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Lecture 1: Overview and review of probabilities Introduction

About this course

1 Learn some basic information theory (what is it? how is it useful?)
Understand basic terminology: what is entropy all about?

2 Statistical inference
Bayesian and Monte Carlo techniques

3 Introduction of probabilistic programming
Solve inference problems with programming

4 Get better understanding of probability
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Lecture 1: Overview and review of probabilities Introduction

What is information theory?

Study of “information” using probability

Can be treated as a subfield of applied probability
But it has a huge impact to communications and information science

The theoretical basis of the entire telecom industry is built on top of that
Study of extreme cases. What is possible and what is not?

(From Cover and Thomas)
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Lecture 1: Overview and review of probabilities Introduction

Connection to other fields

(From Cover and Thomas)
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Lecture 1: Overview and review of probabilities Introduction

Shannon’s paper

A majority of the ideas are nicely included in Claude Shannon’s seminal paper “A Mathematical
Theory of Communication” in the Bell System Technical Journal in July and October 1948

There he introduced the idea of an information measure (entropy) to quantify the amount of
“information” in a source

Introduced the term “bit” (concept of bits dated way back to at least to the 1800 century though) as a
unit for the measure
As a consequence, it is impossible to compress a source to a size smaller than its entropy and yet recover
it losslessly

Argue that there is a (capacity) limit of lossless communication under a noisy channel and
theoretically we can have lossless communications as long as smaller than the capacity

Give the capacity of Gaussian channel as an example

Some similar ideas were explored earlier in Bell Labs by Harry Nyquist and Ralph Hartley. But
those results are limited to events with equal probability

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming September 13, 2023 5



Lecture 1: Overview and review of probabilities Introduction

Shannon’s paper

A majority of the ideas are nicely included in Claude Shannon’s seminal paper “A Mathematical
Theory of Communication” in the Bell System Technical Journal in July and October 1948

There he introduced the idea of an information measure (entropy) to quantify the amount of
“information” in a source

Introduced the term “bit” (concept of bits dated way back to at least to the 1800 century though) as a
unit for the measure
As a consequence, it is impossible to compress a source to a size smaller than its entropy and yet recover
it losslessly

Argue that there is a (capacity) limit of lossless communication under a noisy channel and
theoretically we can have lossless communications as long as smaller than the capacity

Give the capacity of Gaussian channel as an example

Some similar ideas were explored earlier in Bell Labs by Harry Nyquist and Ralph Hartley. But
those results are limited to events with equal probability

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming September 13, 2023 5



Lecture 1: Overview and review of probabilities Introduction

Shannon’s paper

A majority of the ideas are nicely included in Claude Shannon’s seminal paper “A Mathematical
Theory of Communication” in the Bell System Technical Journal in July and October 1948

There he introduced the idea of an information measure (entropy) to quantify the amount of
“information” in a source

Introduced the term “bit” (concept of bits dated way back to at least to the 1800 century though) as a
unit for the measure

As a consequence, it is impossible to compress a source to a size smaller than its entropy and yet recover
it losslessly

Argue that there is a (capacity) limit of lossless communication under a noisy channel and
theoretically we can have lossless communications as long as smaller than the capacity

Give the capacity of Gaussian channel as an example

Some similar ideas were explored earlier in Bell Labs by Harry Nyquist and Ralph Hartley. But
those results are limited to events with equal probability

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming September 13, 2023 5



Lecture 1: Overview and review of probabilities Introduction

Shannon’s paper

A majority of the ideas are nicely included in Claude Shannon’s seminal paper “A Mathematical
Theory of Communication” in the Bell System Technical Journal in July and October 1948

There he introduced the idea of an information measure (entropy) to quantify the amount of
“information” in a source

Introduced the term “bit” (concept of bits dated way back to at least to the 1800 century though) as a
unit for the measure
As a consequence, it is impossible to compress a source to a size smaller than its entropy and yet recover
it losslessly

Argue that there is a (capacity) limit of lossless communication under a noisy channel and
theoretically we can have lossless communications as long as smaller than the capacity

Give the capacity of Gaussian channel as an example

Some similar ideas were explored earlier in Bell Labs by Harry Nyquist and Ralph Hartley. But
those results are limited to events with equal probability

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming September 13, 2023 5



Lecture 1: Overview and review of probabilities Introduction

Shannon’s paper

A majority of the ideas are nicely included in Claude Shannon’s seminal paper “A Mathematical
Theory of Communication” in the Bell System Technical Journal in July and October 1948

There he introduced the idea of an information measure (entropy) to quantify the amount of
“information” in a source

Introduced the term “bit” (concept of bits dated way back to at least to the 1800 century though) as a
unit for the measure
As a consequence, it is impossible to compress a source to a size smaller than its entropy and yet recover
it losslessly

Argue that there is a (capacity) limit of lossless communication under a noisy channel and
theoretically we can have lossless communications as long as smaller than the capacity

Give the capacity of Gaussian channel as an example

Some similar ideas were explored earlier in Bell Labs by Harry Nyquist and Ralph Hartley. But
those results are limited to events with equal probability

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming September 13, 2023 5



Lecture 1: Overview and review of probabilities Introduction

Shannon’s paper

A majority of the ideas are nicely included in Claude Shannon’s seminal paper “A Mathematical
Theory of Communication” in the Bell System Technical Journal in July and October 1948

There he introduced the idea of an information measure (entropy) to quantify the amount of
“information” in a source

Introduced the term “bit” (concept of bits dated way back to at least to the 1800 century though) as a
unit for the measure
As a consequence, it is impossible to compress a source to a size smaller than its entropy and yet recover
it losslessly

Argue that there is a (capacity) limit of lossless communication under a noisy channel and
theoretically we can have lossless communications as long as smaller than the capacity

Give the capacity of Gaussian channel as an example

Some similar ideas were explored earlier in Bell Labs by Harry Nyquist and Ralph Hartley. But
those results are limited to events with equal probability

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming September 13, 2023 5



Lecture 1: Overview and review of probabilities Introduction

Shannon’s paper

A majority of the ideas are nicely included in Claude Shannon’s seminal paper “A Mathematical
Theory of Communication” in the Bell System Technical Journal in July and October 1948

There he introduced the idea of an information measure (entropy) to quantify the amount of
“information” in a source

Introduced the term “bit” (concept of bits dated way back to at least to the 1800 century though) as a
unit for the measure
As a consequence, it is impossible to compress a source to a size smaller than its entropy and yet recover
it losslessly

Argue that there is a (capacity) limit of lossless communication under a noisy channel and
theoretically we can have lossless communications as long as smaller than the capacity

Give the capacity of Gaussian channel as an example

Some similar ideas were explored earlier in Bell Labs by Harry Nyquist and Ralph Hartley. But
those results are limited to events with equal probability

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming September 13, 2023 5



Lecture 1: Overview and review of probabilities Introduction

What is “information” in information theory?

Consider a probabilistic event with uncertain outcomes. Information is the knowledge of the final
outcome

The amount of information can be considered as the “knowledge” gained you have knowing that
piece of information

More information if the outcomes of the event are less predictable
Entropy is a measure of uncertainty

A Preview:
H(X) =

∑
x

p(x) H(X = x)︸ ︷︷ ︸
info revealed when X = x

A good guess for H(X = x) : log 1
p(x)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming September 13, 2023 6



Lecture 1: Overview and review of probabilities Introduction

What is “information” in information theory?

Consider a probabilistic event with uncertain outcomes. Information is the knowledge of the final
outcome
The amount of information can be considered as the “knowledge” gained you have knowing that
piece of information

More information if the outcomes of the event are less predictable
Entropy is a measure of uncertainty

A Preview:
H(X) =

∑
x

p(x) H(X = x)︸ ︷︷ ︸
info revealed when X = x

A good guess for H(X = x) : log 1
p(x)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming September 13, 2023 6



Lecture 1: Overview and review of probabilities Introduction

What is “information” in information theory?

Consider a probabilistic event with uncertain outcomes. Information is the knowledge of the final
outcome
The amount of information can be considered as the “knowledge” gained you have knowing that
piece of information

More information if the outcomes of the event are less predictable

Entropy is a measure of uncertainty
A Preview:

H(X) =
∑
x

p(x) H(X = x)︸ ︷︷ ︸
info revealed when X = x

A good guess for H(X = x) : log 1
p(x)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming September 13, 2023 6



Lecture 1: Overview and review of probabilities Introduction

What is “information” in information theory?

Consider a probabilistic event with uncertain outcomes. Information is the knowledge of the final
outcome
The amount of information can be considered as the “knowledge” gained you have knowing that
piece of information

More information if the outcomes of the event are less predictable
Entropy is a measure of uncertainty

A Preview:
H(X) =

∑
x

p(x) H(X = x)︸ ︷︷ ︸
info revealed when X = x

A good guess for H(X = x) : log 1
p(x)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming September 13, 2023 6



Lecture 1: Overview and review of probabilities Introduction

What is “information” in information theory?

