
Information theory and probabilistic inference Samuel Cheng

Chapter 3
Quantify information with
compression

3.1 Overview of entropy

Information is an abstract concept and it is hard to define and quantify. Com-
paring “the sun will rise from the east tomorrow” and “it is going to rain coming
Wednesday”, which one should have more information? We will argue that the
latter is more informative since except you are from another planet, everyone
knows that former is always true.

On the other hand, if a comet is going to hit earth so hard tomorrow that
its rotation flips, the statement “the sun will rise from the west the day after
tomorrow” is very informative to all of us as it is not something we should expect
everyday. Sadly, we probably wouldn’t survive to see it if it really happens.

How should we quantify the amount of information of an event then? Use
probability! We will argue later in this chapter that we should value an out-
come with probability p with − log p bits if the outcome indeed happened. For
example, say the probability that the sun will rise from the east tomorrow is
0.9999999 (hopefully it should be larger than that in reality) and someone tells
us that this WILL happen, the “value” of this piece of information will then be
− log2 0.9999999 ≈ 0.00000014 bit. What will be amount of information that
the sun will rise from the west tomorrow?1 The value of this piece of informa-

1For simplicity, we just assume the sun will always rise and either from the west and the

Page 35 of 119

36 CHAPTER 3. QUANTIFY INFORMATION WITH COMPRESSION

tion is − log2(1 − 0.9999999) ≈ 23.25 bits. However, this piece of information
has no value unless the outcome actually happens.

Say if someone can accurately predict if the sun rise from the east the day
after, on average what is the value of his prediction? It would be 0.99999999 ·
0.00000014 + 0.0000001 · 23.25 ≈ 0.0000025 bits. This may be surprising to
someone as it does not contain lots of value.

The average value we just computed is known as the entropy. For any r.v.,
the entropy of the r.v., which only depends on the distribution of the r.v., can
be interpreted as the amount of uncertainty of that variable. If we view the r.v.
as an information source through repeatedly sampling the r.v., the number of
bits on average needed to store the outcome of the r.v. is precisely the entropy
as well. This fact is known as the source coding2 theorem.

In this chapter, we will give three different proofs of the Source Coding
Theorem, which states that we can represent the average outcome of a r.v.
with no more than its entropy. The first one is based on optimization and is
probably more intuitive to most readers. The other is based on the law of large
number, which may appear to be more abstract to some, but probably is most
elegant. Finally, we will provide a more constructive proof using the Shannon-
Fano-Elias (SFE) code and a symbol-grouping trick. We will give yet another
converse proof (i.e., we cannot compress the outcome of a r.v. on average less
than its entropy) in the next chapter after we learn more information measure
beyond entropy.

As the number of bits required to represent a r.v. is its entropy. The defi-
nition is well suited to quantify the “value” of information encapsulated by the
r.v. Before we begin to show the Source Coding Theorem, we will conclude this
section with some limitation of this interpretation.

3.1.1 Limitation of entropy

As from our discussion, the entropy quantifies the average number bits required
to represent a r.v. However, this only computes how much storage on average
are needed to keep the information. This does not actually evaluate how much
economic gain from the information. For example, the entropy of a winning
lottery ticket will be less than 100 bits, which will be less than the exact counts
of different species of insects in my backyard. But the latter piece of information

east.
2Source coding is just a fancy name of compression among information theorists.

3.1. OVERVIEW OF ENTROPY 37

is likely to have very little economic value, maybe only for my own curiosity.

Even we understand that entropy only quantify the “amount” of information
in a variable. This interpretation could still be counterintuitive and confusing
at times. Note that a more random (more uniform) r.v. will have higher entropy
than a less random (more skew) r.v. Intuitively, we may always find the reverse
should be true, something less random should have more information as it is
more likely to be artificially created. For example, a randomly generated piece
of article will have higher entropy than an encyclopedia article given the same
character count. But while the latter probably contain some information, no
one probably will agree that the former contain any useful information at all.

Finally, we have assume so far that we have access of the distribution of
a r.v. somehow. We never question how and where we got the distribution.
Getting the distribution may be easy for some problems but it can be very hard
for another. For example, as in our earlier example, how can we estimate the
probability that the sun will rise from the east tomorrow? How about the prob-
ability of having alien life form in the universe? Getting the distribution itself
beyond the scope of information theory, like most information theory literature,
we will treat the distribution of the r.v. as a sacred truth for the rest of the book,
something like an axiom in mathematics that we just have to accept before we
can proceed. Note that even for problems that often treated with probability,
say trying to estimate the probability of getting an Ace of Spade from a stack
of cards, the probability model will only reflect the reality if no cheating is in-
volved. Your probability model (assuming no cheating) can be very different
from your opponent who cheats and takes that into account.

