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Exponential family distributions

Motivation

@ Consider random variable X with some known expectation E[T;(X)] = p;, what is the most
probable distribution?
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Motivation

@ Consider random variable X with some known expectation E[T;(X)] = p;, what is the most
probable distribution?
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Exponential family distributions

Motivation

@ Consider random variable X with some known expectation E[T;(X)] = p;, what is the most
probable distribution?
@ Let’s maximize the differential entropy h(x) given the constraint. Using Lagrange multiplier,
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Exponential family distributions

Motivation

@ Consider random variable X with some known expectation E[T;(X)] = p;, what is the most
probable distribution?
@ Let’s maximize the differential entropy h(x) given the constraint. Using Lagrange multiplier,

m

argmas | H(P) + 3 n(ETO01— ) + ) ([ peoax=1) + [ aGoptoax
p(x) normalized to 1 p(x)=0
L(p)
8L(p)__ x') — 3 i Ti(x g(x'") =
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Exponential family distributions

Motivation

@ Consider random variable X with some known expectation E[T;(X)] = p;, what is the most
probable distribution?
Let's maximize the differential entropy h(x) given the constraint. Using Lagrange multiplier,

m

argmas | H(P) + 3 n(ETO01— ) + ) ([ peoax=1) + [ aGoptoax

p(x) normalized to 1 p(x)=0
L(p)
8L(p) ! = /7 ~ /
Ipay =~ OEPO) 1 2 omTi) A+ E() = 0

i=1
= p(x)= e><p(£2'(><'))[P-XP(L—/_Q) exp(n’ T(x))]

g(x’) A(n)

=g(x")exp(n' T(x') = A(n))
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Exponential family distributions

Anatomy of exponential family probability function

p(x) = g(x)[exp(n" T(x) — A(n))]

e T(x): sufficient statistics of the distribution. As the name suggests, knowing the
expectation of T(X) is sufficient to derive the distribution. (That was how we derived in
the first place)
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Exponential family distributions

Anatomy of exponential family probability function

p(x) = g(x)[exp(n" T(x) — A(n))]

e T(x): sufficient statistics of the distribution. As the name suggests, knowing the
expectation of T(X) is sufficient to derive the distribution. (That was how we derived in
the first place)

e A(7n): log-partition function

@ 7): the natural parameter. Above is known as the natural form, an “unnatural” one can be

p(x) = g(x)exp(n(0) " T(x) — A(9))]
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Exponential family distributions

Log-partition function

Since p(x) should be normalized to 1, so we have

A(n) = In / g(x) exp(n” T(x))dx
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Exponential family distributions

Log-partition function

Since p(x) should be normalized to 1, so we have

A(n) = In / g(x) exp(n” T(x))dx
Note that

OA(n) _ [ g(x)exp(n’ T(x)) Ti(x)dx
i [, g(x)exp(n™ T(x))dx
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Exponential family distributions

Log-partition function

Since p(x) should be normalized to 1, so we have

A(n) = In / g(x) exp(n” T(x))dx

Note that

9A(m) [ g(x)exp(n” T(x)Ti(x)dx B
oni [ .g(x)exp(nT T(x))dx —/XP(X)Tf(X)dX—E[T,-(X)]
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Exponential family distributions

Log-partition function

Since p(x) should be normalized to 1, so we have

A(n) = In / g(x) exp(n” T(x))dx

Note that

0A(n) _ [.&(x) exp( TT(x)Ti(x)dx _ _ T
I = gyl TG = PRTHd = EITX)

and

PAm) _ 0 ([ g(x)exp(n T())Ti(x)dx) _ [ g(x)exp(n’ T(x))Tj(x) Ti(x)dx
onjon; O [, g(x)exp(nT T(x))dx L g(x)exp(nT T(x))dx
Lo e(x)exp(nT T(x))Ti(x)dx [ g(x)exp(n T(x)) T;(x)dx
[ 8(x) exp(nT T(x))dx [ g(x)exp({n, T(x)))dx
=E[T{(X) T{(X)] = E[T:(X)]E[T;(X)]
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Exponential family distributions

Gaussian distribution

@ Gaussian distribution belongs to the exponential family as

p(x|p,,cr2) = ! exp (x = p)? = S exp LAV ix2 — 'u—2 —logo
V2ro? 202 V2r a2 202 202
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Exponential family distributions

Gaussian distribution

@ Gaussian distribution belongs to the exponential family as

p(x|p, 0?) = ! exp (x = “)2> = L exp L ix2 — 'u—2 —logo
7 V2mo? 202 V2r o2 202 202
@ Thus,

T(x) = [x,xz]
(2 A
An) = 2~ +logo = — 1 _ “log(—2
() =5, 5 tlogo a2 og(—21m2)
1
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Exponential family distributions

Conjugate prior

o Consider observations x; ~ G(:|n) for i = 1,--- , n and the prior n ~ F(-|\)
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Exponential family distributions

Conjugate prior

o Consider observations x; ~ G(:|n) for i = 1,--- , n and the prior n ~ F(-|\)
@ The posterior distribution of 7 is then given by

n

p(nlx", A) o< F(n|A) [ | G(xiln)
i=1
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Exponential family distributions

Conjugate prior

o Consider observations x; ~ G(:|n) for i = 1,--- , n and the prior n ~ F(-|\)
@ The posterior distribution of 7 is then given by

n

p(nlx", A) o< F(n|A) [ | G(xiln)
i=1

o If the prior F(:|\) has the same form as the above posterior, we call F(:|)\) a conjugate
prior of G(+|n)
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Exponential family distributions

Conjugate prior of exponential family

@ Any exponential family distribution has conjugate prior which also belongs to the exponential
family. More precisely, consider

p(x|n) = g(x) exp(n" T(x) — A(n))
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Exponential family distributions

Conjugate prior of exponential family

@ Any exponential family distribution has conjugate prior which also belongs to the exponential
family. More precisely, consider

p(x[n) = g(x) exp(n” T(x) — A(n))
It is easy to verify that following is its conjugate prior

p(n|A) = &(n) exp(A] n — X2A(n) — A(N))
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Exponential family distributions

Conjugate prior of exponential family

@ Any exponential family distribution has conjugate prior which also belongs to the exponential
family. More precisely, consider

p(x[n) = g(x) exp(n” T(x) — A(n))
It is easy to verify that following is its conjugate prior

p(n|A) = &(n) exp(A] n — X2A(n) — A(N))

@ Then, we have

n

p(nlx", A) o p(n|A) H p(xi|n)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming November 5, 2023



Exponential family distributions

Conjugate prior of exponential family

@ Any exponential family distribution has conjugate prior which also belongs to the exponential
family. More precisely, consider

p(x|n) = g(x) exp(n" T(x) — A(n))

It is easy to verify that following is its conjugate prior
p(n|A) = &(n) exp(A{ 1 — X2A(n) — A(N))

@ Then, we have

p(nlx", A) o p(n|A) H p(xi|n)

= (é(ﬁ) Hg(xi)> exp (/\1 + Z ) — (A2 + mA(n) — AR

Ao<Aa+n

A=A+ T(x)
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Exponential family distributions

Binomial distribution belongs to the exponential family

For a fixed n,

f(x|n) = f(x|p) = (Z) p(l—p)" = <Z> exp (xlog p 4 (n — x) log(1 — p))
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Exponential family distributions

Binomial distribution belongs to the exponential family

For a fixed n, )
n Ly n
f(xIn) = f(x|p) = <X> p(1—p)"* = <X> exp | _x_log lf ~nlog
—_——
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Exponential family distributions

Binomial distribution belongs to the exponential family

For a fixed n, .
n Ly n
f(xn) = f(x|p) = <x> p*(1—p)"> = <x) exp | _x log : P hlog ——

Beta prior:

a—1 o B5—1
f(pla,p) = P~ L= P)

B(, B)
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Exponential family distributions

Binomial distribution belongs to the exponential family

For a fixed n,

1
f(xIn) = f(x|p) = <:> p (l—p)" = (Z) exp [ _x_log - f i nlogm
~—~— T(X)—~—
g() " A(n)
Beta prior: po-1(1 p)f1
fplos9) = =gy = By &P((a — 1) log(p) + (5 — 1) log(1 — p))
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Exponential family distributions

Binomial distribution belongs to the exponential family

For a fixed n,

n x n 1

f(X‘?’]):f(X|p): <X>px(1—p)" = <X) exp \xf/loglfp—rﬂogm

~—~— T(X)—~—

&(x) n A(n)

Beta prior: po-1(1 p)f1
fplos9) = =gy = By &P((a — 1) log(p) + (5 — 1) log(1 — p))
a+pB-2
= 78(01@6) exp((a — 1) log ﬁ - 75 nlog ﬁ)
A1 )\'2
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Exponential family distributions

Binomial distribution belongs to the exponential family

For a fixed n,

n x n 1

f(X‘?’]):f(X|p): <X>px(1—p)" = <X) exp \xf/loglfp—rﬂogm

~—~— T(X)—~—

&(x) n A(n)

Beta prior: po-1(1 p)f1
fplos9) = =gy = By &P((a — 1) log(p) + (5 — 1) log(1 — p))
a+pB-2
= 78(01@6) exp((a — 1) log ﬁ - 75 nlog ﬁ)
A1 )\'2

Recall: A1 +~ A1+ T(x) = a < a+x
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Exponential family distributions

Binomial distribution belongs to the exponential family

For a fixed n,

n x n 1

f(X‘?’]):f(X|p): <X>px(1—p)" = <X) exp \xf/loglfp—rﬂogm

~—~— T(X)—~—

&(x) n A(n)

Beta prior: po-1(1 p)f1
fplos9) = =gy = By &P((a — 1) log(p) + (5 — 1) log(1 — p))
a+pB-2
= 78(01@6) exp((a — 1) log ﬁ - 75 nlog ﬁ)
A1 )\'2

Recal: M« M+ T(x)=a+a+xand o+ o+1=>a+p+a+5+n
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Exponential family distributions

Binomial distribution belongs to the exponential family

For a fixed n,

n x n 1

f(X‘?’]):f(X|p): <X>px(1—p)" = <X) exp \xf/loglfp—rﬂogm

~—~— T(X)—~—

&(x) n A(n)

Beta prior: po-1(1 p)f1
fplos9) = =gy = By &P((a — 1) log(p) + (5 — 1) log(1 — p))
a+pB-2
= 78(01@6) exp((a — 1) log ﬁ - 75 nlog ﬁ)
A1 )\'2

Recall: A1+ M+ T(x)=a+a+x and o+ o+ M+T(x)=F«L+n—k
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Exponential family distributions

Unit variance Gaussian

@ Consider unit variance Gaussian p(x|u) = \/% exp(—(x — p)?/2)
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Exponential family distributions

Unit variance Gaussian

€X 7X2
@ Consider unit variance Gaussian p(x|u) = \/% exp(—(x — p)?/2) = % exp(ux — 12/2).
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Exponential family distributions

Unit variance Gaussian

€X X2
@ Consider unit variance Gaussian p(x|u) = W exp(—(x — p)?/2) = %ﬁ/z) exp(ux — 12/2).
Thus, n=p, T(x) =x, g(x) = L\/i/z) and A(n) = n?/2
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Exponential family distributions

Unit variance Gaussian

@ Consider unit variance Gaussian p(x|u) = W exp(—(x — p)?/2) = L\/g/z) exp(ux — 12/2).
Thus, n=p, T(x) =x, g(x) = L\/i/z) and A(n) = n?/2

p(xn) = g(x) exp(nx —n*/2)
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Exponential family distributions

Unit variance Gaussian

@ Consider unit variance Gaussian p(x|u) = W exp(—(x — p)?/2) = L\/g/z) exp(ux — 12/2).
Thus, n=p, T(x) =x, g(x) = L\/i/z) and A(n) = n?/2

p(xn) = g(x) exp(nx —n*/2)

@ So the conjugate prior is p(n|A) o« g(n) exp(A1n — ’\2" —A(N).
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Exponential family distributions

