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Lecture 3 Constraint optimization

An optimization example

Simple economy: m prosumers, n different goods1

Each individual: production pi ∈ Rn , consumption ci ∈ Rn

Expense of producing “p” for agent i = ei(p)
Utility (happiness) of consuming “c” units for agent i = ui(c)
Maximize happiness

max
pi ,ci

m∑
i=1

(ui(ci)− ei(pi)) s.t.
m∑

i=1
ci =

m∑
i=1

pi

1Example borrowed from the first lecture of Prof Gordon’s CMU CS 10-725
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Lecture 3 Constraint optimization

Walrasian equilibrium

max
pi ,ci

m∑
i=1

(ui(ci)− ei(pi)) s.t.
m∑

i=1
ci =

m∑
i=1

pi

Idea: introduce price λj to each good j. Let the market decide
Price λj ↑ : consumption of good j ↓, production of good j ↑
Price λj ↓ : consumption of good j ↑, production of good j ↓
Can adjust price until consumption = production for each good
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Lecture 3 Constraint optimization

Algorithm: tâtonnement
Assume that the appropriate prices are found, we can ignore the equality
constraint, then the problem becomes

max
pi ,ci

m∑
i=1

(ui(ci)− ei(pi)) ⇒
m∑

i=1
max
pi ,ci

(ui(ci)− ei(pi))

So we can simply optimize production and consumption of each individual
independently

Algorithm 1 tâtonnement

1: procedure FindBestPrices
2: λ← [0, 0, · · · , 0]
3: for k = 1, 2, · · · do
4: Each individual solves for its ci and pi for the given λ
5: λ← λ+ δk

∑
i(ci − pi)
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Lecture 3 Constraint optimization

Lagrange multiplier

Problem

max
x

f (x)

g(x) = 0

Consider L(x, λ) = f (x)− λg(x) and let f̃ (x) = minλ L(x, λ).

Note that

f̃ (x) =
{

f (x) if g(x) = 0
−∞ otherwise

Therefore, the problem is identical to maxx f̃ (x) or

max
x

min
λ

(f (x)− λg(x)),

where λ is known to be the Lagrange multiplier.
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Lecture 3 Constraint optimization

Lagrange multiplier (con’t)

Assume the optimum is a saddle point,

max
x

min
λ

(f (x)− λg(x)) = min
λ

max
x

(f (x)− λg(x)),

the R.H.S. implies

∇f (x) = λ∇g(x)
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Lecture 3 Constraint optimization

Inequality constraint

Problem

max
x

f (x)

g(x) ≤ 0

Consider f̃ (x) = minλ≥0(f (x)− λg(x)),

note that

f̃ (x) =
{

f (x) if g(x) ≤ 0
−∞ otherwise

Therefore, we can rewrite the problem as

max
x

min
λ≥0

(f (x)− λg(x))
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Lecture 3 Constraint optimization

Inequality constraint (con’t)
Assume

max
x

min
λ≥0

(f (x)− λg(x)) = min
λ≥0

max
x

(f (x)− λg(x))

The R.H.S. implies

∇f (x) = λ∇g(x)

Moreover, at the optimum point (x∗, λ∗), we should have the so-called
“complementary slackness” condition

λ∗g(x∗) = 0

since

max
x

f (x)
g(x)≤0

≡ max
x

min
λ≥0

(f (x)− λg(x))
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Lecture 3 Constraint optimization

Karush-Kuhn-Tucker conditions

Problem

max
x

f (x)

g(x) ≤ 0, h(x) = 0

Conditions

∇f (x∗)− µ∗∇g(x∗)− λ∗∇h(x∗) = 0
g(x∗) ≤ 0
h(x∗) = 0

µ∗ ≥ 0
µ∗g(x∗) = 0
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Lecture 3 Overview of source coding

Overview of source coding

The objective of “source coding” is to compress some source

We can think of compression as “coding”. Meaning that we replace
each input by a corresponding coded sequence. So encoding is just a
mapping/function process
Without loss of generality, we can use binary domain for our coded
sequence. So for each input message, it is converted to a sequence of
1s and 0s
Consider encoding (compressing) a sequence x1, x2, · · · one symbol at
a time, resulting c(x1), c(x2), · · ·
Denote the lengths of x1, x2, · · · as l(x1), l(x2), · · · , one of the major
goal is to have E [l(X)] to be as small as possible
However, we want to make sure that we can losslessly decode the
message also!
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Lecture 3 Overview of source coding

Uniquely decodable code

To ensure that we can recover message without loss, we must make
sure that no message share the same codeword

We say a code is “singular” (broken) if c(x1) = c(x2) for some
different x1 and x2
Even when a code is not “singular”, we still cannot guarantee that we
can always recover the original message losslessly, consider 4 different
possible input symbols a, b, c, d and an encoding map c(·) :

a 7→ 0, b 7→ 1, c 7→ 10, d 7→ 11
What should be the message for 1110?

dba? Or bbba?
So it is not sufficient to just have c(·) to map to different output for
each input. Let’s overload the notation c(·) a little bit and for any
message sequence x = x1, x2, · · · , xn, encode sequence x1, x2, · · · , xn
to c(x) = c(x1, x2, · · · , xn) = c(x1)c(x2) · · · c(xn)

We say c(x) is uniquely decodable if all input sequences map to
different outputs
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Lecture 3 Overview of source coding

Prefix-free code

For practical purpose, we would like to be able to decode a symbol
“once it is available”. Consider a code with map

a 7→ 10, b 7→ 00, c 7→ 11, d 7→ 110

One can show that it is uniquely decodable. However, consider an
input sequence cbbb 7→ 11000000
When the decoder read the first 3 bits, it is not able to determine if the
first input symbol is c or d
Actually, it will be until the decoder read the last bit that it will be able
to confirm that the first input symbol is c. It is definitely not
something very desirable

Instead, for a mapping a 7→ 1, b 7→ 01, c 7→ 001, d 7→ 0001, I will
argue that we can always decode a symbol “once it is available”

Note that the catch is that there is no codeword being the “prefix” of
another codeword
We call such code a prefix-free code or an instantaneous code

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming November 17, 2021 12 / 127



Lecture 3 Overview of source coding

Prefix-free code

For practical purpose, we would like to be able to decode a symbol
“once it is available”. Consider a code with map

a 7→ 10, b 7→ 00, c 7→ 11, d 7→ 110
One can show that it is uniquely decodable. However, consider an
input sequence cbbb 7→ 11000000

When the decoder read the first 3 bits, it is not able to determine if the
first input symbol is c or d
Actually, it will be until the decoder read the last bit that it will be able
to confirm that the first input symbol is c. It is definitely not
something very desirable

Instead, for a mapping a 7→ 1, b 7→ 01, c 7→ 001, d 7→ 0001, I will
argue that we can always decode a symbol “once it is available”

Note that the catch is that there is no codeword being the “prefix” of
another codeword
We call such code a prefix-free code or an instantaneous code

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming November 17, 2021 12 / 127



Lecture 3 Overview of source coding

Prefix-free code

For practical purpose, we would like to be able to decode a symbol
“once it is available”. Consider a code with map

a 7→ 10, b 7→ 00, c 7→ 11, d 7→ 110
One can show that it is uniquely decodable. However, consider an
input sequence cbbb 7→ 11000000
When the decoder read the first 3 bits, it is not able to determine if the
first input symbol is c or d

Actually, it will be until the decoder read the last bit that it will be able
to confirm that the first input symbol is c. It is definitely not
something very desirable

Instead, for a mapping a 7→ 1, b 7→ 01, c 7→ 001, d 7→ 0001, I will
argue that we can always decode a symbol “once it is available”

Note that the catch is that there is no codeword being the “prefix” of
another codeword
We call such code a prefix-free code or an instantaneous code

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming November 17, 2021 12 / 127



Lecture 3 Overview of source coding

Prefix-free code

For practical purpose, we would like to be able to decode a symbol
“once it is available”. Consider a code with map

a 7→ 10, b 7→ 00, c 7→ 11, d 7→ 110
One can show that it is uniquely decodable. However, consider an
input sequence cbbb 7→ 11000000
When the decoder read the first 3 bits, it is not able to determine if the
first input symbol is c or d
Actually, it will be until the decoder read the last bit that it will be able
to confirm that the first input symbol is c. It is definitely not
something very desirable

Instead, for a mapping a 7→ 1, b 7→ 01, c 7→ 001, d 7→ 0001, I will
argue that we can always decode a symbol “once it is available”

Note that the catch is that there is no codeword being the “prefix” of
another codeword
We call such code a prefix-free code or an instantaneous code

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming November 17, 2021 12 / 127



Lecture 3 Overview of source coding

Prefix-free code

For practical purpose, we would like to be able to decode a symbol
“once it is available”. Consider a code with map

a 7→ 10, b 7→ 00, c 7→ 11, d 7→ 110
One can show that it is uniquely decodable. However, consider an
input sequence cbbb 7→ 11000000
When the decoder read the first 3 bits, it is not able to determine if the
first input symbol is c or d
Actually, it will be until the decoder read the last bit that it will be able
to confirm that the first input symbol is c. It is definitely not
something very desirable

Instead, for a mapping a 7→ 1, b 7→ 01, c 7→ 001, d 7→ 0001, I will
argue that we can always decode a symbol “once it is available”

Note that the catch is that there is no codeword being the “prefix” of
another codeword
We call such code a prefix-free code or an instantaneous code

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming November 17, 2021 12 / 127



Lecture 3 Overview of source coding

Prefix-free code

For practical purpose, we would like to be able to decode a symbol
“once it is available”. Consider a code with map

a 7→ 10, b 7→ 00, c 7→ 11, d 7→ 110
One can show that it is uniquely decodable. However, consider an
input sequence cbbb 7→ 11000000
When the decoder read the first 3 bits, it is not able to determine if the
first input symbol is c or d
Actually, it will be until the decoder read the last bit that it will be able
to confirm that the first input symbol is c. It is definitely not
something very desirable

Instead, for a mapping a 7→ 1, b 7→ 01, c 7→ 001, d 7→ 0001, I will
argue that we can always decode a symbol “once it is available”

Note that the catch is that there is no codeword being the “prefix” of
another codeword
We call such code a prefix-free code or an instantaneous code

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming November 17, 2021 12 / 127



Lecture 3 Kraft’s Inequality

Kraft’s Inequality

How do we know if a length profile for a code is possible?
Kraft’s inequality: Consider a length profile l1, l2, · · · , lK , there exists
a uniquely decodable code for symbols x1, x2, · · · , xK such that
l(x1) = l1, l(x2) = l2, · · · , l(xK ) = lK if and only if

∑K
k=1 2−lk ≤ 1

Intuition
Consider # “descendants” of each codeword at the “lmax”-level, then for
prefix-free code, we have

K∑
k=1

2lmax−l ≤ 2lmax

⇒
K∑

k=1
2−lk ≤ 1 a
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Lecture 3 Kraft’s Inequality

Forward Proof

Given l1, l2, · · · , lK satisfy
∑K

k=1 2−lk ≤ 1, we can assign nodes on a tree
as previous slides. More precisely,

Assign i-th node as a node at level li , then cross out all its
descendants
Repeat the procedure for i from 1 to K
We know that there are sufficient tree nodes to be assigned since the
Kraft’s inequaltiy is satisfied

The corresponding code is apparently prefix-free and thus is uniquely
decodable
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Lecture 3 Kraft’s Inequality