Consider a probabilistic event with uncertain outcomes. Information is the knowledge of the final
outcome
The amount of information can be considered as the “knowledge” gained you have knowing that
piece of information

More information if the outcomes of the event are less predictable
Entropy is a measure of uncertainty

A Preview:
H(X) =

∑
x

p(x) H(X = x)︸ ︷︷ ︸
info revealed when X = x

A good guess for H(X = x) : log 1
p(x)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming September 13, 2023 6



Lecture 1: Overview and review of probabilities Introduction

What is “information” in information theory?

Consider a probabilistic event with uncertain outcomes. Information is the knowledge of the final
outcome
The amount of information can be considered as the “knowledge” gained you have knowing that
piece of information

More information if the outcomes of the event are less predictable
Entropy is a measure of uncertainty

A Preview:
H(X) =

∑
x

p(x) H(X = x)︸ ︷︷ ︸
info revealed when X = x

A good guess for H(X = x) : log 1
p(x)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming September 13, 2023 6



Lecture 1: Overview and review of probabilities Introduction

Computer scientists’ treatment

Kolmogorov complexity (algorithm information theory): quantify a piece of information as the size
of smallest program describing it

Nice philosophically but doesn’t go much anywhere
We will take the probabilistic view (electrical/communication engineers treatment here) to quantify
information theory who usually study with Bayesian models
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Lecture 1: Overview and review of probabilities Introduction

Neumann-Shannon Anecdote

When Shannon discovered this function he was faced with the need to name it, for it occurred quite
often in the theory of communication he was developing. He considered naming it “information” but
felt that this word had unfortunate popular interpretations that would interfere with his intended uses of
it in the new theory. He was inclined towards naming it “uncertainty” and discussed the matter with the
late John Von Neumann. Von Neumann suggested that the function ought to be called “entropy” since
it was already in use in some treatises on statistical thermodynamics (e.g. ref. 12). Von Neumann,
Shannon reports, suggested that there were two good reasons for calling the function “entropy”. ”It is
already in use under that name,” he is reported to have said, ”and besides, it will give you a great edge
in debates because nobody really knows what entropy is anyway.” Shannon called the function “entropy”
and used it as a measure of “uncertainty,” interchanging the two words in his writings without
discrimination.
–From wikipedia
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Lecture 1: Overview and review of probabilities Review of probabilities

Probability model

A probability model is used to model uncertain event that can have non-deterministic outcomes
A probability model can have finite or infinite number of outcomes and even continuous outcomes
We call the “undetermine” random variable, short for r.v.
The probability of an outcome is the relative chance of getting that outcome

For outcome a, we may denote as Pr(X = a) or pX(a) or even p(a) when it is understood that we
are considering variable X
0 ≤ p(a) ≤ 1

We often denote a r.v. using upper case (such as X) and its realization (what was actually
observed) using lower case (such as x)
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Lecture 1: Overview and review of probabilities Review of probabilities

Some probability properties

Probability mass function (pmf) for discrete random variable (r.v.) X

p(x) ≥ 0
p(x) ≤ 1∑

x p(x) = 1

Probability density function (pdf) for continuous r.v. X

p(x) ≥ 0
p(x) can be larger than 1
Pr(a ≤ X ≤ b) =

∫ b

a
p(x) (Area between p(x) and x-axis)∫

x
p(x) = 1

Marginalization:
∑

x p(x, y) = p(y)

Conditional probability (Bayes’ rule): p(x|y) = p(x,y)
p(y)

N.B.
∑

x p(x|y) = 1 but
∑

y p(x|y) 6= 1

Chain rule: p(x, y, z) = p(x)p(y|x)p(z|x, y)
RHS = p(x)p(y|x)p(z|x, y) = p(x)p(x,y)p(x)

p(x,y,z)
p(x,y) = p(x, y, z) = LHS
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Lecture 1: Overview and review of probabilities Review of probabilities

Probabilities and counting

Six students A, B, C, D, E, F randomly lined up in a row, what is the probability that the order is
exactly ABCDEF?
Six students randomly assigned into two teams (black and white), what is the probability that
A,B,C assigned to Team Black and the rest assigned to Team White?
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Lecture 1: Overview and review of probabilities Review of probabilities

Example: Two jars

Both Jars A and B have 4 balls
Jar A has 1 white and 3 black
Jar B has 2 white and 2 black

Let’s draw balls from the jars multiple times. And put the drawn ball back after each draw.
Can you answer the following?

What is the probability of get a white ball from Jar A?
What is the probability of getting 3 whites after 6 drawings?
If someone randomly pick a jar to draw from and get 3 whites after 6 drawing, what is the probability
that he drew from Jar A?
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Lecture 1: Overview and review of probabilities Review of probabilities

Bayes rule

Both Jars A and B have 4 balls
Jar A has 1 white and 3 black
Jar B has 2 white and 2 black

Say probability of picking Jar A, Pr(Jar = A) = 0.5

What is the probability of picking from Jar A and getting a white ball Pr(Jar = A,Ball = white)?
What is Pr(Ball = white|Jar = A)?
What is Pr(Jar = A|Ball = white)?
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Lecture 1: Overview and review of probabilities Review of probabilities

Expectation

Recall that p(x) as the distribution of a r.v. X

The expected value of X is E[X] ,
∑

x x · p(x)
In general, the expected value of a function f(·) of X is E[f(X)] ,

∑
x f(x) · p(x)

Examples
E[X] is just the mean of X, often denote as X
The variance of X is E[(X −X)2]
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Lecture 1: Overview and review of probabilities Review of probabilities

Independence and conditional independence

Independence: p(x, y) = p(x)p(y), X ⊥⊥ Y

By chain rule, p(x, y) = p(x)p(y|x). Therefore the condition implies that p(y|x) = p(y). In other
words, no matter what value X takes, the probability of Y given X is not going to change. So
reasonably, they are independent

Markov property and conditional independence: p(x, y|z) = p(x|z)p(y|z), X ⊥⊥ Y |Z,X ↔ Z ↔ Y

Similar to independence, by chain rule, we have p(x, y|z) = p(x|z)p(y|x, z). Along with the above
condition, p(y|x, z) = p(y|z). Thus given Z, it does not matter what X supposed to be, the
probability of given both variables will not depend on X. Hence, X and Y are conditionally
independent given Z

Caveat: independence and conditional independence are two “independent concepts”, we can have
both satisfied, none of them satisfied, or one of them satisfied. A common mistake is to think that
independence leads to conditional independence or vice versa. But that is WRONG

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming September 13, 2023 15
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Lecture 1: Overview and review of probabilities Review of probabilities

Independence but not conditional independence

Consider flipping two coins with outcomes store as X and Y , say 1 represents a head and 0 represents a
tail

In general the two outcomes should be independent (maybe unless if you are some
professional/magical gambler), so we have X ⊥⊥ Y

Now, let Z = X ⊕ Y , where ⊕ is the exclusive or operation (1⊕ 0 = 0⊕ 1 = 1 and
1⊕ 1 = 0⊕ 0 = 0)

Even though X ⊥⊥ Y , X 6⊥⊥ Y |Z
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Lecture 1: Overview and review of probabilities Review of probabilities

A digression: Naive Bayes Algorithm

Naive Bayes is a simple machine learning algorithm to classify an object with its features
Basically, we are simply assuming the features are conditionally independent given the object class
Say if O is the object that c(O) is the corresponding class (can be c1, c2, · · · ). And say
f1(O), f2(O), · · · , fK(O) are K features of the object

For simplicity, let’s rewrite c(O) as C and fi(O) as Fi. But it is important to realize that the
“randomness” of c(O), fi(O) is originated from O

p(c|f1, · · · , fK) =
p(c, f1, · · · , fK)

p(f1, · · · , fK)
=

p(c)p(f1, · · · , fK |c)
p(f1, · · · , fK)

Bayes’ rule

=
p(c)p(f1|c) · · · p(fK |c)

p(f1, · · · , fK)
Assume Fi ⊥⊥ Fj |C

=
p(c)p(f1|c) · · · p(fK |c)

p(f1) · · · p(fK)
If also assume Fi ⊥⊥ Fj

= p(c)
p(f1|c)
p(f1)

· · ·
p(fK |c)
p(fK)
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Lecture 1: Overview and review of probabilities Review of probabilities

A digression: Naive Bayes Algorithm

In most classification problem, we are interested to compute the most likely class. So we really will
go through all possible c1, c2, · · · for p(c|f1, · · · , fK)

Rather than assuming both Fi ⊥⊥ Fj |C and Fi ⊥⊥ Fj , the latter really is not necessary as we can
write

p(c|f1, · · · , fK) =
p(c)p(f1|c) · · · p(fK |c)∑
i p(ci)p(f1|ci) · · · p(fK |ci)

Actually if we only care about which is the most likely class, we can even skip computing the
denominator as it is a constant w.r.t. c

You can find a numerical example here
N.B. the author assumes independence of the features in his explanation but the condition is not
necessary as noted above
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Lecture 1: Overview and review of probabilities Review of probabilities

Epilogue: an engineer (dummy) approach to solve probability problems

1 Introduce helper variables if needed

2 Identify distributions and conditions (independence, conditional independence, variable relationship)
3 Identify (conditional) probability to address the question
4 Insert dummy variables to probability to leverage conditional independence by marginalization
5 Expand probabilities into (conditional) probabilities and evaluate them
6 Compute sum/integral
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Lecture 1: Overview and review of probabilities Review of probabilities

Example: Monty Hall problem
Below I will use shorthand like P1, G2, H3 to refer to the case of prize at Door 1, guest picking Door 2, and host open
Door 3

1 Introduce helper variables if needed
Let’s denote O as the other door both guest and host did not pick

2 Identify distributions and condition
P ⊥⊥ G,O = {1, 2, 3} \ {G,H}, p(G) = p(H) = 1

3
, etc.

