Information theory and probabilistic inference Samuel Cheng

Chapter

Probability review

2.1 Probability models and random variables

A probability model is used to describe random phenomenon that can have non-
deterministic outcomes, where we call the set of all outcomes as the sample
space and the “undetermine” object itself as a random variable (r.v.). If the
sample space is continuous, the random variable is continuous. Otherwise, the

random variable is discrete.

The probability of an outcome depicts the relative chance of getting that
outcome. For a random variable X, we often denote the probability of X taking
outcome a as Pr(X = a). By convention, a probability is always non-negative
and a probability of zero means that the outcome will never happen. On the
other hand, a probability of one indicates that the outcome will certainly hap-
pen. So by definition, all possible outcomes should sum up to one as at least

one of the outcome will certainly happen.

Example: Coin toss

Let’s try to model a coin toss with a probability model. Let’s denote
the random variable as X and the outcomes head and tail as H and T,
respectively.

Then the sample space is {H,T}. The probability of the entire space
should sum up to 1. Thus Pr(X =H)+Pr(X =T) = 1.
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2.1.1 A word on convention

We often denote a r.v. using upper case (such as X) and its realization (what
was actually observed) using lower case (such as x). Therefore, Pr(z = xg) is
a bad notation since z is not random and Pr(x = z) = 0 in general unless x

and xg turn out to be identical.

2.2 Probability distributions

We often call the probabilities of all outcomes from the sampling space the
probability distribution. Note that strictly speaking, this definition is only true
for discrete r.v.. Because for continuous r.v., the probability of any outcomes
is generally zero and so such definition is meaningless. Please see below for

clarification.

2.2.1 Probability mass function

We often call the probability distribution of a discrete r.v. as probability mass
function (PMF). For example, for the coin toss example described earlier, we
may have Pr(X = H) = Pr(X =T) = 0.5 for a fair coin. It is quite wordy to
write with the notation Pr(X = z). Instead, we often denote px (z) = Pr(X =

x). And when the context is clear, we often simply the notation further to just

p(x).

2.2.2 Probability density function

For a continuous r.v. X, the probability of X equal to any arbitrary value is
generally zero as mentioned above. For example, consider X as continuous r.v.
uniformly distributed between 0 and 1. Pr(X = 0.5) = 0 since we can always
argue that we didn’t get a 0.5 no matter how close X really was. Maybe, X is
0.500001 rather than 0.5. By this argument, Pr(X = z) = 0 for any z. A fix
for this is instead of trying to define a function that maps to the probability of
an outcome. We define a function where the area underneath the curve is the

probability instead. More precisely, we define

1
=— 1 < < .
f(x) X AILH&+ Prir <X <z+A) (2.1)

and f(x) will then be known as the PDF.
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And note that from the definition above,
Pre<X<z+A)= f(x)A

for a small A. And thus
b
Pra< X <b) = / f(x)dx

where the integral is just the area underneath f(z) between a and b. Moreover,

since X has to take some value in the real axis,
Pr(—oo < X <o0) = / flx)dz =1 (2.2)

Note that since we can interpret PDF just as a normalized probability func-

tion, f(x) > 0 just as the original definition of the probability.

Example: PDF of the uniform distribution

Let’s take a r.v. X that is uniformly distributed between 0 and 1 as an

example. The PDF is simply

1, 0<z<1,

)

Px(z) =
0, otherwise

Note that the area underneath Px(z) is 1 as expected.

A remark on notation

In probability textbook, it often use fx(x) to denote the PDF of X. However,
we will follow the classic text of Cover and Thomas and use px (x) directly to
denote the PDF as there should be little confusion on notation. And we can free
up the common symbol f(-) for other places. We just need to remind ourselves
that when X is continuous, px (x) # Pr(X = x).