Unit variance Gaussian

€X X2
@ Consider unit variance Gaussian p(x|u) = W exp(—(x — p)?/2) = %ﬁ/z) exp(ux — 12/2).
Thus, n=p, T(x) =x, g(x) = L\/i/z) and A(n) = n?/2

p(xn) = g(x) exp(nx —n*/2)

@ So the conjugate prior is p(n|\) o ghy)exp(Ain — ’\2" — A(\)). It is a Gaussian distribution.
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Exponential family distributions

Unit variance Gaussian

€X X2
@ Consider unit variance Gaussian p(x|u) = W exp(—(x — p)?/2) = %ﬁ/z) exp(ux — 12/2).
Thus, n=p, T(x) =x, g(x) = L\/i/z) and A(n) = n?/2

p(xn) = g(x) exp(nx —n*/2)

@ So the conjugate prior is p(n|\) o ghy)exp(Ain — ’\2" — A())). It is a Gaussian distribution. By

inspection,
e Ao A\
p(nlA) =/ 5 exp (—2 (n - A2>
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Exponential family distributions

Unit variance Gaussian

€X X2
@ Consider unit variance Gaussian p(x|u) = W exp(—(x — p)?/2) = %ﬁ/z) exp(ux — 12/2).
Thus, n=p, T(x) =x, g(x) = L\/i/z) and A(n) = n?/2

p(xn) = g(x) exp(nx —n*/2)

@ So the conjugate prior is p(n|\) o ghy)exp(Ain — ’\2" — A())). It is a Gaussian distribution. By

inspection,
I A2 At
p(n|A) = 27reXP< > (77 /\2> )

Thus,un:%andU%:/\%:>/\1:f:—2"and/\gzai2
n n
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Exponential family distributions

Unit variance Gaussian

€X X2
@ Consider unit variance Gaussian p(x|u) = W exp(—(x — p)?/2) = %ﬂ/z) exp(ux — 12/2).
Thus, n=p, T(x) =x, g(x) = L\/i/z) and A(n) = n?/2

p(xIn) = g(x) exp(nx —1?/2)
@ So the conjugate prior is p(n|\) o ghy)exp(Ain — ’\2" — A())). It is a Gaussian distribution. By

inspection,
A2 A2 Ny
A = — —_ _— —
P(lA) =1/ exp( 5 (n A2>
Thus, iy = 3 and 02 = & = A\ = —2" and A, = &

@ For posterior update given observations T(x;) = x;,

MASL % Ba/oa A X
{/\1%)\1+27—1Xi IND LSRN i el :

Ao+n 1/a$7+n

_ 1
Ao+ Xa+n O’<—>\2+n—1/0%+n
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Exponential family distributions

Remark

Try not to confuse 0727 and the variance of observation

@ Variance of observation is 1

° 0727 is the variance of i since the mean of of the observation is a random variable also
(with mean g, = A1/A2). But 0,27 decreases as more observations are made as expected
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Exponential family distributions

Reference

@ The exponential family: Basics

@ Exponential families
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https://people.eecs.berkeley.edu/~jordan/courses/260-spring10/other-readings/chapter8.pdf
http://www.cs.princeton.edu/courses/archive/fall11/cos597C/lectures/exponential-families.pdf

Fisher information and Cramer-Rao bound

Fisher information and Cramer-Rao bound
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Fisher information and Cramer-Rao bound

Score and Fisher information

e For a family of density 7(x; 0) parametrized by 6, we define the score V as a random
OF(X;0)

variable of fraction of change of f(X;6) w.r.t. 6. Thatis, V £ o = % In f(X;0)

of (x;0
o Note that £[V] = [ 2750 2L f(x; 0)dx = & [ F(x;0)dx = 451 =0
o We define the Fisher information J(6) for X w.r.t. § as Var(V) = E[V?]

November 5, 2023
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Fisher information and Cramer-Rao bound

Score and Fisher information for ni.i.d. X

°V(X17"'7X): lnf(le X)—271§0|nf( ) le\/( )
o E[V(Xy, -+, Xn)l =21 E[V(X))] =0
o J(0; Xy, Xn) = E[V(X1, -+, Xn)?] = E[(37; V(X))?] = E[X1, V(X)) =

27:1 J(@, XI) J(e)
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Fisher information and Cramer-Rao bound

Cramer-Rao lower bound

@ For any unbiased estimator T of € out of X, i.e., E[T(X)] = 6. The variance of the
estimator is lower bounded by the inverse of Fisher information J(6; X). That is,

Var(T) = EIT2(X)] 2 15

@ Proof: consider the Cauchy-Schwarz inequality E2[(T — E[T])(V — E[V])] <
E[(T — E[T])?|E[(V — E[V])?] = Var(T)Var(V) = Var(T)J(9)
and E[(T — E[T])(V — E[V])] = E[TV] — E[T]E[V] = E[TV]

f TO) P F(x 0)dx = & [ T()F(x; 0)d0 = GE[T] = 50 =1
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Fisher information and Cramer-Rao bound

Proof of Cauchy-Schwarz Inequality (real inner product space)

The Cauchy-Schwarz Inequality

In a real inner product space, for any vectors u and v,
[(u, v)| < [[ul] - ||v]|

If v=0, then (u,v) =0, and the inequality holds trivially.

For v # 0, we have

0 < (u—Av,u—Av) < (u,u) — 22\ (u, v) + A%(v, v)

Substitute A = {2

v,

(that minimizes the right-hand side),
(u,v)?

{v,v)

=

0 < (u,u)y —
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Fisher information and Cramer-Rao bound

Introduction

Square-Integrable Random Variables

A random variable X is square-integrable if E[X?] < oo, where E[-] denotes expectation.

Expectation as Inner Product

For random variables X and Y, the inner product is defined as:
(X,Y) = E[XY]

@ The set of all square-integrable random variables forms an inner product space with
expectation as inner product

@ This concept is fundamental in probability theory and functional analysis.
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Fisher information and Cramer-Rao bound

Sanity check of the inner product properties

© Conjugate Symmetry (for real variables, symmetry):
(X,Y)=E[XY]=E[YX]=(Y,X)
@ Linearity in the First Argument:
(aX + Z,Y) = E[(aX+ 2)Y] = aE[XY] + E[ZY] = a(X,Y) + (Z,Y)

© Positive-Definiteness:
(X, X) = E[X?] > 0

(X, X) = E[X?] =0 < X = 0(almost surely)
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Fisher information and Cramer-Rao bound

Example of Cramer-Rao lower bound

e Consider a normally distributed source ~ N(u, ?) with known variance o and we try to
estimate the mean p. Giving n samples X1, Xo,--- , X,

o A reasonable estimate of p is simply the average of the samples i = % X
o The estimate is unbiased as E[3] = 2 37 | E[Xj] = p
o And the variance is Var(fi) = E[(i — 1)?]
= & (S0 ELOG = 1]+ 2507 EL0G — )% — )]
= & (S04 ELOG — 2] + 2500, E10G — m]EL — )
2

2
= (L ElX —p)]) = 25 ==
@ We will use the Cramer-Rao lower bound to show that such estimate is optimal
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Fisher information and Cramer-Rao bound

Example of Cramer-Rao lower bound

o Let's compute J(u; X, -+, Xy), which is equal to nJ(u; X). And

0= (G (e )|

(X 2”)2] = EX )=

=E

g

@ So J(u; X1,-++,Xp) = 75 and by Cramer-Rao lower bound, any unbiased estimator

. 2 . .
cannot has variance less than Z-. And thus the mean estimate using average samples
n

described in the last slide is optimal
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Graphical model and BP

Graphical model and BP
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Graphical model and BP Overview

This time...

o Bayesian Net
@ Belief Propagation Algorithm
e LDPC/IRA Codes
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Graphical model and BP Bayesian Net

Bayesian Net

Relationship of variables depicted by a directed graph with no loop

@ Given a variable’s parents, the variable is conditionally independent of any
non-descendants

Reduce model complexity

Facilitate easier inference e e
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Graphical model and BP Bayesian Net

Burlgar and racoon
Burlgar: B; Racoon: R; Dog barked: D; Police called: P; Trash can fell: T

p(p.d,b,t,r) =p(pld, b, t,r)p(d|b, t,r)p(b|t, r)p(t|r)p(r)

®®
©®
®
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Graphical model and BP Bayesian Net

Burlgar and racoon
Burlgar: B; Racoon: R; Dog barked: D; Police called: P; Trash can fell: T

p(p.d,b,t,r) =p(pld, b, t,r)p(d|b, t,r)p(b|t, r)p(t|r)p(r)
=p(pld, B, £, r)p(d|b, £, r)p(blt. f)p(t|r)p(r)
———

2 parameters

@
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Graphical model and BP Bayesian Net

Burlgar and racoon
Burlgar: B; Racoon: R; Dog barked: D; Police called: P; Trash can fell: T

p(p.d,b,t,r) =p(pld, b, t,r)p(d|b, t,r)p(b|t, r)p(t|r)p(r)
=p(pld, B, £, r)p(d|b, £, r)p(blt. f)p(t|r)p(r)
———

2 parameters

P | D | p(p|d)

p | =d | 0.01 e G
p d| 04 ?
-p | =d | 0.99
A o/ (0
TR (tl )

t| —-r| 0.05

t r| 0.7 @
-t | -r | 0.95

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming November 5, 2023



Graphical model and BP Bayesian Net

Burlgar and racoon
Burlgar: B; Racoon: R; Dog barked: D; Police called: P; Trash can fell: T

p(p.d,b,t,r) =p(pld, b, t,r)p(d|b, t,r)p(b|t, r)p(t|r)p(r)
=p(pld, B, £, r)p(d|b, £, r)p(blt. f)p(t|r)p(r)
———

2 parameters

P 1 D p(pld) D | B | R |p(db,r)
p|—d|001 d | =b]|-r 0.1 B

P Z 8;‘9 d | =b| r 0.5

P ' d b | -r 1

| d]06 d | b | r 1 D @
T[] R p(t]r)

=005 ~d | =b | =r 0.9

St | —=r | 095 -d| b | -r 0

-t r| 0.3 —d b r 0
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Graphical model and BP Bayesian Net

Comparison of # parameters

@ # parameters of complete model: 25 — 1 = 31
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Graphical model and BP Bayesian Net

Comparison of # parameters

@ # parameters of complete model: 25 — 1 = 31
@ # parameters of Bayesian net:
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Graphical model and BP Bayesian Net

Comparison of # parameters

@ # parameters of complete model: 25 — 1 = 31
@ # parameters of Bayesian net:
o p(p|d): 2
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Graphical model and BP Bayesian Net

Comparison of # parameters

@ # parameters of complete model: 25 — 1 = 31
@ # parameters of Bayesian net:

o p(pld): 2
e p(d|b,r): 4
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Graphical model and BP Bayesian Net

Comparison of # parameters

@ # parameters of complete model: 25 — 1 = 31
@ # parameters of Bayesian net:

o p(pld): 2

e p(d|b,r): 4

e p(b): 1

OROO
D=
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Graphical model and BP Bayesian Net

Comparison of # parameters

@ # parameters of complete model: 25 — 1 = 31

@ # parameters of Bayesian net:
p(p|d): 2

p(d|b, r)
p(b): 1
p(t[r): 2

OROO
D=
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Graphical model and BP Bayesian Net

Comparison of # parameters

@ # parameters of complete model: 25 — 1 = 31
@ # parameters of Bayesian net:

@ The model size reduces to less than 3!

o p(pld): 2
opEd|)b,r):4
e p(b): 1
o8
o p(r):
o Total: 2+4+1+2+1=10
. () (@
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Graphical model and BP Bayesian Net

Burglar and racoon

Question: What is the probability of a burglar visit if police was called but trash can stayed
untouched?

Let p(r) = 0.2 and p(b) = 0.01

D | B | R | p(dlb,r)
d | -b | —r 0.1
d | —=b| r 0.5
d b | —r 1
d b r 1

—-d | =b | or 0.9
-d | -b| r 0.5
-d| b | —r 0
-d | b r 0
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Graphical model and BP Bayesian Net

Burglar and racoon

Question: What is the probability of a burglar visit if police was called but trash can stayed
untouched?

