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Lecture 1 Introduction

About this course

1 Learn some basic information theory (what is it? how is it useful?)
Understand basic terminology: what is entropy all about?

2 Statistical inference
Bayesian and Monte Carlo techniques

3 Introduction of probabilistic programming
Solve inference problems with programming

4 Get better understanding of probability
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Lecture 1 Introduction

What is information theory?

Study of “information” using probability

Can be treated as a subfield of applied probability
But it has a huge impact to communications and information science

The theoretical basis of the entire telecom industry is built on top of that
Study of extreme cases. What is possible and what is not?

(From Cover and Thomas)
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Lecture 1 Introduction

Connection to other fields

(From Cover and Thomas)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming November 30, 2021 4



Lecture 1 Introduction

Shannon’s paper

A majority of the ideas are nicely included in Claude Shannon’s seminal paper
“A Mathematical Theory of Communication” in the Bell System Technical
Journal in July and October 1948

There he introduced the idea of an information measure (entropy) to quantify
the amount of “information” in a source

Introduced the term “bit” (concept of bits dated way back to at least to the
1800 century though) as a unit for the measure
As a consequence, it is impossible to compress a source to a size smaller than
its entropy and yet recover it losslessly

Argue that there is a (capacity) limit of lossless communication under a noisy
channel and theoretically we can have lossless communications as long as
smaller than the capacity

Give the capacity of Gaussian channel as an example

Some similar ideas were explored earlier in Bell Labs by Harry Nyquist and
Ralph Hartley. But those results are limited to events with equal probability
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Lecture 1 Introduction

What is “information” in information theory?

Consider a probabilistic event with uncertain outcomes. Information is the
knowledge of the final outcome

The amount of information can be considered as the “knowledge” gained you
have knowing that piece of information

More information if the outcomes of the event are less predictable
Entropy is a measure of uncertainty

A Preview:
H(X) =

∑
x

p(x) H(X = x)︸ ︷︷ ︸
info revealed when X = x

A good guess for H(X = x) : log 1
p(x)
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Lecture 1 Introduction

Computer scientists’ treatment

Kolmogorov complexity (algorithm information theory): quantify a piece of
information as the size of smallest program describing it

Nice philosophically but doesn’t go much anywhere
We will take the probabilistic view (electrical/communication engineers
treatment here) to quantify information theory who usually study with
Bayesian models
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Lecture 1 Introduction

Neumann-Shannon Anecdote

When Shannon discovered this function he was faced with the need to name it,
for it occurred quite often in the theory of communication he was developing. He
considered naming it “information” but felt that this word had unfortunate
popular interpretations that would interfere with his intended uses of it in the new
theory. He was inclined towards naming it “uncertainty” and discussed the matter
with the late John Von Neumann. Von Neumann suggested that the function
ought to be called “entropy” since it was already in use in some treatises on
statistical thermodynamics (e.g. ref. 12). Von Neumann, Shannon reports,
suggested that there were two good reasons for calling the function “entropy”. ”It
is already in use under that name,” he is reported to have said, ”and besides, it
will give you a great edge in debates because nobody really knows what entropy is
anyway.” Shannon called the function “entropy” and used it as a measure of
“uncertainty,” interchanging the two words in his writings without discrimination.
–From wikipedia
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Lecture 1 Review of probabilities

Probability model

A probability model is used to model uncertain event that can have
non-deterministic outcomes
A probability model can have finite or infinite number of outcomes and even
continuous outcomes
We call the “undetermine” random variable, short for r.v.
The probability of an outcome is the relative chance of getting that outcome

For outcome a, we may denote as Pr(X = a) or pX(a) or even p(a) when it
is understood that we are considering variable X
0 ≤ p(a) ≤ 1

We often denote a r.v. using upper case (such as X) and its realization
(what was actually observed) using lower case (such as x)
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Lecture 1 Review of probabilities

Some probability properties

Probability mass function (pmf) for discrete random variable (r.v.) X

p(x) ≥ 0
p(x) ≤ 1∑

x p(x) = 1

Probability density function (pdf) for continuous r.v. X

p(x) ≥ 0
p(x) can be larger than 1
Pr(a ≤ X ≤ b) =

∫ b

a
p(x) (Area between p(x) and x-axis)∫

x
p(x) = 1

Marginalization:
∑

x p(x, y) = p(y)

Conditional probability (Bayes’ rule): p(x|y) = p(x,y)
p(y)