Converse Proof
Consider message from coding k symbols x = x1, x2, · · · , xk(∑

x∈X
2−l(x)

)k

=

(∑
x1∈X

2−l(x1)

)(∑
x2∈X

2−l(x2)

)
· · ·

(∑
xk∈X

2−l(xk)

)
=

∑
x1,x2,··· ,xk∈X k

2−(l(x1)+l(x2)+···+l(xk))

=
∑

x∈X k

2−l(x)

=

klmax∑
m=1

a(m)2−m,

where a(m) is the number of codeword with length m. However, for the
code to be uniquely decodable, a(m) ≤ 2m, where 2m is the number of
available codewords with length m. Therefore,∑

x∈X
2−l(x) ≤ (klmax)

1/k ≈ 1 as k →∞
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Lecture 3 Converse proof of Source Coding Theorem

Minimum rate required to compress a source

minl1,l2,··· ,lK

K∑
k=1

pk lk subject to
K∑

k=1
2−lk ≤ 1 and l1, · · · , lK ≥ 0

≡maxl1,l2,··· ,lK −
K∑

k=1
pk lk subject to

K∑
k=1

2−lk − 1 ≤ 0 and − l1, · · · ,−lK ≤ 0

KKT conditions

−∇

( K∑
k=1

pk lk

)
− µ0∇

( K∑
k=1

2−lk − 1
)

+
K∑

k=1
µk∇lk = 0

K∑
k=1

2−lk − 1 ≤ 0, l1, · · · , lK ≥ 0, µ0, µ1, · · · , µK ≥ 0

µ0

( K∑
k=1

2−lk − 1
)

= 0, µk lk = 0
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Lecture 3 Converse proof of Source Coding Theorem

Minimum rate required to compress a source
Since we expect lk > 0, µk = 0.

Expand the first equation, we get

−pj + µ02−lj log 2 = 0⇒ 2−lj =
pj

µ0 log 2

And by
∑K

k=1 2−lk ≤ 1, we have
K∑

k=1

pj
µ0 log 2 =

1
µ0 log 2 ≤ 1⇒ µ0 ≥

1
log 2

Note that as µ0 ↓, pj
µ0 log 2 ↑ and lj ↓. Therefore, if we want to decrease

code rate, we should reduce µ0 as much as possible. Thus, take µ0 = 1
log 2 .

Then 2−lj = pj ⇒ lj = − log2 pj . Thus, the minimum rate becomes
K∑

k=1
pk lk = −

K∑
k=1

pk log2 pk , H(p1, · · · , pK )
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Lecture 4

Review

Kraft’s inequality:
∑K

k=1 2−lk ≤ 1

We showed that given a code “length-profile”, we can always find a
prefix-free code if the profile satisfies Kraft’s inequality
Conversely, if Kraft’s inequality is not satisfies, any code with that
profile is not uniquely decodable ⇒ trash

A proof of Source Coding Theorem: if we minimize the expected code
length subject to the Kraft’s inequality, the minimum “code rate” is
equal to the entropy of the source.

We cannot compress a source losslessly below its entropy
On the other hand, since Kraft’s inequality guarantee existence of
code, we should be able to find code to achieve the theoretical limit

However, the proof we discussed was not constructive. How can we
actually design a code to compress arbitrarily close to the theoretical
limit?
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Lecture 4 SFE code

Shannon-Fano-Elias code

Key idea
Each codeword corresponds to an intervel of [0, 1]

Example
110 corresponds to [0.110, 0.1101· ] = [0.11, 0.111) = [0.75, 0.875)

011 corresponds to [0.011, 0.0111· ] = [0.011, 0.1) = [0.375, 0.5)
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Lecture 4 SFE code

Observations

Remark (Observation 1)
Let l(x) = |c(x)| be the length of the SFE codeword, and let u(x) be the
corresponding interval. Then, the length of the interval |u(x)| = 2−l(x)

Remark (Observation 2)
If u(x1) and u(x2) do not overlap, then c(x1) and c(x2) cannot be prefix of
one another

Proof of Observation 2.
A⇒ B ≡ ¬B ⇒ ¬A. We will show instead if c(x1) and c(x2) are prefix of
one another, then u(x1) and u(x2) overlap. WLOG, assume c(x1) is a
prefix of c(x2), the lower boundary of u(x1) is below the lower boundary of
u(x2) and yet the upper boundary of u(x1) is above the upper boundary of
u(x2). Thus, u(x2) ⊆ u(x1) and hence u(x1) and u(x2) overlap each
other
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Lecture 4 SFE code

Example

Consider a source that
p(x1) = 0.25, p(x2) = 0.25, p(x3) = 0.2, p(x4) = 0.15, p(x5) = 0.15
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Lecture 4 SFE code

Property

The length of the codeword of x is dlog2
1

p(x)e+ 1. This ensures that
the “code interval” of each codeword does not overlap

Recall from observation 1, SFE code is prefix-free → uniquely
decodable

If a codeword is prefix of another (say 10 and 1010), the corresponding
intervals must overlap each other (consider [0.10, 0.11) and
[0.101, 0.11))
Since no codeword can overlap in SFE, no code word can be prefix of
another

Average code rate is upper bounded by H(X) + 2∑
x∈X

p(x)l(x) =
∑
x∈X

p(x)
(⌈

log2
1

p(x)

⌉
+ 1
)

≤
∑
x∈X

p(x)
(
log2

1
p(x) + 2

)
= H(X) + 2
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If a codeword is prefix of another (say 10 and 1010), the corresponding
intervals must overlap each other (consider [0.10, 0.11) and
[0.101, 0.11))
Since no codeword can overlap in SFE, no code word can be prefix of
another

Average code rate is upper bounded by H(X) + 2∑
x∈X

p(x)l(x) =
∑
x∈X

p(x)
(⌈

log2
1

p(x)

⌉
+ 1
)

≤
∑
x∈X

p(x)
(
log2

1
p(x) + 2

)
= H(X) + 2
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Lecture 4 Forward proof of Source Coding Theorem

“Symbol grouping” trick
Let’s consider two symbols as a super-symbol and compress the pair
at each time with SFE code
The code rate is bounded by H(XS) + 2, where

H(XS) = −
∑

x1,x2∈X 2

p(x1, x2) log2 p(x1, x2)

= −
∑

x1,x2∈X 2

p(x1, x2) log2(p(x1)p(x2))

= −
∑

x1,x2∈X 2

p(x1, x2) log2 p(x1)−
∑

x1,x2∈X 2

p(x1, x2) log2 p(x2)

= −
∑

x1∈X
p(x1) log2 p(x1)−

∑
x2∈X

p(x2) log2 p(x2)

= 2H(X)

Therefore, the code rate per original symbol is upper bounded by
1
2 (H(XS) + 2) = H(X) + 1
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Lecture 4 Forward proof of Source Coding Theorem

Forward proof of Source Coding Theorem

In theory, we can group as many symbols as we want (we want do it in
practice, why?), say we group N symbols at a time and compress it using
SFE code.

The code rate per original symbol is upper bounded by

1
N (H(XS) + 2) = 1

N (NH(X) + 2) = H(X) +
2
N

Therefore as long as a given rate R > H(X), we can always find a large
enough N such that the code rate using the “grouping trick” and SFE
code is below R . This concludes the forward proof
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Lecture 4 Entropy: another peek

Entropy for discrete random variable

Von Neumman to Shannon
”You should call it entropy for two reasons: first because that is what the formula
is in statistical mechanics but second and more important, as nobody knows what
entropy is, whenever you use the term you will always be at an advantage!” -John
von Neumman

H(X) = −
∑
x∈X

p(x) log p(x) = E [− log p(X)]

From the expression, it suggests that there is log 1
p(x) bits of

information for the outcome x
This actually comes with no surprise! Consider a uniform random
variable with 4 outcomes, each outcome will have probalility
1/4 = 0.25 of happening it. And to represent each outcome, we need
log 4 = log 1

0.25 bits
A less likely event has “more” information and requires more bits to
store. H(X) is just the average number of bits required
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Lecture 4 Entropy: another peek

Biased coin with Pr(Head) = p

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming November 17, 2021 26 / 127

H(X) = −Pr(Head) logPr(Head)− Pr(Tail) logPr(Tail)
= −p log p − (1− p) log(1− p)

Entropy is largest (=1)
when p = 0.5
Entropy is 0 when p = 0
or p = 1

Entropy can be
interpreted as the average
uncertainty of the
outcome or the amount of
information “gained” after
the outcome is revealed
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Lecture 4 Differential entropy

Differential entropy

H(X) = −
∑
x∈X

p(x) log p(x) = E [− log p(X)]

The definition makes little sense for a continuous X . Since the probability
of an outcome x is always 0, we may define instead the differential entropy
for X as

h(X) = −
∫

x∈X
p(x) log p(x)dx

= E [− log p(x)],

where p(x) is now the pdf rather than the pmf
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Lecture 4 Differential entropy

Differential entropy of common distributions

Uniform Distribution

If p(X) =

{
1/a 0 ≤ x ≤ a
0 otherwise

h(X) = −
∫ a

x=0

1
a log

1
a dx = log a

Exponential distribution
For exponentially distributed T ∼ Exp(λ),

h(T ) = E [− log p(T )]

= E [− log (λ exp(−λT ))]

= E [λT − log λ]

= 1− log λ
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Lecture 4 Differential entropy

Differential entropy of common distributions

Univariate Normal distribution
For univariate normally distributed X ∼ N (µ, σ2),

h(X) = E [− log p(X)]

= E
[
− log

(
1√

2πσ2
exp
−(X − µ)2

2σ2

)]
= E

[
log
√

2πσ2 +
(X − µ)2

2σ2 log e
]

= log
√

2πσ2 +
1
2 log e

= log
√

2πeσ2

N.B. h(X) only depends on σ2 and is independent of µ as one would
expect
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Lecture 4 Differential entropy

Multivariate Normal distribution
For N-dim multivariate normal distributed X ∼ N (µ,Σ),

h(X) = E [− log p(X)]

= −E
[
log

(
1√

det (2πΣ)
exp

(
−1

2(X − µ)TΣ−1(X − µ)

))]

= log
√

det (2πΣ) + log e
2 E

∑
i,j

(Xi − µi)
[
Σ−1]

i,j (Xj − µj)


= log

√
det (2πΣ) + log e

2
∑
i,j

[
Σ−1]

i,j E [(Xj − µj)(Xi − µi)]

= log
√

det (2πΣ) + log e
2
∑
i,j

[
Σ−1]

i,j Σj,i

= log
√

det (2πΣ) + N log e
2 = log

√
eN det (2πΣ) = log

√
det (2πeΣ)
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Lecture 4 Differential entropy

Differential entropy and entropy

How differential entropy is related to its discrete counterpart?
Consider a continuous random variable X
Let X∆ is a “quantized” version of it with quantization stepsize of ∆

H(X∆) =
∑
−pX∆(x∆) log pX∆(x∆)

≈
∑
−pX (x∆)∆ log(pX (x∆)∆)

≈
∫
−pX (x) log(pX (x)∆)dx

=

∫
−pX (x) log pX (x)−

∫
pX (x) log∆dx

= h(X)− log∆
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Lecture 4 Differential entropy

Example

Consider the processing time of a packet follow an exponential distribution
with an average of 1 ms. If we want to store the time with the precision of
0.01 ms, about how many bits are needed to store the result?