2.3 Expectation and summary statistics

Expectation is one fundamental concept in probability and we can use it to

define commonly used summary statistics such as the mean and the variance.
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2.3.1 Expectation

Consider a r.v. X and a deterministic function g(-), g(X) is a r.v. as well. So
each sample of g(X) will be different. However, as we sample g(X) multiple
times, the empirical average will converge as we have more and more sample.
The converged value is called the expectation of g(X), and denoted by E[g(X)].
Mathematically,

Blg(X)] = - Jim_g(a2) + g(a2) + - +gla), (23)

where x; is the ith sample of X.
For discrete r.v., for any outcome z from the sample space X, there will be

p(z) fraction of time that x occur. Therefore, we can rewrite (2.3) as

E[g(X)] = Y px(z)g(x). (2.4)

zeX

For continuous r.v., note that the PDF does not equal to the probability explic-
itly as explained in the last section. Consequently, the expression will become

an integral instead. That is

Elg(X)] = / px (@)g(x)de (2.5)

since

Elg(X)] = lim [px (nA)A]  g(nA), (2.6)
oo
Pr(nA<X<(n+1)A)

which is just the definition of [ px(z)g(z)dz.

Expectation is linear

One most important property of expectation is that E[:] as an operation is
linear. It means that for any two r.v’s X and Y and two constants a and b, we

have
ElaX +bY] = aE[X] + bE[Y]. (2.7)

The above result can be verified readily because as we see from (2.4) and (2.5),

the definitions of expectation for both discrete and continuous r.v.s just involve
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either a sum and an integral, and both of these operations are linear. Similar,

for any r.v. X and constant C,
EX +C]=E[X]+C. (2.8)

We will leave the proofs of the above results as exercises.

2.3.2 Summary statistics

With a different function of g(-), we can compute E[g(X)] as a summary de-
scription of the distribution px(-). Such description is known as a summary
statistics. The most common summary statistics are the mean and the vari-

ance.

Mean

The mean of a r.v. X is simply the expected value of X itself, and that is
equivalent to E[X]. Since we are taking expectation on X directly, we expected
that variable X is numerical rather than categorical. For example, it wouldn’t
make much sense to compute the mean of a coin toss unless we pre-map the

outcomes of head and tail to some values.

From (2.3), we see that that the empirical average of samples of X should

converge to the mean. That is, given samples x1,xs2, -+ , TN,
1

as N goes to the infinity.

Variance

The variance of X describe how much fluctuation of X from its mean. It is
defined as E[(X — X)?], where X 2 E[X] is the mean of X. Note that the
mean X is a constant despite that X is a r.v. As we expand E[(X — X)?], we
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have
E[(X — X)?] = E[X? - 2X X + X7 (2.10)
W plx?] - 2XE[X] + X2 (2.11)
= E[X? - 2XX 4 X? (2.12)
= EB[X?] - X2, (2.13)

where it is usually more convenient to compute variance of X with the last

expression and (a) is coming from the linear property of expectation.

2.4 Joint probabilities and conditional probabil-
ities

Up to now we only consider a single scalar r.v. at a time. Let’s consider multiple

r.v.s and how they interact with one another in this section.

2.4.1 Joint distributions and marginal distributions

Given two discrete r.v’s X and Y, the joint PMF pxy(7,y) & Pr(X =z,Y =
y) provides all the statistical information with respect to X and Y. Moreover,
we can compute the probability of only one variable regardless the value of

others. For example,

px(z) =Y pxy(z,y) (2.14)

yey

The above procedure of summing out all the dummy variables from the joint
probability is known as marginalization and the resulting probability px(z) is
known as a marginal distribution.

For continuous variables, the marginalization step is similar. Just the sum-

mation is replaced by integral. For example, for continuous r.v’s X and Y,

px(z) = /pX,Y(I,y)dy (2.15)
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Example: Weather forecast

Let’s denote P and W as the predicted weather and actual weather to-
morrow, where both variables can take the outcomes of sunny or rainy.
Assume the joint probability ppw (-, -) is tabulated as below
’ PW H Sunny ‘ Rainy ‘
Sunny 0.6 0.06
Rainy 0.04 0.3
As a sanity check, first note that the joint probability should sum up to
one (0.64+0.064+0.04+0.3=1). The probability of sunny tomorrow is

pp.w (summy, sunny) + ppw (rainy, sunny) = 0.6 + 0.04 = 0.64
and the probability of rainy tomorrow is
pp.w (sunny, rainy) + ppw (rainy, rainy) = 0.06 + 0.3 = 0.36,

which of course is just equal to 1-probability of sunny tomorrow=1-0.64.