Let p(r) = 0.2 and p(b) = 0.01

D | B | R | p(db,r) D | B | R |p(db,r)
d | =b | —r 0.1 d | =b | -r| 0.0792
d |=-b| r 0.5 d |-b| r 0.099
d b | —r 1 d b | —r 0.008
d b r 1 =| d b r 0.002
—-d | =b | —r 0.9 -d | =b | —r 0.7128
-d|-b| r 0.5 -d |=b| r 0.099
-d| b | —r 0 -d| b | -r 0
-d| b r 0 -d | b r 0
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Graphical model and BP Bayesian Net

Burglar and racoon

Question: What is the probability of a burglar visit if police was called but trash can stayed
untouched?

P| D | B | R |p(db,r,p)

pl| d |-b| —r 0.0792

FT DT p| d|=b]| r 0.099
=T p| d | b |=r| 0008
4|04 p| d b r 0.002

ﬁp — o5 p|—=d|-b|-r| 07128
p loe p|-d|-b| r 0.099
—pP ¥ p|—-d| b | r 0
p|—-d| b r 0
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Graphical model and BP Bayesian Net

Burglar and racoon

Question: What is the probability of a burglar visit if police was called but trash can stayed
untouched?

P| D | B | R |p(db,r,p)
pl| d |-b| —r 0.0792
FT D1 plpld) pl d |—-b]| r 0.099
> =d [0.01 pl| d b | —r 0.008
» 4|04 p| d b r 0.002
—p | =d 0'99 p|—~d|-b|—-r| 0.007128
_ d 0-6 pl—d|-b| r 0.00099
P ¥ p|—-d| b | r 0
p|—-d| b r 0
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Graphical model and BP Bayesian Net

Burglar and racoon

Question: What is the probability of a burglar visit if police was called but trash can stayed
untouched?

P| D | B | R |p(db,r,p)

p| d | —b|-r| 003168

pl d|-b| r 0.0396

Pp ﬁg g(é’l’d) p|l d| b |-r| 00032
1 o4 pld| b|r 0.0008

ﬁp — o5 p | —d | —b|-r| 0007128

P | os p|—d|-b| r | 0.00099
—pP ¥ p|—-d| b | r 0
p|—-d| b r 0
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Graphical model and BP Bayesian Net

Burglar and racoon

Question: What is the probability of a burglar visit if police was called but trash can stayed
untouched?

T|P| D | B | R|p(db,rp,t)
St p| d | =b|=r| 003168
~t|p| d |-b]|r 0.0396
7; 5 g(ggr) ~t|p| d | b |=r| 00032
i I ~t|p| d|b|r 0.0008
o “t| p | =d|=b|=r| 0007128
tpor) 0 ~t|p|-d|-b| r | 000099
-t r|0.3 ~t|p|—d b —r 0
-t|p|—d| b r 0
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Graphical model and BP Bayesian Net

Burglar and racoon

Question: What is the probability of a burglar visit if police was called but trash can stayed
untouched?

T|P| D | B | R|p(db,rp,t)

~t|p| d | =b]|-r| 0030096

~t|p| d|=b]| r 0.0396
7; R g(gy) ~t|p| d | b |=r| 000304
. ﬁ: 07 ~t|pld|b]|r 0.0008
) = ~t| p|—d|—b]|-r| 00067716
ﬁt o 03 ~t|p|-d|-b]| r 0.00099
. e -t|p|d| b | —or 0

-t | p | d b r 0
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Graphical model and BP Bayesian Net

Burglar and racoon

Question: What is the probability of a burglar visit if police was called but trash can stayed
untouched?

T|P| D | B | R|p(db,rp,t)
-t|p| d | b | or 0.030096
-t|p| d | b r 0.01188
7; 5 g(gy) ~t|p| d | b |=r| 000304
; o7 -t| p| d b r 0.00024
—Tor 095 -t | p|d| b | —r 0.0067716
' ot p|—d|-b| r 0.000297
-t r| 0.3 ~t|p|—d b —r 0
-t | p | d b r 0
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Graphical model and BP Bayesian Net

Burglar and racoon

Question: What is the probability of a burglar visit if police was called but trash can stayed
untouched?

TP D] BJRTp(d,brp)
-t|p| d | —b|-r 0.030096
—-t|pl| d|-b| r 0.01188
-t|p| d | b |-r 0.00304
. -t|p| d| b r 0.00024
Normalize... —t|p|—-d|-b]|-r| 0.0067716
—-t|p|—d|-b| r 0.000297
-t p —d b -r 0
ot p|d| b | L
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Graphical model and BP Bayesian Net

Burglar and racoon

Question: What is the probability of a burglar visit if police was called but trash can stayed
untouched?

TP D] B RTJp(d,brp)
-t|p| d |-b|-r 0.57518
-t|p| d|=b]| r 0.22704
-t|p| d b | =r | 0.058099
. -t|p| d b r | 0.0045868
Normalize... —t|p|—d|-b]|-r 0.12942
-t|p|—-d|-=b| r | 0.0056761
-t p —d b -r 0
-t | p -d b r 0
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Graphical model and BP Bayesian Net

Burglar and racoon

Question: What is the probability of a burglar visit if police was called but trash can stayed
untouched?

T|P| D | B | R |p(db,rp)
-t p| d | b | r 0.57518
-t|p| d |-b| r 0.22704
-t p| d b | -r | 0.058099
p(b|-t, p) ~t|p| d | b | r | 00045868
=0.058099 + 0.0045868 -t| p|—d| b | or 0.12942
~0.0626 -t|p|—-d|—=b| r | 0.0056761
-t|p|—d| b | —r 0
-t|p|—d| b r 0
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Graphical model and BP Belief Propagation Algorithm

Belief Propagation Algorithm

@ It is also known to be the sum-product algorithm

@ The goal of belief propagation is to efficiently compute the marginal distribution out of
the joint distribution of multiple variables. This is essential for inferring the outcome of a
particular variable with insufficient information

@ The belief propagation algorithm is usually applied to problems modeled by a undirected
graph (Markov random field) or a factor graph

@ Rather than giving a rigorous proof of the algorithm, we will provide a simple example to
illustrate the basic idea
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Graphical model and BP Belief Propagation Algorithm

Factor Graph

@ A factor graph is a bipartite graph describing the correlation among several random
variables. It generally contains two different types of nodes in the graph: variable nodes
and factor nodes

@ A variable node that is usually shown as circles corresponds to a random variable

@ A factor node that is usually shown as a square connects variable nodes whose
corresponding variables are immediately related
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Graphical model and BP Belief Propagation Algorithm

An Example

@ A factor graph example is shown below. We have 8 discrete random variables, x{ and z{,
depicted by 8 variable nodes
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Graphical model and BP Belief Propagation Algorithm

An Example

@ A factor graph example is shown below. We have 8 discrete random variables, x{ and z{,
depicted by 8 variable nodes

o Among the variable nodes, random variables x; (indicated by light circles) are unknown

and variables z{ (indicated by dark circles) are observed with known outcomes 2}
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Graphical model and BP Belief Propagation Algorithm

An Example

@ A factor graph example is shown below. We have 8 discrete random variables, x{ and z{,
depicted by 8 variable nodes

o Among the variable nodes, random variables x; (indicated by light circles) are unknown

and variables z{ (indicated by dark circles) are observed with known outcomes 2}

@ The relationships among variables are captured entirely by the figure. For example, given
x{, z1, z2, z3, and z4 are conditional independent of each other. Moreover, (x3,xs) are
conditional independent of x; given x»
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Graphical model and BP Belief Propagation Algorithm

@ The joint probability p(x*, z*) of all variables can be decomposed into factor functions with
subsets of all variables as arguments in the following

p(x*,z%) = p(x*)p(21]x1)p(22]x2) p(23]x3) P (24| xa)

@ Note that each factor function corresponds to a factor node in the factor graph.

@ The arguments of the factor function correspond to the variable nodes that the factor node
connects to.
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Graphical model and BP Belief Propagation Algorithm

@ The joint probability p(x*, z*) of all variables can be decomposed into factor functions with
subsets of all variables as arguments in the following
p(x*,2*) = p(x*)p(z1x1)p(22|x2) p(23]x3) P(2a] xa)
= p(x1, x2)p(x3, Xa|x2) p(2z3|x3) p(21|x1) p(2a|xa) p(22 | x2)
—_— A A — A —A—

fo(xi,2)  falxexaxa)  fo(xs,z3) fa(x,z) fr(xa,z) fo(x,2)

@ Note that each factor function corresponds to a factor node in the factor graph.

@ The arguments of the factor function correspond to the variable nodes that the factor node
connects to.
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Graphical model and BP Belief Propagation Algorithm

@ The joint probability p(x*, z*) of all variables can be decomposed into factor functions with
subsets of all variables as arguments in the following

p(x*,z%) = p(x*)p(21]x1)p(22]x2) p(23]x3) P (24| xa)
= p(x1, %) p(x3, xa|x2) p(23]x3) p(21|x1) p(22] xa) p(22|x2)

fo(xi,2)  falxexaxa)  fo(xs,z3) fa(x,z) fr(xa,z) fo(x,2)

= fo(x1, x2) fa(x2, X3, Xa ) fe (X3, 23) fa (X1, 21) Fr (Xa, 2a) fe (X2, 22)

@ Note that each factor function corresponds to a factor node in the factor graph.

@ The arguments of the factor function correspond to the variable nodes that the factor node
connects to.
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Graphical model and BP Belief Propagation Algorithm

One common problem in probability inference is to estimate the value of a variable given incomplete

information. For example, we may want to estimate x; given z* as 2*. The optimum estimate X; will

satisfy

p(X17 24)
p(z%)

This requires us to compute the marginal distribution p(x1,2*) out of the joint probability p(x*, 2%).

Note that

X1 = arg max p(x;|2*) = arg max = arg max p(xq, 2%).
X1 X1 X1

p(xa,2*) =Y p(x*, 2*)
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Graphical model and BP Belief Propagation Algorithm

One common problem in probability inference is to estimate the value of a variable given incomplete

information. For example, we may want to estimate x; given z* as 2*. The optimum estimate X; will

satisfy

p(X17 24)
p(z%)

This requires us to compute the marginal distribution p(x1,2*) out of the joint probability p(x*, 2%).

Note that

X1 = arg max p(x;|2*) = arg max = arg max p(xq, 2%).
X1 X1 X1

p(xa,2*) =Y p(x*, 2*)

4
X

= Z fa(x1, 21) fo (X1, x2) e (32, 22) (X2, X3, Xa ) Fe (X3, 23) F (Xa, Za)

4
X3
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Graphical model and BP Belief Propagation Algorithm

One common problem in probability inference is to estimate the value of a variable given incomplete

information. For example, we may want to estimate x; given z* as 2*. The optimum estimate X; will

satisfy

p(X17 24)
p(z%)

This requires us to compute the marginal distribution p(x1,2*) out of the joint probability p(x*, 2%).