3 Identify (conditional) probability to address the question
Pr(Win|switch) = Pr(O = P ) =

∑
i p(Oi|Pi)p(Pi) = p(O1|P1)

4 Insert dummy variables to probability by marginalization
p(O1|P1) =

∑
i,j p(O1, Gi, Hj |P1)

5 Expand probabilities into (conditional) probabilities and evaluate them
p(O1|P1) =

∑
i,j p(Gi|P1)p(Hj |P1, Gi)p(O1|Gi,Hj, P1)

= p(G1)(p(H1|G1P1)p(O1|G1H1P1) + p(H2|G1P1)p(O1|G1H2P1) + p(H3|G1P1)p(O1|G1H3P1))
+p(G2)(p(H1|G2P1)p(O1|G2H1P1) + p(H2|G2P1)p(O1|G2H2P1) + p(H3|G2P1)p(O1|G2H3P1))
+p(G3)(p(H1|G3P1)p(O1|G3H1P1) + p(H2|G3P1)p(O1|G3H2P1) + p(H3|G3P1)p(O1|G3H3P1))

6 Compute sum/integral
p(O1|P1) = p(G2)p(H3|G2P1)p(O1|G2H3P1) + p(G3)p(H2|G3P1)p(O1|G3H2P1) = 1

3
· 1 · 1 + 1

3
· 1 · 1 = 2

3
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3
· 1 · 1 = 2

3
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Lecture 1: Overview and review of probabilities Review of probabilities

Epilogue: an engineer (dummy) approach to solve probability problems

Our dummy approach can solve virtually solve any probability problems, but
Identify what variables to introduced may need some experience
Can solve any problem with only discrete variables, but if there are too many variables, hand
calculation not feasible
⇒ probabilistic programming
If continuous variables are involved, the last step may involve intractable integral
⇒ probabilistic programming
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Lecture 1: Overview and review of probabilities Introduction to Monte Carlo

Monte Carlo approach

Our dummy approach involves some understanding of the problem

An even dummier approach is by simulation and counting (require even less understanding)
⇒ Monte Carlo
Take Monte Hall as example again

Simulate the game many many times (say 10,000 times)
Stick to one strategy, always switch or always stay put
Count number of winning
Estimate winning probability = # wins / 10,000

Of course the computed probability won’t be exact
Probability estimate improves with # simulations
Problem solved as long as we know how to simulate one time (if we don’t need exact probability)
Even simulation can be hard and computation can be an issue
⇒ Markov Chain Monte Carlo (MCMC)
We will delay this to much later
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Lecture 1: Overview and review of probabilities Introduction to Monte Carlo

Monte Hall simulation

Algorithm 1 Simulate one game instance
1: P = randint(3)
2: G = randint(3)
3: H = {0, 1, 2} \ {P,G}
4: if |H| = 2 then
5: H = H[randint(2)]
6: else
7: H = H[0]
8: end if
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Lecture 1: Overview and review of probabilities Appendix

More formal treatment: probability space

More rigorously, a probability model is defined by the probability space composed of the triple
(Ω,F , p)

Ω is the sample space containing all possible outcomes
F is a “σ-field”, which is a collection of subsets (events) of Ω
p is the (non-negative) probability measure on elements of F

E.g., probability model of unbiased dice
Ω = {1, 2, 3, 4, 5, 6}
F = {{1}, {2}, {3}, {4}, {5}, {6}, {1, 2}, {1, 3}, · · · , {1, 2, 3, 4, 5, 6}}
p(S) is the probability of an event

p({1}) = p({2}) = p({3}) = p({4}) = p({5}) = p({6}) = 1/6
p({1, 2}) = p({1, 3}) = · · · = p({5, 6}) = 2/6
· · ·
p({1, 2, 3, 4, 5, 6}) = 1

N.B. It could be confusing at first. Be careful that events 6= outcomes. An event is actually a set
of outcomes
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Lecture 1: Overview and review of probabilities Appendix

σ-algebra

The purpose of σ-field (aka σ-algebra) is to impose restriction on what we can and cannot query
regarding probability
Namely, we can only measure the probability of something inside the σ-field F (i.e., an event)
Formal definition of σ-field:

σ-field has to satisfied the following: 1) containing empty set ∅, 2) closed under complement,
countable union, and countable intersection of its element

E.g., let Ω = {1, 2, 3, 4}
1 {∅, {1, 2}, {3, 4}, {1, 2, 3, 4}} is a valid σ-field
2 {∅, {1}, {1, 2}, {3, 4}, {1, 2, 3, 4}} is NOT a valid σ-field

N.B., A complement, countable union, or countable intersection of Ω is call a Borel set
∅, {1}, {1, 2} are example of Borel sets (an event is a Borel set)
Collection of all Borel sets forms a σ-algebra (aka Borel (σ-)algebra)
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Lecture 1: Overview and review of probabilities Appendix

Probability measure

Probability measure p is a measure. Along with F , the tuple (F , p) forms a measure space. For
P to be a valid probability measure, it has to satisfy the following

Requirements to be a measure (in the context of measure theory):
1 p(∅) = 0
2 Countably additive: p(∪i∈NAi) =

∑
i∈N p(Ai),∀i 6= j, Ai ∩Aj = ∅

And since p is a probability measure, it also has to satisfy p(Ω) = 1

The above constraints are sometimes known as the axioms of probability theory
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Lecture 1: Overview and review of probabilities Appendix

Some properties of probability measure

From the axioms described in the last slides, one can show that probability measure has to satisfies the
following:

1 p(Ac) = 1− p(A)

2 p(A) ≤ p(B) if A ⊂ B
3 Union bound: p(∪iAi) ≤

∑
i p(Ai)

Proof hint: use 2) and induction
4 Inclusion-exclusion formula:

p(∪ni=1Ai) =
∑n

i=1 p(Ai)−
∑

i<j p(Ai ∩Aj)+
∑

i<j<k p(Ai ∩Aj ∩Ak)+ · · ·+(−1)n−1p(∩ni=1Ai)

Proof hint: show p(A ∪B) = p(A) + p(B)− p(A ∩B) and then use induction.
(p(A ∪B) = p(A) + p(B \A) and p(B) = p(A ∩B) + p(B \A)).
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Lecture 1: Overview and review of probabilities Appendix

Why so complex?
Consider X a uniform random variable defined between [0, 1]

Define Y =

{
1 if X is rational
0 otherwise

Y is a random variable since X is random. It is reasonable to ask what is the probability that
Y = 1. From undergrad probability class,

Pr(Y = 1) =

∫
{x|x∈[0,1]∩Q}

dx =?

The integral above is actually undefined according to undergrad calculus, where the integral is known
as a Riemann integral

Instead, we have to incorporate the idea of “measure” (Lesbeque integral)

Pr(Y = 1) =

∫
{x|x∈[0,1]∩Q}

dp(x) = 0

The Lesbeque integral above is 0 since the measure of {x|x ∈ [0, 1] ∩Q} = 0
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Lecture 1: Overview and review of probabilities Appendix

Some remarks on notation

In general, we can write
p(Ω′) =

∫
Ω′

dp(ω)

and
E[f(X)] =

∫
Ω

f(X(ω))dp(ω)

E.g.,
E[X] =

∫
Ω

X(ω)dp(ω) =

∫
Ω

X(ω) dp =

∫
Ω

Xdp

Note that p is the probability measure (often people use upper case P instead)
People often omit ω as above when context is clear

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming September 13, 2023 29



Lecture 2: ML, MAP, and Bayesian estimation

Lecture 2: ML, MAP, and Bayesian estimation

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming September 13, 2023 1



Lecture 2: ML, MAP, and Bayesian estimation Introduction to probabilistic inference

Inference
o: Observed variable, θ: Parameter, x: Latent variable

Maximum Likelihood (ML)

x̂ = argmaxx p(x|θ̂), θ̂ = argmaxθ p(o|θ)

Maximum A Posteriori (MAP)

x̂ = argmaxx p(x|θ̂), θ̂ = argmaxθ p(θ|o)

Bayesian

x̂ =
∑

x x
∑
θ

p(x|θ)p(θ|o)︸ ︷︷ ︸
p(x|o)

where p(θ|o) = p(o|θ)p(θ)
p(o) ∝ p(o|θ)p(θ)︸︷︷︸

prior
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Lecture 2: ML, MAP, and Bayesian estimation Introduction to probabilistic inference

Statistical Learning
CSE 473

Spring 2004

1

Today

• Parameter Estimation:

• Maximum Likelihood (ML)

• Maximum A Posteriori (MAP)

• Bayesian

• Continuous case

• Learning Parameters for a Bayesian Network

• Naive Bayes

• Maximum Likelihood estimates

• Priors

• Learning Structure of Bayesian Networks

2

Coin Flip

P(H|C2) = 0.5P(H|C1) = 0.1

C1
C2

P(H|C3) = 0.9

C3

Which coin will I use?