2.4.2 Conditional probability, Bayes’ rule, and the chain

rule

The joint probability gives us the probability of all variables with the desired
outcomes. For example, ppw (sunny, sunny) in the example of last subsection
gives us the probability of both predicted and actual weather is sunny tomorrow.
Often, we are interested in finding the probability when some variables are
already fixed and known. For example, what if we already predicted that the
weather is sunny tomorrow, what is the probability that the actual weather is
sunny as well?

Since only ppw (sunny, sunny) and pp,w (sunny, rainy) correspond to sunny
prediction, and among them we are interested in the case that the actual weather

is also sunny, the probability should be

pp,w (sunny, sunny)
ppw (sunny, sunny) + ppw (sunny, rainy)’

(2.16)

which is known to be the conditional probability of weather being sunny given

prediction being sunny, and often is denoted as py|p(sunny|sunny).
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Note that by the marginalization rule described in the last subsection, the
denominator in (2.16) is just pp(sunny) and so

pw|p(sunny|sunny) = pew (sunny, sunny) (2.17)

pp(sunny)

In general, we have

pxy(2,y) (2.18)

Therefore, we have px y(z,y) = py(y)px|v(zly). And by the same token,
px.y(®,y) = px(x)py|x(y\x)- And thus px(.ﬁ)py‘x(y‘l‘) = pY(ZU)?X\Y(ﬂZ/)

and py|x (ylr) = 7”‘/(3’;’;(’((‘05")(96'?’) or simply

py)p(ely) (2.19)

p(ylr) = (@

The last expression is the famous Bayes’ rule but it is just a straightforward
result of (2.18).

Despite the fame of Bayes’ rule, the following chain rule is much more useful

and general in practice. Note that we can rewrite (2.18) into

p(z,y) = p(y)p(z|y) (2.20)

and this can be generalized to the case even when the right hand size is condi-

tioned. For example,

T P (g) p(x,y,z)
p(z,ylz) e (2:21)
o px, 2)p(ylz, 2)
() S (2.22)
~ plx,2) -
=0 plylz, z) (2.23)
9 pal2)plyl, 2), (2.24)

where (a) is from (2.18) taking (x,y) as a single variable, and (b) is from (2.20)
taking (x,z) as a single variable and (c) is simply from (2.18) again with y

replaced by z.



2.5. INDEPENDENCE AND CONDITIONAL INDEPENDENCE 19

Combining (2.20) and (2.24), we have the chain rule

p(x1, 22, zn) = p(x1)p(22, -+, 2N|21)
= p(w1)p(xa|r1)p(2s, -+, xN|T1, T2)
= p(x1)p(z2|z1)p(s|ey, w2)p(zs, - - TN |T1, 2)
= p(z1)p(w2|r1)p(@s|e, x2) - - p(ry|Ty, -+ 2N 1),

where the above decomposing a joint probability into product of probabilities
is known as the chain rule.

It is a good place to introduce another shorthand used throughout this book.
For a list of variables, x, xgt1,Trt2, -+ , 2N, Wwe may shorthand them as xfcv
And when k& = 1, we may shorthand it further to 2. For example, we can
rewrite the above chain rule to
M)

p(a™) = p(ar)p(eafer)p(as|z®) - -play]a™ ™). (2.25)

2.5 Independence and conditional independence

Just as the name suggest, we say two r.v.’s to be independent if they should have
no effect on one another. For example, the outcomes of tossing two different
dices should be independent. On the other hand, the forecast variable P should

depend on the the actual weather W in our earlier example.

Conditional independence is a very similar concept. Just we want to see
if two variables may have effect on one another given some third variable is
known. It probably will be surprising to many who first encounter these con-
cepts. Independence and conditional independence are “independent” concepts.