N.B.
∑

x p(x|y) = 1 but
∑

y p(x|y) 6= 1

Chain rule: p(x, y, z) = p(x)p(y|x)p(z|x, y)
RHS = p(x)p(y|x)p(z|x, y) = p(x)p(x,y)p(x)

p(x,y,z)
p(x,y) = p(x, y, z) = LHS

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming November 30, 2021 10
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Lecture 1 Review of probabilities

Probabilities and counting

Six students A, B, C, D, E, F randomly lined up in a row, what is the
probability that the order is exactly ABCDEF?
Six students randomly assigned into two teams (black and white), what is the
probability that A,B,C assigned to Team Black and the rest assigned to Team
White?
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Lecture 1 Review of probabilities

Example: Two jars

Both Jars A and B have 4 balls
Jar A has 1 white and 3 black
Jar B has 2 white and 2 black

Let’s draw balls from the jars multiple times. And put the drawn ball back
after each draw. Can you answer the following?

What is the probability of get a white ball from Jar A?
What is the probability of getting 3 whites after 6 drawings?
If someone randomly pick a jar to draw from and get 3 whites after 6 drawing,
what is the probability that he drew from Jar A?
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Lecture 1 Review of probabilities

Bayes rule

Both Jars A and B have 4 balls
Jar A has 1 white and 3 black
Jar B has 2 white and 2 black

Say probability of picking Jar A, Pr(Jar = A) = 0.5

What is the probability of picking from Jar A and getting a white ball
Pr(Jar = A,Ball = white)?
What is Pr(Ball = white|Jar = A)?
What is Pr(Jar = A|Ball = white)?

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming November 30, 2021 13



Lecture 1 Review of probabilities

Expectation

Recall that p(x) as the distribution of a r.v. X

The expected value of X is E[X] ,
∑

x x · p(x)
In general, the expected value of a function f(·) of X is
E[f(X)] ,

∑
x f(x) · p(x)

Examples
E[X] is just the mean of X, often denote as X
The variance of X is E[(X −X)2]
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Lecture 1 Review of probabilities

Independence and conditional independence

Independence: p(x, y) = p(x)p(y), X ⊥⊥ Y

By Bayes/chain rule, p(x, y) = p(x)p(y|x). Therefore the condition implies
that p(y|x) = p(y). In other words, no matter what value X takes, the
probability of Y given X is not going to change. So reasonably, they are
independent

Markov property and conditional independence: p(x, y|z) = p(x|z)p(y|z),
X ⊥⊥ Y |Z,X ↔ Z ↔ Y

Similar to independence, by chain rule, we have p(x, y|z) = p(x|z)p(y|x, z).
Along with the above condition, p(y|x, z) = p(y|z). Thus given Z, it does not
matter what X supposed to be, the probability of given both variables will not
depend on X. Hence, X and Y are conditionally independent given Z

Caveat: independence and conditional independence are two “independent
concepts”, we can have both satisfied, none of them satisfied, or one of them
satisfied. A common mistake is to think that independence leads to
conditional independence or vice versa. But that is WRONG

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming November 30, 2021 15
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Lecture 1 Review of probabilities

Independence but not conditional independence

Consider flipping two coins with outcomes store as X and Y , say 1 represents a
head and 0 represents a tail

In general the two outcomes should be independent (maybe unless if you are
some professional/magical gambler), so we have X ⊥⊥ Y

Now, let Z = X ⊕ Y , where ⊕ is the exclusive or operation
(1⊕ 0 = 0⊕ 1 = 1 and 1⊕ 1 = 0⊕ 0 = 0)

Even though X ⊥⊥ Y , X 6⊥⊥ Y |Z
Actually given Z, X “depends” very much on Y since from X = Y ⊕ Z, we
can find out X precisely given Y
We can also check the condition X ⊥⊥ Y |Z by comparing the probability
p(x|z, y) with p(x|z)

For example, pX|Z(0|0) = 0.5 6= 1 = pX|Z,Y (0|0, 0). Thus X ⊥⊥ Y |Z cannot
be true

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming November 30, 2021 16



Lecture 1 Review of probabilities

A digression: Naive Bayes Algorithm

Naive Bayes is a simple machine learning algorithm to classify an object with
its features
Basically, we are simply assuming the features are conditionally independent
given the object class
Say if O is the object that c(O) is the corresponding class (can be
c1, c2, · · · ). And say f1(O), f2(O), · · · , fK(O) are K features of the object