Note that

X1 = arg max p(x;|2*) = arg max = arg max p(xq, 2%).
X1 X1 X1

p(xa,2*) =Y p(x*, 2*)

= falx, 21)fo(x1, %) fe(x2, 22) fa (2, X3, Xa) fe(x3, 23) Fr (xa, 24)
=f(x1,21)Y  folx1,0)fe(x2, 22) D a2, X3, xa) o3, 23) fr (e, 24)
—— —— e — A —

X2 X3,X4
my1 mea ’ msg Mag
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Graphical model and BP Belief Propagation Algorithm

We can see from the last equation that the joint probability can be computed by combining a
sequence of messages passing from a variable node i to a factor node a (mj,) and vice versa
(mj). More precisely, we can write

mal(xl) < f Xl,Zl Zf X1,21 Zl)

mia
mCQ(Xz) < f X2,22 Zf(XQ,Zz ),
m2c
me3(X3) <— f X3,Z3 Z f X3,23 )
\\,./
m3e

mea(xa) < fr(Xa, Z4) E fr(xa, za) p(za),
\,./
Mmyf
1, z=2%

where p(z;) =
p(z) 0, otherwise
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Graphical model and BP Belief Propagation Algorithm

p(x1, %) = f(x1,21) ) folxa, ) (2, 22) Y a2, X3, Xa)fe(x3, 23) fr (xa, 2a) (1)
x2 X3,X4
ma mea mzq Myq
mq2
map
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Graphical model and BP Belief Propagation Algorithm

m3q(x3) < me3(x3) = fe(x3, Z3),

Mag(Xa) < mea(xa) = fr(xa, Za),

p(x1, %) = f(x1,21) ) folxa, ) (2, 22) Y a2, X3, Xa)fe(x3, 23) fr (xa, 2a) (1)
x2 X3,X4
Ma1 Me2 m3d Mad
mq2
map
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Graphical model and BP Belief Propagation Algorithm

m3q(x3) < me3(x3) = fe(x3, Z3),

Mag(Xa) < mea(xa) = fr(xa, Za),

Maa(x2) <= > falxa, X3, xa) Mg (x3) Maa (xa),

X3,%4
p(x1, %) = f(x1,21) ) folxa, ) (2, 22) Y a2, X3, Xa)fe(x3, 23) fr (xa, 2a) (1)
—— ~ H’_/x;;,x,; ~——— e —
ma mea mzq Myq
ma2
map
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Graphical model and BP Belief Propagation Algorithm

m34(x3) < me3(x3) = fe(x3, 23),

Mad(xa) < mra(xa) = fr(xa, Za),

Maa(x2) <= > falxa, X3, xa) Mg (x3) Maa (xa),
X3,X4

m2b(X2) — mc2(X2)md2(X2)7

p(x1,2%) = f(x1,21) D folxa, ) fe(x2, 22) Y a2, X3, Xa) fe(xs, 23) fr (0, 2a) (1)
x2 X3,X4
ma me2 maq Myq
mq2
mzp
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Graphical model and BP Belief Propagation Algorithm

m34(x3) < me3(x3) = fe(x3, 23),

Mad(xa) < mra(xa) = fr(xa, Za),

Maa(x2) <= > falxa, X3, xa) Mg (x3) Maa (xa),
X3,X4

m2b(X2) — mc2(X2)md2(X2)7

mp1(x1) Z fo(x1, X2) M2p(X2),

X2
p(x1, 2*) = fi(x1, 1) folxa, x)fe(3e, 22) Y falxa, X3, %) fel(x3, 23) fr (x4, 24) (1)
may * me O m3d Mad
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Graphical model and BP Belief Propagation Algorithm

m3q(x3) < me3(x3) = fe(x3, Z3),

Mag(Xa) < mea(xa) = fr(xa, Za),

Ma(x2) Z fa(x2, X3, Xa) M3a(x3) Maqg(xa),
X3,X4

m2b(X2) — mc2(X2)md2(X2)7

me1(x1) < Y fo(x1, %) mab(x2),
X

p(x1, 2*) < ma1(x1)mp1(x1),

px1, 2*) = fi(x1, 1) folxa, x)fe(32, 22) > falxa, X3, %) fel(x3, 23) fr (x4, 24) (1)
X2 X3,X4
Ma1 Me2 ' m3d Mad
mg2
mzp
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Graphical model and BP Belief Propagation Algorithm

Belief propagation algorithm

@ Initialization: For any variable node i, if the prior probability of x; is known and equal to p(x;),
for a € N(i),

@ Message passing:

@ Belief update:

@ Stopping criteria: repeat message update and/or belief update until the algorithm stops when
maximum number of iterations is reached or some other conditions are satisfied.

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming November 5, 2023



Graphical model and BP Belief Propagation Algorithm

Belief propagation algorithm

@ Initialization: For any variable node i, if the prior probability of x; is known and equal to p(x;),
for a € N(i),

mia(Xi) — P(Xi)

@ Message passing:

@ Belief update:

@ Stopping criteria: repeat message update and/or belief update until the algorithm stops when
maximum number of iterations is reached or some other conditions are satisfied.
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Graphical model and BP Belief Propagation Algorithm

Belief propagation algorithm

@ Initialization: For any variable node i, if the prior probability of x; is known and equal to p(x;),
for a € N(i),

mia(Xi) — P(Xi)
@ Message passing:

mia(x;) < H mpi(X;),

beN(i)\a
myi(x;) < Z fa(xs) H mja(x;) (“sum-product™)
%a jeN(a)\i

@ Belief update:

@ Stopping criteria: repeat message update and/or belief update until the algorithm stops when
maximum number of iterations is reached or some other conditions are satisfied.
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Graphical model and BP Belief Propagation Algorithm

Belief propagation algorithm

@ Initialization: For any variable node i, if the prior probability of x; is known and equal to p(x;),
for a € N(i),

mia(Xi) — P(Xi)
@ Message passing:

mia(x;) < H mpi(X;),

beN(i)\a
myi(x;) < Z fa(xs) H mja(x;) (“sum-product™)
%a jeN(a)\i

@ Belief update:
Bi(xi) + H ma;i(X;)
aeN(i)

@ Stopping criteria: repeat message update and/or belief update until the algorithm stops when
maximum number of iterations is reached or some other conditions are satisfied.
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Graphical model and BP Belief Propagation Algorithm

Remark

@ We have not assumed the precise phyical meanings of the factor functions themselves.
The only assumption we made is that the joint probability can be decomposed into the
factor functions and apparently this decomposition is not unique

@ The belief propagation algorithm as shown above is exact only because the corresponding
graph is a tree and has no loop. If loop exists, the algorithm is not exact and generally
the final belief may not even converge

@ While the result is no longer exact, applying BP algorithm for general graphs (sometimes
refer to as loopy BP) works well in many applications such as LDPC decoding
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Graphical model and BP Belief Propagation Algorithm

Burglar and racoon revisit

Question: What is the probability of a burglar visit if police was called but trash can stayed
untouched?
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Graphical model and BP Belief Propagation Algorithm

Burglar and racoon revisit

Question: What is the probability of a burglar visit if police was called but trash can stayed
untouched?

(&) (’)
oi@ OHED

Moralization...
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Graphical model and BP Belief Propagation Algorithm

Burglar and racoon revisit

Question: What is the probability of a burglar visit if police was called but trash can stayed
untouched?

Convert to factor graph..
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Graphical model and BP Belief Propagation Algorithm

Using belief propagation...

fT(t) =0
fT(—|t) =1

fe.p,r(b,d,r) = p(b,d,r)
frr(t,r) = p(t|r)
fo,p(d, p) = p(p|d)
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Graphical model and BP LDPC Codes

Some History of LDPC Codes

@ Before 1990’s, the strategy for channel code has always been looking for codes that can be
decoded optimally. This leads to a wide range of so-called algebraic codes. It turns out the
“optimally-decodable” codes are usually poor codes

@ Until early 1990's, researchers had basically agreed that the Shannon capacity was restricted to
theoretical interest and could hardly be reached in practice

@ The introduction of turbo codes gave a huge shock to the research community. The community
were so dubious about the amazing performance of turbo codes that they did not accept the
finding initially until independent researchers had verified the results

@ The low-density parity-check (LDPC) codes were later rediscovered and both LDPC codes and
turbo codes are based on the same philosophy differs from codes in the past. Instead of designing
and using codes that can be decoded “optimally”, let us just pick some random codes and perform
decoding “sub-optimally”
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Graphical model and BP LDPC Codes

LDPC Codes

@ As its name suggests, LDPC codes refer to codes that with sparse (low-density) parity
check matrices. In other words, there are only few ones in a parity check matrix and the
rest are all zeros
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Graphical model and BP LDPC Codes

LDPC Codes

@ As its name suggests, LDPC codes refer to codes that with sparse (low-density) parity
check matrices. In other words, there are only few ones in a parity check matrix and the
rest are all zeros

@ We learn from the proof of Channel Coding Theorem that random code is asymptotically
optimum. This suggests that if we just generate a code randomly with a very long code
length. It is likely that we will get a very good code.
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Graphical model and BP LDPC Codes

LDPC Codes

@ As its name suggests, LDPC codes refer to codes that with sparse (low-density) parity
check matrices. In other words, there are only few ones in a parity check matrix and the
rest are all zeros

@ We learn from the proof of Channel Coding Theorem that random code is asymptotically
optimum. This suggests that if we just generate a code randomly with a very long code
length. It is likely that we will get a very good code.

@ The problem is: how do we perform decoding? Due to the lack of structure of a random
code, tricks that enable fast decoding for structured algebraic codes that were widely used
before 1990's are unrealizable here

@ Solution: Belief propagation!
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Graphical model and BP LDPC Codes

Tanner Graph

@ An LDPC code can be represented using a Tanner graph as shown on
the right
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Graphical model and BP LDPC Codes

Tanner Graph

@ An LDPC code can be represented using a Tanner graph as shown on
the right

@ Each circle x; represents a code bit sent to the decoder

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming November 5, 2023



Graphical model and BP LDPC Codes

Tanner Graph

@ An LDPC code can be represented using a Tanner graph as shown on
the right

@ Each circle x; represents a code bit sent to the decoder

@ Each square represents a check bit with value equal to the sum of code
bit connecting to it
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Graphical model and BP LDPC Codes

Tanner Graph

@ An LDPC code can be represented using a Tanner graph as shown on
the right

@ Each circle x; represents a code bit sent to the decoder

@ Each square represents a check bit with value equal to the sum of code
bit connecting to it

@ The vector xi,x2,- -+ ,xy is a codeword only if all checks are zero
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Graphical model and BP LDPC Codes

Tanner Graph

@ An LDPC code can be represented using a Tanner graph as shown on
the right

@ Each circle x; represents a code bit sent to the decoder

@ Each square represents a check bit with value equal to the sum of code
bit connecting to it

@ The vector xi,x2,- -+ ,xy is a codeword only if all checks are zero

o By default, the mapping between a codeword to the actual message is
non-trivial for an LDPC code
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Graphical model and BP LDPC Codes

Tanner Graph

@ An LDPC code can be represented using a Tanner graph as shown on
the right

@ Each circle x; represents a code bit sent to the decoder

@ Each square represents a check bit with value equal to the sum of code
bit connecting to it

@ The vector xi,x2,- -+ ,xy is a codeword only if all checks are zero

o By default, the mapping between a codeword to the actual message is
non-trivial for an LDPC code

@ It would be great if the actual message is included in the codeword.
That is, some of the bits in the codeword spell out the actual message
= IRA codes
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Graphical model and BP LDPC Codes

IRA Codes

o Irregular repeated accumulate (IRA) code a type of systematic LDPC
code, i.e., each codeword can be partitioned into message bits and
syndrome bits
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Graphical model and BP LDPC Codes

IRA Codes

o Irregular repeated accumulate (IRA) code a type of systematic LDPC
code, i.e., each codeword can be partitioned into message bits and
syndrome bits

@ As shown on the right, light blue circles correspond to the input Z ;
message bits and the dark blue circle correspond to the syndrome bits
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Graphical model and BP LDPC Codes

IRA Codes

o Irregular repeated accumulate (IRA) code a type of systematic LDPC
code, i.e., each codeword can be partitioned into message bits and
syndrome bits

@ As shown on the right, light blue circles correspond to the input Z ;
message bits and the dark blue circle correspond to the syndrome bits

@ To ensure the top check bit is satisfied, the top syndrome bit will be
set to be the sum of message bits connecting to the check
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Graphical model and BP LDPC Codes

IRA Codes

o Irregular repeated accumulate (IRA) code a type of systematic LDPC
code, i.e., each codeword can be partitioned into message bits and
syndrome bits

@ As shown on the right, light blue circles correspond to the input Z ;
message bits and the dark blue circle correspond to the syndrome bits

@ To ensure the top check bit is satisfied, the top syndrome bit will be
set to be the sum of message bits connecting to the check

@ The computed syndrome bit will then pass to the next check and again
we can ensure the next check bit is satisfied by setting that second
syndrome bit as the sum of message bits conecting to the check + /ast
syndrome bit. All (dark blue) syndrome bits can be assigned in similar
token
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Graphical model and BP LDPC Codes

LDPC Decoding

@ x1, -+ ,xy (light blue): transmitted bits
® yi1,---,yn (dark grey): received bits Vi fix ) X fa(x)
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Graphical model and BP LDPC Codes