When in doubt, it is always useful to step back and remember what entropy
fundamentally represent.

What is Entropy?

Given a r.v., its entropy simply quantifies on average the number of bits
required to represent the r.v.

It is convenient to interpret entropy as a way to quantify the amount of
information of a random source, but it is important to aware the caveats as
mentioned about.

38 CHAPTER 3. QUANTIFY INFORMATION WITH COMPRESSION

DMS Encoder Decoder X̂N
XN c(Xn)

Figure 3.1: Source coding model

3.2 Source coding theory

3.2.1 Source coding model

Discrete memoryless source and lossless compression

We can use any discrete r.v. to construct a discrete memoryless source (DMS), a
data source that does not remember its previous generation and thus its future
output is independent of its previous outputs.

More concretely, consider a discrete r.v. X for a DMS, let’s repeatedly and
independently sample X, resulting a random sequence, X1, X2, · · · , XN . The
problem of source coding is to determine on average at least how many are
needed to represent each symbol Xi losslessly. So in plain English, source coding
is just the problem of lossless compression. It is important that the compression
we considered here is lossless, and thus each Xi should be reconstructed back
perfectly later on.

Besides the DMS, the source coding model also has an encoder and a decoder
as shown in Fig. 3.1.

Encoder

The encoder compresses a sequence xN = x1, x2, · · · , xN from the DMS into
representation c(xN) of a “smaller” size. Without loss of generality, we will
assume for the moment each symbol xi will be mapped separately into a binary
sequence c(xi) and c(xN) will simply be a concatenation of c(x1)c(x2) · · · c(xN).

Generally, we will call c(xN) a codeword, and the collection of all codewords
as a codebook, which can be imagined as a table storing each codeword c(xN)

for each entry xN . Btw, since c(x) is just a special case of c(xN) for N = 1, we
will call c(x) a codeword as well.

Mapping each symbol independently seems to be a major constraint of the
model. But it is not the case in reality since we can always group some symbols
together into to form a super-symbol and treat each super-symbol independently
instead. For example, we may group two symbols and treat the pair one at a

3.2. SOURCE CODING THEORY 39

time. Then, we will have c(xN) = c(x1, x2)c(x3, x4) · · · c(xN−1, xN) instead.
Now, back to the case of treating each symbol separately, and say we have

lengths of c(xi) to be l(xi). Then, our goal will be to simply minimize the
expected length of the symbol E[l(X)].

Decoder

Given a binary sequence (the output of the encoder c(xN) = c(x1)c(x2) · · · c(xN)),
the decoder d(·) = c−1(·) simply try to reverse the operation and find xN . Note
that since the compression is lossless, we should have d(c(xN)) = xN .

In an abstract level, we can consider the codebook is available for both
the encoder and decoder. And decoder could recover xN through a simple table
lookup. However, this usually is not computational feasible and other tricks will
be involved. But that is usually beyond the scope of information theory and so
our discussion here. Yet, we will discuss in the last section of this chapter SFE
code, which gives a glimpse of what may be like in a real compression system.

Source coding rate

The source coding rate is defined as the average number of bits per symbol
required to encode a source sequence. For our model, it will be simply

R =
1

N
E[len(c(XN))] = E[l(X)],

where recall that l(x) is the length of c(x).

3.2.2 A glimse of source coding theory

Now we have enough terminology to describe the source coding theory.

Source coding theory

For a DMS created by a r.v. X, we can find a lossless encoder-decoder
pair if the coding rate is at least H(X) , E[− log p(X)].

Recall again that the rate is simply E[l(X)]. That means that for lossless
compression, we need to have at least E[l(X)] ≥ H(X) = E[− log p(X)]. It
turns out that the appropriate length for the codeword c(x), x ∈ X , should be
approximately − log p(x). This will gives us R = E[l(X)] ≈ E[− log p(X)] =

40 CHAPTER 3. QUANTIFY INFORMATION WITH COMPRESSION

H(X), satisfying the condition of the source coding theorem. Moreover, this
also suggests that the amount of information for the outcome x is − log p(x).

3.3 Uniquely decodable code

For the lossless compression, all input sequences should map to different com-
pressed output. Otherwise, for example if we have c(x) = c(x′) even for some
x 6= x′. Then, there is no way for the decoder to tell if the original input is x

or x′. Therefore, we need to have c(x) 6= c(x′) if x 6= x′, or in other words, c(·)
to be injective. The code that satisfies this is know to be uniquely decodable.