One property does not imply the other property and vice versa.

2.5.1 Independent variables

Consider the joint probability of two r.v’s X and Y. Given a x, we can consider
the conditional probability py|x (y|z) as a function of y parameterized by z. So
if we have py|x(y|r1) = py|x (ylrz) for all x1,22 € X', we must have X and

Y to be independent. Because no matter what value X takes, the conditional
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distribution does not change. Moreover, if X and Y are independent, then

py(y) = Z pxy(,y) = Z px (@)pyx (y|z) (2.26)
< byix(vle) D px(a) (2.27)

reX
2 pyix (), (2.28)

where (a) is because py | x (y|r) is the same for all z and (b) is due to ) ., px () =

1.

Furthermore, we have
(a) (b)
px,v(z,y) = px(@)py|x(ylz) = px(2)py (v), (2.29)

where (a) is from the chain rule and (b) is from (2.28). Note that (2.29) is usually
used as the formal “definition” of independence for most probability textbooks.

However, I think that (2.28) is way more natural and easier to understand.
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Example: Tossing two coins

Let’s denote X; and X5 as the outcomes of tossing two coins. Let’s also
assume that the probabilities of getting a head for X; and Xo are p;
and po, respectively. Unless that the coins interact with some mysterious
way, it is safe to assume that their outcomes should be independent. And
probability of getting both heads will be p; - p2. We can tabulate the joint

probability as below.
| XiXo || Head | Tail |

Head D1 D2 p1(1l —p2)

Tail p2(1 —p1) | (1 —p1)(1 —p2)
Let’s also try to tabulate the conditional probability distribution px,|x, -

Since px,|x, (T2|z1) = %

dividing row of the above table by the respective p(z1). That is, p; for

, we can create a table of px,|x, by simply

the first row, and (1 —p;) for the second row. And so we get px,|x, given
by
| X1 X, || Head | Tail |

Head P2 1—po

Tail P2 1—po

Note that each row of the above table is the same. That means that
Px,|x, (-|r1) does not change with different x;. Therefore, X; and X, are

indeed independent.
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Example: Weather forecast (con’t)

Let’s continue with the example from Section 2.4. Recall that the joint

probability ppw (-, -) is tabulated as below

| PW || Sunny | Rainy |

Sunny

0.6

0.06

Rainy

0.04

0.3

Let’s try to tabulate the conditional probability pyp instead. Just

as in the coin toss example earlier, we should divide each rows of the

above table by the respective marginal probabilities (0.640.06=0.66 and
0.04+0.3=0.34). Therefore, we have

x PW H Sunny x Rainy x

Sunny

0.91

0.09

Rainy

0.12

0.88

Note that the two rows are very different, meaning that pyy| p(-[p) changes

significantly with different p. Therefore W and P must depend on one

another.

To conclude this section, note that we often denote X 1Y when X and Y
are independent, i.e., (2.28) and (2.29) are satisfied.

2.5.2 Conditionally independent variables

Now, let us consider three variables X, Y, and Z. From now on, we simplify the

notation by removing the subscript of p. For example, p(z|y, 2) = px|y,z(z]y, 2)-

We say that X and Y are conditionally independent given 7 if

for any z, ¥ and ys.

p(xly1, 2) = p(z|y2, 2) (2.30)

The condition should be self-evident. It states that given a fixed z, the

conditional distribution of X given Y and z does not depend on the choice of

Y. So given z, X and Y will be independent.
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Moreover, we have

plalz) = > p(,yl2)

yey

@S pylp(ely, 2)

yey

Y paly,2) 3 plylz)

yey

(o)
= p(x‘yv Z)a

23

(2.31)

(2.32)

(2.33)

(2.34)

where (a) is coming from the chain rule (c.f. (2.25)), and (b) is from (2.30), and

(¢) is due to probability summing up to 1.