LDPC Decoding

@ x1, -+ ,xy (light blue): transmitted bits
® yi1,---,yn (dark grey): received bits i fix ) X fa(x)

o p(xN,yN) =TI, p(yilx;) p(x") : E g;}g

fi(xi,yi) [1afa(xa)
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Graphical model and BP LDPC Codes

LDPC Decoding

@ x1, -+ ,xy (light blue): transmitted bits
® yi1,---,yn (dark grey): received bits i fix ) X fa(x)

° XN7 NY =TI, i Xi xN - mn

p(x", y") =11; plyilxi) p(x™) : E 57/5
fi(xi,yi) T1a fa(xa)

o fi(xi,yi) = p(yi|x;) and

fa(x) = 0, x contains even number of 1,
AM T 1, x contains odd number of 1.
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Graphical model and BP LDPC Codes

Variable Node Update

@ Since the unknown variables are binary, it is more convenient to represent the messages
using likelihood or log-likelihood ratios. Define

mai(0)
15 £ 4 , L, £ log I, 2
(D) g (2)
and
(0)
o 2 Tl Lis 2 log f
(1)’ og (3)
for any variable node i and factor node a.
@ Then,

L,'a < Z Lai- (4)

beN(i)\i
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Graphical model and BP LDPC Codes

Check Node Update

@ Assuming that we have three variable nodes 1,2, and 3 connecting to the check node a,
then the check to variable node updates become

ma]_(].) — mga(l)m3a(0) + mga(O)m3a(1) (5)
ma]_(O) < mga(O)m3a(0) + mga(l)m3a(1) (6)

@ Substitute in the likelihood ratios and log-likelihood ratios, we have

A mal(o) 1 + I23I3a
= <
m,1(1) ha+ h,

and
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Graphical model and BP LDPC Codes

@ Note that
Lal Lal
L e2 —e 2 ela_1
tanh < ;1> — = 9)
es e 5 €T

1 + eL2a eL3a _ eLQa — eL3a

1 + eL2a eL3a —+ eLZa -+ eL3a
— (eLZ9 — ]')(eL3a — 1) (11)
(et 1)(els +1)

LZa L3a
= —=< . 12
tanh<2>tanh<2> (12)

@ When we have more than 3 variable nodes connecting to the check node a, it is easy to
show using induction that

(10)

tanh <L2"’> « JJ tanh (%) . (13)

JEN(a)\i

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming November 5, 2023



Method of Type

Method of Type
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Method of Type

Motivation

@ In previous lectures, we have introduced LLN and typical sequences. In a sense that every
sequences drawn from a discrete memoryless source is typical
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Method of Type
Motivation

@ In previous lectures, we have introduced LLN and typical sequences. In a sense that every
sequences drawn from a discrete memoryless source is typical

@ Take coin tossing as example again, if Pr(Head) = 0.6, and we throw the coin 1000
times. We expect that almost all drawn sequences with have about 600 heads. And the

rest have negligible probability

November 5, 2023
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Method of Type
Motivation

@ In previous lectures, we have introduced LLN and typical sequences. In a sense that every
sequences drawn from a discrete memoryless source is typical

@ Take coin tossing as example again, if Pr(Head) = 0.6, and we throw the coin 1000
times. We expect that almost all drawn sequences with have about 600 heads. And the
rest have negligible probability

@ However, sometimes we are interested in the probability of getting say 400 heads, even
though we know that the probability is negligible

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming November 5, 2023



Method of Type
Motivation

@ In previous lectures, we have introduced LLN and typical sequences. In a sense that every
sequences drawn from a discrete memoryless source is typical

@ Take coin tossing as example again, if Pr(Head) = 0.6, and we throw the coin 1000
times. We expect that almost all drawn sequences with have about 600 heads. And the
rest have negligible probability

@ However, sometimes we are interested in the probability of getting say 400 heads, even
though we know that the probability is negligible — method of types
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Method of Type

Motivation

By the end of the class, we will be able to solve the following nontrivial puzzle

@ Tom throws a unbiased dice for 10,000 times and adds all values
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Method of Type
Motivation

By the end of the class, we will be able to solve the following nontrivial puzzle
@ Tom throws a unbiased dice for 10,000 times and adds all values

@ For whatever reason, he is not happy until the sum is at least 40,000. If not, he will just
throw the dice again for 10,000
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Method of Type
Motivation

By the end of the class, we will be able to solve the following nontrivial puzzle
@ Tom throws a unbiased dice for 10,000 times and adds all values

@ For whatever reason, he is not happy until the sum is at least 40,000. If not, he will just
throw the dice again for 10,000

@ Now, by the time he eventually got a sequence with sum at least 40,000, approximately
how many ones in the sequence?
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Method of Type
Type class

Continue with the coin-tossing example
@ Recall that the probability of getting a particular sequence with 600 heads is
0.66000.4400
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Method of Type
Type class

Continue with the coin-tossing example

@ Recall that the probability of getting a particular sequence with 600 heads is
0.66900 4400 _ »—1000(—0.6log 0.6-0.4l0g 0.4)
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Method of Type
Type class

Continue with the coin-tossing example

@ Recall that the probability of getting a particular sequence with 600 heads is
0.66900 4400 _ —1000(—0.6l0g 0.6-0.410g0.4) _ »—NH(X)
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Method of Type
Type class

Continue with the coin-tossing example

@ Recall that the probability of getting a particular sequence with 600 heads is
0.66900 4400 _ —1000(—0.6l0g 0.6-0.410g0.4) _ »—NH(X)

@ How about the probability of getting a particular sequence with 400 heads? It is

0 64000 4600 — 2—1000(—0.4|og0.6—0.6 log 0.4)
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Method of Type
Type class

Continue with the coin-tossing example

@ Recall that the probability of getting a particular sequence with 600 heads is
0.66900 4400 _ —1000(—0.6l0g 0.6-0.410g0.4) _ »—NH(X)

@ How about the probability of getting a particular sequence with 400 heads? It is
0.6%00( 4600 _ »—1000(—0.4log 0.6—0.6 log 0.4)

— »—1000(—0.4log 0.4—0.6 log 0.6+0.4 log 0440.6log 3:2)
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Method of Type
Type class

Continue with the coin-tossing example

@ Recall that the probability of getting a particular sequence with 600 heads is
0.66900 4400 _ —1000(—0.6l0g 0.6-0.410g0.4) _ »—NH(X)

@ How about the probability of getting a particular sequence with 400 heads? It is
0.6%00( 4600 _ »—1000(—0.4log 0.6—0.6 log 0.4)
— »—1000(—0.4log 0.4—0.6 log 0.6+0.4 log 0440.6log 3:2)

— o= N(H(X)+KL((0.4,0.6)[|(0.6,0.4))
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Method of Type
Type class

Continue with the coin-tossing example

@ Recall that the probability of getting a particular sequence with 600 heads is
0.66900 4400 _ —1000(—0.6l0g 0.6-0.410g0.4) _ »—NH(X)

@ How about the probability of getting a particular sequence with 400 heads? It is
0.6400() 4600 _ 5—1000(—0.4log 0.6—0.6log 0.4)
— »—1000(—0.4log 0.4—0.6 log 0.6+0.4 log 0440.6log 32
— o= N(H(X)+KL((0.4,0.6)[/(0.6,0.4))
@ Every sequence with 400 heads has the same probability. And in general, sequences with

the same fraction of outcomes have same probability and we can put them into the same
(type) class

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming November 5, 2023



Method of Type

Type class

o For convenience, let us denote the number of a in the sequence x" as .4 (a|x")
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Method of Type
Type class

o For convenience, let us denote the number of a in the sequence x" as .4 (a|x")
@ Then for any valid distribution of X, p(x), we will define a type class T(px) as the set
N
containing all sequences such that % ~p(a), Vae X

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming November 5, 2023



Method of Type
Type class

o For convenience, let us denote the number of a in the sequence x" as .4 (a|x")
@ Then for any valid distribution of X, p(x), we will define a type class T(px) as the set
N
containing all sequences such that % ~p(a), Vae X

o Let us reserve g(x) as the true distribution of x (i.e., g(Head) = 0.6 and g(Tail) = 0.4).
And in general, we expect all sequences drawn from the source should belongs to T(q)

asymptotically
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Method of Type
Type class

o For convenience, let us denote the number of a in the sequence x" as .4 (a|x")

@ Then for any valid distribution of X, p(x), we will define a type class T(px) as the set
containing all sequences such that %'XN) ~p(a), Vae X

o Let us reserve g(x) as the true distribution of x (i.e., g(Head) = 0.6 and g(Tail) = 0.4).
And in general, we expect all sequences drawn from the source should belongs to T(q)
asymptotically

N
o Let's also refer p,n as the empirical distribution of xN. That is p,n(a) = % So

T(p,n) is the type class containing x"
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Method of Type

Example

Let X € {1,2,3} and xV = 11321

° pXN(l) = %v
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Method of Type
Example

Let X € {1,2,3} and xV = 11321
° pXN(l) = %v pr(z) = %v pXN(3) = %
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Method of Type
Example

Let X € {1,2,3} and xV = 11321

° pXN(l) = %v pr(2) = %v pXN(3) = %
o T(pw)={11123,11132,11231,11321,--- } containing all sequences with three 1's, one
2, and one 3
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Method of Type
Example

Let X € {1,2,3} and xV = 11321

° pXN(l) = %v pr(2) = %v pXN(3) = %
o T(pw)={11123,11132,11231,11321,--- } containing all sequences with three 1's, one
2, and one 3

o |T(pw)| = 325 = 20.
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Method of Type
Example

Let X € {1,2,3} and xV = 11321

° pXN(l) = %v pr(2) = %v pXN(3) = %
o T(pw)={11123,11132,11231,11321,--- } containing all sequences with three 1's, one
2, and one 3

® | T(pen)| = 320 = 20. In general,

N!

T = (NG N () (Np o))
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Method of Type
Example

Let X € {1,2,3} and xV = 11321

° pXN(l) = %v pr(2) = %v pXN(3) = %
o T(pw)={11123,11132,11231,11321,--- } containing all sequences with three 1's, one
2, and one 3

® | T(pen)| = 320 = 20. In general,

N!
(Np(xa)) (NP (o)) (Np ()T -

Actually we don't care too much what | T(p)| is exactly. We will provide bounds for
| T(p)| as we come back later on

[ T(p)| =
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Method of Type
Example

Let X € {1,2,3} and xV = 11321

° pXN(l) = %v pr(2) = %v pXN(3) = %
o T(pw)={11123,11132,11231,11321,--- } containing all sequences with three 1's, one
2, and one 3

® | T(pen)| = 320 = 20. In general,

N!
(Np(xa)) (NP (o)) (Np ()T -

Actually we don't care too much what | T(p)| is exactly. We will provide bounds for
| T(p)| as we come back later on

[ T(p)| =

o And for any sequence y in T(pw), p(y) = q(1)3q(2)q(3), where g(-) is the true
distribution
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Method of Type
Type sequence probability

Even though we have seen that in the coin toss example, let's restate it more formally.

If xN € T(p) and q(-) is the true distribution of X, the probability of getting x from
sampling g(-) for N times, as denoted as g"(x"), is given by

2—N(H(p)+KL(pl|a))

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming November 5, 2023



Method of Type
Type sequence probability

Even though we have seen that in the coin toss example, let's restate it more formally.

If xN € T(p) and q(-) is the true distribution of X, the probability of getting x from
sampling g(-) for N times, as denoted as g"(x"), is given by

>~ N(H(p)+KL(pl|q))

N

CI’V(X/V) - H q(x;) = o3 log q(xi)
i=1
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Method of Type
Type sequence probability

Even though we have seen that in the coin toss example, let's restate it more formally.

If xN € T(p) and q(-) is the true distribution of X, the probability of getting x from
sampling g(-) for N times, as denoted as g"(x"), is given by

>~ N(H(p)+KL(pl|q))

N
g (xM) = T al) = 255 0B a) = pFuex A (el g ()
i=1
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Method of Type
Type sequence probability

Even though we have seen that in the coin toss example, let's restate it more formally.