Recall that c(xN) = c(x1)c(x2) · · · c(xN). When a code is uniquely decod-
able, apparently c(·) has to be injective. However, the opposite is not true, an
injective c(·) does not guarantee that the code is uniquely decodable. Consider a
simple X with only four outcomes, say X = {α, β, γ, δ}. Let c(α) = 1, c(β) = 0,
c(γ) = 10, and c(δ) = 01. c(·) is apparently injective. But the resulting c is
not uniquely decodable. For example, a decoder receiving 10 cannot tell if the
original input is γ or αβ.

3.3.1 Prefix-free code

For practical purpose, we would like to be able to decode a symbol “once it is
available”. Consider a code with the following map

α 7→ 10, β 7→ 00, γ 7→ 11, δ 7→ 110.

One can show that it is uniquely decodable and we will leave this as an EXER-
CISE.

Now, consider an input sequence γβββ that maps to 11000000. Note that
when the decoder reads the first 3 bits, it is not able to tell if the first input
symbol is γ or δ. Actually, it will not until the decoder reading the last bit that
it will be able to confirm that the first input symbol is γ. It is definitely not
something very desirable

Instead, we change the code for δ from 110 to 011. We can argue that we can
always decode a symbol “once it is available”. We call code with such property
instantaneous code. Why we don’t have the problem of mixing up symbol any
more? In the original code, γ can be mixed up with δ since γ is a prefix of
δ, i.e., 11. However, in the new code, none of the codeword can be a prefix of

3.4. QUANTIFY ENTROPY BY MINIMIZING EXPECTED LENGTH 41

another. So no such confusion is possible. Therefore, an instantaneous code is
also sometimes known as a prefix-free code.

Besides its “instant” decoding property, another nice property of prefix-free
code is that it is very easy to verify a code is prefix-free or not, by simply making
sure none of the codewords can be a prefix of another. And when the code is
prefix-free, it is apparent that it will be uniquely decodable. In contrast, it is
quite difficult to verify if a code is uniquely decodable if it is not prefix-free as
we see from our earlier example.

3.4 Quantify entropy by minimizing expected length

Now, let’s back to the question of quantifying amount of information in a DMS.
Namely, on average what is the minimum number of bits needed to represent a
source symbol losslessly.

Recall that c(xN) = c(x1)c(x2) · · · c(xN) and l(xi) is the length of the c(xi).
The expected length of the code piece per symbol is E[l(X)]. So our objective
is simply to make E[l(X)] as small as possible for some allowable length profile
l(x), x ∈ X .

Note that l(x) cannot be made arbitrarily, as it is simply impossible to have
a uniquely decodable code (and hence lossless compression) for some length
profile. For example, take X = {α, β, γ, δ} and l(α) = l(β) = 1, l(γ) = l(δ) = 2.
One example will be c(α) = 1, c(β) = 0, c(γ) = 10, c(δ) = 01. It should be
apparent that we can never have uniquely decodable code for this length profile,
c(γ) or c(δ) is doomed mixed up with a combination of c(α) and c(β).

While it is easy to verify if a code is prefix-free when we see one, how can we
know a length-profile that can facilitate a uniquely decodable code? It turns out
that we can verify it very easily with a simple condition, the Kraft’s Inequality.

3.4.1 Kraft’s Inequality

Kraft stated a magical condition that whenever the condition is satisfied by a
length profile, we can find a uniquely decodable code with the length-profile.
Otherwise, no uniquely decodable code with the given length-profile is possible.

More precisely, consider a length profile l1, l2, · · · , lK , if

K∑
k=1

2−lk ≤ 1 (3.1)

42 CHAPTER 3. QUANTIFY INFORMATION WITH COMPRESSION

there exists a uniquely decodable code with the given profile. That is, we have
l(x1) = l1, l(x2) = l2, · · · , l(xK) = lK for symbols x1, x2, · · · , xK . Otherwise,
no such uniquely decodable code is possible

Intuition

Figure 3.2: Understanding
Kraft’s inequality. The left tree
corresponds to a prefix-free
code, while the right one does
not.

Let’s get some intuition where the Kraft’s
inequality in (3.1) came from. Let’s repre-
sent every codeword of a code by a node in
a binary tree. As shown in Fig. 3.2, a lower
branch split will correspond to a zero and a
upper branch split will correspond to a one.
So the codeword 000 will correspond to the
lowest node in the trees as in Fig. 3.2.