Note that the conditional joint probability p(z,y|z) can now be expanded as

p(x,yl2) = p(yl2)p(=|y, 2) = p(yl2)p(z|2),

(2.35)

where the last equality is due to (2.34). Like (2.29), (2.35) is often written as the

“definition” of conditional independence in many probability textbooks. Even

though (2.30) is more natural and easier to be interpreted and understood.
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Example: Naive Bayes classifier

Naive Bayes is a simple machine learning algorithm to classify an object

with some given features. A major assumption of Naive Bayes is that

the features are conditionally independent given the object class. Say if

O denotes the object that ¢(O) denotes the corresponding class. And let
f1(0), f2(0),- -+, fx(O) denote K features of the object. For simplicity,
let’s rewrite ¢(O) as C and f;(O) as F;. But it is important to realize
that the “randomness” of ¢(O), f;(O) is originated from O.

plelfr,- -

To classify an object,

afK):

p(c,

flv"' 7fK) _ p(c)p(flv"' 7fK|C)

p(fi,---fx)  p(fi,--, fk)

_ p(op(file)---p(frlc)

p(fh'" afK)

o p(e)p(file) - p(fxlc)

we can simply compute the product

p(e)p(file) - - - p(fklc) for each ¢ and the output class should be the one

with the maximum value.

To conclude this section, we like to point out that X and Y conditionally
independent given Z is often denoted by X Il Y'|Z, when (2.34) and (2.35) are

satisfied.

2.5.3 Independence but not conditional independence

As we mentioned at the beginning of this section, a mistake beginners often

make is to assume that independence would imply conditional independence or

vice versa. It turns out that the two properties are totally “independent”.

Let’s map the outcomes of two coin tosses to zero (tail) and one (head) and

denote them as X7 and X5. Without any magical correlation, X; and X5 should
be independent. Let say the probability of head for both X; and X5 be p. The
joint probability is given by

E I
1 p? p(1 —p)
0 p(1—p) | (1-p)?

One can verify that p(z1,22) = p(z1)p(z2) for all combination above, satis-
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fying the independent condition given by (2.29).

Now, let’s define Y = X & X5, where & is the exclusive-or operator. Note
that while Xy 1l Xo, X1l X2|Y does not hold. Actually, note that Y = X; ® X5
implies Xo = X7 @Y, so given Y, we can compute X5 deterministically from

X1. There is no way X; and X5 are independent given Y.

To get a bit even more insight, let’s tabulate the distributions px,|x, v (lz1,y)

below
Y=0 Y =1
XX [ 1]o] XX [ 1]o]
1 110 1 011
0 011 0 110

For X Il X5|Y", the rows in each of the table should be identical (p(z2|z1,y) =
p(z2ly)). The rows being so different suggests that X; and X5 are very corre-
lated given Y.

2.5.4 Conditional independence but not independence

Let’s consider two noisy observation Y7 and Y5 of a r.v. X. For simplicity,
let’s assume all three variables are binary. And the noises Z; = X @ Y; and
Zy = X ®Ys are independently generated from a binary symmetric source with
probability of 1 equal to p. Let’s also assume that the probability of X =1 is
q.

Since Y7 and Y5 are independent observations of X, we would expect that
they will be independent given X. On the other hand, it is reasonable that Y;
and Y won’t be independent (actually they should be very correlated). Let’s
first show Y7 Il Y5|X.

Let’s tabulate the joint probability p(y1,ys, z) as below

X =0 X=1
| "o | 1 | 0 v 1 [ o |
1 (1—q)p? (1-q)1—p)p || 1 q(1—p)* | qp(1—p)
0 (1-q)1—pp | 1-—q)(1—p)?* || 0 qp(1 —p) qp?

And from the table above, let’s tabulate the conditional probability p(ys|y1, z) =

P(y2,y1,2) below
p(y1,7)
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X=0 X=1
(e 1] o J[wn] 1 o
1 pll—-p|]|1 I—-p|p
0 p|l1-p]||0 I-p|p

Note that both rows in each table are the same. That means that p(ys|y1, z) =
p(y2|z) and thus Y; 1l Y5|X.
On the other hand, let’s tabulate the joint probability p(y1,y2)as

N | 1 | 0 |
1 (1—q)p*+q(1—p)? (1—-p)p
0 (1—pp (1-q)(1—p)?*+qp?