P(C1) = 1/3 P(C2) = 1/3 P(C3) = 1/3

Prior: Probability of a hypothesis 
before we make any observations

3

Coin Flip

P(H|C2) = 0.5P(H|C1) = 0.1

C1
C2

P(H|C3) = 0.9

C3

Which coin will I use?

P(C1) = 1/3 P(C2) = 1/3 P(C3) = 1/3

Uniform Prior: All hypothesis are equally likely 
before we make any observations

4

Experiment 1: Heads

Which coin did I use?
P(C1|H) = ? P(C2|H) = ? P(C3|H) = ?

P (C1|H) =
P (H|C1)P (C1)

P (H)

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1
C2 C3

P(C1) = 1/3 P(C2) = 1/3 P(C3) = 1/3

P (H) =
3∑

i=1

P (H|Ci)P (Ci)

5

Experiment 1: Heads

Which coin did I use?
P(C1|H) = 0.066 P(C2|H) = 0.333 P(C3|H) = 0.6

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1
C2 C3

P(C1) = 1/3 P(C2) = 1/3 P(C3) = 1/3

Posterior: Probability of a hypothesis given data

6

(Slide credit: University of Washington CSE473)
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Lecture 2: ML, MAP, and Bayesian estimation Introduction to probabilistic inference

Statistical Learning
CSE 473

Spring 2004

1

Today

• Parameter Estimation:

• Maximum Likelihood (ML)

• Maximum A Posteriori (MAP)

• Bayesian

• Continuous case

• Learning Parameters for a Bayesian Network

• Naive Bayes

• Maximum Likelihood estimates

• Priors

• Learning Structure of Bayesian Networks

2

Coin Flip

P(H|C2) = 0.5P(H|C1) = 0.1

C1
C2

P(H|C3) = 0.9

C3

Which coin will I use?

P(C1) = 1/3 P(C2) = 1/3 P(C3) = 1/3

Prior: Probability of a hypothesis 
before we make any observations
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Lecture 2: ML, MAP, and Bayesian estimation Introduction to probabilistic inference

Experiment 2: Tails

Which coin did I use?

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1
C2 C3

P(C1) = 1/3 P(C2) = 1/3 P(C3) = 1/3

P(C1|HT) = ? P(C2|HT) = ? P(C3|HT) = ?

P (C1|HT ) = αP (HT |C1)P (C1) = αP (H|C1)P (T |C1)P (C1)

7
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P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1
C2 C3

P(C1) = 1/3 P(C2) = 1/3 P(C3) = 1/3

P(C1|HT) = 0.21 P(C2|HT) = 0.58 P(C3|HT) = 0.21

P (C1|HT ) = αP (HT |C1)P (C1) = αP (H|C1)P (T |C1)P (C1)
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P(C1|HT) = 0.21 P(C2|HT) = 0.58 P(C3|HT) = 0.21

9

Your Estimate?
What is the probability of heads after two experiments?

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1
C2 C3

P(C1) = 1/3 P(C2) = 1/3 P(C3) = 1/3

Best estimate for P(H) 

P(H|C2) = 0.5

Most likely coin: 

C2

10

Your Estimate?

P(H|C2) = 0.5

C2

P(C2) = 1/3

Most likely coin: Best estimate for P(H) 

P(H|C2) = 0.5C2

Maximum Likelihood Estimate: The best hypothesis
that fits observed data assuming uniform prior

11

Using Prior Knowledge

• Should we always use Uniform Prior?

• Background knowledge:

• Heads => you go first in Abalone against TA

• TAs are nice people

• => TA is more likely to use a coin biased in 
your favor

P(H|C2) = 0.5P(H|C1) = 0.1

C1
C2

P(H|C3) = 0.9

C3

12
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Lecture 2: ML, MAP, and Bayesian estimation Introduction to probabilistic inference

Using Prior Knowledge

P(H|C2) = 0.5P(H|C1) = 0.1

C1
C2

P(H|C3) = 0.9

C3

P(C1) = 0.05 P(C2) = 0.25 P(C3) = 0.70

We can encode it in the prior:

13

Experiment 1: Heads

Which coin did I use?
P(C1|H) = ? P(C2|H) = ? P(C3|H) = ?

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1
C2 C3

P(C1) = 0.05 P(C2) = 0.25 P(C3) = 0.70

P (C1|H) = αP (H|C1)P (C1)

14

Experiment 1: Heads

Which coin did I use?
P(C1|H) = 0.006 P(C2|H) = 0.165 P(C3|H) = 0.829

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1
C2 C3

P(C1) = 0.05 P(C2) = 0.25 P(C3) = 0.70

P(C1|H) = 0.066 P(C2|H) = 0.333 P(C3|H) = 0.600

ML posterior after Exp 1:

15
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A Better Estimate

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1
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P (H) =
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i=1

P (H|Ci)P (Ci)Recall: = 0.680
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Bayesian Estimate
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Bayesian Estimate: Minimizes prediction error, 
given data and (generally) assuming a non-uniform prior

24
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Maximum A Posteriori (MAP) Estimate: The best hypothesis 
that fits observed data assuming a non-uniform prior

P(H|C3) = 0.9

C3

P(C3) = 0.70
20

Did We Do The Right 
Thing?

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1
C2 C3

P(C1|HT) = 0.035 P(C2|HT) = 0.481 P(C3|HT) = 0.485

21

Did We Do The Right 
Thing?

P(C1|HT) = 0.035 P(C2|HT) = 0.481 P(C3|HT) = 0.485

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1
C2 C3

C2 and C3 are almost 

equally likely

22

A Better Estimate

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1
C2 C3

P (H) =
3∑

i=1

P (H|Ci)P (Ci)Recall: = 0.680

P(C1|HT) = 0.035 P(C2|HT) = 0.481 P(C3|HT) = 0.485

23

Bayesian Estimate

P(C1|HT) = 0.035 P(C2|HT) = 0.481 P(C3|HT) = 0.485

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1
C2 C3

P (H) =
3∑

i=1

P (H|Ci)P (Ci) = 0.680

Bayesian Estimate: Minimizes prediction error, 
given data and (generally) assuming a non-uniform prior

24(Slide credit: University of Washington CSE473)
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Lecture 2: ML, MAP, and Bayesian estimation Introduction to probabilistic inference

Comparison

ML Easy to compute

MAP Still relatively easy to compute
Incorporate prior information

Bayesian Minimizes expected error ⇒ especially shines when little data available
Potentially much harder to compute
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Lecture 2: ML, MAP, and Bayesian estimation Introduction to probabilistic inference

Bayes’ rule (with model type)

p(θ, o) = p(o)p(θ|o) = p(θ)p(o|θ)

Let’s add model type M ,
p(θ, o|M) = p(o|M)p(θ|o,M) = p(θ|M)p(o|θ,M)

p(θ|o,M)︸ ︷︷ ︸
posterior

=

prior︷ ︸︸ ︷
p(θ|M)

likelihood︷ ︸︸ ︷
p(o|θ,M)

p(o|M)︸ ︷︷ ︸
model evidence

M : model type
θ: model parameter
o: observation

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming September 13, 2023 26



Lecture 2: ML, MAP, and Bayesian estimation Introduction to probabilistic inference

Bayes’ rule (with model type)

p(θ, o) = p(o)p(θ|o) = p(θ)p(o|θ)
Let’s add model type M ,
p(θ, o|M) = p(o|M)p(θ|o,M) = p(θ|M)p(o|θ,M)

p(θ|o,M)︸ ︷︷ ︸
posterior

=

prior︷ ︸︸ ︷
p(θ|M)

likelihood︷ ︸︸ ︷
p(o|θ,M)

p(o|M)︸ ︷︷ ︸
model evidence

M : model type
θ: model parameter
o: observation

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming September 13, 2023 26



Lecture 2: ML, MAP, and Bayesian estimation Introduction to probabilistic inference

Bayes’ rule (with model type)

p(θ, o) = p(o)p(θ|o) = p(θ)p(o|θ)
Let’s add model type M ,
p(θ, o|M) = p(o|M)p(θ|o,M) = p(θ|M)p(o|θ,M)

p(θ|o,M)︸ ︷︷ ︸
posterior

=

prior︷ ︸︸ ︷
p(θ|M)

likelihood︷ ︸︸ ︷
p(o|θ,M)

p(o|M)︸ ︷︷ ︸
model evidence

M : model type
θ: model parameter
o: observation

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming September 13, 2023 26



Lecture 3: Common distributions

Lecture 3: Common distributions

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming September 13, 2023 1



Lecture 3: Common distributions

Gaussian distribution

By the Central limit theorem, if we add multiple independent variables together, the sum will
become more and more like Gaussian
Gaussian distribution (aka Normal distribution) has a bell shape

It is symmetric w.r.t. mean
The mean is also the mode

The pdf is given by
N (x;µ, σ2) =

1√
2πσ2

e−
(x−µ)2

2σ2 ,

where µ is the mean and σ2 is the variance
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Lecture 3: Common distributions

Introduction to Multivariate Gaussian

The probability density function (pdf) of a multivariate Gaussian random variable X is given by

pX(x) =
1√

det(2πΣ)
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
.