Note that if a codeword is a prefix of an-
other one, its corresponding node will be an
ancestor of that of the latter. Therefore, if a
code is prefix-free, the corresponding nodes of
all codewords can only be leaf nodes of a tree.
Moreover, the descendant sets of all codeword nodes must be disjoint!

Let lmax be the maximum length of a coded symbol. That is, lmax =

maxx∈X l(x). For a length-l codeword, note that the number of its descendants
at the lmax-level is simply 2lmax−l. If a code is prefix-free, the descendant sets of
all codewords must be disjoint. Therefore, the total number of all length-lmax

descendants must be less than or equal to all possible length-lmax codewords,
i.e.,

K∑
k=1

2lmax−l ≤ 2lmax

⇒
K∑

k=1

2−lk ≤ 1.

Conversely, if the Kraft’s inequality is violated, the descendant sets must
not be disjoint. Therefore, two codewords must have share descendant. Or they
must both be prefix of some codewords. One can easily verify and we will leave
it as an EXERCISE that one codeword must be a prefix of another. And thus
the code is not prefix-free.

3.4. QUANTIFY ENTROPY BY MINIMIZING EXPECTED LENGTH 43

Forward Proof of Kraft’s Inequality

Here we will show that as long as Kraft’s inequality is satisfied, we will be able to
find prefix-free code and hence uniquely decodable code with the given profile.

Given l1, l2, · · · , lK that satisfy
∑K

k=1 2
−lk ≤ 1, we can assign codewords to

nodes on a tree and ensure all nodes with disjoint descendants as follows. First,
assign one codeword at a time starting from the smallest index and assign to the
highest available node at the li-level. Once a node is assigned, crossed out the
assigned node and all its descendant, which will become unavailable for future
selection. Repeat this until all codewords are assigned.

From our earlier discussion, as long as Kraft’s inequaltiy is satisfied, we know
that there are sufficient tree nodes to be assigned. Thus, the corresponding code
is apparently prefix-free and thus is uniquely decodable.

Converse Proof of Kraft’s Inequality

From our discussion near the end of the “Intuition” subsection, we see that
whenever a length profile violate the Kraft’s inequality, a resulting code must not
be prefix-free. However, one may wonder if we could find a uniquely decodable
code with given a length-profile. After all, not all uniquely decodable codes are
but not prefix-free. However, we will show here that this is simply impossible.
Basically, any uniquely decodable code has to satisfy the Kraft’s inequality.

Recall that lmax = maxx∈X l(x) is the maximum length of a coded symbol.
We will show that

∑
x∈X 2−l(x) ≤ (klmax)

1/k if the code is uniquely decodable.
And so we need

∑
x∈X 2−l(x) ≤ 1 as we allow k to go to infinity.

Now, let’s get to the detail. Consider a code sequence from coding k symbols
x = x1, x2, · · · , xk, we have(∑

x∈X
2−l(x)

)k

=

(∑
x1∈X

2−l(x1)

)(∑
x2∈X

2−l(x2)

)
· · ·

(∑
xk∈X

2−l(xk)

)
=

∑
x1,x2,··· ,xk∈Xk

2−(l(x1)+l(x2)+···+l(xk))

=
∑
x∈Xk

2−l(x) =

klmax∑
m=1

a(m)2−m,

where a(m) is the number of codeword with length m. In the last equality, we
tally the sum differently from before. Rather than summing over all k-symbol
inputs, we sum over coded sequences of different lengths. Since there are 2m

44 CHAPTER 3. QUANTIFY INFORMATION WITH COMPRESSION

different binary sequence of length m, a(m), the number of length-m codewords,
has to be less than or equal to 2m if the code is uniquely decodable. Therefore,
we have (∑

x∈X
2−l(x)

)k

=

klmax∑
m=1

a(m)2−m ≤
klmax∑
m=1

2m2−m ≤ klmax.

Consequently,
∑

x∈X 2−l(x) ≤ (klmax)
1/k → 1 as k goes to infinity. Thus, any

uniquely decodable code satisfies the Kraft’s inequality as stated in (3.1).