It is apparent that generally we won’t have p(y1,y2) = p(y1)p(y2). So Y1

and Y5 are not independent.

2.6 Markov chain

Many sequential random variables have relatively local influence to each other.
For example, if we consider the price of a stock each day as a sequence of
r.v.’s, the stock price today is probably correlated more with the price yesterday
than the price last month. To an extreme, we may assume that all historical
information regarding today’s price is summarized completely by the yesterday’s
price. Even though it definitely is not true, it would be a good approximation
to start with. And we will say these price variables form a Markov chain.
Mathematically, let Xi,---, Xy be the sequence of price variables. We
say the variables form a Markov chain if for any k and I (I < k — 1), X}, is
conditionally independent of X; given X;_;. We often denote the chain by
X1 & X9 & - & Xpy. Some textbook also uses one directional arrow for
the notation. However, we want to use double-sided arrow to indicate that the
definition is symmetric. That is if we have a chain X; <> X5 < -+ & Xy, we
have Xy <> Xny_1 < -+ < X;7. Note that the Markov property implies that
we can express the joint probability
)

N—1)

p(x™) = p(x1)p(xa|w)p(zsla?) - pley|z

= p(z1)p(za|r1)p(ws|2s) - - - plen|rn-1) (2.36)

As an EXERCISE, show that X; < X5 > -+ < Xy implies Xy <«
Xn_1 ¢ X1
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2.7 Probabilistic inference

One of the most common problem we encounter in probability is to estimate
some latent variables based on observations. The latent variables in turn will
depend on the model that we choose, which is often decided by some model

parameters.

2.7.1 ML vs MAP vs Bayesian inference
MAP

Let o, 0, and z are the observed variable, the model parameter, and the latent
variable. Given the model parameter 6§ and the observation o, it is natural to

estimate z as
z = argmax p(z|0,0) (2.37)

. _ p(z,00) _ p(o]z,0)p(=2]0)
Note that we can rewrite p(z|0,0) = L) 20o10)

nator does not depend on z, (2.37) can be rewritten as

. Since the denomi-

Z = argmax p(o|z, 0)p(z|0) (2.38)

Often time, the observation does not depend on the model parameter anymore

when the laten variable z is given. Therefore, we can simplify (2.38) to

z =argmax p(o|z) p(z]0), (2.39)
N
likelthood prior
where p(o|z) is known as the likelihood function and p(z|@) is the prior. And
(2.37)-(2.39) describes the so-called Maximum a-posteriori (MAP) estimator.

ML

It is sometimes impossible to figure the prior p(z|f). In that case, the best we
can do is simply ignore p(z|f) and assume it to be a constant. Hence, (2.39)

will become
Z = argmax p(o|z), (2.40)

and this is known as the maximum likelihood (ML) estimation.
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Bayesian estimation

In both MAP and ML, we just estimate z from the mode of some functions
(p(zlo,0) and p(o|z)). However, it probably is a waste to discard all model
information besides the winner. The Bayesian estimation is more conservative
and try to leverage all possible z by computing a weighted sum of them as the

estimate. More precisely, we have

Z= Z zp(z]6, 0) (2.41)

TEZ

Note that often time we are not fundamentally interested in z but instead

some function say f that depends on z. Then, we will create an estimate as

> F(2)p(216,0). (2.42)
rEZ
In contrast, we will simply output f(2) for MAP and ML, when 2 is latent

variable maximizes the a posteriori or the likelihood function.

To consolidate the idea, let’s consider a simple toy example below.

Example: Three types of coins

Let say we have three types of identically looking coins but only the first
type is fair. And the second type is heavily biased towards head with
p(Head) = 0.8 and the third type is biased towards tail with p(Head) =
0.4.