Answer

The processing time T follows an exponential distribution with
parameter λ = 1/1 = 1ms−1

The corresponding differential entropy h(T ) = 1− log(λ) = 1
If we want to store with precision of 0.01 ms, we need
h(T )− log 0.01 ≈ 7.64bits
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Lecture 4 Properties of entropy and differential entropy

Lower bound of entropy

H(X) ≥ 0
Since p(X) ≤ 1, − log p(X) ≥ 0, therefore

H(X) = E [− log p(X)] ≥ 0

After all, H(X) represents the required bits to compress the source X

Caveat
It does NOT need to be true for differential entropy. It is possible that

h(X) < 0

For example, for a uniformly distributed X from 0 to 0.5,
h(X) = log 0.5 = −1
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Lecture 4 Properties of entropy and differential entropy

Jensen’s Inequality

For a convex (bowl-shape) function f

E [f (X)] ≥ f (E [X ])

Let us consider X with only two outcomes x1 and x2 with probabilities p
and 1− p. Easy to see that

E [f (X)] = pf (x1) + (1− p)f (x2) ≥ f (px1 + (1− p)x2) = f (E [X ])

Result can be extended to discrete variables with more than two outcomes
easily using induction
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Lecture 4 Properties of entropy and differential entropy

Upper bound of entropy

H(X) ≤ log |X |

H(X) = E [− log p(X)] = E
[
log

1
p(X)

]

≤ log E
[

1
p(X)

]
(by Jensen’s inequality)

= log
∑
x∈X

p(x) 1
p(x) = log |X |

N.B. The upper bound is attained when the distribution is uniform

Examples
You should know this bound long alone. Think of the maximum number of
bits needed:

to store the outcome of flipping a coin: log 2 = 1 bit
to store the outcome of throwing a dice: log 6 ≤ 3 bits
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Lecture 5

Review

Source coding theorem: For an independent and identically
distributed (i.i.d.) discrete memoryless source (DMS) X , we can
always compress it with no less than H(X) bits per input symbol,
where H(X) = −

∑
x∈X p(x) log p(x) = E [− log p(X)]

Jensen’s inequality: For a convex (bowl-shape) function f
E [f (X)] ≥ f (E [X ]). Similarly E [g(X)] ≤ g(E [X ]) for a concave g
For continuous random variable X , the differential entropy is given by
h(X) = −

∫
x∈X p(x) log p(x)dx= E [− log p(x)]

For a quantized version of continuous X , H(X∆) = h(X)− log∆

For multivariate normal X ∼ N (µ,Σ),

h(X) = log
√

det (2πeΣ)
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Lecture 5

Upper bound of differential entropy

h(X) ≤ log E
[

1
p(X)

]
= log

∫
x∈X

p(x) 1
p(x)dx = log |X |

The expression still makes sense but it is not useful usually since the
sampling space can be unbounded |X | =∞ (for example, normally
distributed X)

Thus it makes much more sense to consider upper bound of a
differential entropy constrained on the variance of the variable (why
not constrained on mean?)
It turns out that for a fixed variance σ2, the variable will have largest
differential entropy if it is normally distributed (will show later). Thus

h(X) ≤ log
√

2πeσ2

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming November 17, 2021 37 / 127



Lecture 5

Upper bound of differential entropy

h(X) ≤ log E
[

1
p(X)

]
= log

∫
x∈X

p(x) 1
p(x)dx = log |X |

The expression still makes sense but it is not useful usually since the
sampling space can be unbounded |X | =∞ (for example, normally
distributed X)
Thus it makes much more sense to consider upper bound of a
differential entropy constrained on the variance of the variable (why
not constrained on mean?)

It turns out that for a fixed variance σ2, the variable will have largest
differential entropy if it is normally distributed (will show later). Thus

h(X) ≤ log
√

2πeσ2

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming November 17, 2021 37 / 127



Lecture 5

Upper bound of differential entropy

h(X) ≤ log E
[

1
p(X)

]
= log

∫
x∈X

p(x) 1
p(x)dx = log |X |

The expression still makes sense but it is not useful usually since the
sampling space can be unbounded |X | =∞ (for example, normally
distributed X)
Thus it makes much more sense to consider upper bound of a
differential entropy constrained on the variance of the variable (why
not constrained on mean?)
It turns out that for a fixed variance σ2, the variable will have largest
differential entropy if it is normally distributed (will show later). Thus

h(X) ≤ log
√

2πeσ2

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming November 17, 2021 37 / 127



Lecture 5 Joint entropy and conditional entropy

Joint entropy

For multivariate random variable, we can extend the definition of entropy
naturally as follows:

Entropy

H(X ,Y ) = E [− log p(X ,Y )]

and
H(X1,X2, · · · ,XN) = E [− log p(X1, · · · ,XN)]

Differential entropy

h(X ,Y ) = E [− log p(X ,Y )]

and
h(X1,X2, · · · ,XN) = E [− log p(X1, · · · ,XN)]
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Lecture 5 Joint entropy and conditional entropy

Conditional entropy

H(X ,Y ) = E [− log p(X ,Y )] = E [− log p(X)− log p(Y |X)]

= H(X) + E [− log p(Y |X)]︸ ︷︷ ︸
H(Y |X)

Entropy

H(Y |X) , H(X ,Y )− H(X)

Differential entropy

h(Y |X) , h(X ,Y )− h(X)

Interpretation
Total Info. of X and Y = Info. of X + Info. of Y knowing X
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Lecture 5 Joint entropy and conditional entropy

Expanding conditional entropy

H(Y |X) = E [− log p(Y |X)]

=
∑
x ,y
−p(x , y) log p(y |x)

=
∑

x
p(x)

∑
y
−p(y |x) log p(y |x)

=
∑

x
p(x)H(Y |x)

The conditional entropy H(Y |X) is essentially the average of H(Y |x) over
all possible value of x
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Lecture 5 Joint entropy and conditional entropy

Motivating conditional entropy

We can justify the definition of conditional entropy using the LLN as in
the original entropy case2

p(x , y) Enc Dec x̂NxN C

yN yN

By LLN and same argument as the original entropy case, we can
group all x that have the same y together. Then, we can encode all
these x at the rate E [− log p(X |y)] , H(X |y) bits per sample
As for the entire sequence, a fraction p(y) of them will have the same
y . So the overall rate is the weighted sum

∑
y∈Y p(y)H(X |y), which

is just equal to H(X |Y )

Therefore, given some helper (side-) information Y , the remaining
information of X is indeed H(X |Y )

2Should rearrange the lectures to cover LLN first
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Lecture 5 Joint entropy and conditional entropy

Chain rule

Entropy

H(X1,X2, · · · ,XN) =H(X1) + H(X2|X1) + H(X3|X1,X2) + · · ·
+ H(XN |X1,X2, · · · ,XN−1).

Differential entropy

h(X1,X2, · · · ,XN) =h(X1) + h(X2|X1) + h(X3|X1,X2) + · · ·
+ h(XN |X1,X2, · · · ,XN−1).
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Lecture 5 Joint entropy and conditional entropy

Example

Pr(Rain,With umbrella) = 0.2 Pr(Rain,No umbrella) = 0.1
Pr(Sunny ,With umbrella) = 0.2 Pr(Sunny ,No umbrella) = 0.5

W ∈ {Rain,Sunny} U ∈ {With umbrella,No umbrella}

Entropies

H(W ,U) = −0.2 log 0.2− 0.1 log 0.1− 0.2 log 0.2− 0.5 log 0.5 = 1.76 bits
H(W ) = −0.3 log 0.3− 0.7 log 0.7 = 0.88 bits
H(U) = −0.4 log 0.4− 0.6 log 0.6 = 0.97 bits

H(W |U) = H(W ,U)− H(U) = 0.79 bits
H(U|W ) = H(W ,U)− H(W ) = 0.88 bits
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Lecture 5 Joint entropy and conditional entropy

Converse proof of conditional compression

In motivating the conditional entropy, we argue that we can compress a
source X with side information Y with a rate H(X |Y ) by coding the
indices of all typical sequences. However, that actually just upper bound
the information content of X given Y by H(X |Y ). We didn’t show that
no other scheme can exist to compress X with rate below H(X |Y ). We
will show that using a version of Fano’s inequality as before. Basically,
1
N H(X̂N |C ,Y N)→ 0 as error rate goes to zero. Then, for any ε > 0,

1
N (H(C) + ε) ≥ 1

N (H(C |Y N) + ε) ≥ 1
N [H(C |Y N) + H(XN |C ,Y N)]

=
1
N H(XN ,C |Y N) =

1
N [H(XN |Y N) +�������:0

h(C |XN ,Y N)]

=
1
N

N∑
n=1

H(Xn|Y N ,Xn−1) =
1
N

N∑
n=1

H(Xn|Yn) = H(X |Y )
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Lecture 5 Joint entropy and conditional entropy

Fano’s inequality: 1
N H(XN |C ,Y N)→ 0

For any ε > 0, for sufficiently large N, we have 1
N H(XN |C ,Y N)→ 0

Let’s denote E as the error event with E = 1 if X̂N 6= XN and E = 0
otherwise
Then,

1
N H(XN |C ,Y N) =

1
N [H(XN |C ,Y N) +

��������:0
H(E |XN ,Y N ,C)]

=
1
N H(XN ,E |C ,Y N)

=
1
N [H(E |C ,Y N) + H(XN |E ,Y N ,C)]

≤ 1
N [1 + p(¬E)

��������:0
H(XN |¬E ,Y N ,C) + p(E)H(XN |E ,Y N ,C)

≤ 1
N [1 + p(E)H(XN)] =

1
N + p(E)H(X)

Therefore, if p(E)→ 0, 1
N H(XN |C ,Y N) < ε for sufficiently large N
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Lecture 5 KL-divergence

Definition

It is often useful to gauge the difference between two distributions.
KL-divergence is also known to be relative entropy. It is a way to measure
the difference between two distributions. For two distributions of X , p(x)
and p(y),

KL(p(x)‖q(x)) ,
∑
x∈X

p(x) log2
p(x)
q(x) .

N.B. If p(x) = q(x) for all x , KL(p(x)‖q(x)) = 0 as desired
N.B. KL(p(x)‖q(x)) 6= KL(q(x)‖p(x)) in general
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Lecture 5 KL-divergence

KL-divergence is non-negative

KL(p(x)‖q(x)) =
∑
x∈X

p(x) log2
p(x)
q(x)

= −
∑
x∈X

p(x) log2
q(x)
p(x)

= −
∑
x∈X

p(x)
ln 2 ln

q(x)
p(x)

≥ −
∑
x∈X

p(x)
ln 2

(
q(x)
p(x) − 1

)

=
1
ln 2

(∑
x∈X

p(x)−
∑
x∈X

q(x)
)

= 0

Fact
For any real x , ln(x) ≤ x − 1. Moreover, the equality only holds when
x = 1
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Lecture 5 KL-divergence

Continuous variables

We can define KL-divergence for continuous variables in a similar manner

KL(p(x)‖q(x)) ,
∫

x∈X
p(x) log2

p(x)
q(x)dx

= −
∫

x∈X
p(x) log2

q(x)
p(x)dx

= −
∫

x∈X

p(x)
ln 2 ln

q(x)
p(x)dx

≥ −
∫

x∈X

p(x)
ln 2

(
q(x)
p(x) − 1

)
dx

= − 1
ln 2

(∫
x∈X

q(x)dx −
∫

x∈X
p(x)dx

)
= 0
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Lecture 5 KL-divergence

Normal distribution has highest entropy

For fixed variance (covariance matrix), normal distribution has highest
entropy

Proof
Let’s consider the multivariate case with a fixed covariance matrix Σ, the
univariate (scalar) case is a special case thus automatically taken care of.