For simplicity, let’s rewrite c(O) as C and fi(O) as Fi. But it is important to
realize that the “randomness” of c(O), fi(O) is originated from O

p(c|f1, · · · , fK) =
p(c, f1, · · · , fK)

p(f1, · · · , fK)
=

p(c)p(f1, · · · , fK |c)
p(f1, · · · , fK)

Bayes’ rule

=
p(c)p(f1|c) · · · p(fK |c)

p(f1, · · · , fK)
Assume Fi ⊥⊥ Fj |C

=
p(c)p(f1|c) · · · p(fK |c)

p(f1) · · · p(fK)
If also assume Fi ⊥⊥ Fj

= p(c)
p(f1|c)
p(f1)

· · ·
p(fK |c)
p(fK)
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Lecture 1 Review of probabilities

A digression: Naive Bayes Algorithm

In most classification problem, we are interested to compute the most likely
class. So we really will go through all possible c1, c2, · · · for p(c|f1, · · · , fK)

Rather than assuming both Fi ⊥⊥ Fj |C and Fi ⊥⊥ Fj , the latter really is not
necessary as we can write

p(c|f1, · · · , fK) =
p(c)p(f1|c) · · · p(fK |c)∑
i p(ci)p(f1|ci) · · · p(fK |ci)

Actually if we only care about which is the most likely class, we can even skip
computing the denominator as it is a constant w.r.t. c

You can find a numerical example here
N.B. the author assumes independence of the features in his explanation but
the condition is not necessary as noted above

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming November 30, 2021 18

https://www.machinelearningplus.com/predictive-modeling/how-naive-bayes-algorithm-works-with-example-and-full-code/


Lecture 1 Review of probabilities

Epilogue: an engineer (dummy) approach to solve
probability problems

1 Introduce helper variables if needed

2 Identify distributions and conditions (independence, conditional
independence, variable relationship)

3 Identify (conditional) probability to address the question
4 Insert dummy variables to probability to leverage conditional independence by

marginalization
5 Expand probabilities into (conditional) probabilities and evaluate them
6 Compute sum/integral
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Lecture 1 Review of probabilities

Example: Monty Hall problem
Below I will use shorthand like P1, G2, H3 to refer to the case of prize at Door 1, guest picking
Door 2, and host open Door 3

1 Introduce helper variables if needed
Let’s denote O as the other door both guest and host did not pick

2 Identify distributions and condition
P ⊥⊥ G,O = {1, 2, 3} \ {G,H}, p(G) = p(H) = 1

3
, etc.

3 Identify (conditional) probability to address the question
Pr(Win|switch) = Pr(O = P ) =

∑
i p(Oi|Pi)p(Pi) = p(O1|P1)

4 Insert dummy variables to probability by marginalization
p(O1|P1) =

∑
i,j p(O1, Gi, Hj |P1)

5 Expand probabilities into (conditional) probabilities and evaluate them
p(O1|P1) =

∑
i,j p(Gi|P1)p(Hj |P1, Gi)p(O1|Gi,Hj, P1)

= p(G1)(p(H1|G1P1)p(O1|G1H1P1) + p(H2|G1P1)p(O1|G1H2P1) + p(H3|G1P1)p(O1|G1H3P1))
+p(G2)(p(H1|G2P1)p(O1|G2H1P1) + p(H2|G2P1)p(O1|G2H2P1) + p(H3|G2P1)p(O1|G2H3P1))
+p(G3)(p(H1|G3P1)p(O1|G3H1P1) + p(H2|G3P1)p(O1|G3H2P1) + p(H3|G3P1)p(O1|G3H3P1))

6 Compute sum/integral
p(O1|P1) = p(G2)p(H3|G2P1)p(O1|G2H3P1) + p(G3)p(H2|G3P1)p(O1|G3H2P1) =
1
3

· 1 · 1 + 1
3

· 1 · 1 = 2
3
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Door 2, and host open Door 3

1 Introduce helper variables if needed
Let’s denote O as the other door both guest and host did not pick

2 Identify distributions and condition
P ⊥⊥ G,O = {1, 2, 3} \ {G,H}, p(G) = p(H) = 1

3
, etc.