If xN € T(p) and q(-) is the true distribution of X, the probability of getting x from
sampling g(-) for N times, as denoted as g"(x"), is given by

>~ N(H(p)+KL(pl|q))

N
g (xM) = T al) = 255 0B a) = pFuex A (el g ()
i=1

— 9= NX,cx —Py(a)logq(a)
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Method of Type
Type sequence probability

Even though we have seen that in the coin toss example, let's restate it more formally.

If xN € T(p) and q(-) is the true distribution of X, the probability of getting x from
sampling g(-) for N times, as denoted as g"(x"), is given by

>~ N(H(p)+KL(pl|q))

N
g (xM) = T al) = 255 0B a) = pFuex A (el g ()
i=1

— 9N ex —Py(@)loga(a) — p=N(= Sacx P20 p(a) =5 ,cx pl2) lox 53)
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Method of Type
Type sequence probability

Even though we have seen that in the coin toss example, let's restate it more formally.

If xN € T(p) and q(-) is the true distribution of X, the probability of getting x from
sampling g(-) for N times, as denoted as g"(x"), is given by

>~ N(H(p)+KL(pl|q))

N
g (xM) = T al) = 255 0B a) = pFuex A (el g ()
i=1

— 9N ex —Py(@)loga(a) — p=N(= Sacx P20 p(a) =5 ,cx pl2) lox 53)

— 2~ N(H(p)+KL(pl|9))
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Method of Type
Probability of a sequence in the “typical” class

If xN € T(q), where q(-) is the true distribution of X, then

qN(XN) _ 27NH(q) — 27NH(X)
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Probability of a sequence in the “typical” class

If xN € T(q), where q(-) is the true distribution of X, then

qN(XN) _ 27NH(q) — 27NH(X)

o—NH(X)

@ Note that the probability is exactly equal to
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Method of Type
Probability of a sequence in the “typical” class

If xN € T(q), where q(-) is the true distribution of X, then

qN(XN) _ 27NH(q) — 27NH(X)

o—NH(X)

@ Note that the probability is exactly equal to

@ Recall that this is the probability of a typical sequence supposed to be. Therefore, any xV
in T(q) is a typical sequence (T(q) C AN(X))
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Method of Type

Set of all empirical distribution Py(X)

Denote Py (X) as the set of all empirical distribution of X in a length-N sequence
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Method of Type

Set of all empirical distribution Py(X)

Denote Py (X) as the set of all empirical distribution of X in a length-N sequence

If X € {0,1},
i~ {immn (35). () (3 3)

Note that [Py(X)| =N +1
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Method of Type

Set of all empirical distribution Py(X)

Denote Py (X) as the set of all empirical distribution of X in a length-N sequence

If X € {0,1},
70~ {0 (330) (3 57 - (3 )

Note that |Py(X)| =N +1

@ Since a type is uniquely characterized by a distribution of X in a length-N sequence
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Method of Type

Set of all empirical distribution Py(X)

Denote Py (X) as the set of all empirical distribution of X in a length-N sequence

If X € {0,1},
70~ {0 (330) (3 57 - (3 )

Note that |Py(X)| =N +1

@ Since a type is uniquely characterized by a distribution of X in a length-N sequence

e Each element p of Py(X) corresponds a type T(p)
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Method of Type

Set of all empirical distribution Py(X)

Denote Py (X) as the set of all empirical distribution of X in a length-N sequence

If X € {0,1},
70~ {0 (330) (3 57 - (3 )

Note that |Py(X)| =N +1

@ Since a type is uniquely characterized by a distribution of X in a length-N sequence
e Each element p of Py(X) corresponds a type T(p)
@ Number of types is |Pn(X)|
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Method of Type
Number of types

It is not too difficult to count the exact number of types. But in practice, we don't quite
bother with it as long as we know that the number is relatively “small”

[Pu(X)| < (N + 1)
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Method of Type
Number of types

It is not too difficult to count the exact number of types. But in practice, we don't quite
bother with it as long as we know that the number is relatively “small”

[Pu(X)| < (N + 1)

A\

Note that each type is specified by the empirical probability of each outcome of X. And the
possible values of the empirical probabilities are %, % e % (N + 1 of them).
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Method of Type
Number of types

It is not too difficult to count the exact number of types. But in practice, we don't quite
bother with it as long as we know that the number is relatively “small”

[Pu(X)| < (N + 1)

A\

Note that each type is specified by the empirical probability of each outcome of X. And the

possible values of the empirical probabilities are %, % Sl % (N + 1 of them). Since there
x|

are | X| elements, the number of types is bounded by (N + 1)
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Method of Type
Size of a type class

Recall that | T(p)| = (Np(xl))!(Np(,>\<l2!))I(Np(X3))!~~~ but the following bounds are much more useful
in practice

1
(N + 1)l

oNH(p) < | T(p)| < oNH(p)
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Method of Type
Size of a type class

Recall that | T(p)| = I (Np(,>\<l2!))1(Np(X3))!m but the following bounds are much more useful
in practice

2R < |T(p)] < 2MH)
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Method of Type
Size of a type class

Recall that | T(p)| = I (Np(,>\<l2!))1(Np(X3))!m but the following bounds are much more useful
in practice

1 NH(p NH(p)
Wz ) <|T(p)| <2

1> 3 PN = 3 2MHE) = T(p)j2 e

xNeT(p) xNeT(p)
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Method of Type
Size of a type class

Recall that | T(p)| = I (Np(,>\<l2!))1(Np(X3))!m but the following bounds are much more useful
in practice

1
- oNHP) < | T(p)| < 2NH(P)
12 3 P = Y 27MHe) = T(p)2 M
xNeT(p) xNeT(p)
1= Z Z max Pr(T
PEPN PEPN
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Method of Type
Size of a type class

Recall that | T(p)| = I (Np(,>\<l2!))1(Np(X3))!m but the following bounds are much more useful
in practice

1
= ___oNH(p) < |T(p)| < 2NH(P)
12 3 P = Y 27MHe) = T(p)2 M
xNeT(p) xNeT(p)
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Method of Type
Size of a type class

Recall that | T(p)| = I (Np(,>\<l2!))1(Np(X3))!m but the following bounds are much more useful
in practice

1
- oNHP) < | T(p)| < 2NH(P)
1> Y MM = Y 2R = |T(p) e
xNeT(p) xNeT(p)
1= Z ZmaxPr ZPr N+1)‘X‘Pr(T( )
PEPN PEPN PEPN
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Method of Type
Size of a type class

Recall that | T(p)| = I (Np(,>\<l2!))1(Np(X3))!m but the following bounds are much more useful
in practice

1
- oNHP) < | T(p)| < 2NH(P)
1> Y MM = Y 2R = |T(p) e
xNeT(p) xNeT(p)
1= Z ZmaxPr ZPr N+1)‘X‘Pr(T( )
PEPN PEPN PEPN
= (N4 1) T(p) 2O
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Method of Type
Probability of a type class

Theorem 4
Let the true distribution of X is g(-), then

2—N(KL(pl|q))

(N + )X < Pr(T(p)) < 2~ N(KL(plla)
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Method of Type
Probability of a type class

Theorem 4
Let the true distribution of X is g(-), then

—N(KL
o—N(KL(pllq)) < Pr(T(p)) S2_N(KL(p||q))

(N+D)Ix =
From Theorem 1, each sequence in T(p) has probability 2~ N(H(P)+KL(plla)) and since
WZNH(P) < |T(p)| < 2NH(P) from Theorem 3,
ézNH(P)Q_N(H(P)-‘rKL(M‘Cl)) < Pr(T(p)) < oNH(p)9—N(H(p)+KL(pl|a))
(N + 1)l
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Method of Type
Summary of type

@ Type class T(p) contains all sequences with empirical distribution of p. That is,

T(p) = {X"’ : %‘XN) = p(a)}
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Method of Type
Summary of type

@ Type class T(p) contains all sequences with empirical distribution of p. That is,

T(p):{ v '/V(N‘X ):p(a)}

@ All sequences in the type class T(p) has the same probability (g(-) is the true distribution)

qN(xN) — o= N(H(p)+KL(pllq)
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Method of Type
Summary of type

@ Type class T(p) contains all sequences with empirical distribution of p. That is,

T(p):{ v '/V(N‘X ):p(a)}

@ All sequences in the type class T(p) has the same probability (g(-) is the true distribution)

qN(XN) — o= N(H(p)+KL(pllq)

@ There are about 2VH(P) sequences in T(p)

1

g2 < TR <2
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Method of Type
Summary of type

@ Type class T(p) contains all sequences with empirical distribution of p. That is,

T(p):{ v '/V(N‘X ):p(a)}

@ All sequences in the type class T(p) has the same probability (g(-) is the true distribution)

qN(X’V) — o= N(H(p)+KL(pllq)

@ There are about 2VH(P) sequences in T(p)

1

oNH(p) < | T < oNH(p)
2 < T(6)] <
@ Probability of getting a sequence in T(p) is about 2~ N(KL(PIl9) - More precisely,

~N(KL(pl )
2(N+1)|X| < Pr(T(p)) < 2~ NKLEplIa)
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Method of Type
Summary of type

@ Type class T(p) contains all sequences with empirical distribution of p. That is,

T(p):{ v '/V(N‘X ):p(a)}

@ All sequences in the type class T(p) has the same probability (g(-) is the true distribution)

qN(X’V) — o= N(H(p)+KL(pllq)

There are about 2MH(P) sequences in T(p)

1

g2 < TR <2

Probability of getting a sequence in T(p) is about 2~ N(KL(Pll9))  More precisely,

~N(KL(pl )
2(N+1)|X| < Pr(T(p)) < 2~ NKLEplIa)

There are (N 4 1)!*! types

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming November 5, 2023



Method of Type Univesal source coding

Rationale

@ For the compression scheme (such as Huffmann coding) that we discussed earlier in this
class, one needs to know the source distribution ahead to design the encoder and decoder

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming November 5, 2023



Method of Type Univesal source coding

Rationale

@ For the compression scheme (such as Huffmann coding) that we discussed earlier in this
class, one needs to know the source distribution ahead to design the encoder and decoder

@ Question: Is it possible to construct compression scheme without knowing the source
distribution and still performs as good?
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Method of Type Univesal source coding

Rationale

@ For the compression scheme (such as Huffmann coding) that we discussed earlier in this
class, one needs to know the source distribution ahead to design the encoder and decoder

@ Question: Is it possible to construct compression scheme without knowing the source
distribution and still performs as good?
@ Answer: Yes. At least theoretically — universal source coding
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Method of Type Univesal source coding

Theory of universal source coding

Given any source @ with H(Q) < R, there exists a length-N universal code of rate R such
that the source can be decoded losslessly as N — oo J
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Method of Type Univesal source coding

Theory of universal source coding

Given any source @ with H(Q) < R, there exists a length-/N universal code of rate R such
that the source can be decoded losslessly as N — oo

Let Ry = R — |X|%, and consider the set of sequences A = {x"N : H(p.n) < Ry} as the
code book.
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Method of Type Univesal source coding

Theory of universal source coding

Given any source @ with H(Q) < R, there exists a length-/N universal code of rate R such
that the source can be decoded losslessly as N — oo

Let Ry = R — |X|%, and consider the set of sequences A = {x"N : H(p.n) < Ry} as the
code book. Note that the rate is < R as

A= > (T

p:H(p)<Rn
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Method of Type Univesal source coding

Theory of universal source coding

Given any source @ with H(Q) < R, there exists a length-/N universal code of rate R such
that the source can be decoded losslessly as N — oo

Let Ry = R — |X|%, and consider the set of sequences A = {x"N : H(p.n) < Ry} as the
code book. Note that the rate is < R as

A= > Tl ) 2M0

p:H(p)<Rn p:H(p)<Rn
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Method of Type Univesal source coding

Theory of universal source coding

Given any source @ with H(Q) < R, there exists a length-/N universal code of rate R such
that the source can be decoded losslessly as N — oo

Let Ry = R — |X|%, and consider the set of sequences A = {x"N : H(p.n) < Ry} as the
code book. Note that the rate is < R as