3.4.2 A proof of Source Coding Theorem

Now, let’s give a proof of the source coding theorem by finding the minimum
rate required to compress a source losslessly. Recall that the rate is simply
E[l(X)] =

∑K
k=1 p(xk)l(xk) =

∑K
k=1 pklk, where we define pk , p(xk) and

lk , l(xk) for simplicity. For lossless recovery, the code must satisfy the Kraft’s
inequality, so we can find minimum rate by solving the following optimization
problem

min
l1,l2,··· ,lK

K∑
k=1

pklk subject to
K∑

k=1

2−lk ≤ 1 and l1, · · · , lK ≥ 0

≡ max
l1,l2,··· ,lK

−
K∑

k=1

pklk subject to
K∑

k=1

2−lk − 1 ≤ 0 and − l1, · · · ,−lK ≤ 0

Let’s write down the KKT conditions (please see Appendix), we have

−∇

(
K∑

k=1

pklk

)
− µ0∇

(
K∑

k=1

2−lk − 1

)
+

K∑
k=1

µk∇lk = 0 (3.2)

K∑
k=1

2−lk − 1 ≤ 0, l1, · · · , lK ≥ 0, µ0, µ1, · · · , µK ≥ 0 (3.3)

µ0

(
K∑

k=1

2−lk − 1

)
= 0, µklk = 0 (3.4)

We will assume all pk 6= 0, then we expect lk > 0, and µk = 0 from (3.4).
Expanding (3.2), we get

−pj + µ02
−lj log 2 = 0⇒ 2−lj =

pj
µ0 log 2

(3.5)

3.5. QUANTIFY ENTROPY USING LLN 45

And form the Kraft’s Inequality that
∑K

k=1 2
−lk ≤ 1, we have

K∑
k=1

pj
µ0 log 2

=
1

µ0 log 2
≤ 1⇒ µ0 ≥

1

log 2
(3.6)

Note that as µ0 decreases, pj

µ0 log 2 increases and lj decreases as from (3.5). There-
fore, if we want to decrease the code rate, we should reduce µ0 as much as pos-
sible. From (3.6), we should take µ0 = 1

log 2 . Then 2−lj = pj ⇒ lj = − log2 pj .
Thus, the minimum rate becomes

K∑
k=1

pklk = −
K∑

k=1

pk log2 pk , H(p1, · · · , pK) = H(X).

A caveat

By leveraging Kraft’s inequality, we presented a proof of the Source Coding
Theorem. Namely, we show that the minimum expected code length subject to
the Kraft’s inequality is equal to the entropy of the source. Note that we did
not restrict the codeword length to be integer and so the minimum may not be
achievable. So strictly speaking, the proof only shows the converse of the Source
Coding Theorem. That is, the rate has to be larger than H(X).

3.5 Quantify entropy using LLN

For sufficiently long sequences sampled from a DMS, one can show that they
all behavior similarly statistics-wise. We call sequences that share the similar
statistics typical sequences. The definition is almost a tautology. As almost all
sequences are typical. And by using the idea of typical sequences, we can present
another forward proof of the Source Coding Theorem. But before discussing
typical sequences, we need to introduce the Law of Large Number (LLN), which
essentially says that the empirical average will converge to the statistical average
given enough sample.

3.5.1 Law of Large Number (LLN)

Consider samples x1, x2, · · · , xN drawing from a DMS. The LLN states that the
empirical average of f(xi) will approach the expected value as N → ∞. That

46 CHAPTER 3. QUANTIFY INFORMATION WITH COMPRESSION

is,
1

N

N∑
i=1

f(xi) = E[f(X)] as N →∞

The LLN should be nothing surprising as we use that in everyday life. Ac-
tually this is precisely why how poll supposes to work. Pollster randomly draws
sample from a portion of the population but will expect the prediction from
the sample mean will converge to the population mean as the sample size is
sufficiently large.

The LLN is a rather strong result. We will only show a weak version here.
For any a > 0, Pr

(∣∣∣ 1N ∑N
i=1 f(Xi)− E[f(X)]

∣∣∣ ≥ a
)
→ 0 as N →∞. (i.e., the

empirical average converges to the expectation in probability.) More precisely,
we will show

Pr

(∣∣∣∣∣ 1N
N∑
i=1

f(Xi)− E[f(X)]

∣∣∣∣∣ ≥ a

)
≤ V ar(f(X))

Na2
∝ 1

N
.

To show that, we will use the Chebyshev’s Inequality, which says

Pr(|Y − E[Y]| ≥ a) ≤ V ar(Y)

a2

Let’s first prove the Chebyshev’s Inequality.