3 Identify (conditional) probability to address the question
Pr(Win|switch) = Pr(O = P ) =

∑
i p(Oi|Pi)p(Pi) = p(O1|P1)

4 Insert dummy variables to probability by marginalization
p(O1|P1) =

∑
i,j p(O1, Gi, Hj |P1)

5 Expand probabilities into (conditional) probabilities and evaluate them
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Lecture 1 Review of probabilities

Epilogue: an engineer (dummy) approach to solve
probability problems

Our dummy approach can solve virtually solve any probability problems, but
Identify what variables to introduced may need some experience
Can solve any problem with only discrete variables, but if there are too many
variables, hand calculation not feasible
⇒ probabilistic programming
If continuous variables are involved, the last step may involve intractable
integral
⇒ probabilistic programming
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Lecture 1 Introduction to Monte Carlo

Monte Carlo approach

Our dummy approach involves some understanding of the problem

An even dummier approach is by simulation and counting (require even less
understanding)
⇒ Monte Carlo
Take Monte Hall as example again

Simulate the game many many times (say 10,000 times)
Stick to one strategy, always switch or always stay put
Count number of winning
Estimate winning probability = # wins / 10,000

Of course the computed probability won’t be exact
Probability estimate improves with # simulations
Problem solved as long as we know how to simulate one time (if we don’t
need exact probability)
Even simulation can be hard and computation can be an issue
⇒ Markov Chain Monte Carlo (MCMC)
We will delay this to much later
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Lecture 1 Introduction to Monte Carlo

Monte Hall simulation

Algorithm 1 Simulate one game instance
1: P = randint(3)
2: G = randint(3)
3: H = {0, 1, 2} \ {P,G}
4: if |H| = 2 then
5: H = H[randint(2)]
6: else
7: H = H[0]
8: end if
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Lecture 1 Appendix

More formal treatment: probability space

More rigorously, a probability model is defined by the probability space
composed of the triple (Ω,F , p)

Ω is the sample space containing all possible outcomes
F is a “σ-field”, which is a collection of subsets (events) of Ω
p is the (non-negative) probability measure on elements of F

E.g., probability model of unbiased dice
Ω = {1, 2, 3, 4, 5, 6}
F = {{1}, {2}, {3}, {4}, {5}, {6}, {1, 2}, {1, 3}, · · · , {1, 2, 3, 4, 5, 6}}
p(S) is the probability of an event

p({1}) = p({2}) = p({3}) = p({4}) = p({5}) = p({6}) = 1/6
p({1, 2}) = p({1, 3}) = · · · = p({5, 6}) = 2/6
· · ·
p({1, 2, 3, 4, 5, 6}) = 1

N.B. It could be confusing at first. Be careful that events 6= outcomes. An
event is actually a set of outcomes
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Lecture 1 Appendix

σ-algebra

The purpose of σ-field (aka σ-algebra) is to impose restriction on what we
can and cannot query regarding probability
Namely, we can only measure the probability of something inside the σ-field
F (i.e., an event)
Formal definition of σ-field:

σ-field has to satisfied the following: 1) containing empty set ∅, 2)
closed under complement, countable union, and countable intersection of
its element

E.g., let Ω = {1, 2, 3, 4}
1 {∅, {1, 2}, {3, 4}, {1, 2, 3, 4}} is a valid σ-field
2 {∅, {1}, {1, 2}, {3, 4}, {1, 2, 3, 4}} is NOT a valid σ-field

N.B., A complement, countable union, or countable intersection of Ω is call a
Borel set

∅, {1}, {1, 2} are example of Borel sets (an event is a Borel set)
Collection of all Borel sets forms a σ-algebra (aka Borel (σ-)algebra)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming November 30, 2021 25



Lecture 1 Appendix

Probability measure

Probability measure p is a measure. Along with F , the tuple (F , p) forms a
measure space. For P to be a valid probability measure, it has to satisfy the
following

Requirements to be a measure (in the context of measure theory):
1 p(∅) = 0
2 Countably additive: p(∪i∈NAi) =

∑
i∈N p(Ai),∀i 6= j, Ai ∩Aj = ∅

And since p is a probability measure, it also has to satisfy p(Ω) = 1

The above constraints are sometimes known as the axioms of probability
theory
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Lecture 1 Appendix

Some properties of probability measure

From the axioms described in the last slides, one can show that probability
measure has to satisfies the following:

1 p(Ac) = 1− p(A)

2 p(A) ≤ p(B) if A ⊂ B
3 Union bound: p(∪iAi) ≤

∑
i p(Ai)

Proof hint: use 2) and induction
4 Inclusion-exclusion formula: p(∪n

i=1Ai) =
∑n

i=1 p(Ai)−
∑

i<j p(Ai ∩Aj) +∑
i<j<k p(Ai ∩Aj ∩Ak) + · · ·+ (−1)n−1p(∩n

i=1Ai)

Proof hint: show p(A ∪B) = p(A) + p(B)− p(A ∩B) and then use
induction. (p(A ∪B) = p(A) + p(B \A) and p(B) = p(A ∩B) + p(B \A)).
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Lecture 1 Appendix

Why so complex?