We have an unknown number of these coins put into a jar. Then, we
randomly draw a coin from the jar and toss the coin three times. Let
say we got two tails for the first two tosses. What is the probability of
getting a head for the last toss?

Our estimated result heavily relies on what estimation method does we use.
Let’s try to tackle the problem separately by ML, MAP, and Bayesian infer-

ence.
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Example: Solving the coin problem with ML

Let’s denote Z € {1,2, 3} as the type of the coin that was actually picked.
And let z(z) be the probability of getting a head when type-z coin is
picked. Then,

0.5, z=1,
x(2) =408, z=2,
04 2z=3

For ML, we assume no prior knowledge of Z and the best estimate of Z

is simply

%= argzer{nlfgfg}p(OIZ),

where the observation o is (T")ail, (T')ail. Thus,
0.5-05=025 z=1,

plolz) = 40.2-0.2=0.04, z=2,
0.6-0.6 =0.36, z=3.

Since p(o|z) is largest for z = 3. We will estimate 2 = 3, the predicted
probability of head for the last toss is 0.4.
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Example: Solving the coin problem with MAP

When using ML, we do not assume any prior knowledge of Z. Let’s
assume that there are two type-1 coins, 7 type-2 coins, but only one

type-3 coin in the jar. Thus, we have

0.2, z=1,
p(z) =407, z=2,
0.1, z=

For MAP, we compute the best estimate of z as

2 =arg max p(z|o) e} arg max M@arg max p(z)p(o|z),
z€{1,2,3} ze{1,2,3}  p(o) z€{1,2,3}

where (a) is due to Bayes’ rule and (b) is because p(0) is a constant w.r.t.

to z. Since
0.2-0.25=0.05, =z=1,

p(2)p(o|z) = € 0.7-0.04 = 0.028, z =2,
0.1-0.36 = 0.036, =z =3,
the best estimate Z = 1, and so the predicted probability of head is 0.5

for the last toss.
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Example: Solving the coin problem with Bayesian estimation

Rather than picking a single best model parameter in MAP, Bayesian es-
timation tries to leverage all models and makes prediction as the weighted

average of estimates from all models. That is, we will estimate x as

B= Z x(2)p(zo).

z€{1,2,3}

Note that p(z|o) x p(z)p(o|z) and should normalize to 1, therefore we

can compute p(z|o) as

0.05 . _
0.05+0.028+0.036 0.4386, z=1,
p(zlo) = 0.05+00.i)02288+0‘036 =0.2456, z=2,

0.036 _ _
0.05+0.028+0.036 0.3158, z=3.

Therefore,

2 =0.4386 - 0.5 + 0.2456 - 0.8 4 0.3158 - 0.4 = 0.5421.

2.7.2 Conjugate prior

In the example given in the last section, we have exactly three types of coins
and we know precisely the probability of head for each type. In many real
problem, the prior knowledge can be more vague. What if we don’t know about
the probability of head for the coin but we tend to believe that we are more
likely to have a fair coin (probability of head close to 0.5) than an unfair coin.
In this case, we may impose a prior similar to that as shown in Figure 2.7.2.
There are many ways we can parametrize a prior as shown in Figure 2.7.2.
The real problem is which function we should choose. Note that the likelihood
function p(o|z) is given by (1 — x)2. More generally, if we have u heads and v

tails in u + v tosses,
p(olz) = z*(1 — x)" (2.43)
To estimate = with MAP, we want

2 = argmax p(o|x)p(z) = arg max z*(1 — z)"p(x)
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Figure 2.1: A desired continuous prior

Different people may have different opinions on the choice of p(x). However, if we
select p(x) of a form p(z) o 2% (1—z)*", then the resulting posterior distribution
with the same form as before. This choice is often chosen for practical purposes,
and a prior with same “form” as its likelihood (and thus posterior) is known as

the conjugate prior.