Without loss of generality, let’s consider zero mean. Denote
N (x; 0,Σ) = φ(x). For any other distribution f (x) with the same
covariance matrix Σ, first note that

∫
x f (x) log φ(x)dx =

∫
x φ(x) log φ(x)dx

(to be show in the next slide). Then,

0 ≤KL(f ‖φ) =
∫

x
f (x) log f (x)

φ(x)dx = −h(f )−
∫

x
f (x) log φ(x)dx

=− h(f )−
∫

x
φ(x) log φ(x)dx = −h(f ) + h(φ)
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Lecture 5 KL-divergence∫
x f (x) log φ(x)dx =

∫
x φ(x) log φ(x)dx

∫
x
φ(x) log φ(x)dx =

∫
x
φ(x)

[
− log

√
det(2πΣ)− 1

2xTΣ−1x
]

dx

=

∫
x
φ(x)

− log
√
det(2πΣ)− 1

2
∑
i,j

xi
[
Σ−1]

i,j xj

 dx

=

∫
x
φ(x)

− log
√
det(2πΣ)− 1

2
∑
i,j

[
Σ−1]

i,j xixj

 dx

=

∫
x

f (x)

− log
√
det(2πΣ)− 1

2
∑
i,j

[
Σ−1]

i,j xixj

 dx

=

∫
x

f (x) log φ(x)dx
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Lecture 5 KL-divergence

Application: Thiel index

Measure economic inequality among different groups or for a group of
individuals
Let pi be the economic wealth proportion of group i , and qi be the
population size proportion of group i
Thiel index is simply KL(p||q)
Let’s apply to a group of N individuals.

If they all have the same wealth, both p and q are uniform
(pi = qi = 1/N), thus Thiel index = KL(p||q) = 0
If one of them own everything, q is uniform but p is a δ-function. Thus
Thiel index = KL(p||q) =

∑
i pi log

pi
qi

= log 1
1/N = logN
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Lecture 5 KL-divergence

Application: Cross-entropy and cross-entropy loss
In machine learning, it is often needed to assess the quality of a trained system.
Consider the example of classifying an the political affliation of an individual

In a first glance, both examples appear to work equally well (or bad). Both have
one classification error. However, a closer look will suggest the prediction of LHS
is worse than RHS (why?)

For a better assessment, we can treat both the
computed result and the target result as distribution and compare them with
KL-divergence. Namely

KL(ptarget‖pcomputed) =
∑
group

ptarget(group) log ptarget(group)
pcomputed(group)

=− H(ptarget)−
∑
group

ptarget(group) log pcomputed(group)︸ ︷︷ ︸
cross entropy

(https://jamesmccaffrey.wordpress.com/2013/11/05/why-you-should-use-cross-entropy-error-instead-of-classification-error-or-
mean-squared-error-for-neural-network-classifier-training/)
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Lecture 5 KL-divergence

Application: Cross-entropy and cross-entropy loss

Cross entropy(p‖q) ,
∑

x
p(x) log 1

q(x) = Ep[− log q(X)]

= H(p) + KL(p‖q)

To compute KL-divergence, one needs to find H(ptarget), which is
independent of the machine learning system and thus does not reflect
the performance of the system
Thus in practice, cross-entropy is commonly used instead of
KL-divergence to measure the performance of a machine learning
system

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming November 17, 2021 53 / 127



Lecture 5 KL-divergence

Application: Cross-entropy and cross-entropy loss

Cross entropy(p‖q) ,
∑

x
p(x) log 1

q(x) = Ep[− log q(X)]

= H(p) + KL(p‖q)

To compute KL-divergence, one needs to find H(ptarget), which is
independent of the machine learning system and thus does not reflect
the performance of the system

Thus in practice, cross-entropy is commonly used instead of
KL-divergence to measure the performance of a machine learning
system

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming November 17, 2021 53 / 127



Lecture 5 KL-divergence

Application: Cross-entropy and cross-entropy loss

Cross entropy(p‖q) ,
∑

x
p(x) log 1

q(x) = Ep[− log q(X)]

= H(p) + KL(p‖q)

To compute KL-divergence, one needs to find H(ptarget), which is
independent of the machine learning system and thus does not reflect
the performance of the system
Thus in practice, cross-entropy is commonly used instead of
KL-divergence to measure the performance of a machine learning
system

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming November 17, 2021 53 / 127



Lecture 5 KL-divergence

Example: Text processing

In text processing, it is common that one may need to measure the
similiarity between two documents D1 and D2.

How to represent documents? One may use the “bag of words”. That
is, to convert document into a vector of numbers. Each number is the
count of a corresponding word
One can then compares two documents using cross entropy

Cross entropy(p1‖p2) =
∑

w
p1(w) log

1
p2(w)

,

where p1 and p2 are the word distributions of documents D1 and D2,
respectively
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Lecture 5 KL-divergence

Example: TF-IDF and cross entropy

It may be also interesting of comparing word distribution of a document to
the word distribution across all documents That is, let q be the word
distribution across all documents,

Cross entropy(p1‖q) =
∑

w
p1(w) log

1
q(w)

=
∑

w

# w in D1
total # words in D1

log
total # docs

# doc with w︸ ︷︷ ︸
TF-IDF(w)

,

where TF -IDF (w), short for term frequency-inverse document frequency,
can reflect how important of the word w to the target document and can
be used in search engine
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Lecture 5 KL-divergence

Application: Evidence lower bound (ELBO)
Given observations x and a model to parametrize latent prior pθ(z)
and likelihood pθ(x |z), we often need to find θ so as to maximize
pθ(x) =

∫
z pθ(z)pθ(x |z)dz. However, the integral is often intractable

Instead we may try to maximize pθ(x) = pθ(z)pθ(x |z)
pθ(z|x) . Of course, this

is a chicken and egg problem. Since generally the only way to find
pθ(z|x) = pθ(z)pθ(x |z)

pθ(x) requires pθ(x)
Instead, let’s write

log pθ(x) = log
pθ(x |z)pθ(z)

pθ(z|x)
= log

pθ(x |z)pθ(z)
pθ(z|x)

qφ(z|x)
qφ(z|x)

= log pθ(x |z)− log
qφ(z|x)
pθ(z)

+ log
qφ(z|x)
pθ(z|x)

Since the above is true for all z,

log pθ(x) = EZ∼qφ(z|x)

[
log pθ(x |z)− log

qφ(z|x)
pθ(z)

+ log
qφ(z|x)
pθ(z|x)

]
= EZ∼qφ(z|x) [log pθ(x |z)]− KL(qφ(z|x)‖pθ(z))︸ ︷︷ ︸

EBLO(x , θ, φ) “Evidence Lower BOund”

+ KL(qφ(z|x) ‖pθ(z|x))︸ ︷︷ ︸
≥0
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Lecture 5 KL-divergence

Application: Evidence lower bound (ELBO)
Kingma and Willing 2014

Maximizing EBLO means that:
Want small KL(qφ(z|x)‖pθ(z)) (the difference between the approx
distribution from pθ(z))
Want large EZ∼qφ(z|x)[log pθ(x |z)] (expected log prob of the evidence
with approx distribution)
In practice, we may need to backprop through a random node z
during training

can be solved by the ”reparametrization trick”
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Lecture 5 KL-divergence

Reparametrization trick

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming November 17, 2021 58 / 127



Lecture 5 Mutual information

Definition

As H(X) is equivalent to the information revealed by X and H(X |Y ) the
remaining information of X knowing Y , we expect that H(X)−H(X |Y ) is
the information of X shared by Y ⇒ “mutual information”

I(X ;Y ) , H(X)− H(X |Y )

Similarly, we can define the “conditional mutual information” shared
between X and Y given Z as

I(X ;Y |Z) , H(X |Z)− H(X |Y ,Z)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming November 17, 2021 59 / 127



Lecture 5 Mutual information

Definition

As H(X) is equivalent to the information revealed by X and H(X |Y ) the
remaining information of X knowing Y , we expect that H(X)−H(X |Y ) is
the information of X shared by Y ⇒ “mutual information”

I(X ;Y ) , H(X)− H(X |Y )

Similarly, we can define the “conditional mutual information” shared
between X and Y given Z as

I(X ;Y |Z) , H(X |Z)− H(X |Y ,Z)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming November 17, 2021 59 / 127



Lecture 5 Mutual information

Property of mutual information

I(X ;Y ) = I(Y ;X) ≥ 0
The definition is symmetric and non-negative as desired.

I(X ;Y ) =H(X)− H(X |Y ) = E [− log p(X)]− E [− log p(X |Y )]

=−
∑

x
p(x) log p(x) +

∑
x,y

p(x , y) log p(x |y)

=−
∑
x,y

p(x , y) log p(x) +
∑
x,y

p(x , y) log p(x |y) =
∑
x,y

p(x , y) log p(x |y)
p(x)

=
∑
x,y

p(x , y) log p(x , y)
p(x)p(y) = KL(p(x , y)‖p(x)p(y)) ≥ 0
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Lecture 5 Mutual information

Property of conditional mutual information

I(X ;Y |Z) = I(Y ;X |Z) ≥ 0
The definition is symmetric and non-negative as desired.

I(X ;Y |Z) =H(X |Z)− H(X |Y ,Z) = E [− log p(X |Z)]− E [− log p(X |Y ,Z)]

=−
∑
x,z

p(x , z) log p(x |z) +
∑
x,y,z

p(x , y , z) log p(x |y , z)

=−
∑
x,y,z

p(x , y , z) log p(x |z) +
∑
x,y,z

p(x , y , z) log p(x |y , z)

=
∑
x,y,z

p(x , y , z) log p(x |y , z)
p(x |z)

=
∑

z
p(z)

∑
x,y

p(x , y |z) log p(x , y |z)
p(x |z)p(y |z)

=
∑

z
p(z)KL(p(x , y |z)‖p(x |z)p(y |z)) ≥ 0
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Lecture 5 Mutual information
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Lecture 5 Mutual information

Independence and mutual information

I(X ;Y ) = 0⇔ X⊥Y

I(X ;Y ) = KL(p(x , y)‖p(x)p(y)) = 0

implies p(x , y) = p(x)p(y). Therefore X⊥Y

I(X ;Y |Z) = 0⇔ X⊥Y |Z

I(X ;Y |Z) =
∑

z
p(z)KL(p(x , y |z)‖p(x |z)p(y |z)) = 0

implies p(x , y |z) = p(x |z)p(y |z) for all z s.t. p(z) > 0. Therefore X⊥Y |Z

Remark
This is just as what we expect. If there is no share information between X
and Y , they should be independent!
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Lecture 5 Mutual information

Chain rule for mutual information

I(X1,X2, · · · ,XN |Y )

=H(X1,X2, · · · ,XN)− H(X1,X2, · · · ,XN |Y )

=
N∑

i=1
H(Xi |X i−1)− H(Xi |X i−1,Y )

=
N∑

i=1
I(Xi ;Y |X i−1)

N.B. XN = X1,X2, · · · ,XN
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Lecture 5 Mutual information

Mutual information for continuous variables

For continuous X ,Y ,Z , we can define I(X ;Y ) = h(X)− h(X |Y ) and
I(X ;Y |Z) = h(X |Z)− h(X |Y ,Z)
Then, the followings still hold true

I(X ;Y ) = KL(p(x , y)‖p(x)p(y)) = I(Y ;X) ≥ 0
I(X ;Y |Z) =

∫
z p(z)KL(p(x , y |z)‖p(x |z)p(y |z))dz = I(Y ;X |Z) ≥ 0

I(X ;Y ) = 0⇔ X⊥Y
I(X ;Y |Z) = 0⇔ X⊥Y |Z
I(X1,X2, · · · ,XN |Y ) =

∑N
i=1 I(Xi ;Y |X i−1)
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Lecture 5 More inequalities

Conditioning reduces entropy

Given more information, the residual information (uncertainty) should
decrease.