We will also use N (x;µ,Σ) to denote this pdf.
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Lecture 3: Common distributions

Symmetry and Other Handy Equations

Note that x and µ are symmetric in

N (x;µ,Σ) = N (µ;x,Σ) = N (µ− x; 0,Σ) = N (0;µ− x,Σ).

These equations are trivial but very handy at times.
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Lecture 3: Common distributions

Covariance matrix

Σ can be written as E[(x− µ)(x− µ)>]

Eigenvalues are the variance along the principal axes (directions where variable changes the most)
∴ eigenvalues are real and ≥ 0 in general
If we don’t assume the degenerate case where the vector variables do not vary in some directions, then
all eigenvalues > 0 ⇒ Σ−1 exists
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Lecture 3: Common distributions

Marginalization of normal distribution

Consider Z ∼ N (µZ,ΣZ) and let say X is a segment of Z. That is, Z =

(
X
Y

)
for some Y. Then

how should X behave?

We can find the pdf of X by just marginalizing that of Z. That is

p(x) =

∫
p(x,y)dy

=
1√

det(2πΣ)

∫
exp

(
−1

2

(
x− µX

y − µY

)T

Σ−1

(
x− µX

y − µY

))
dy
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Lecture 3: Common distributions

Marginalization of normal distribution

Denote Σ−1 as Λ (also known as the precision matrix). And partition both Σ and Λ into

Σ =

(
ΣXX ΣXY

ΣYX ΣYY

)
and Λ =

(
ΛXX ΛXY

ΛYX ΛYY

)

Then we have

p(x) =
1√

det(2πΣ)

∫
exp

(
−1

2

[
(x− µX)TΛXX(x− µX)

+ (y − µY)TΛYX(x− µX) + (x− µX)TΛXY(y − µY)

+(y − µY)TΛYY(y − µY)
])

dy

=
e−

(x−µX)T ΛXX(x−µX)

2√
det(2πΣ)

∫
exp

(
−1

2

[
(y − µY)TΛYX(x− µX)

+(x− µX)TΛXY(y − µY) + (y − µY)TΛYY(y − µY)
])

dy
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Lecture 3: Common distributions

Marginalization of normal distribution

To proceed, let’s apply the completing square trick on
(y − µY)TΛYX(x− µX) + (x− µX)TΛXY(y − µY) + (y − µY)TΛYY(y − µY). For the ease of
exposition, let us denote x̃ as x− µX and ỹ as y − µY. We have

ỹTΛYXx̃+ x̃TΛXYỹ + ỹTΛYYỹ

=(ỹ + Λ−1
YYΛYXx̃)TΛYY(ỹ + Λ−1

YYΛYXx̃)− x̃TΛXYΛ−1
YYΛYXx̃,

where we use the fact that Λ = Σ−1 is symmetric and so ΛXY = ΛYX
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Lecture 3: Common distributions

Marginalization of normal distribution

p(x) =
e−

x̃T (ΛXX−ΛXYΛ
−1
YY

ΛYX)x̃

2√
det(2πΣ)

∫
e−

(ỹ+Λ
−1
YY

ΛYXx̃)T ΛYY(ỹ+Λ
−1
YY

ΛYXx̃)

2 dy

=

√
det(2πΛ−1

YY)√
det(2πΣ)

exp

(
− x̃T (ΛXX − ΛXYΛ−1

YYΛYX)x̃

2

)
(a)
=

√
det(2πΛ−1

YY)√
det(2πΣ)

exp

(
− x̃TΣ−1

XXx̃

2

)
(b)
=

1√
det(2πΣXX)

exp

(
− x̃TΣ−1

XXx̃

2

)
=

1√
det(2πΣXX)

exp

(
− (x− µX)TΣ−1

XX(x− µX)

2

)
,

where (a) and (b) will be shown next
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Lecture 3: Common distributions

(a) Σ−1XX = ΛXX − ΛXYΛ
−1
YYΛYX

Lemma

Assume
(
A B
C D

)−1

=

(
Ã B̃

C̃ D̃

)
, then A−1 = Ã− B̃D̃−1C̃

Proof.

Note that
(
A B
C D

)(
Ã B̃

C̃ D̃

)
=

(
I 0
0 I

)
. Thus AÃ+BC̃ = I and AB̃ +BD̃ = 0. So

A(Ã− B̃D̃−1C̃) = AÃ− (AB̃)D̃−1C̃ = AÃ+BD̃D̃−1C̃ = AÃ+BC̃ = I
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Lecture 3: Common distributions

(b) det(aΣ) = det(aΣYY) det(aΛ
−1
XX)

Lemma

Assume
(
A B
C D

)−1

=

(
Ã B̃

C̃ D̃

)
, then det

(
A B
C D

)
= det(D)det(Ã−1)

Proof.(
A B
C D

)
=

(
I 0
0 D

)(
A B

D−1C I

)
=

(
I 0
0 D

)(
I B
0 I

)(
A−BD−1C 0

D−1C I

)
⇒ det

(
A B
C D

)
= det(D)det(A−BD−1C) = det(D)det(Ã−1)

Remark
N.B. A−BD−1C is known as Schur complement
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Lecture 3: Common distributions

Conditioning mulitivariate Gaussian

Consider the same Z ∼ N (µZ,ΣZ) and Z =

(
X
Y

)
. What will X be like if Y is observed to be y?

Basically, we want to find p(x|y) = p(x,y)/p(y)

From previous result, we have p(y) = N (y;µY,ΣYY). Therefore,

p(x|y) ∝ exp

(
−1

2

[(
x̃
ỹ

)T

Σ−1

(
x̃
ỹ

)
− ỹTΣ−1

YYỹ

])

∝ exp

(
−1

2
[x̃TΛXXx̃+ x̃TΛXYỹ + ỹTΛYXx̃]

)
,

where we use x̃ and ỹ as shorthands of x− µX and y − µY as before
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Lecture 3: Common distributions

Conditioning mulitivariate Gaussian

Completing the square for x̃, we have

p(x|y) ∝ exp

(
−1

2
(x̃+ Λ−1

XXΛXYỹ)TΛXX(x̃+ Λ−1
XXΛXYỹ)

)
= exp

(
−1

2
(x− µX + Λ−1

XXΛXY(y − µY))TΛXX

(x− µX + Λ−1
XXΛXY(y − µY))

)

Therefore X|y is Gaussian distributed with mean µX − Λ−1
XXΛXY(y − µY) and covariance Λ−1

XX

Note that since ΛXXΣXY + ΛXYΣYY = 0 ⇒Λ−1
XXΛXY = −ΣXYΣ−1

YY and from (a), we have

X|y ∼ N (µX +ΣXYΣ−1
YY(y − µY),ΣXX − ΣXYΣ−1

YYΣYX),

where ΣXX − ΣXYΣ−1
YYΣYX , Σ|ΣYY is a Schur complement
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(x̃+ Λ−1

XXΛXYỹ)TΛXX(x̃+ Λ−1
XXΛXYỹ)

)
= exp

(
−1

2
(x− µX + Λ−1

XXΛXY(y − µY))TΛXX
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Lecture 3: Common distributions

Conditioning mulitivariate Gaussian
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YY(y − µY),ΣXX − ΣXYΣ−1

YYΣYX)

When the observation of Y is exactly the mean, the conditioned mean does not change

Otherwise, it needs to be modified and the size of the adjustment decreases with ΣYY, the
variance of Y for the 1-D case.

The observation is less reliable with the increase of ΣYY. The adjustment is finally scaled by ΣXY,
which translates the variation of Y to the variation of X
In particular, if X and Y are negatively correlated, the sign of the adjustment will be reversed

As for the variance of the conditioned variable, it always decreases and the decrease is larger if
ΣYY is smaller and ΣXY is larger (X and Y are more correlated)
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Lecture 3: Common distributions

What is a Gaussian Process?

A Gaussian Process (GP) is a collection of random variables, any finite number of which have a joint
Gaussian distribution.

f(x) ∼ GP(m(x), k(x, x′))

f(x) is the function to be modeled.
m(x) is the mean function, usually zero.
k(x, x′) is the covariance function or kernel.
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Lecture 3: Common distributions

Advantages and Disadvantages

Advantages:
Flexible
Probabilistic Nature
Non-Parametric

Disadvantages:
Computational Complexity
Hyperparameter Sensitivity
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Lecture 3: Common distributions

Applications

Regression and function estimation
Time series forecasting
Optimization
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Lecture 3: Common distributions

Uncorrelated implies independence

X|y ∼ N (µX +ΣXYΣ−1
YY(y − µY),ΣXX − ΣXYΣ−1

YYΣYX)

If X and Y are uncorrelated, ΣXY = 0. Then

X|y ∼ N (µX,ΣXX)

Note that the statistics of X does not change with respect to y and so X is independent of Y
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Lecture 3: Common distributions

X ⊥⊥ Y |Z if ρXZρY Z = ρXY

Corollary
Given multivariate Gaussian variables X,Y and Z, we have X and Y are conditionally independent
given Z if ρXZρY Z = ρXY , where ρXZ = E[(X−E(X))(Z−E(Z))]√

E[(X−E(X))2]E[(Z−E(Z))2]
is the correlation coefficent

between X and Z. Similarly, ρY Z and ρXY are the correlation coefficients between Y and Z, and X
and Y , respectively.
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Lecture 3: Common distributions

X ⊥⊥ Y |Z if ρXZρY Z = ρXY

Proof.