It turns out the conjugate prior with p(z) o« 2% (1 — x)¥ is the Beta
distribution. Here, we will just state a few facts useful for our discussion
here. A reader may find more detail of the Beta distribution in the Appendix.
A Beta distribution have two parameters (a,b) and its PDF is denoted by
Beta(z;a,b) o< 2%71(1 — 2)*~!. The mode of its PDF is given by

a“_‘_ig_lQ, a,b>1,
[0,1], a=b=1, (2.44)

0 or 1, otherwise.
And the mean of Beta is given by

_a_
a+b’

If a prior Beta(a,b) is chosen, and v Heads and v Tails are observed when

tossing a coin u + v times, the posteriori probability
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p(z|o) = K1 - Beta(z; a,b)p(o|zx) (2.45)
= K, - Beta(x;a,b)z"(1 — x)" (2.46)
=Ky Ky 2711 —2)" 12 (1 — 2)Y (2.47)
=Ky Ky -a%To (1 — g)vto-t (2.48)
= K3 Ky - K1 Beta(z;u+ a,v + b), (2.49)

1

where K7, K5, and K3 are some normalization factors and note that the product
K1K;K5 = 1 since both p(z|o) and Beta(x;u + a,v + b) normalize to 1 as we
integrate over all . In summary, the posteriori probability after observing u
heads and v tails is simply another Beta but with parameters changed to u + a
and v + b.

Example: Revisit coin problem with Beta(3,3) prior

Let’s revisit the coin tossing problem but we do not restrict to any specific
types of coin. Instead, we will simply assume the prior probability of head
is Beta(3,3), which is the one actually shown in Figure 2.7.2.

After observing two tails, the posteriori probability has a distribution
Beta(3,3 + 2) = Beta(3,5).

If we are going to estimate the probability of Head with MAP, we should
pick the mode of Beta(x;3,5), which will be 3315 = 1.

If we tried to estimate the probability using Bayesian inference, the esti-

mate should be

3

3
d = B s M d = — = —,
/wmp(x|o) 0 /wx eta(z;3,5)dx 5553

In the above example, we assume that a prior shown in Figure 2.7.2 was
used. What if we don’t have any prior knowledge, it seems that it is reasonable
to use a uniform prior, i.e., constant everywhere. Recall that Beta(z;a,b) o

297 1(1 — 2)’~!. Thus, we have a uniform prior if we pick a = 1 and b = 1.
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Example: Revisit coin problem with uniform (Beta(l,1)) prior

Let’s repeat the last example but just pick a uniform prior Beta(1,1).
Thus after observing two tails, the posteriori probability has a distribu-
tion Beta(l,1+ 2) = Beta(l, 3).

If we are going to estimate the probability of Head with MAP, we should
pick the mode of Beta(z;1,3), which will be % = 0. Note that the
result is rather extreme as it essentially rules out the possibility of getting
a head for the next toss.

Note that as the prior Beta(1, 1) is really a constant, the MAP estimation
with such prior is actually just the ML estimate.

Instead, if we tried to estimate the probability using Bayesian inference,
the estimate will be the mean of Beta(x;1,3), which is

= B N 1 = = =,
/mxp(x|o)dx /Za: eta(x; 1,3)dx 33~ 1

It may seem surprising at first that the ML estimation (or MAP with uniform
prior) result is so extreme. But without additional information, the best guess
of the probability is from statistically counting. And the estimate of zero head
probability seems reasonable from that perspective as none out of two historical
tosses were head.

When we impose a non-uniform prior such as Beta(3,3) as in our example.
It introduces some “regularization” effect that makes the estimate less extreme.
Just by inspection, we can see that the Beta(3,3) prior can be interpreted as
some prior experiment has been performed before our observations. In par-
ticular, the prior experiment included 4 = (3 + 3 — 2) tosses and out of that,
2 = (3 —1) were head. Even though for Beta(u,v) with non-integer v and v, it
would be much more difficult to interpret the physical meaning of such prior.

Another interesting observation from the above example is that Bayesian
inference includes some free regularization even when the non-informative uni-
form prior is used. The estimated probability of head is i rather than 0 as we
just consider the most probably model in MAP or ML. The averaging effect
over many model parameters will create a less extreme estimate and so offers

some regularization effect.