More precisely,

H(X) ≥ H(X |Y ) H(X |Y ) ≥ H(X |Y ,Z)

This is obvious from our previous discussion since
H(X)− H(X |Y ) = I(X ;Y ) ≥ 0 and
H(X |Y )− H(X |Y ,Z) = I(X ;Z |Y ) ≥ 0

Of course, we also have

h(X) ≥ h(X |Y ) h(X |Y ) ≥ h(X |Y ,Z)

since h(X)− h(X |Y ) = I(X ;Y ) ≥ 0 and
h(X |Y )− h(X |Y ) = I(X ;Z |Y ) ≥ 0
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Lecture 5 More inequalities

Data processing inequality

If random variables X ,Y ,Z satisfy X ↔ Y ↔ Z , then

I(X ;Y ) ≥ I(X ;Z).

Proof

I(X ;Y ) = I(X ;Y ,Z)− I(X ;Z |Y )

= I(X ;Y ,Z) (since X ↔ Y ↔ Z)

= I(X ;Z) + I(X ;Y |Z)

≥ I(X ;Z)
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Lecture 5 Shannon’s perfect secrecy

Application: perfect secrecy

Example (A simple cryptography example)
Say you have a very personal letter that you don’t want to let anyone
else except some special someone to read

You will first encrypt the letter to some code. To decrypt the
message, you will need some key and you will also pass it to your
special someone. Translate to the cryptography language/symbols

Letter: plaintext message M
Code: ciphertext C
Key: key K

Remark
Shannon’s result: to ensure perfect secrecy, we can show that
H(M) ≤ H(K)
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Lecture 5 Shannon’s perfect secrecy

Application: perfect secrecy

Recall that M,C ,K be plaintext message, ciphertext, and key, respectively

Assumption
We will assume here that we have a non-probabilistic encryption scheme.
In other words, each plaintext message maps to a unique ciphertext given
a fixed key. So there is no ambiguity during decoding. Therefore,
H(M|C ,K) = 0

Remark (Independence)
For perfect secrecy, one should not be able to deduce anything regarding
the message from the ciphertext. Therefore, C and M should be
independent. Thus,
I(C ;M) = 0⇒ H(M) = H(M|C) + I(C ;M) = H(M|C)
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Lecture 5 Shannon’s perfect secrecy

Application: perfect secrecy

Lemma (Entropy bound)
For any non-probabilistic encryption scheme, H(M|C) ≤ H(K |C)

Proof.
Recall that for non-probabilistic encryption scheme, H(M|K ,C) = 0⇒
H(M|C) ≤ H(M,K |C)= H(K |C) + H(M|K ,C) = H(K |C)

Corollary (Entropy bound)
For any non-probabilistic encryption scheme, H(M|C) ≤ H(K)

Theorem (Perfect secrecy)
We have perfect secrecy if H(M) ≤ H(K)

Proof.
Combine Corollary (Entropy bound) and Remark (Independence)
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Lecture 5 Shannon’s perfect secrecy

Summary
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Lecture 5 Shannon’s perfect secrecy

Summary

Conditioning reduces entropy

Chain rules:
H(X ,Y ,Z) = H(Z) + H(Y |X) + H(Z |X ,Y )
H(X ,Y ,U|V )= H(X |V ) + H(Y |X ,V ) + H(U|Y ,X ,V )
I(X ,Y ,Z ;U)= I(X ;U) + I(Y ;U|X) + I(Z ;U|X ,Y )
I(X ,Y ,Z ;U|V )= I(X ;U|V ) + I(Y ;U|V ,X) + I(Z ;U|V ,X ,Y )

Data processing inequality: if X⊥Y |Z , I(X ;Y ) ≥ I(X ;Z)

Independence and mutual information:
X⊥Y ⇔ I(X ;Y ) = 0
X⊥Y |Z ⇔ I(X ;Y |Z) = 0

KL-divergence: KL(p||q) ,
∑

x p(x) log p(x)
q(x) ≥ 0
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Lecture 5 Identification/Decision tree

Vampire database

(https://www.youtube.com/watch?v=SXBG3RGr_Rc)
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Lecture 5 Identification/Decision tree

Identifying vampire

Goal: Design a set of tests to identify vampires

Potential difficulties
Non-numerical data
Some information may not matter
Some may matter only sometimes
Tests may be costly ⇒ conduct as few as possible
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Lecture 5 Identification/Decision tree

Test trees

Shadow

++
--

?

---

Y

+

N
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---

Y

+++
--

N

Complexion

++
-

A

--
P

--
+

R

Accent

--
+

N

-
++

H
-+

O

+ : Vampire − : Not vampire

How to pick a good test?

Pick test that identifies most vampires (and
non-vampires)!
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Lecture 5 Identification/Decision tree

Sizes of homogeneous sets
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Shadow: 4 Garlic: 3 Complexion: 2 Accent: 0
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Lecture 5 Identification/Decision tree
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Lecture 5 Identification/Decision tree

Picking second test

Let say we pick “shadow” as the first test after all. Then, for the
remaining unclassified individuals,

Garlic

--

Y

++

N

Complexion

+

A

-

P

+-
R

Accent

+-

N

+-

H

-+

O

Garlic: 4 Complexion: 2 Accent: 0
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Lecture 5 Identification/Decision tree

Combined tests

Shadow

Garlic

Not
vampire

Y

Vampire

N

?

Not
vampire

Y

Vampire

N

Problem
When our database size increases, none of the test likely to completely
separate vampire from non-vampire. All tests will score 0 then.

Entropy comes to the rescue!
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Lecture 5 Identification/Decision tree

Conditional entropy as a measure of test efficiency
Consider the database is randomly sampled from a distribution. A set is

Very homogeneous ≈ high certainty
Not so homogenous ≈ high randomness

These can be measured with its entropy

Shadow

++--

?

---

Y

+

N

H(V |S =?) = 1 H(V |S = Y ) = 0 H(V |S = N) = 0

Remaining uncertainty given the test:

4
8H(V |S =?)

+
3
8H(V |S = Y ) +

1
8H(V |S = N) = 0.5

=Pr(S =?)H(V |S =?) + Pr(S = Y )H(V |S = Y ) + Pr(S = N)H(V |S = N)

=H(V |S)
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Lecture 5 Identification/Decision tree

Remaining uncertainty

Garlic

---

Y

+++
--

N

H(V |G = Y )
= 0 0.97

Complexion

++
-

A

--

P

--
+

R

0.92 0 0.92

Accent

--
+

N

-
++

H
-+

O

0.92 0.92 1

H(V |S) =0.5

H(V |G) =
3
8 · 0 +

5
8 · 0.97 = 0.61

H(V |C) =
3
8 · 0.92 +

2
8 · 0 +

3
8 · 0.92 = 0.69

H(V |A) =3
8 · 0.92 +

3
8 · 0.92 +

2
8 · 1 = 0.94

H(V |S) is maximum. Thus should pick test S first
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Lecture 5 Identification/Decision tree

Potential extensions

The test does not need to return discrete result. Let X be the test
outcome. It can be continuous as well

We should just pick i such that H(V |Xi) to be as small as possible
It is equivalent of saying I(V ;Xi) = H(V )− H(V |Xi) is as large as
possible. This is intuitive because we want to pick the information that
is most relevant (sharing most information with) to V

Build a number of trees instead of a single tree ⇒ random forests
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Lecture 5 Identification/Decision tree

Random forests

Pick random subset of training samples
Train on each random subset but limited to a subset of
features/attributes
Given a test sample

Classify sample using each of the trees
Make final decision based on majority vote

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming November 17, 2021 81 / 127



Lecture 6 Law of Large Number

Law of Large Number (LLN)

If we randomly sample x1, x2, · · · , xN from an i.i.d. (identical and
independently distributed) source, the average of f (xi) will approach the
expected value as N →∞. That is,

1
N

N∑
i=1

f (xi) = E [f (X)] as N →∞

Example
This is precisely how poll supposes to work! Pollster randomly draws
sample from a portion of the population but will expect the prediction
matches the outcome
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Lecture 6 Law of Large Number

Proof of LLN

The LLN is a rather strong result. We will only show a weak version here.
For any a > 0, Pr

(∣∣∣ 1
N
∑N

i=1 f (Xi)− E [f (X)]
∣∣∣ ≥ a

)
→ 0 as N →∞. (i.e.,

the empirical average converges to the expectation in probability.) More
precisely, we will show

Pr
(∣∣∣∣∣ 1

N

N∑
i=1

f (Xi)− E [f (X)]

∣∣∣∣∣ ≥ a
)
≤ Var(f (X))

Na2 ∝ 1
N

Markov’s Inequality

Pr(X ≥ b) ≤ E [X ]

b if X ≥ 0

Proof:
X = I(X ≥ b) · X + I(X < b) · X ≥ I(X ≥ b) · b ⇒ E [X ] ≥ Pr(X ≥ b) · b
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Lecture 6 Law of Large Number

Proof of LLN

Markov’s Inequality

Pr(X ≥ b) ≤ E [X ]

b if X ≥ 0

Chebyshev’s Inequality

Pr(|Y − E [Y ]| ≥ a) ≤ Var(Y )

a2

Proof: Take X = |Y − E [Y ]|2 and b = a2, by Markov’s Inequality
Pr(|Y − E [Y ]| ≥ a) = Pr(|Y − E [Y ]|2 ≥ a2)

≤E [|Y − E [Y ]|2]
a2 =

Var(Y )

a2
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Lecture 6 Law of Large Number

Proof of LLN

Chebyshev’s Inequality

Pr(|Y − E [Y ]| ≥ a) ≤ Var(Y )

a2

Proof of weak LLN
Let ZN = 1

N
∑N

i=1 f (Xi), apparently E [ZN ] = E [f (X)] and

Var(ZN) =
1

N2

N∑
i=1

Var(f (X)) =
Var(f (X))

N

By Chebyshev’s Inequality,

Pr
(∣∣∣∣∣ 1

N

N∑
i=1

f (Xi)− E [f (X)]

∣∣∣∣∣ ≥ a
)

=Pr(|ZN − E [ZN ]| ≥ a) ≤ Var(ZN)

a2 =
Var(f (X))

Na2
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Lecture 6 Asymptotic equipartition

Main idea

Consider a sequence of symbols x1, x2, · · · , xN sampled from a DMS and
consider the sample average of the log-probabilities of each sampled
symbols

1
N

N∑
i=1

log
1

p(xi)
→ E

[
log

1
p(X)

]

= H(X)

by LLN.