Consider X a uniform random variable defined between [0, 1]

Define Y =

{
1 if X is rational
0 otherwise

Y is a random variable since X is random. It is reasonable to ask what is the
probability that Y = 1. From undergrad probability class,

Pr(Y = 1) =

∫
{x|x∈[0,1]∩Q}

dx =?

The integral above is actually undefined according to undergrad calculus,
where the integral is known as a Riemann integral

Instead, we have to incorporate the idea of “measure” (Lesbeque integral)

Pr(Y = 1) =

∫
{x|x∈[0,1]∩Q}

dp(x) = 0

The Lesbeque integral above is 0 since the measure of {x|x ∈ [0, 1] ∩Q} = 0
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Lecture 1 Appendix

Some remarks on notation

In general, we can write
p(Ω′) =

∫
Ω′

dp(ω)

and
E[f(X)] =

∫
Ω

f(X(ω))dp(ω)

E.g.,
E[X] =

∫
Ω

X(ω)dp(ω) =

∫
Ω

X(ω) dp =

∫
Ω

Xdp

Note that p is the probability measure (often people use upper case P instead)
People often omit ω as above when context is clear
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Lecture 2
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Lecture 2 Introduction to probabilistic inference

Bayes’ rule (with model type)

p(θ, o) = p(o)p(θ|o) = p(θ)p(o|θ)

Let’s add model type M ,
p(θ, o|M) = p(o|M)p(θ|o,M) = p(θ|M)p(o|θ,M)

p(θ|o,M)︸ ︷︷ ︸
posterior

=

prior︷ ︸︸ ︷
p(θ|M)

likelihood︷ ︸︸ ︷
p(o|θ,M)

p(o|M)︸ ︷︷ ︸
model evidence

M : model type
θ: model parameter
o: observation
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Lecture 2 Introduction to probabilistic inference

Inference

o: Observed variable, θ: Parameter, x: Latent variable

Maximum Likelihood (ML)

x̂ = argmaxx p(x|θ̂), θ̂ = argmaxθ p(o|θ)

Maximum A Posteriori (MAP)

x̂ = argmaxx p(x|θ̂), θ̂ = argmaxθ p(θ|o)

Bayesian

x̂ =
∑

x x
∑
θ

p(x|θ)p(θ|o)︸ ︷︷ ︸
p(x|o)

where p(θ|o) = p(o|θ)p(θ)
p(o) ∝ p(o|θ)p(θ)︸︷︷︸

prior

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming November 30, 2021 3



Lecture 2 Introduction to probabilistic inference

Statistical Learning
CSE 473

Spring 2004

1

Today

• Parameter Estimation:

• Maximum Likelihood (ML)

• Maximum A Posteriori (MAP)

• Bayesian

• Continuous case

• Learning Parameters for a Bayesian Network

• Naive Bayes

• Maximum Likelihood estimates

• Priors

• Learning Structure of Bayesian Networks

2

Coin Flip

P(H|C2) = 0.5P(H|C1) = 0.1

C1
C2

P(H|C3) = 0.9

C3

Which coin will I use?

P(C1) = 1/3 P(C2) = 1/3 P(C3) = 1/3

Prior: Probability of a hypothesis 
before we make any observations

3

Coin Flip

P(H|C2) = 0.5P(H|C1) = 0.1

C1
C2

P(H|C3) = 0.9

C3

Which coin will I use?

P(C1) = 1/3 P(C2) = 1/3 P(C3) = 1/3

Uniform Prior: All hypothesis are equally likely 
before we make any observations

4

Experiment 1: Heads

Which coin did I use?
P(C1|H) = ? P(C2|H) = ? P(C3|H) = ?

P (C1|H) =
P (H|C1)P (C1)

P (H)

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1
C2 C3

P(C1) = 1/3 P(C2) = 1/3 P(C3) = 1/3

P (H) =
3∑

i=1

P (H|Ci)P (Ci)

5

Experiment 1: Heads

Which coin did I use?
P(C1|H) = 0.066 P(C2|H) = 0.333 P(C3|H) = 0.6

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1
C2 C3

P(C1) = 1/3 P(C2) = 1/3 P(C3) = 1/3

Posterior: Probability of a hypothesis given data

6

(Slide credit: University of Washington CSE473)
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Statistical Learning
CSE 473

Spring 2004

1

Today

• Parameter Estimation:
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Lecture 2 Introduction to probabilistic inference

Experiment 2: Tails

Which coin did I use?