A= Y TRl Y M < 3T ot

p:H(p)<Rn p:H(p)<Rn p:H(p)<Rn
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Method of Type Univesal source coding

Theory of universal source coding

Given any source @ with H(Q) < R, there exists a length-/N universal code of rate R such
that the source can be decoded losslessly as N — oo

Let Ry = R — |X|%, and consider the set of sequences A = {x"N : H(p.n) < Ry} as the
code book. Note that the rate is < R as

A= Y TRl Y M < 3T ot

p:H(p)<Rn p:H(p)<Rn p:H(p)<Rn

< (N + 1)\X|2NRN
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Method of Type Univesal source coding

Theory of universal source coding

Given any source @ with H(Q) < R, there exists a length-/N universal code of rate R such
that the source can be decoded losslessly as N — oo

Let Ry = R — |X|%, and consider the set of sequences A = {x"N : H(p.n) < Ry} as the
code book. Note that the rate is < R as

A= Y TRl Y M < 3T ot

p:H(p)<Rn p:H(p)<Rn p:H(p)<Rn

log(N+1)
< (N + 1)¥12MRy — N (AvHAI ) _ Hve
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Method of Type Univesal source coding

Theory of universal source coding

Given any source @ with H(Q) < R, there exists a length-/N universal code of rate R such
that the source can be decoded losslessly as N — oo

Let Ry = R — |X|%, and consider the set of sequences A = {x"N : H(p.n) < Ry} as the
code book. Note that the rate is < R as

A= Y TRl Y M < 3T ot

p:H(p)<Rn p:H(p)<Rn p:H(p)<Rn

log(N+1)
< (N + 1)¥12MRy — N (AvHAI ) _ Hve

@ Encoder: given input, check if input is in A, output index if so. Otherwise, declare failure

@ Decoder: simply map index back to the sequence
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Method of Type Univesal source coding

Theory of universal source coding

Proof (con't)

Note that the probability of error P, is given by

Pe = Z Pr(T(p))

p:H(p)>Rn
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Method of Type Univesal source coding

Theory of universal source coding

Proof (con't)
Note that the probability of error P, is given by

Pe= Y P(T(p)< > max_ Pr(T(p))

B:H(p)>Rn
p:H(p)>Rn p:H(p)>Rn
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Method of Type Univesal source coding

Theory of universal source coding

Proof (con't)
Note that the probability of error P, is given by

Pe= Y P(T(p)< > max_ Pr(T(p))

B:H(p)>Rn
p:H(p)>Rn p:H(p)>Rn

< (1+ N)|X|2_N(minf>:H(f))>RN KL(ﬁIIq))
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Method of Type Univesal source coding

Theory of universal source coding

Proof (con't)
Note that the probability of error P, is given by

P. = Z Pr(T(p)) < Z max

B:H(p)>Rn
p:H(p)>Rn p:H(p)>Rn

< (1+ N)|X|2_N<minf>:H(f))>RN KL(ﬁIIq))

Pr(T(p))

o If H(g) < R, as Ry — R as N increases, we can find some Ny such that H(q) < Ry for

all N > N
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Method of Type Univesal source coding

Theory of universal source coding

Proof (con't)

Note that the probability of error P, is given by
Pe = Z Pr(T(p)) < Z _max Pr(T(p))
p:H(p)>Ry p:H(p)>Ry (B)>Rn
< (1+ N)|X|2_N<minf>:H(f))>RN KL(ﬁIIq))

o If H(g) < R, as Ry — R as N increases, we can find some Ny such that H(q) < Ry for
all N > N

@ Therefore, any p in {p: H(p) > Ry} cannot be the same as g
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Method of Type Univesal source coding

Theory of universal source coding

Proof (con't)
Note that the probability of error P, is given by

Pe= >  P(T(p)< Y _ max _ Pr(T(p))
p:H(p)>Ru piH(pyoRy PHP)> R

< (1+ N)|X|2_N<minf>:H(f))>RN KL(ﬁIIq))

If H(q) < R, as Ry — R as N increases, we can find some Ny such that H(q) < Ry for

all N > N
@ Therefore, any p in {p: H(p) > Ry} cannot be the same as g

o = minﬁzH(5)>RN KL(ﬁHQ) > 0 for N > Ny

November 5, 2023

Information Theory and Probabilistic Programming

S. Cheng (OU-ECE)



Method of Type Univesal source coding

Theory of universal source coding

Proof (con't)
Note that the probability of error P, is given by

Pe= >  P(T(p)< Y _ max _ Pr(T(p))
p:H(p)>Ru piH(pyoRy PHP)> R

< (1+ N)|X|2_N<minf>:H(f))>RN KL(ﬁIIq))

If H(q) < R, as Ry — R as N increases, we can find some Ny such that H(q) < Ry for
all N > N

Therefore, any p in {p : H(p) > Ry} cannot be the same as g
= ming.)>ry KL(P||q) > 0 for N > No

@ Hence, P. > 0as N -
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Method of Type Univesal source coding

Lempel-Ziv coding

e lts variants are widely used by compression tools almost everywhere (zip, pkzip, tiff, etc.)
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Method of Type Univesal source coding

Lempel-Ziv coding

e lts variants are widely used by compression tools almost everywhere (zip, pkzip, tiff, etc.)
@ Main ideas
e Construct a dictionary including all previously seen segments
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Method of Type Univesal source coding

Lempel-Ziv coding

e lts variants are widely used by compression tools almost everywhere (zip, pkzip, tiff, etc.)
@ Main ideas

e Construct a dictionary including all previously seen segments
o Bits needed to send a new segment can be reduced taking advantage known segment in the
dictionary
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Method of Type Univesal source coding

Lempel-Ziv coding

e lts variants are widely used by compression tools almost everywhere (zip, pkzip, tiff, etc.)
@ Main ideas

e Construct a dictionary including all previously seen segments
o Bits needed to send a new segment can be reduced taking advantage known segment in the
dictionary

@ Example: let's compress 10110111011110111

o First parse segment into segments that haven't seen before =
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Method of Type Univesal source coding

Lempel-Ziv coding

e lts variants are widely used by compression tools almost everywhere (zip, pkzip, tiff, etc.)
@ Main ideas

e Construct a dictionary including all previously seen segments
o Bits needed to send a new segment can be reduced taking advantage known segment in the
dictionary

@ Example: let's compress 10110111011110111

1
o First parse segment into segments that haven't seen before = 1
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Method of Type Univesal source coding

Lempel-Ziv coding

e lts variants are widely used by compression tools almost everywhere (zip, pkzip, tiff, etc.)
@ Main ideas

e Construct a dictionary including all previously seen segments
o Bits needed to send a new segment can be reduced taking advantage known segment in the
dictionary

@ Example: let's compress 10110111011110111

12
o First parse segment into segments that haven't seen before = 1,0
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Method of Type Univesal source coding

Lempel-Ziv coding

e lts variants are widely used by compression tools almost everywhere (zip, pkzip, tiff, etc.)
@ Main ideas
e Construct a dictionary including all previously seen segments
o Bits needed to send a new segment can be reduced taking advantage known segment in the
dictionary

@ Example: let's compress 10110111011110111

12 3
o First parse segment into segments that haven't seen before = 1,0, 11
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Method of Type Univesal source coding

Lempel-Ziv coding

e lts variants are widely used by compression tools almost everywhere (zip, pkzip, tiff, etc.)
@ Main ideas
e Construct a dictionary including all previously seen segments
o Bits needed to send a new segment can be reduced taking advantage known segment in the
dictionary

@ Example: let's compress 10110111011110111

12 3 4
o First parse segment into segments that haven't seen before = 1,0, 11,01
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Method of Type Univesal source coding

Lempel-Ziv coding

e lts variants are widely used by compression tools almost everywhere (zip, pkzip, tiff, etc.)
@ Main ideas
e Construct a dictionary including all previously seen segments
o Bits needed to send a new segment can be reduced taking advantage known segment in the
dictionary

@ Example: let's compress 10110111011110111

12 3 4 5
o First parse segment into segments that haven't seen before = 1,0,11,01,110
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Method of Type Univesal source coding

Lempel-Ziv coding

e lts variants are widely used by compression tools almost everywhere (zip, pkzip, tiff, etc.)
@ Main ideas
e Construct a dictionary including all previously seen segments
o Bits needed to send a new segment can be reduced taking advantage known segment in the
dictionary

@ Example: let's compress 10110111011110111

123 4 5 6
o First parse segment into segments that haven't seen before = 1,0,11,01,110,111
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Method of Type Univesal source coding

Lempel-Ziv coding

e lts variants are widely used by compression tools almost everywhere (zip, pkzip, tiff, etc.)
@ Main ideas
e Construct a dictionary including all previously seen segments
o Bits needed to send a new segment can be reduced taking advantage known segment in the
dictionary

@ Example: let's compress 10110111011110111

123 4 5 6 7
o First parse segment into segments that haven't seen before = 1,0,11,01,110,111,10
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Method of Type Univesal source coding

Lempel-Ziv coding

e lts variants are widely used by compression tools almost everywhere (zip, pkzip, tiff, etc.)
@ Main ideas
e Construct a dictionary including all previously seen segments
o Bits needed to send a new segment can be reduced taking advantage known segment in the
dictionary

@ Example: let's compress 10110111011110111

12 3
o First parse segment into segments that haven't seen before = 1,0, 11, 01 110 111 10 111

e Encode each segment into representation containing a pair of numbers.
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Method of Type Univesal source coding

Lempel-Ziv coding

e lts variants are widely used by compression tools almost everywhere (zip, pkzip, tiff, etc.)
@ Main ideas
e Construct a dictionary including all previously seen segments
o Bits needed to send a new segment can be reduced taking advantage known segment in the
dictionary

@ Example: let's compress 10110111011110111

12 3
o First parse segment into segments that haven't seen before = 1,0, 11, 01 110 111 10 111

e Encode each segment into representation containing a pair of numbers. 1) index of segment
(excluding the last bit) in the dictionary;
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Method of Type Univesal source coding

Lempel-Ziv coding

e lts variants are widely used by compression tools almost everywhere (zip, pkzip, tiff, etc.)
@ Main ideas
e Construct a dictionary including all previously seen segments
o Bits needed to send a new segment can be reduced taking advantage known segment in the
dictionary

@ Example: let's compress 10110111011110111

12 3
o First parse segment into segments that haven't seen before = 1,0, 11, 01 110 111 10 111

e Encode each segment into representation containing a pair of numbers. 1) index of segment
(excluding the last bit) in the dictionary; 2) the last bit
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Method of Type Univesal source coding

Lempel-Ziv coding

e lts variants are widely used by compression tools almost everywhere (zip, pkzip, tiff, etc.)