But for the LHS,

1
N

N∑
i=1

log
1

p(xi)
=

1
N log

1∏N
i=1 p(xi)

= − 1
N log p(xN),

where xN = x1, x2, · · · , xN

Rearranging the terms, this implies that for any sequence sampled from
the source, the probability of the sampled sequence p(xN)→ 2−NH(X)!
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Consider a sequence of symbols x1, x2, · · · , xN sampled from a DMS and
consider the sample average of the log-probabilities of each sampled
symbols

1
N

N∑
i=1

log
1

p(xi)
→ E

[
log

1
p(X)

]
= H(X)

by LLN.

But for the LHS,

1
N
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Lecture 6 Asymptotic equipartition

Kelly’s Criterion

Say in total I have 1 dollar to start with and I bet X fraction of my
current net worth each time for an a-for-1 bet
Say the probability of winning the bet is p, expected wealth after one
bet is 1− X + paX . Apparently if pa < 1, I shouldn’t put in any
money at all, but for pa > 1, expected wealth after one bet is
maximized when X = 1. Does it mean that we should always all in?
Say if we can make repeated bets, let’s denote Yi as the fraction of
wealth gain after the ith bet. That is, net wealth WN after N bets is∏N

i=1 Yi with

Yi =

{
(1− X) + aX with prob p
1− X with prob 1− p
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Lecture 6 Asymptotic equipartition

Kelly’s Criterion

Let b = a − 1, by LLN, logWN =
∑N

i=1 logYi → NE [logY ]

Thus logWN → N[p log(1 + (a − 1)︸ ︷︷ ︸
b

X) + (1− p) log(1− X)]. So, the

final wealth is approximately

WN ≈ (1 + Xb)Np(1− X)N(1−p) = ((1 + Xb)p(1− X)1−p)N .

To maximize this gain, we just need to maximize
(1 + Xb)p(1− X)1−p or f (X) = p log(1 + Xb) + (1− p) log(1− X)
w.r.t. X . Setting df

dX = 0, we have
pb

1+Xb −
1−p
1−X = 0⇒ X = bp−(1−p)

b = (a−1)p−(1−p)
a−1 = ap−1

a−1 .

Note that we will never all in as long as p < 1
N.B. 1

N lnWN converges to (1 + Xb)p(1− X)1−p but 1
N WN does not converge
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Lecture 6 Asymptotic equipartition

Set of typical sequences

Let’s name the sequence xN with p(xN) ∼ 2−NH(X) typical and define the
set of typical sequences

AN
ε (X) = {xN |2−N(H(X)+ε) ≤ p(xN) ≤ 2−N(H(X)−ε)}

For any ε > 0, we can find a sufficiently large N such that any
sampled sequence from the source is typical
Since all typical sequences have probability ∼ 2−NH(X) and they fill
up the entire probability space (everything is typical), there should be
approximately 1

2−NH(X) = 2NH(X) typical sequences
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Lecture 6 Asymptotic equipartition

Precise bounds on the size of typical set

(1− δ)2N(H(X)−ε) ≤ |AN
ε (X)| ≤ 2N(H(X)+ε)

1 ≥ Pr(XN ∈ AN
ε (X))

=
∑

xN∈AN
ε (X)

p(xN) ≥
∑

xN∈AN
ε (X)

2−N(H(X)+ε)

= |AN
ε (X)|2−N(H(X)+ε)

For a sufficiently large N, we have

1− δ ≤ Pr(XN ∈ AN
ε (X)) =

∑
xN∈AN

ε (X)

p(xN) ≤
∑

xN∈AN
ε (X)

2−N(H(X)−ε)

= |AN
ε (X)|2−N(H(X)−ε)
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Lecture 6 Asymptotic equipartition

AEP

Set of typical
Sequences

Sequences 
are equally 
probable

Sequence 
that won't 
happen

Asymptotic equipatition refers to the fact that the probability space is
equally partitioned by the typical sequences
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Lecture 6 Asymptotic equipartition

AEP and compression limit

Consider coin flipping again, let say Pr(Head) = 0.3 and N = 1000

The typical sequences will be those with approximately 300 heads and
700 tails
AEP (LLN) tells us that it is almost impossible to get, say, a sequence
of 100 heads and 900 tails
AEP also tells us that the number of typical sequences are
approximately 2NH(X)

Therefore, we can simply assign index to all the typical sequences and
ignore the rest. Then we only need log 2NH(X) = NH(X) to store a
sequence of N symbols. And on average, we need H(X) bits per
symbol as before!
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Lecture 6 Asymptotic equipartition

Converse proof of source coding theorem

The AEP argument only shows that compression scheme exists for
compression rate above H(X) bits per sample. Let show that if
compression rate < H(X) bits per sample, the recovered source has to be
lossy

We will use a version of Fano’s inequality. Denote C as the
compressed input and X̂N as the recovered sequence, if
Pr(XN 6= X̂N)→ 0, 1

N H(XN |C) < ε for any ε > 0 given a sufficiently
large N
Then,

1
N (H(C) + ε) ≥ 1

N [H(C) + H(XN |C)]

=
1
N H(C ,XN) =

1
N [H(XN) +�����:0

H(C |XN)]

= H(X)
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Lecture 6 Asymptotic equipartition

Fano’s inequality for source coding theorem

Let show the statement that 1
N H(XN |C) < ε for any ε > 0 given a

sufficiently large N if Pr(XN 6= X̂N)→ 0. Let’s denote E as the error
event so that E = 1 if XN 6= X̂N and 0 otherwise. Then

H(XN |C) = H(E ,XN |C)−�������:0
H(E |C ,XN)

= H(E |C) + H(XN |E ,C)

≤ 1 + Pr(E = 0)
���������:0
H(XN |C ,E = 0) + Pr(E = 1)H(XN |C ,E = 1)

≤ 1 + Pr(E = 1)H(XN)

Thus, as Pr(E = 1)→ 0, 1
N H(XN |C) ≤ 1

N + Pr(E = 1)H(X) < ε for
sufficiently large N
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Lecture 6 Fisher information and Cramer-Rao bound

Score and Fisher information

For a family of density f (x ; θ) parametrized by θ, we define the score
V as a random variable of fraction of change of f (X ; θ) w.r.t. θ.
That is, V ,

∂f (X ;θ)
∂θ

f (X ;θ) = ∂
∂θ ln f (X ; θ)

Note that
E [V ] =

∫ ∂f (x ;θ)
∂θ

1
f (x ;θ) f (x ; θ)dx = ∂

∂θ

∫
f (x ; θ)dx = ∂

∂θ1 = 0
We define the Fisher information J(θ) for X w.r.t. θ as
Var(V ) = E [V 2]
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Lecture 6 Fisher information and Cramer-Rao bound

Score and Fisher information for n i.i.d. X

V (X1, · · · ,Xn) =
∂
∂θ ln f (X1, · · · ,Xn) =

∑n
i=1

∂
∂θ ln f (Xi) =∑n

i=1 V (Xi)

E [V (X1, · · · ,Xn)] =
∑n

i=1 E [V (Xi)] = 0
J(θ;X1, · · · ,Xn) = E [V (X1, · · · ,Xn)

2] = E [(
∑n

i=1 V (Xi))
2] =

E [
∑n

i=1 V (Xi)
2] =

∑n
i=1 J(θ;Xi) = nJ(θ)
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Lecture 6 Fisher information and Cramer-Rao bound

Cramer-Rao lower bound

For any unbiased estimator T of θ out of X , i.e., E [T (X)] = θ. The
variance of the estimator is lower bounded by the inverse of Fisher
information J(θ;X). That is, Var(T ) = E [T 2(X)] ≥ 1

J(θ;X)

Proof: consider the Cauchy-Schwarz inequality
E2[(T − E [T ])(V − E [V ])] ≤ E [(T − E [T ])2]E [(V − E [V ])2] =
Var(T )Var(V ) = Var(T )J(θ)
and E [(T − E [T ])(V − E [V ])] = E [TV ]− E [T ]E [V ] = E [TV ] =∫

T (x)∂f (x ;θ)/∂θ
f (x ;θ) f (x ; θ)dx = ∂

∂θ

∫
T (x)f (x ; θ)dθ = ∂

∂θE [T ] = ∂
∂θθ =

1
�
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Lecture 6 Fisher information and Cramer-Rao bound

Example of Cramer-Rao lower bound

Consider a normally distributed source ∼ N (µ, σ2) with known
variance σ2 and we try to estimate the mean µ. Giving n samples
X1,X2, · · · ,Xn

A reasonable estimate of µ is simply the average of the samples
µ̂ = 1

n
∑n

i=1 Xi
The estimate is unbiased as E [µ̂] = 1

n
∑n

i=1 E [Xi ] = µ
And the variance is Var(µ̂) = E [(µ̂− µ)2]

= 1
n2

(∑n
i=1 E [(Xi − µ)2] + 2

∑n
i 6=j E [(Xi − µ)(Xj − µ)]

)
= 1

n2

(∑n
i=1 E [(Xi − µ)2] + 2

∑n
i 6=j E [(Xi − µ)]E [(Xj − µ)]

)
= 1

n2

(∑n
i=1 E [(Xi − µ)2]

)
= nσ2

n2 = σ2

n

We will use the Cramer-Rao lower bound to show that such estimate
is optimal
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Lecture 6 Fisher information and Cramer-Rao bound

Example of Cramer-Rao lower bound

Let’s compute J(µ;X1, · · · ,Xn), which is equal to nJ(µ;X). And

J(µ;X) = E
[(

∂

∂µ
ln

(
1√

2πσ2
e−

(X−µ)2

2σ2

))2
]

= E
[(

X − µ

σ2

)2
]
=

1
σ4 E [(X − µ)2] =

1
σ2

So J(µ;X1, · · · ,Xn) =
n
σ2 and by Cramer-Rao lower bound, any

unbiased estimator cannot has variance less than σ2

n . And thus the
mean estimate using average samples described in the last slide is
optimal
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Lecture 7 Packing lemma and covering lemma

Jointly typical sequences
For a pair of sequences xN and yN , we say that they are jointly typical if

2−N(H(X ,Y )+ε) ≤ p(xN , yN) ≤ 2−N(H(X ,Y )−ε)

and xN and yN themselves are typical

As in the single sequence case,
Any sequence pair drawing from a joint source p(x , y) is essentially
jointly typical
There are ∼ 2NH(X ,Y ) jointly typical sequences
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Lecture 7 Packing lemma and covering lemma

Joint typicality of independent seqences

Given sequences XN and Y N independently drawn from discrete
memoryless sources p(x) and p(y)

What is the probability that XN and Y N are jointly typical?

Pr((XN ,Y N) ∈ A(N)
ε )

=
∑

{(xN ,yN)|(xN ,yN)∈A(N)
ε }

p(xN , yN)

=
∑

{(xN ,yN)|(xN ,yN)∈A(N)
ε }

p(xN)p(yN)

≤
∑

{(xN ,yN)|(xN ,yN)∈A(N)
ε }

2−N(H(X)−ε)2−N(H(Y )−ε)

≤2−N(I(X ;Y )−3ε)

p(x)

p(y)


Jointly
typical?
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Lecture 7 Packing lemma and covering lemma

Packing lemma
How many independent Y N sequences can pack with some XN without
becoming jointly typical with XN?