Proof of Chebyshev’s Inequality. First note that for any r.v. X ≥ 0, we have

Pr(X ≥ b) ≤ E[X]

b
, (3.7)

which is known as the Markov’s Inequality and can be shown readily as

X = I(X ≥ b) ·X + I(X < b) ·X

≥ I(X ≥ b) · b

⇒ E[X] ≥ Pr(X ≥ b) · b

Now, take X = |Y − E[Y]|2 and b = a2, by Markov’s Inequality stated in
(3.7),

Pr(|Y − E[Y]| ≥ a) = Pr(|Y − E[Y]|2 ≥ a2)

≤E[|Y − E[Y]|2]
a2

=
V ar(Y)

a2

3.5. QUANTIFY ENTROPY USING LLN 47

Proof of weak LLN. Let ZN = 1
N

∑N
i=1 f(Xi), apparently E[ZN] = E[f(X)]

and

V ar(ZN) =
1

N2

N∑
i=1

V ar(f(X)) =
V ar(f(X))

N

Thus, by Chebyshev’s Inequality,

Pr

(∣∣∣∣∣ 1N
N∑
i=1

f(Xi)− E[f(X)]

∣∣∣∣∣ ≥ a

)

=Pr(|ZN − E[ZN]| ≥ a) ≤ V ar(ZN)

a2
=

V ar(f(X))

Na2

Let’s consider an interesting application of LLN in the following.

Example: Kelly’s Criterion

Say in total I have 1 dollar to start with and I bet X fraction of my current net
worth each time for an a-for-1 bet. That is, I will collect “a” dollar for each 1
dollar bet if winning the bet and lose the entire dollar otherwise.

Say the probability of winning the bet is p, so the expected wealth after one
bet is

1−X + paX.

Apparently if pa < 1, I shouldn’t put in any money at all, but for pa > 1, the
expected wealth after one bet is maximized when X = 1. Does it mean that we
should always all in?

Say if we can make repeated bets, let’s denote Yi as the fraction of wealth
gain after the ith bet. That is, the net wealth WN after N bets is

∏N
i=1 Yi with

Yi =

(1−X) + aX with prob p

1−X with prob 1− p

By LLN, logWN =
∑N

i=1 log Yi → NE[log Y]. Thus logWN → N [p log(1 +

(a− 1)︸ ︷︷ ︸
b

X) + (1− p) log(1−X)]. So, the final wealth is approximately

WN ≈ (1 +Xb)Np(1−X)N(1−p) = ((1 +Xb)p(1−X)1−p)N .

48 CHAPTER 3. QUANTIFY INFORMATION WITH COMPRESSION

To maximize this gain, we just need to maximize (1 + Xb)p(1 − X)1−p or
f(X) = p log(1 +Xb) + (1 − p) log(1 −X) w.r.t. X. Setting df

dX = 0, we have
pb

1+Xb −
1−p
1−X = 0⇒ X = bp−(1−p)

b = (a−1)p−(1−p)
a−1 = ap−1

a−1 .

Note that we will never all in as long as p < 1!

3.5.2 Asymptotic equipartition and typical sequences

Consider a sequence of symbols x1, x2, · · · , xN sampled drawn from a DMS
and let’s compute the sample average of the log-probabilities of each sampled
symbols. By LLN, we have

1

N

N∑
i=1

log
1

p(xi)
→ E

[
log

1

p(X)

]
= H(X)

And for the LHS,

1

N

N∑
i=1

log
1

p(xi)
=

1

N
log

1∏N
i=1 p(xi)

= − 1

N
log p(xN),

where xN = x1, x2, · · · , xN

Rearranging the terms, this implies that for any sequence sampled from the
source, the probability of the sampled sequence p(xN)→ 2−NH(X)!

Set of typical sequences

Let’s name the sequence xN with p(xN) ∼ 2−NH(X) typical and define the set
of typical sequences

AN
ε (X) = {xN |2−N(H(X)+ε) ≤ p(xN) ≤ 2−N(H(X)−ε)}.

For any ε > 0, we can find a sufficiently large N such that any sampled sequence
from the source is typical.

By LLN, virtually all sequences are typical for sufficiently large N and all the
sequences will have the same probability. We call the phenomenon Asymptotic
equipatition (AEP), which refers to the fact that the probability space is equally
partitioned by (typical) sequences of equal probability asymptotically.

Since all typical sequences have probability ∼ 2−NH(X) and they fill up the
entire probability space (everything is typical), there should be approximately

1
2−NH(X) = 2NH(X) typical sequences.

3.5. QUANTIFY ENTROPY USING LLN 49

Precise bounds on the size of typical set

The size of the typical set AN
ε (X) is precisely bounded by

(1− δ)2N(H(X)−ε) ≤ |AN
ε (X)| ≤ 2N(H(X)+ε)

This can be shown rather easily as follows.