From the definition of correlation coefficient, Σ =

(
σXX

√
σXXσY Y ρXY

√
σXXσZZρXZ√

σXXσY Y ρXY σY Y
√
σY Y σZZρY Z√

σXXσZZρXZ
√
σY Y σZZρY Z σZZ

)

Then from the conditioning result, we have

Σ(
X
Y

)∣∣∣Z =

(
σXX

√
σXXσY Y ρXY√

σXXσY Y ρXY σY Y

)
−

(√
σXXσZZρXZ

√
σY Y σZZρY Z

)
σ−1
ZZ

(√
σXXσZZρXZ√
σY Y σZZρY Z

)
=

(
σXX(1− ρ2XZ)

√
σXXσY Y (ρXY − ρXZρY Z)√

σXXσY Y (ρXY − ρXZρY Z) σY Y (1− ρ2Y Z)

)

Therefore, X and Y are uncorrelated given Z when the off-diagonal is zero and this gives us
ρXY = ρXZρY Z . Since for Gaussian variables, uncorrelatedness implies independence. This
concludes the proof.
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Lecture 3: Common distributions

Bernoulli distribution

Consider someone flips a biased coin. The probability of the outcome is described by the Bernoulli
distribution. Denote X = 1 for a head and X = 0 for a tail. Let Pr(X = 1) = p.

Then the
Bernoulli distribution is simply

Bern(x|p) =

{
p, x = 1

1− p, x = 0

More concisely, we can write it as

Bern(x|p) = px(1− p)1−x,

The mean and variance are

E[X] = p · 1 + (1− p) · 0 = p

V ar[X] = p · (1− p)2 + (1− p) · p2 = p(1− p)
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Lecture 3: Common distributions

Binomial distribution (N trials)

Repeat the experiment for N times, the probability of the outcome will now be described by the
binomial distribution. Note that x is now the number of obtained heads, we have

Bin(x|p,N) =

(
N

x

)
px(1− p)N−x,

Mean and variances are given by
E[X] =

∑N
x=0 Bin(x|p)x =

∑N
x=1

N !
(x−1)!(N−x)!

px(1− p)N−x

= Np
∑N

x=1
(N−1)!

(x−1)!(N−x)!
px−1(1− p)N−x= Np

∑N−1
x=0 Bin(x|p,N − 1)

= Np
Similar, E[X(X − 1)] =

∑N
x=2

N !
(x−2)!(N−x)!

px(1− p)N−x

= N(N − 1)p2
∑N−2

x=0 Bin(x|p,N − 2) = N(N − 1)p2

Therefore,
V ar[X] = E[X2]−E[X]2= E[X(X−1)]+E[X]−E[X]2 = N(N −1)p2+Np− (Np)2 = Np(1−p)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming September 13, 2023 22



Lecture 3: Common distributions

Binomial distribution (N trials)

Repeat the experiment for N times, the probability of the outcome will now be described by the
binomial distribution. Note that x is now the number of obtained heads, we have

Bin(x|p,N) =

(
N

x

)
px(1− p)N−x,

Mean and variances are given by
E[X] =

∑N
x=0 Bin(x|p)x

=
∑N

x=1
N !

(x−1)!(N−x)!
px(1− p)N−x

= Np
∑N

x=1
(N−1)!

(x−1)!(N−x)!
px−1(1− p)N−x= Np

∑N−1
x=0 Bin(x|p,N − 1)

= Np
Similar, E[X(X − 1)] =

∑N
x=2

N !
(x−2)!(N−x)!

px(1− p)N−x

= N(N − 1)p2
∑N−2

x=0 Bin(x|p,N − 2) = N(N − 1)p2

Therefore,
V ar[X] = E[X2]−E[X]2= E[X(X−1)]+E[X]−E[X]2 = N(N −1)p2+Np− (Np)2 = Np(1−p)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming September 13, 2023 22



Lecture 3: Common distributions

Binomial distribution (N trials)

Repeat the experiment for N times, the probability of the outcome will now be described by the
binomial distribution. Note that x is now the number of obtained heads, we have

Bin(x|p,N) =

(
N

x

)
px(1− p)N−x,

Mean and variances are given by
E[X] =

∑N
x=0 Bin(x|p)x =

∑N
x=1

N !
(x−1)!(N−x)!

px(1− p)N−x

= Np
∑N

x=1
(N−1)!

(x−1)!(N−x)!
px−1(1− p)N−x= Np

∑N−1
x=0 Bin(x|p,N − 1)

= Np
Similar, E[X(X − 1)] =

∑N
x=2

N !
(x−2)!(N−x)!

px(1− p)N−x

= N(N − 1)p2
∑N−2

x=0 Bin(x|p,N − 2) = N(N − 1)p2

Therefore,
V ar[X] = E[X2]−E[X]2= E[X(X−1)]+E[X]−E[X]2 = N(N −1)p2+Np− (Np)2 = Np(1−p)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming September 13, 2023 22



Lecture 3: Common distributions

Binomial distribution (N trials)

Repeat the experiment for N times, the probability of the outcome will now be described by the
binomial distribution. Note that x is now the number of obtained heads, we have

Bin(x|p,N) =

(
N

x

)
px(1− p)N−x,

Mean and variances are given by
E[X] =

∑N
x=0 Bin(x|p)x =

∑N
x=1

N !
(x−1)!(N−x)!

px(1− p)N−x

= Np
∑N

x=1
(N−1)!

(x−1)!(N−x)!
px−1(1− p)N−x

= Np
∑N−1

x=0 Bin(x|p,N − 1)
= Np
Similar, E[X(X − 1)] =

∑N
x=2

N !
(x−2)!(N−x)!

px(1− p)N−x

= N(N − 1)p2
∑N−2

x=0 Bin(x|p,N − 2) = N(N − 1)p2

Therefore,
V ar[X] = E[X2]−E[X]2= E[X(X−1)]+E[X]−E[X]2 = N(N −1)p2+Np− (Np)2 = Np(1−p)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming September 13, 2023 22



Lecture 3: Common distributions

Binomial distribution (N trials)

Repeat the experiment for N times, the probability of the outcome will now be described by the
binomial distribution. Note that x is now the number of obtained heads, we have

Bin(x|p,N) =

(
N

x

)
px(1− p)N−x,

Mean and variances are given by
E[X] =

∑N
x=0 Bin(x|p)x =

∑N
x=1

N !
(x−1)!(N−x)!

px(1− p)N−x

= Np
∑N

x=1
(N−1)!

(x−1)!(N−x)!
px−1(1− p)N−x= Np

∑N−1
x=0 Bin(x|p,N − 1)

= Np
Similar, E[X(X − 1)] =

∑N
x=2

N !
(x−2)!(N−x)!

px(1− p)N−x

= N(N − 1)p2
∑N−2

x=0 Bin(x|p,N − 2) = N(N − 1)p2

Therefore,
V ar[X] = E[X2]−E[X]2= E[X(X−1)]+E[X]−E[X]2 = N(N −1)p2+Np− (Np)2 = Np(1−p)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming September 13, 2023 22



Lecture 3: Common distributions

Binomial distribution (N trials)

Repeat the experiment for N times, the probability of the outcome will now be described by the
binomial distribution. Note that x is now the number of obtained heads, we have

Bin(x|p,N) =

(
N

x

)
px(1− p)N−x,

Mean and variances are given by
E[X] =

∑N
x=0 Bin(x|p)x =

∑N
x=1

N !
(x−1)!(N−x)!

px(1− p)N−x

= Np
∑N

x=1
(N−1)!

(x−1)!(N−x)!
px−1(1− p)N−x= Np

∑N−1
x=0 Bin(x|p,N − 1)

= Np

Similar, E[X(X − 1)] =
∑N

x=2
N !

(x−2)!(N−x)!
px(1− p)N−x

= N(N − 1)p2
∑N−2

x=0 Bin(x|p,N − 2) = N(N − 1)p2

Therefore,
V ar[X] = E[X2]−E[X]2= E[X(X−1)]+E[X]−E[X]2 = N(N −1)p2+Np− (Np)2 = Np(1−p)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming September 13, 2023 22



Lecture 3: Common distributions

Binomial distribution (N trials)

Repeat the experiment for N times, the probability of the outcome will now be described by the
binomial distribution. Note that x is now the number of obtained heads, we have

Bin(x|p,N) =

(
N

x

)
px(1− p)N−x,

Mean and variances are given by
E[X] =

∑N
x=0 Bin(x|p)x =

∑N
x=1

N !
(x−1)!(N−x)!

px(1− p)N−x

= Np
∑N

x=1
(N−1)!