Say, M Y N sequences were drawn

The probability of any of Y N to be jointly typical with XN is bounded
by

Pr(Any one of M Y N jointly typical with XN)

≤MPr((XN ,Y N) ∈ AN
ε (X ,Y ))

≤M2−N(I(X ;Y )−3ε)

≤2−N(I(X ;Y )−R−3ε) → 0 as N →∞ and I(X ;Y )− 3ε > R ,

where 2NR = M

Since ε can be made arbitrarily small as N increases, as long as
I(X ;Y ) > R , we can find a sufficiently large N so that we can “pack” the
M Y N with XN and none of the Y N will be jointly typical with XN
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Lecture 7 Packing lemma and covering lemma

Covering lemma
How many independent Y N are needed until it is jointly typical with XN?

Again, draw M(= 2NR) Y N sequences
Under what condition that at least one Y N jointly typical with XN?

Pr((XN(m),Y N) /∈ A(N)
ε (X ,Y ) for all m)

=
M∏

m=1
Pr((XN(m),Y N) /∈ A(N)

ε (Y ,X))

=
M∏

m=1

[
1− Pr((XN(m),Y N) ∈ A(N)

ε (Y ,X))
]

≤(1− (1− δ)2−N(I(Y ;X)+3ε))M

≤ exp(−M(1− δ)2−N(I(Y ;X)+3ε))

≤ exp(−(1− δ)2N(R−I(Y ;X)−3ε))→ 0 as N →∞ and R > I(X ;Y ) + 3ε
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Lecture 7 Packing lemma and covering lemma

Summary of packing lemma and covering lemma

Packing Lemma
We can “pack” M = 2NR (with R < I(X ;Y )) xN together without being
jointly typical with yN

Covering Lemma
We can “cover” with M = 2NR (with R > I(X ;Y )) xN such that at least
one xN being jointly typical with yN

Remark
Packing lemma is useful in the proof of channel coding theorem
Covering lemma is useful in the proof of rate-distortion theorem

We will look into the above applications later in this course
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Lecture 7 Channel coding setup

Channel coding setup

p(m) Encoder p(y |x) Decoder m̂
m xN yN

As the name suggests, the output of a discrete memoryless channel
(DMS) only depends on the current input (thus no memoryless). And
both its input X and output Y are characterized by the conditional
probability p(y |x)

Given an input sequence xN = x1, · · · , xN , the probability of getting
an output sequence yN = y1, · · · , yN is p(yN |xN) =

∏N
i=1 p(yi |xi)

Given a message m (say generated from a distribution p(m))

We will have an encoder decoder pair
The encoder will convert m to xN suitable for transmission
Decoder will try to extracted the message from the channel output yN
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Lecture 7 Channel coding setup

Channel coding rate

p(m) Encoder p(y |x) Decoder m̂
m xN yN

The channel coding rate is defined as number of bits of message can be
sent per channel use

Since there is H(M) bits of information for each message M sent
R = H(M)

N
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Lecture 7 Channel capacity

Channel capacity

By Shannon’s channel coding theorem, the capacity of the channel
(will be shown later) is given by

C = max
p(x)

I(X ;Y )

This means that as long as the rate R is less than the capacity C , we
can find encoder-decoder pair such that the decoding error
(Pr(M̂ 6= M)) can be made arbitrarily small
On the other hand, if R is larger than the capacity C , no matter how
we try, it is impossible to recontruct m error free
An intuitive interpretation is that the amount of information can be
passed through a channel is just mutual information between the
input and output. And since we can pick the statistics of our input,
we may make our choice wisely and maximize the mutual information.
And the maximum that we can attain is the capacity

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming November 17, 2021 108 / 127



Lecture 7 Channel capacity

Channel capacity

By Shannon’s channel coding theorem, the capacity of the channel
(will be shown later) is given by

C = max
p(x)

I(X ;Y )

This means that as long as the rate R is less than the capacity C , we
can find encoder-decoder pair such that the decoding error
(Pr(M̂ 6= M)) can be made arbitrarily small

On the other hand, if R is larger than the capacity C , no matter how
we try, it is impossible to recontruct m error free
An intuitive interpretation is that the amount of information can be
passed through a channel is just mutual information between the
input and output. And since we can pick the statistics of our input,
we may make our choice wisely and maximize the mutual information.
And the maximum that we can attain is the capacity

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming November 17, 2021 108 / 127



Lecture 7 Channel capacity

Channel capacity

By Shannon’s channel coding theorem, the capacity of the channel
(will be shown later) is given by

C = max
p(x)

I(X ;Y )

This means that as long as the rate R is less than the capacity C , we
can find encoder-decoder pair such that the decoding error
(Pr(M̂ 6= M)) can be made arbitrarily small
On the other hand, if R is larger than the capacity C , no matter how
we try, it is impossible to recontruct m error free

An intuitive interpretation is that the amount of information can be
passed through a channel is just mutual information between the
input and output. And since we can pick the statistics of our input,
we may make our choice wisely and maximize the mutual information.
And the maximum that we can attain is the capacity

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming November 17, 2021 108 / 127



Lecture 7 Channel capacity

Channel capacity

By Shannon’s channel coding theorem, the capacity of the channel
(will be shown later) is given by

C = max
p(x)

I(X ;Y )

This means that as long as the rate R is less than the capacity C , we
can find encoder-decoder pair such that the decoding error
(Pr(M̂ 6= M)) can be made arbitrarily small
On the other hand, if R is larger than the capacity C , no matter how
we try, it is impossible to recontruct m error free
An intuitive interpretation is that the amount of information can be
passed through a channel is just mutual information between the
input and output. And since we can pick the statistics of our input,
we may make our choice wisely and maximize the mutual information.
And the maximum that we can attain is the capacity

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming November 17, 2021 108 / 127



Lecture 7 Channel capacity

Continuous channel

p(m) Encoder? p(y |x) Decoder? m̂
m xN yN
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Continuous channel

p(m) Encoder D/A p(y |x) A/D Decoder m̂
m xN

∆ xN yN yN
∆

For continuous channel, we can create a “pseudo” discrete channel
using A/D and D/A converters

The maximum information that can pass through the channel will
then be

C∆ = max
p(x)

I(X∆;Y∆) = max
p(x)

H(Y∆)− H(Y∆|X∆)

≈ max
p(x)

h(Y )− log∆− h(Y |X∆) + log∆

≈ max
p(x)

h(Y )− h(Y |X) = max
p(x)

I(X ;Y )

As ∆→ 0, C = maxp(x) I(X ;Y ). So expression is completely the
same as the discrete case
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Lecture 7 Channel capacity

Example: Binary symmetric channel

Both input and output are binary (say take value 0 or 1)

The channel is symmetric in the sense that

pY |X (1|0) = pY |X (0|1) = p

and
pY |X (0|0) = pY |X (1|1) = 1− p,

where p is known to be the cross-over probability
Capacity is given by

C = max
p(x)

I(X ;Y )

= max
p(x)

H(Y )− H(Y |X)

= max
p(x)

H(Y )− H(p) = 1− H(p)
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Lecture 7 Channel capacity

Example: Gaussian channel

The channel output Y = X + Z , where Z is a zero-mean Gaussian noise
(independent of the input X)

C = max
p(x)

I(X ;Y )

= max
p(x)

h(Y )− h(Y |X) = max
p(x)

h(Y )− h(X + Z |X)

= max
p(x)

h(Y )− h(Z |X) = max
p(x)

h(Y )− h(Z)

= max
p(x)

h(Y )− 1
2 log 2πeσ2

Z =
1
2 log 2πeσ2

Y −
1
2 log 2πeσ2

Z

=
1
2 log

σ2
X + σ2

Z
σ2

Z
=

1
2 log

(
1 +

σ2
X

σ2
Z

)
=

1
2 log(1 + SNR),

where SNR is the signal to noise ratio
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Lecture 7 Channel capacity

Example: Bandlimited channel

Consider an bandlimited channel with bandwidth W and two-sided power
spectrum density of N0/2

From the result of Nyquist and Shannon, a signal of bandwidth W
will need to at least 2W samples per second to be fully reconstructed
Per each second, 2W samples needed to recover the signal
Per each second, 2W degrees of freedom exists ⇒ 2W parallel
Gaussian channel per second

Given N0, SNR =
σ2

X
2W (N0/2) =

P
WN0

C = 2W 1
2 log(1 + SNR) = W log

(
1 +

P
WN0

)
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Lecture 7 Forward proof of Channel Coding Theorem

Codebook construction

Forward statement
If the code rate R < C = maxp(x) I(X ;Y ), according to the Channel
Coding Theorem, we should be able to find a code with encoding mapping
c : m ∈ {1, 2, · · · , 2NR} → {0, 1}N and the error probability of
transmitting any message m ∈ {1, 2, · · · , 2NR}, pe(m), is arbitrarily small

The main tool of the proof is random coding
Let p∗(x) = argmaxp(x) I(X ;Y ). Generate codewords from the DMS
p∗(x) by sampling 2n length-n sequences from the source:

c(1) =(x1(1), x2(1), · · · , xN(1))
c(2) =(x1(2), x2(2), · · · , xN(2))

· · ·
c(2NR) =(x1(2NR), x2(2NR), · · · , xN(2NR))
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Lecture 7 Forward proof of Channel Coding Theorem

Encoding and decoding

The encoding and decoding procedures will be as follows.

Encoding
For input message m, output c(m) = (x1(m), x2(m), · · · , xN(m))

Decoding
Upon receiving sequence y = (y1, y2, · · · , yN), pick the sequence c(m)
from {c(1), · · · , c(2NR)} such that (c(m), y) are jointly typical. That is
pXN ,Y N (c(m), y) ∼ 2−nH(X ,Y ). If no such c(m) exists or more than one
such sequence exist, announce error. Otherwise output the decoded
message as m
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Lecture 7 Forward proof of Channel Coding Theorem

Average performance

Let us assume M = m, decoding error occurs when:

1 P1 = Pr(C(m),Y) /∈ AN
ε (X ,Y ))

2 P2 : ∃M ′ 6= m and (c(M ′),Y) ∈ AN
ε (X ,Y )

Thus p(error) = P(error |M = m) ≤ P1 + P2
1 Since (C(m),Y) is coming out of the joint source X ,Y , P1 → 0 as

n→∞
2 Note that C(M ′) and Y are independent and thus by Packing lemma,

P2 ≤ 2−N(I(X ;Y )−R−3ε) (1)

Since ε can be made arbitrarily small as N increase, as long as
I(X ;Y )− 3ε > R , we can make P2 arbitrarily small also given a
sufficiently large N
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Lecture 7 Forward proof of Channel Coding Theorem

A bit more caveat
We want to show that there exists a code c∗(·) such that
Pr(error |c∗,m)→ 0 no matter what message m is sent

But we actually show that the average error over all random codes
can be made arbitrarily small for any message m. That is,∑

c p(c)Pr(error |c,m)→ 0
Consequently, the error average over all code and messages,∑

m p(m)
∑

c p(c)Pr(error |c,m) have to go to zero as well. Thus,
the best code (in terms of lowest error average error) should also have∑

m p(m)Pr(error |c∗,m) , δ → 0
Without loss of generality and for simplicity, assume that all messages
are equally likely 1

2NR
∑

m Pr(error |c∗,m) = δ

If we discard worse half of the codewords, for remaining m, we have
Pr(error |c∗,m) ≤ 2δ → 0 as N →∞
Even though the rate reduces from R to R − 1

N (number of messages
from 2NR → 2NR−1). But we can still make the final rate arbitrarily
close to the capacity as N →∞

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming November 17, 2021 117 / 127



