represent the messages using likelihood or log-likelihood ratios. Define

lai ,
mai (0)

mai (1)
, Lai , log lai (2)

and

lia ,
mia(0)

mia(1)
, Lia , log lia (3)

for any variable node i and factor node a.

Then,

Lia ←
∑

b∈N(i)\i

Lai . (4)
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Lecture 12 LDPC Codes

Check Node Update

Assuming that we have three variable nodes 1,2, and 3 connecting to
the check node a, then the check to variable node updates become

ma1(1)← m2a(1)m3a(0) +m2a(0)m3a(1) (5)

ma1(0)← m2a(0)m3a(0) +m2a(1)m3a(1) (6)

Substitute in the likelihood ratios and log-likelihood ratios, we have

la1 ,
ma1(0)

ma1(1)
← 1 + l2al3a

l2a + l3a
(7)

and

eLa1 = la1 ←
1 + eL2aeL3a

eL2a + eL3a
. (8)
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Note that

tanh

(
La1
2

)
=

e
La1
2 − e−

La1
2

e
La1
2 + e−

La1
2

=
eLa1 − 1

eLa1 + 1
(9)

← 1 + eL2aeL3a − eL2a − eL3a

1 + eL2aeL3a + eL2a + eL3a
(10)

=
(eL2a − 1)(eL3a − 1)

(eL2a + 1)(eL3a + 1)
(11)

= tanh

(
L2a
2

)
tanh

(
L3a
2

)
. (12)

When we have more than 3 variable nodes connecting to the check
node a, it is easy to show using induction that

tanh

(
Lai
2

)
←

∏
j∈N(a)\i

tanh

(
Lja
2

)
. (13)
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More inequalities

Lemma (Anup Rao, CSE 533, Lecture 2, Lemma 3)

If k ≤ n/2, then
∑k

i=0

(n
i

)
≤ 2nH(k/n)

Proof.

Consider length-n binary sequence X1,X2, · · · ,Xn uniformly sampled from
a set of binary sequences with at most k 1’s. Since there are

∑k
i=0

(n
i

)
so

many sequences, H(X1,X2, · · · ,Xn) = log
∑k

i=0

(n
i

)
. On the other hand,

H(X1,X2, · · · ,Xn) ≤
∑n

i=1H(Xi ) = nH(k/n). Raise both sides with the
power of two and we get the proof
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Example

Say we have 2n people watching a subset of 2n movies. Each of them have
at least watch 90% of all movies. At least two people actually watch the
same set

Proof.

Let’s count how many different subsets a person can watch, which is
2n∑

i=0.9(2n)

(
2n

i

)
=

0.1(2n)∑
i=0

(
2n

i

)
≤ 22nH(0.1) < 2n

since H(0.1) = 0.469 < 0.5.
As we have 2n people, by pigeon hole principle, there must be at least a
pair who watched the same set
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