(x−1)!(N−x)!
px−1(1− p)N−x= Np

∑N−1
x=0 Bin(x|p,N − 1)

= Np
Similar, E[X(X − 1)] =

∑N
x=2

N !
(x−2)!(N−x)!

px(1− p)N−x

= N(N − 1)p2
∑N−2

x=0 Bin(x|p,N − 2) = N(N − 1)p2

Therefore,
V ar[X] = E[X2]−E[X]2= E[X(X−1)]+E[X]−E[X]2 = N(N −1)p2+Np− (Np)2 = Np(1−p)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming September 13, 2023 22



Lecture 3: Common distributions

Binomial distribution (N trials)

Repeat the experiment for N times, the probability of the outcome will now be described by the
binomial distribution. Note that x is now the number of obtained heads, we have

Bin(x|p,N) =

(
N

x

)
px(1− p)N−x,

Mean and variances are given by
E[X] =

∑N
x=0 Bin(x|p)x =

∑N
x=1

N !
(x−1)!(N−x)!

px(1− p)N−x

= Np
∑N

x=1
(N−1)!

(x−1)!(N−x)!
px−1(1− p)N−x= Np

∑N−1
x=0 Bin(x|p,N − 1)

= Np
Similar, E[X(X − 1)] =

∑N
x=2

N !
(x−2)!(N−x)!

px(1− p)N−x

= N(N − 1)p2
∑N−2

x=0 Bin(x|p,N − 2) = N(N − 1)p2

Therefore,
V ar[X] = E[X2]−E[X]2= E[X(X−1)]+E[X]−E[X]2 = N(N −1)p2+Np− (Np)2 = Np(1−p)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming September 13, 2023 22



Lecture 3: Common distributions

Binomial distribution (N trials)

Repeat the experiment for N times, the probability of the outcome will now be described by the
binomial distribution. Note that x is now the number of obtained heads, we have

Bin(x|p,N) =

(
N

x

)
px(1− p)N−x,

Mean and variances are given by
E[X] =

∑N
x=0 Bin(x|p)x =

∑N
x=1

N !
(x−1)!(N−x)!

px(1− p)N−x

= Np
∑N

x=1
(N−1)!

(x−1)!(N−x)!
px−1(1− p)N−x= Np

∑N−1
x=0 Bin(x|p,N − 1)

= Np
Similar, E[X(X − 1)] =

∑N
x=2

N !
(x−2)!(N−x)!

px(1− p)N−x

= N(N − 1)p2
∑N−2

x=0 Bin(x|p,N − 2) = N(N − 1)p2

Therefore,
V ar[X] = E[X2]−E[X]2

= E[X(X−1)]+E[X]−E[X]2 = N(N −1)p2+Np− (Np)2 = Np(1−p)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming September 13, 2023 22



Lecture 3: Common distributions

Binomial distribution (N trials)

Repeat the experiment for N times, the probability of the outcome will now be described by the
binomial distribution. Note that x is now the number of obtained heads, we have

Bin(x|p,N) =

(
N

x

)
px(1− p)N−x,

Mean and variances are given by
E[X] =

∑N
x=0 Bin(x|p)x =

∑N
x=1

N !
(x−1)!(N−x)!

px(1− p)N−x

= Np
∑N

x=1
(N−1)!

(x−1)!(N−x)!
px−1(1− p)N−x= Np

∑N−1
x=0 Bin(x|p,N − 1)

= Np
Similar, E[X(X − 1)] =

∑N
x=2

N !
(x−2)!(N−x)!

px(1− p)N−x

= N(N − 1)p2
∑N−2

x=0 Bin(x|p,N − 2) = N(N − 1)p2

Therefore,
V ar[X] = E[X2]−E[X]2= E[X(X−1)]+E[X]−E[X]2 = N(N −1)p2+Np− (Np)2 = Np(1−p)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming September 13, 2023 22



Lecture 3: Common distributions

Binomial distribution

As shown below, the binomial distribution can be model well with a normal distribution
N (Np,Np(1− p)) for large N

The binomial distribution is shown in blue and an approximation by normal distribution is shown in red
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Lecture 3: Common distributions

Conjugate prior

Note that both Bernoulli and binomial distributions have the form pu(1− p)v

To estimate p, recall that the ML estimator will try to compute

p̂ = argmax
p

p(u, v|p) = argmax
p

pu(1− p)v

Now if we would like to use the MAP estimator instead, we need to introduce a prior p(p) and
solve instead

p̂ = argmax
p

p(u, v|p)p(p) = argmax
p

pu(1− p)vp(p)

It is very difficult to determine the prior unanimously. Actually it can be controversial just to
determine the form of it
However, if we select p(p) of a form p(p) ∝ pa(1− p)b, then the resulting posterior distribution
with the same form as before. This choice is often chosen for practical purposes, and a prior with
same “form” as its likelihood (and thus posterior) is known as the conjugate prior
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Lecture 3: Common distributions

Beta distribution

The conjugate prior of both Bernoulli and binomial distributions is the beta distribution. Its pdf is
given by

Beta(x|a, b) = xa−1(1− x)b−1

B(a, b)
,

where X ∈ [0, 1] and B(a, b) = Γ(a)Γ(b)
Γ(a+b)

Note that with a = b = 1, Beta(x|1, 1) = 1. It is the same as no prior
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Lecture 3: Common distributions

Gamma function

Note that Γ(z) =
∫ ∞

0

xz−1e−x dx

Γ(1) =

∫ ∞

0

e−x dx = −e−x|∞0 = 1

For z > 1, we have Γ(z) = (z − 1)Γ(z − 1)

Proof.

Γ(z) =

∫ ∞

0

xz−1e−x dx= −
∫ ∞

0

xz−1de−x = −xz−1e−x|∞0 + (z − 1)

∫ ∞

0

xz−2e−x dx

= (z − 1)

∫ ∞

0

xz−2e−x dx = (z − 1)Γ(z − 1)

Therefore, for integer z > 1, Γ(z) = (z − 1)!
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Lecture 3: Common distributions

Mode of beta distribution

The mode is the peak of a distribution. Recall that Beta(x|a, b) = xa−1(1−x)b−1

B(a,b) . Set

∂Beta(x|a, b)
∂x

=
(a− 1)xa−2(1− x)b−1 − (b− 1)xa−1(1− x)b−2

B(a, b)
= 0,

we have (a− 1)(1− x) = (b− 1)x⇒ x = a−1
a+b−2 when a, b > 1

Note that when a or b is less than or equal to 1, the peak appears at either x = 0 or x = 1
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Lecture 3: Common distributions

Mean and variance of Beta distribution

Note that
∫ 1

x=0
p(x|a, b) = 1⇒

∫ 1

x=0
xa−1(1− x)b−1 = B(a, b) = Γ(a)Γ(b)

Γ(a+b) . This gives us a handy trick
to manipulate beta distribution

E[X] =

∫ 1

x=0

xBeta(x|a, b)dx =
Γ(a+ b)

Γ(a)Γ(b)

∫ 1

x=0

xa(1− x)b−1dx

=
Γ(a+ b)

Γ(a)Γ(b)

Γ(a+ 1)Γ(b)

Γ(a+ b+ 1)
=

a

a+ b

Similarly, E[X2] = Γ(a+b)
Γ(a)Γ(b)

∫ 1

x=0
xa+1(1− x)b−1dx= Γ(a+b)

Γ(a)Γ(b)
Γ(a+2)Γ(b)
Γ(a+b+2) = a(a+1)

(a+b)(a+b+1) . Thus,

V ar[X] =E[X2]− E[X]2 =
a(a+ 1)

(a+ b)(a+ b+ 1)
− a2

(a+ b)2

=
a(a+ 1)(a+ b)− a2(a+ b+ 1)

(a+ b)2(a+ b+ 1)
=

ab

(a+ b)2(a+ b+ 1)
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Lecture 3: Common distributions

Posterior estimate of probability p

Consider the coin flipping example again. Let say the prior probability1 of the coin is beta distributed
with parameters a and b. And we flip the coin once to get outcome x.

Upon observing x, we can
estimate p by

p(p|x, a, b)

=Const1 ·Beta(p|a, b)Bern(x|p)
=Const2 · pa−1+x(1− p)b−1+1−x

=Beta(p|ã, b̃)

So the posterior probability distribution is also beta distributed and the parameters just changed to
ã← a+ x and b̃← b+ 1− x

1Note that this can be very confusing at the beginning. Beware that we are talking about the distribution of the
probability of some outcome
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Lecture 3: Common distributions

Posterior estimate of probability p

Let say we continue our example and we flip the coin by N times and obtain x head. So instead of the
Bernoulli likelihood, we have a binomial likelihood. Like the last slide, we have the same beta prior with
parameters a and b.

After the experiment x, we can update the distribution of our estimated p by

p(p|x, a, b) =Const1 ·Beta(p|a, b)Bin(x|p,N)

=Const2 · pa−1+x(1− p)b−1+N−x

=Beta(p|ã, b̃)

Again, the posterior distribution is still beta but with parameters updated to ã← a+ x and
b̃← b+N − x
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Lecture 3: Common distributions

Prior and regularization

One major reason of introducing prior is for the sake of “regularizing” the answer
Another coin example

Fall back to high school, assume that we flip a coin for 10 times and got 3 heads. We want to
estimate the chance of getting heads

3/10, right?
And if I asked you chance of getting another head in the future, you will say the chance of getting
another head is 3/10
Now, if I actually flip the coin for 10 times and got no head, what do you expect the chance of getting
a head next time?
0? Okay, the estimate is a bit extreme. We know that it is very difficult to make a coin that always
gives a tail
How about we first assumed that we actually flipped two times and got 1 head before we did
experiment? We will estimate 1/12 instead of 0/10
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Lecture 3: Common distributions

Prior and regularization

We can verify that this is exactly what we got for a Beta prior with a = 2 and b = 2.