Lecture 7 Forward proof of Channel Coding Theorem

A bit more caveat
We want to show that there exists a code c∗(·) such that
Pr(error |c∗,m)→ 0 no matter what message m is sent
But we actually show that the average error over all random codes
can be made arbitrarily small for any message m. That is,∑

c p(c)Pr(error |c,m)→ 0

Consequently, the error average over all code and messages,∑
m p(m)

∑
c p(c)Pr(error |c,m) have to go to zero as well. Thus,

the best code (in terms of lowest error average error) should also have∑
m p(m)Pr(error |c∗,m) , δ → 0

Without loss of generality and for simplicity, assume that all messages
are equally likely 1

2NR
∑

m Pr(error |c∗,m) = δ

If we discard worse half of the codewords, for remaining m, we have
Pr(error |c∗,m) ≤ 2δ → 0 as N →∞
Even though the rate reduces from R to R − 1

N (number of messages
from 2NR → 2NR−1). But we can still make the final rate arbitrarily
close to the capacity as N →∞

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming November 17, 2021 117 / 127



Lecture 7 Forward proof of Channel Coding Theorem

A bit more caveat
We want to show that there exists a code c∗(·) such that
Pr(error |c∗,m)→ 0 no matter what message m is sent
But we actually show that the average error over all random codes
can be made arbitrarily small for any message m. That is,∑

c p(c)Pr(error |c,m)→ 0
Consequently, the error average over all code and messages,∑

m p(m)
∑

c p(c)Pr(error |c,m) have to go to zero as well. Thus,
the best code (in terms of lowest error average error) should also have∑

m p(m)Pr(error |c∗,m) , δ → 0

Without loss of generality and for simplicity, assume that all messages
are equally likely 1

2NR
∑

m Pr(error |c∗,m) = δ

If we discard worse half of the codewords, for remaining m, we have
Pr(error |c∗,m) ≤ 2δ → 0 as N →∞
Even though the rate reduces from R to R − 1

N (number of messages
from 2NR → 2NR−1). But we can still make the final rate arbitrarily
close to the capacity as N →∞

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming November 17, 2021 117 / 127



Lecture 7 Forward proof of Channel Coding Theorem

A bit more caveat
We want to show that there exists a code c∗(·) such that
Pr(error |c∗,m)→ 0 no matter what message m is sent
But we actually show that the average error over all random codes
can be made arbitrarily small for any message m. That is,∑

c p(c)Pr(error |c,m)→ 0
Consequently, the error average over all code and messages,∑

m p(m)
∑

c p(c)Pr(error |c,m) have to go to zero as well. Thus,
the best code (in terms of lowest error average error) should also have∑

m p(m)Pr(error |c∗,m) , δ → 0
Without loss of generality and for simplicity, assume that all messages
are equally likely 1

2NR
∑

m Pr(error |c∗,m) = δ

If we discard worse half of the codewords, for remaining m, we have
Pr(error |c∗,m) ≤ 2δ → 0 as N →∞
Even though the rate reduces from R to R − 1

N (number of messages
from 2NR → 2NR−1). But we can still make the final rate arbitrarily
close to the capacity as N →∞

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming November 17, 2021 117 / 127



Lecture 7 Forward proof of Channel Coding Theorem

A bit more caveat
We want to show that there exists a code c∗(·) such that
Pr(error |c∗,m)→ 0 no matter what message m is sent
But we actually show that the average error over all random codes
can be made arbitrarily small for any message m. That is,∑

c p(c)Pr(error |c,m)→ 0
Consequently, the error average over all code and messages,∑

m p(m)
∑

c p(c)Pr(error |c,m) have to go to zero as well. Thus,
the best code (in terms of lowest error average error) should also have∑

m p(m)Pr(error |c∗,m) , δ → 0
Without loss of generality and for simplicity, assume that all messages
are equally likely 1

2NR
∑

m Pr(error |c∗,m) = δ

If we discard worse half of the codewords, for remaining m, we have
Pr(error |c∗,m) ≤ 2δ → 0 as N →∞

Even though the rate reduces from R to R − 1
N (number of messages

from 2NR → 2NR−1). But we can still make the final rate arbitrarily
close to the capacity as N →∞

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming November 17, 2021 117 / 127



Lecture 7 Forward proof of Channel Coding Theorem

A bit more caveat
We want to show that there exists a code c∗(·) such that
Pr(error |c∗,m)→ 0 no matter what message m is sent
But we actually show that the average error over all random codes
can be made arbitrarily small for any message m. That is,∑

c p(c)Pr(error |c,m)→ 0
Consequently, the error average over all code and messages,∑

m p(m)
∑

c p(c)Pr(error |c,m) have to go to zero as well. Thus,
the best code (in terms of lowest error average error) should also have∑

m p(m)Pr(error |c∗,m) , δ → 0
Without loss of generality and for simplicity, assume that all messages
are equally likely 1

2NR
∑

m Pr(error |c∗,m) = δ

If we discard worse half of the codewords, for remaining m, we have
Pr(error |c∗,m) ≤ 2δ → 0 as N →∞
Even though the rate reduces from R to R − 1

N (number of messages
from 2NR → 2NR−1). But we can still make the final rate arbitrarily
close to the capacity as N →∞
S. Cheng (OU-ECE) Information Theory and Probabilistic Programming November 17, 2021 117 / 127



Lecture 8 Review

Previously...

Joint typical sequences
Covering and Packing Lemmas
Channel Coding Theorem
Capacity of Gaussian channel
Capacity of additive white Gaussian channel
Forward proof of Channel Coding Theorem

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming November 17, 2021 118 / 127



Lecture 8 Overview

This time

Converse Proof of Channel Coding Theorem
Non-white Gaussian Channel
Rate-distortion problems
Rate-distortion Theorem
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Lecture 8 Converse proof of Channel Coding Theorem

Converse proof

We want to say that whenever the code rate is larger than the capacity,
the probability of error will be non-zero

Equivalently...
As long as the probability of error is 0, the rate of the code R has to be
larger than the capacity

To continue the converse proof, we will need to introduce a simple result
from Fano

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming November 17, 2021 120 / 127



Lecture 8 Converse proof of Channel Coding Theorem

Converse proof

We want to say that whenever the code rate is larger than the capacity,
the probability of error will be non-zero

Equivalently...
As long as the probability of error is 0, the rate of the code R has to be
larger than the capacity

To continue the converse proof, we will need to introduce a simple result
from Fano

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming November 17, 2021 120 / 127



Lecture 8 Converse proof of Channel Coding Theorem

Converse proof

We want to say that whenever the code rate is larger than the capacity,
the probability of error will be non-zero

Equivalently...
As long as the probability of error is 0, the rate of the code R has to be
larger than the capacity

To continue the converse proof, we will need to introduce a simple result
from Fano

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming November 17, 2021 120 / 127



Lecture 8 Converse proof of Channel Coding Theorem

Fano’s inequality

Fano’s inequality

Denote Pr(error) = Pe = Pr(M 6= M̂), then H(M|Y N) ≤ 1 + PeH(M)
Intuitively, if Pe → 0, on average we will know M for certain given y and
thus 1

N H(M|Y N)→ 0

Proof: Let E = I(M 6= M̂), then

H(M|Y N) = H(M,E |Y N)− H(E |Y N ,M)

= H(M,E |Y N) = H(E |Y N) + H(M|Y N ,E)

≤ H(E) + H(M|Y N ,E)

≤ 1 + P(E = 0)H(M|Y N ,E = 0) + P(E = 1)H(M|Y N ,E = 1)

≤ 1 + 0 + PeH(M|Y N ,E = 1)
(d)
≤ 1 + PeH(M)
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Lecture 8 Converse proof of Channel Coding Theorem

Converse proof

R =
H(M)

N =
1
N

[
I(M;Y N) + H(M|Y N)

]

≤ 1
N

[
I(XN ;Y N) + H(M|Y N)

]
=

1
N

[
H(Y N)− H(Y N |XN) + H(M|Y N)

]
=

1
N

[
H(Y N)−

∑
i

H(Yi |XN ,Y i−1) + H(M|Y N)

]

=
1
N

[
H(Y N)−

∑
i

H(Yi |Xi) + H(M|Y N)

]

≤ 1
N

[∑
i

H(Yi)−
∑

i
H(Yi |Xi) + H(M|Y N)

]

=
1
N

[∑
i

I(Xi ;Yi) + H(M|Y N)

]
= I(X ;Y ) +

H(M|Y N)

N → I(X ;Y )

as N →∞ by Fano’s inequality
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H(Yi |Xi) + H(M|Y N)
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N
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i

I(Xi ;Yi) + H(M|Y N)

]
= I(X ;Y ) +

H(M|Y N)

N
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Lecture 8 Capacity of non-white Gaussian channels

Color channels

We look into capacity of white Gaussian channel last time

But sometimes noise power can be different for different band,
consequently, “color” channels
Intuitively, we should assign different amount of power to different
band. Hence, we have an allocation problem
Without loss of generality, let’s consider the discrete approximation,
parallel Gaussian channel
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Lecture 8 Capacity of non-white Gaussian channels

Parallel Gaussian channels

Consider that we have K parallel channels (K bands) and the
corresponding noise powers are σ2

1, σ
2
2, · · · , σ2

K

And say, we can allocate a total of P power to all channels. The
powers assigned to the channels are P1,P2, · · · ,PK . So we need∑K

i=1 Pi ≤ P

Therefore, for the k-th channel, we can transmit 1
2 log

(
1 + Pk

σ2
k

)
bits

per channel use
So our goal is to assign P1,P2, · · · ,PK ≥ 0 (

∑K
k=1 Pk ≤ P) such

that the total capacity

K∑
k=1

1
2 log

(
1 +

Pk
σ2

k

)
is maximize
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Lecture 8 Capacity of non-white Gaussian channels

KKT conditions
Let’s list all the KKT conditions for the optimization problem

max
K∑

k=1

1
2 log

(
1 +

Pk

σ2
k

)
such that

P1, · · · ,PK ≥ 0,
K∑

k=1
Pk ≤ P

∂

∂Pi

[ K∑
k=1

1
2 log

(
1 +

Pk

σ2
k

)
+

K∑
k=1

λkPk − µ

( K∑
k=1

Pk − P
)]

= 0

µ, λ1, · · · , λK ≥ 0,P1, · · · ,PK ≥ 0,
K∑

k=1
Pk ≤ P

µ

( K∑
k=1

Pk − P
)

= 0, λkPk = 0,∀k
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Lecture 8 Capacity of non-white Gaussian channels

Capacity of parallel channels

∂

∂Pi

[ K∑
k=1

1
2 log

(
1 +

Pk
σ2

k

)
+

K∑
k=1

λkPk − µ

( K∑
k=1

Pk − P
)]

= 0

⇒1
2

1
Pi + σ2

i
= µ− λi ⇒ Pi + σ2

i =
1

2(µ− λi)

Since λiPi = 0, for Pi > 0, we have λi = 0 and thus

Pi + σ2
i =

1
2µ = constant

This suggests that µ > 0 and thus
∑K

k=1 Pk = P
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Lecture 8 Capacity of non-white Gaussian channels

Water-filling interpretation

From Pi + σ2
i = const, power can be allocated intuitively as filling water

to a pond (hence “water-filling”)

Example

P1 = 0,P2 = 0.3,P3 = 0.6,P4 = 0,P5 = 0
P1 = 0,P2 = 0.8,P3 = 1.1,P4 = 0.3,P5 = 0
P1 = 0.5,P2 = 1.5,P3 = 1.8,P4 = 1,P5 = 0
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