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1
C2 C3

P(C1) = 1/3 P(C2) = 1/3 P(C3) = 1/3

P(C1|HT) = ? P(C2|HT) = ? P(C3|HT) = ?

P (C1|HT ) = αP (HT |C1)P (C1) = αP (H|C1)P (T |C1)P (C1)
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Your Estimate?
What is the probability of heads after two experiments?

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1
C2 C3

P(C1) = 1/3 P(C2) = 1/3 P(C3) = 1/3

Best estimate for P(H) 

P(H|C2) = 0.5

Most likely coin: 

C2

10

Your Estimate?

P(H|C2) = 0.5

C2

P(C2) = 1/3

Most likely coin: Best estimate for P(H) 

P(H|C2) = 0.5C2

Maximum Likelihood Estimate: The best hypothesis
that fits observed data assuming uniform prior

11

Using Prior Knowledge

• Should we always use Uniform Prior?

• Background knowledge:

• Heads => you go first in Abalone against TA

• TAs are nice people

• => TA is more likely to use a coin biased in 
your favor

P(H|C2) = 0.5P(H|C1) = 0.1

C1
C2

P(H|C3) = 0.9

C3
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Lecture 2 Introduction to probabilistic inference

Using Prior Knowledge

P(H|C2) = 0.5P(H|C1) = 0.1

C1
C2

P(H|C3) = 0.9

C3

P(C1) = 0.05 P(C2) = 0.25 P(C3) = 0.70

We can encode it in the prior:

13

Experiment 1: Heads

Which coin did I use?
P(C1|H) = ? P(C2|H) = ? P(C3|H) = ?

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1
C2 C3

P(C1) = 0.05 P(C2) = 0.25 P(C3) = 0.70

P (C1|H) = αP (H|C1)P (C1)

14

Experiment 1: Heads

Which coin did I use?
P(C1|H) = 0.006 P(C2|H) = 0.165 P(C3|H) = 0.829

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1
C2 C3

P(C1) = 0.05 P(C2) = 0.25 P(C3) = 0.70

P(C1|H) = 0.066 P(C2|H) = 0.333 P(C3|H) = 0.600

ML posterior after Exp 1:

15
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P(H|C3) = 0.9C3

Maximum A Posteriori (MAP) Estimate: The best hypothesis 
that fits observed data assuming a non-uniform prior

P(H|C3) = 0.9

C3

P(C3) = 0.70
20

Did We Do The Right 
Thing?

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1
C2 C3

P(C1|HT) = 0.035 P(C2|HT) = 0.481 P(C3|HT) = 0.485

21

Did We Do The Right 
Thing?

P(C1|HT) = 0.035 P(C2|HT) = 0.481 P(C3|HT) = 0.485

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1
C2 C3

C2 and C3 are almost 

equally likely

22

A Better Estimate

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1
C2 C3

P (H) =
3∑

i=1

P (H|Ci)P (Ci)Recall: = 0.680

P(C1|HT) = 0.035 P(C2|HT) = 0.481 P(C3|HT) = 0.485

23

Bayesian Estimate

P(C1|HT) = 0.035 P(C2|HT) = 0.481 P(C3|HT) = 0.485

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1
C2 C3

P (H) =
3∑

i=1

P (H|Ci)P (Ci) = 0.680

Bayesian Estimate: Minimizes prediction error, 
given data and (generally) assuming a non-uniform prior

24(Slide credit: University of Washington CSE473)
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Lecture 2 Introduction to probabilistic inference

Comparison

ML Easy to compute

MAP Still relatively easy to compute
Incorporate prior information

Bayesian Minimizes expected error ⇒ especially shines when little data
available
Potentially much harder to compute
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Lecture 2 Introduction to probabilistic inference

x̂k−1 ∼ N (x̂k−1,Qk)

Fk ·+Bkuk

x̃k

·+wk

x̂k

Hk·

yk

(1): ∼ N (Fkx̂k−1 +Bkuk,FkPk−1F
>
k )

(2): ∼ N (Fkx̂k−1 +Bkuk︸ ︷︷ ︸
x̂k|k−1

,FkPk−1F
>
k +Qk︸ ︷︷ ︸

Pk|k−1

)

(3): ∼ N ((H>
k R−1

k Hk)
−1H>

k R−1
k zk, (H

>
k R−1

k Hk)
−1)

∼ N (zk,Rk)
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