Note that the
posterior distribution is

Beta(p|2, 2)Bin(x = 0|p,N = 10) ∼ Beta(0 + a, 10 + b) = Beta(2, 12)

Now, what is the MAP estimate? It should be the p that maximize the posterior probability. That
is the mode of Beta(2, 12). Thus,

p
(MAP )
Head =

a− 1

a+ b− 2
=

1

12

Recall that Beta(1, 1) = 1 and so likelihood function is equivalent to
Beta(p|1, 1)Bin(0|p, 10) ∼ Beta(1, 11). Thus the ML estimate is the mode of
Beta(1, 11)⇒ p

(ML)
Head = 1−1

1+11−2 = 0
10 = 0

This indeed is the same as our high school naïve estimate
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Lecture 3: Common distributions

Bayesian estimation and regularization

Now let’s consider the Bayesian estimate. Even for the case with no prior (equivalently an uniform
prior or Beta prior with a = 1 and b = 1), recall that the “posterior distribution” is Beta(1, 11)

The Bayesian estimate should be the average p summing all possibility of p, which is essentially
just,

∫
pBeta(p|1, 11)dp = E[p], i.e., the mean. Thus

p
(Bayesian)
Head =

a

a+ b
=

1

11

Note that Bayesian estimation is “self-regularized” (i.e., giving less extreme results) since it
inherently averages out all possible cases

Remark
Note that we used the non-informative prior above just to illustrate the self-regularization property of
Bayesian estimation. When you are given a prior, you should always use the given prior instead for an
actual problem
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Lecture 3: Common distributions

Multinomial distribution

Binomial distribution models the probability of a binary outcome. For a random event with discrete
but non-binary (more than two) outcomes, we can model the event with a multinomial distribution

Let say the probability of each possible outcome i is pi. And we have conducted N different
experiments, let say xi is the number of times we obtain outcome i. Then the probability of such
even is given by

Mult(x1, · · · , xn|p1, · · · , pn) =
(

N

x1x2 · · ·xn

)
px1
1 px2

2 · · · pxn
n ,

Just make sure we are in the same pace. Note that p1 + p2 + · · ·+ pn = 1 and
x1 + x2 + · · ·+ xn = N
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Lecture 3: Common distributions

Dirichlet distribution

Note that the conjugate prior of multinomial distribution should take the form
xα1−1
1 xα2−1

2 · · ·xαn−1
n

It turns out that the distribution is the so-called Dirichlet distribution. Its pdf is given by

Dir(x1, · · · , xn|α1, · · · , αn)

=
Γ(α1 + · · ·+ αn)

Γ(α1)Γ(α2) · · ·Γ(αn)
xα1−1
1 xα2−1

2 · · ·xαn−1
n

As usual since pdf should be normalized to 1, we have∫
xα1−1
1 xα2−1

2 · · ·xαn−1
n =

Γ(α1)Γ(α2) · · ·Γ(αn)

Γ(α1 + · · ·+ αn)
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Lecture 3: Common distributions

Mean, mode, variance of Dirichlet distribution
Mean:

E[X1] =
Γ(α1 + · · ·+ αn)

Γ(α1) · · ·Γ(αn)

∫
xα1
1 xα2−1

2 · · ·xαn−1
n

=
Γ(α1 + · · ·+ αn)

Γ(α1) · · ·Γ(αn)

Γ(α1 + 1) · · ·Γ(αn)

Γ(α1 + · · ·+ αn + 1)
=

α1

α1 + · · ·+ αn

Similarly, E[X2
1 ] =

Γ(α1+···+αn)
Γ(α1)···Γ(αn)

∫
xα1+1
1 xα2−1

2 · · ·xαn−1
n = Γ(α1+···+αn)

Γ(α1)···Γ(αn)
Γ(α1+2)···Γ(αn)
Γ(α1+···+αn+2) =

(α1+1)α1

(α1+···+αn+1)(α1+···+αn)
. Thus,

V ar(X1) = E[X2
1 ]− E[X2

1 ] =
(α1+1)α1

(α1+···+αn+1)(α1+···+αn)
− α2

1

(α1+···+αn)2
= α1(α0−α1)

α2
0(α0+1)

, where
α0 = α1 + · · ·+ αn

Mode: one can show that the mode of Dir(α1, · · · , αn) for α1, · · · , αn > 1 is

αi − 1

α1 + · · ·+ αn − n
.

We will not show it now but will leave as an exercise
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.

We will not show it now but will leave as an exercise
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Lecture 3: Common distributions

Summary of Dirichlet distribution

Pdf:
Dir(x|α) =

Γ(α1 + · · ·+ αn)

Γ(α1)Γ(α2) · · ·Γ(αn)
xα1−1
1 xα2−1

2 · · ·xαn−1
n

Mean:
αi

α1 + · · ·+ αn

Variance:
αi(α0 − αi)

α2
0(α0 + 1)

Mode:
αi − 1

α1 + · · ·+ αn − n
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Lecture 3: Common distributions

Posterior probability given Multinomial likelihood and Dirichlet prior

Upon observing x1, · · · , xn, the posterior distribution of p1, · · · , pn becomes

p(p1, · · · , pn|x1, · · · , xn, α1, · · · , αn)

=Const1 ·Dir(p1, · · · , pn|α1, · · · , αn)Mult(x1, · · · , xn|p1, · · · , pn)
=Const2 · px1+α1

1 · · · pxn+αn
n

=Dir(p1, · · · , pn|α̃1, · · · , α̃n)

So the posterior distribution is Dirichlet with parameters updated to α̃1 ← x1 + α1, · · · , α̃n ← xn + αn
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Lecture 3: Common distributions

Poisson distribution

Poisson distribution describes the number of arrival K within some period. For example, one can use
Poisson distribution to model the arrival process (Poisson process) of customers into a store.

Its pdf is
given by

Poisson(k|λT ) = e−λT (λT )k

k!
,

where k is a non-negative integer, λ is rate of arrival and T is the length of the observed period. It is
easy to check that (please verify)

Mean = λT

V ariance = λT

N.B. the parameters λT comes as a group and so we can consider it as a single parameter
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Lecture 3: Common distributions

Poisson process

Poisson process is probably the simplest random process to model event arrivals. It is based on two
simple assumptions

1 Arrival rate is invariant over time
That is, λ is a constant that does not change with time

2 Each arrival is independent of the other
For example, even though we just have one customer coming in, the probability that the next
customer to come in immediately should not decrease
It makes sense to model say customers to a department store
It can be less perfect to model the times my car broke down. The events are likely to be related
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Lecture 3: Common distributions

Poisson process and Poisson distribution

Consider a period T and let’s the arrival rate be λ as before. Let’s partition T into N different very
short intervals of length ∆.

Hence, T = N∆. We will also assume N →∞ and thus ∆→ 0. The
probability of getting an arrival in any interval ∆ is thus λ∆. Moreover, since ∆→ 0, the
probability of getting two arrivals ∝ ∆2 and is negligible compared to λ∆

Then, the probability of k arrivals
Pr(k arrivals in T ) =

(
N
k

)
(λ∆)k(1− λ∆)N−k = N(N−1)···(N−k+1)

k! (λ∆)k(1− λ∆)N−k

≈ Nk

k! λ
k Tk

Nk (1− λ∆)N−k = (λT )k

k! (1− λT
N )N−k≈ (λT )k

k! (1− λT
N )N= (λT )k

k! exp(−λT ),
where we use (1 + a/N)N = exp(a) for the last equality

Note that indeed Pr(k arrivals in T ) = Poisson(k|λT )
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Lecture 3: Common distributions

Interarrival time of Poisson process

Using the similar analysis, we can also easily evaluate the distribution of interarrival time, the time that
the next event will happen given that an event just happened. Let t = n∆ and use the same notation as
before

Note that t > 0 and ∆→ 0 and so n→∞. Now, Pr(next event happened within in time [t, t+∆])
= Pr(next event happened within in time [n∆, (n+ 1)∆])
= Pr(no event in first n intervals)Pr(event happened in n+ 1 interval) = (1− λ∆)n(λ∆)

Let fT (t) be the pdf of the interval time. Then, fT (t) = (1−λ∆)n(λ∆)
∆

= λ(1− λ t
n
)n = λ exp(−λt), where

we use (1 + a/n)n = exp(a) again for n → ∞

Exponential distribution

fT (t) = λ exp(−λt) , Exp(t|λ) is the pdf of the exponential distribution with parameter λ. It is easy
to verify that (as exercise)

E[T ] = 1/λ

V ar(T ) = 1/λ2
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x̂k−1 ∼ N (x̂k−1,Qk)

Fk ·+Bkuk

x̃k

·+wk

x̂k

Hk·

yk

(1): ∼ N (Fkx̂k−1 +Bkuk,FkPk−1F
>
k )
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k +Qk︸ ︷︷ ︸

Pk|k−1

)

(3): ∼ N ((H>
k R−1

k Hk)
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