1 ≥ Pr(XN ∈ AN
ε (X)) =

∑
xN∈AN

ε (X)

p(xN)
(a)

≥
∑

xN∈AN
ε (X)

2−N(H(X)+ε)

= |AN
ε (X)|2−N(H(X)+ε),

where (a) is from the definition ofAN
ε (X). And for any δ > 0, given a sufficiently

large N , we have

1− δ
(a)

≤ Pr(XN ∈ AN
ε (X)) =

∑
xN∈AN

ε (X)

p(xN)
(b)

≤
∑

xN∈AN
ε (X)

2−N(H(X)−ε)

= |AN
ε (X)|2−N(H(X)−ε),

where (a) is because of the LLN and (b) is from the definition of AN
ε (X).

Coin flipping example

Consider flipping a bias coin with Pr(Head) = 0.3 say N = 1000 times

• All typical sequences will have approximately 300 heads and 700
tails. That means, we should get approximately 300 heads out of
the 1000 tosses.

• AEP (LLN) tells us that it is almost impossible to get, say, a se-
quence of 100 heads and 900 tails

Now, let’s use AEP to give a very simple proof of the Source Coding Theo-
rem.

50 CHAPTER 3. QUANTIFY INFORMATION WITH COMPRESSION

A forward proof of Source Coding Theorem

Consider a DMS X and all length-N sequences that can be generated
from X. By AEP, all these sequences are typical for sufficiently large N .
Moreover, there are 2NH(X) such sequences. Therefore, we can create a
code that simply index all these sequences with log 2NH(X) = NH(X)

bits. Thus, the required source coding rate, i.e., bits needed to represent
each symbol on average, is NH(X)

N = H(X) bits.

3.6 Quantify entropy by construction

We argued how we can represent a DMS with H(X) bits per symbol through
optimization in Section 3.4 and AEP in Section 3.5. However, in both cases,
the codes described are rather abstract and not quite concrete. In this section,
we will yet give another proof of the Source Coding Theorem with a more
“constructive” approach. Hopefully, this gives further insight for this important
theorem.

We will start with introducing the SFE code, which may not seem to be
a very effective code. However, it is easy to analyze and sufficient for our
discussion.

3.6.1 Shannon-Fano-Elias code

The key idea of SFE code is to create a code word out of the binary represen-
tation of any number between interval of [0, 1].

Figure 3.3: A SFE code example

To generate the SFE code-
book for a DMS X, we will
first sort the alphabet of X

and then create a cumula-
tive mass function F (·) of X,
where F (x) =

∑
x′≤x p(x).

Then we define F̄ (x) =

F (x)−0.5·p(x). Now, we will
take the first l(x) bits of the
fractional part of the binary
representation of F̄ (x) as the codeword of x, where l(x) = d− log p(x)e+1. The

3.6. QUANTIFY ENTROPY BY CONSTRUCTION 51

way in constructing the codebook may seem mysterious at the moment. Before
explaining why we made these choices, let’s look at a concrete example.

Example: A SFE code

Consider a DMS X as shown in Fig. 3.3 (p(α) = 0.1, p(β) = 0.2, p(γ) =

0.3, p(δ) = 0.4). We have

F (α) = F̄ (α) = 0.05 ≈ 0.00001b

F (β) = 0.3, F̄ (β) = 0.2 ≈ 0.0011b

F (γ) = 0.6, F̄ (γ) = 0.45 ≈ 0.0111b

F (δ) = 1, F̄ (δ) = 0.8 ≈ 0.110b

As l(α) = d− log 0.1e + 1 = 5, l(β) = d− log 0.2e + 1 = 4, l(γ) =

d− log 0.3e+ 1 = 3, and l(δ) = d− log 0.4e+ 1 = 3. We have

c(α) = 00001

c(β) = 0011

c(γ) = 011

c(δ) = 110

SFE code is prefix-free

One most important property SFE code is that it is prefix-free given the de-
scribed construction. First, note that the construction procedure can go both
ways. We can treat a portion of a binary fractional number as codeword. And
we can also go in the opposite direction and treat any codeword as binary num-
bers inside the interval [0, 1].

More precisely, we won’t represent a codeword c(x) with a binary number
alone. But we will represent it by an interval u(x) instead, and it is easier
to illustrate this with examples then trying to give a concrete definition. For
example, for codeword 110, it simply corresponds to

u(110) = [0.110b, 0.1101·b] = [0.11b, 0.111b) = [0.75, 0.875)

52 CHAPTER 3. QUANTIFY INFORMATION WITH COMPRESSION

and the codeword 011 corresponds to

u(011) = [0.011b, 0.0111·b] = [0.011b, 0.1b) = [0.375, 0.5).

Note that we can make the following observations regarding u(x).

Observation 1 Given a SFE codeword c(x) with length l(x) = |c(x)|, and let
u(x) be the corresponding interval of c(x). Then, the length of the interval
|u(x)| = 2−l(x).

Observation 2 If u(x1) and u(x2) do not overlap, then c(x1) and c(x2) cannot
be prefix of one another.

Observation 3 The respective intervals of all SFE codewords are disjoint.

The first observation should be rather obvious. It may not be immediately
clear with the other two observations. Let’s give the quick proofs below.

Proof of Observation 2. Given statements A and B. Note that A⇒ B ≡ ¬B ⇒
¬A. So let’s show instead if c(x1) and c(x2) are prefix of one another, then
u(x1) and u(x2) overlap. For example, consider the code words 10 and 101,
the corresponding intervals [0.10, 0.11) and [0.101, 0.11) does overlap with one
another.

Without loss of generality, assume that c(x1) is a prefix of c(x2), the lower
boundary of u(x1) is below the lower boundary of u(x2) and yet the upper
boundary of u(x1) is above the upper boundary of u(x2). Thus, u(x2) ⊆ u(x1)

and hence u(x1) and u(x2) overlap each other.

Proof of Observation 3. From Observation 1, the length of the interval is 2−l(x) =

2−(d− log p(x)e+1) = 0.5 · 2−d− log p(x)e ≤ 0.5 · 2−(− log p(x)) = 0.5 · p(x). Since the
interval has to include F̄ (x) and F̄ (x) is 0.5 · p(x) away from the boundary of
the probability interval of x (i.e. [F (x′), F (x)] and x′ is the symbol just before
x. Therefore the interval u(x) must falls completely the probability interval of
x. Since the probability intervals of all x, x ∈ X , are disjoint, the intervals
u(x), x ∈ X are disjoint as well.

3.6.2 A constructive proof of Source Coding Theorem

From our earlier discussion, we can always construct a SFE code for any DMS
X. Moreover, we can easily verify that the average code rate of SFE code is

3.6. QUANTIFY ENTROPY BY CONSTRUCTION 53

bounded by H(X) + 2 as follows

∑
x∈X

p(x)l(x) =
∑
x∈X

p(x)

(⌈
log2

1

p(x)

⌉
+ 1

)
≤
∑
x∈X

p(x)

(
log2

1

p(x)
+ 2

)
= H(X) + 2

The SFE code is not quite optimized. However, we can increase its efficiency
easily with the “symbol grouping” trick below.

“Symbol grouping” trick

The idea is very simple. Let’s consider two symbols as a super-symbol and
compress the pair rather than the individual symbols with SFE code. Let XS

denote the combined super-symbol. The code rate is thus bounded by H(XS)+

2, where

H(XS) = −
∑

x1,x2∈X 2

p(x1, x2) log2 p(x1, x2)

= −
∑

x1,x2∈X 2

p(x1, x2) log2(p(x1)p(x2))

= −
∑

x1,x2∈X 2

p(x1, x2) log2 p(x1)−
∑

x1,x2∈X 2

p(x1, x2) log2 p(x2)

= −
∑
x1∈X

p(x1) log2 p(x1)−
∑
x2∈X

p(x2) log2 p(x2)

= 2H(X).

Therefore, the code rate per original symbol is then upper bounded by

1

2
(H(XS) + 2) = H(X) + 1.

Leveraging the symbol grouping trick and the SFE code, we can yet have
another forward proof of the Source Coding Theorem as follows.

54 CHAPTER 3. QUANTIFY INFORMATION WITH COMPRESSION

Forward proof of Source Coding Theorem with SFE code

In theory, we can group as many symbols as we want using the symbol
grouping trick. Say we group N symbols at a time and compress it using
the SFE code. The code rate per original symbol is then upper bounded
by

1

N
(H(XS) + 2) =

1

N
(NH(X) + 2) = H(X) +

2

N

Therefore as long as a given rate R > H(X), we can always find a large
enough N such that the code rate using the “grouping trick” and SFE
code is below R. This concludes the forward proof.

One may think that using “grouping trick” with many symbols are not re-
alistic in practice, since the encoder and decoder complexity should grow ex-
ponentially with N . However, it turns out that it is possible to use very large
N (essentially infinitely large N) by some implementation tricks. The result-
ing code is known as arithmetic codes. However, this is beyond this book and
readers interested in the topic is forwarded to the original paper [1].