@ Main ideas
e Construct a dictionary including all previously seen segments
o Bits needed to send a new segment can be reduced taking advantage known segment in the
dictionary
@ Example: let's compress 10110111011110111

12 3
o First parse segment into segments that haven't seen before = 1,0, 11, 01 110 111 10 111

e Encode each segment into representation containing a pair of numbers. 1) index of segment
(excluding the last bit) in the dictionary; 2) the last bit =

(0,1),(0,0),(1,1),(2,1),(3,0),(3,1),(1,0), (6, @)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming November 5, 2023



Method of Type Univesal source coding

Lempel-Ziv coding

e lts variants are widely used by compression tools almost everywhere (zip, pkzip, tiff, etc.)
@ Main ideas

e Construct a dictionary including all previously seen segments
o Bits needed to send a new segment can be reduced taking advantage known segment in the
dictionary

@ Example: let's compress 10110111011110111

12 3
o First parse segment into segments that haven't seen before = 1,0, 11, 01 110 111 10 111

e Encode each segment into representation containing a pair of numbers. 1) index of segment
(excluding the last bit) in the dictionary; 2) the last bit =
(0,1),(0,0),(1,1),(2,1),(3,0),(3,1),(1,0), (6, 2)

e Encode representation to bit stream. Note that as the dictionary grows, number of bits
needed to store the index increases = 0100011101011001110010110
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Method of Type Univesal source coding

Lempel-Ziv decoding

@ Decode bitstream back to representation 0100011101011001110010110 =
(07 1)7 (07 0)7 (17 1)7 (27 1)7 (37 0)? (37 1)7 (17 0)7 (6? @)

@ Build dictionary and decode
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Method of Type Univesal source coding

Lempel-Ziv decoding

@ Decode bitstream back to representation 0100011101011001110010110 =
(0.1),(0,0),(1,1),(2,1),(3,0),(3,1),(1,0),(6,2)

@ Build dictionary and decode

1
1
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Method of Type Univesal source coding

Lempel-Ziv decoding

@ Decode bitstream back to representation 0100011101011001110010110 =
(07 1)7 (07 0)7 (17 1)7 (27 1)7 (37 0)? (37 1)7 (17 0)7 (67 @)

@ Build dictionary and decode

1 2

10

=10
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Method of Type Univesal source coding

Lempel-Ziv decoding

@ Decode bitstream back to representation 0100011101011001110010110 =
(07 1)7 (07 0)7 (17 ]')7 (27 1)7 (37 0)? (37 1)7 (17 0)7 (67 @)
@ Build dictionary and decode

3

1 2
1 0 11

= 1011
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Method of Type Univesal source coding

Lempel-Ziv decoding

@ Decode bitstream back to representation 0100011101011001110010110 =
(07 1)7 (07 0)7 (17 1)7 (27 1)7 (37 0)? (37 1)7 (17 0)7 (6? @)

@ Build dictionary and decode

3 4

1 2
1 0 11 01

= 101101
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Method of Type Univesal source coding

Lempel-Ziv decoding

@ Decode bitstream back to representation 0100011101011001110010110 =
(07 1)7 (07 0)7 (17 1)7 (27 1)7 (37 0)? (37 1)7 (17 0)7 (6? @)

@ Build dictionary and decode

= 101101110
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Method of Type Univesal source coding

Lempel-Ziv decoding

@ Decode bitstream back to representation 0100011101011001110010110 =
(07 1)7 (07 0)7 (17 1)7 (27 1)7 (37 0)? (37 ]‘)7 (17 0)7 (6? @)

@ Build dictionary and decode

2 3 4 b 6
0 11 01 110 111

= 101101110111
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Method of Type Univesal source coding

Lempel-Ziv decoding

@ Decode bitstream back to representation 0100011101011001110010110 =
(07 1)7 (07 0)7 (17 1)7 (27 1)7 (37 0)? (37 1)7 (]" 0)7 (6? @)

@ Build dictionary and decode

2 3 4 b 6 7
0 11 01 110 111 10

= 10110111011110
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Method of Type Univesal source coding

Lempel-Ziv decoding

@ Decode bitstream back to representation 0100011101011001110010110 =
(0,1),(0,0),(1,1),(2,1),(3,0),(3,1),(1,0), (6,2)

@ Build dictionary and decode

2 3 4 b 6 7 8
0 11 01 110 111 10 111

= 10110111011110111
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Method of Type Large deviation theory

Motivation

@ Let's revisit some coin tossing example. Say if a coin is fair, and we toss if for 1000 times,
we know that we will almost always get 500 heads. So getting, say, 400 heads has
neglible probability
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Method of Type Large deviation theory

Motivation

@ Let's revisit some coin tossing example. Say if a coin is fair, and we toss if for 1000 times,
we know that we will almost always get 500 heads. So getting, say, 400 heads has
neglible probability

@ However, if we insist finding the probability of getting 400 heads, from discussion up to
now, we know that it is just

Pr( T((04, 06))) ~ 271000(KL((0.4,0.6)||(0.5,0.5)))
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Method of Type Large deviation theory

Motivation

@ Let's revisit some coin tossing example. Say if a coin is fair, and we toss if for 1000 times,
we know that we will almost always get 500 heads. So getting, say, 400 heads has
neglible probability

@ However, if we insist finding the probability of getting 400 heads, from discussion up to
now, we know that it is just

Pr( T((04, 06))) ~ 271000(KL((0.4,0.6)||(0.5,0.5)))

@ Now, what if we are interested in the probability of a more general case? Say what is the
probability of getting > 300 and < 400 heads?
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Method of Type Large deviation theory

Sanov's Theorem
Let £ ={p:0.3 < p(Head) < 0.4} and q(-) = (0.5,0.5) is the true distribution, then
Pr(é’) = Pr(S N PlOOO)
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Method of Type Large deviation theory

Sanov's Theorem

Let £ ={p:0.3 < p(Head) < 0.4} and q(-) = (0.5,0.5) is the true distribution, then
Pr(&) = Pr(€ N Prooo) = Z Pr(T(p))

PEENP1000
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Method of Type Large deviation theory

Sanov's Theorem

Let £ ={p:0.3 < p(Head) < 0.4} and q(-) = (0.5,0.5) is the true distribution, then
Pr(€) = Pr(ENPn) = 3. Pr(T(p))~ > 27 1000(KLelIa)

PEENP1000 PEENP1000
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Method of Type Large deviation theory

Sanov's Theorem

Let £ ={p:0.3 < p(Head) < 0.4} and q(-) = (0.5,0.5) is the true distribution, then
Pr(€) = Pr(ENPn) = 3. Pr(T(p))~ > 27 1000(KLelIa)

PEENP1000 pPEENP1000
_ »—1000(KL((0.4,0.6)[|(0:5,0.5)) _y p—1000(KL((0.399,0.601)[|(0.5,0.5)))

0—1000(KL((0.398,0.602)[(0.5.05))) ... | o—1000(KL((0.3.0.7)]|(0.5.0.5)))
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Method of Type Large deviation theory

Sanov's Theorem

Let £ ={p:0.3 < p(Head) < 0.4} and q(-) = (0.5,0.5) is the true distribution, then
Pr(€) = Pr(ENPn) = 3. Pr(T(p))~ > 27 1000(KLelIa)

PEENP1000 pPEENP1000
_ »—1000(KL((0.4,0.6)[|(0:5,0.5)) _y p—1000(KL((0.399,0.601)[|(0.5,0.5)))

0—1000(KL((0.398,0.602)[(0.5.05))) ... | o—1000(KL((0.3.0.7)]|(0.5.0.5)))

< [P1ogo|2 7 1000(KL((0-4.0.6)[[(05.0.5)))
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Method of Type Large deviation theory

Sanov's Theorem

Let £ ={p:0.3 < p(Head) < 0.4} and q(-) = (0.5,0.5) is the true distribution, then
Pr(€) = Pr(ENPn) = 3. Pr(T(p))~ > 27 1000(KLelIa)

PEENP1000 pPEENP1000
_ »—1000(KL((0.4,0.6)[|(0:5,0.5)) _y p—1000(KL((0.399,0.601)[|(0.5,0.5)))

0—1000(KL((0.398,0.602)[|(0.5.05))) ... 4 o—1000(KL((0.3,0.7)[(05.0.5)))

< [P1ogo|2 7 1000(KL((0-4.0.6)[[(05.0.5)))

Sanov's Theorem
Let X1, Xa,--- , Xy be i.i.d. ~ g(:) and & be a set of distribution. Then
Pr(€) = Pr(E N Py) < (N + 1)1~ NKL(P™[la)

where p* = arg minyee KL(p||q).
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Method of Type Large deviation theory

Sanov's Theorem

Let £ ={p:0.3 < p(Head) < 0.4} and q(-) = (0.5,0.5) is the true distribution, then
Pr(€) = Pr(ENPn) = 3. Pr(T(p))~ > 27 1000(KLelIa)

PEENP1000 pPEENP1000
_ »—1000(KL((0.4,0.6)[|(0:5,0.5)) _y p—1000(KL((0.399,0.601)[|(0.5,0.5)))

0—1000(KL((0.398,0.602)[|(0.5.05))) ... 4 o—1000(KL((0.3,0.7)[(05.0.5)))

< [P1ogo|2 7 1000(KL((0-4.0.6)[[(05.0.5)))

Sanov's Theorem
Let X1, Xa,--- , Xy be i.i.d. ~ g(:) and & be a set of distribution. Then
Pr(€) = Pr(E N Py) < (N + 1)1~ NKL(P™[la)

where p* = argmin,cg KL(p||q). Moreover, given a rather weak condition (closure of interior of £ is £

itself), we have 1 .
- log Pr(€) — —KL(p"]|q)
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Method of Type Large deviation theory

Conditional limit theorem

@ The first part of Sanov's Theorm is easy to show as similar to the example. However, the second
half will need some more math background (mostly mathematical analysis) to understand the
proof and so we will skip it here
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Method of Type Large deviation theory

Conditional limit theorem

@ The first part of Sanov's Theorm is easy to show as similar to the example. However, the second
half will need some more math background (mostly mathematical analysis) to understand the
proof and so we will skip it here

@ The latter part of Sanov's Theorem suggests that the probability of getting £ is the same as the
probability of getting T(p*)
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Method of Type Large deviation theory

Conditional limit theorem

@ The first part of Sanov's Theorm is easy to show as similar to the example. However, the second
half will need some more math background (mostly mathematical analysis) to understand the
proof and so we will skip it here

@ The latter part of Sanov's Theorem suggests that the probability of getting £ is the same as the
probability of getting T(p*)

@ It turns out that we can claim something stronger. We will state the theorem below without proof
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Method of Type Large deviation theory

Conditional limit theorem

@ The first part of Sanov's Theorm is easy to show as similar to the example. However, the second
half will need some more math background (mostly mathematical analysis) to understand the
proof and so we will skip it here

@ The latter part of Sanov's Theorem suggests that the probability of getting £ is the same as the
probability of getting T(p*)

@ It turns out that we can claim something stronger. We will state the theorem below without proof

Conditional limit theorem

Let £ be a closed convex subset of P (the set of all distributions) and g(-) be the true distribution
which is ¢ £.
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Method of Type Large deviation theory

Conditional limit theorem

@ The first part of Sanov's Theorm is easy to show as similar to the example. However, the second
half will need some more math background (mostly mathematical analysis) to understand the
proof and so we will skip it here

@ The latter part of Sanov's Theorem suggests that the probability of getting £ is the same as the
probability of getting T(p*)

@ It turns out that we can claim something stronger. We will state the theorem below without proof

Conditional limit theorem

Let £ be a closed convex subset of P (the set of all distributions) and g(-) be the true distribution

which is ¢ €. If x1,x2,- -+, xy are drawn from g(-) and we know that p,, € &, then
A (alx .
ZIET

in probability as N — oo
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Method of Type Large deviation theory

SETES

@ Let's go back to our previous example. If we throw a fair coin 1000 times and some one
tells you that there are 300 to 400 heads, recall
&€ ={0.3 < p(Head) < 0.4}
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Method of Type Large deviation theory

SETES

@ Let's go back to our previous example. If we throw a fair coin 1000 times and some one
tells you that there are 300 to 400 heads, recall
&€ ={0.3 < p(Head) < 0.4}

@ Since apparently,
p* =arg mig KL(p||(0.5,0.5)) = (0.4,0.6)
pe
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Method of Type Large deviation theory

SETES

@ Let's go back to our previous example. If we throw a fair coin 1000 times and some one

tells you that there are 300 to 400 heads, recall
&€ ={0.3 < p(Head) < 0.4}

@ Since apparently,
p* =arg mig KL(p||(0.5,0.5)) = (0.4,0.6)
pe

@ By conditional limit theorem, knowing the the number of head is within the range, the
coin behaves like a biased coin with p(Head) = 0.4
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Method of Type Large deviation theory

SETES

@ Let's go back to our previous example. If we throw a fair coin 1000 times and some one
tells you that there are 300 to 400 heads, recall
&€ ={0.3 < p(Head) < 0.4}

@ Since apparently,
p* =arg mig KL(p||(0.5,0.5)) = (0.4,0.6)
pe

@ By conditional limit theorem, knowing the the number of head is within the range, the
coin behaves like a biased coin with p(Head) = 0.4

@ A best bet would be there are 400 heads
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Method of Type Large deviation theory

SETES

Lower bounds

@ Let say x3,xp, -, xy are drawn from g(-). And we have K functions g1(-), g(:), - - , gx(-) such
that for k=1, --- , K,

N
Z 8r(xi)p(xi) > au
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Method of Type Large deviation theory

SETES

@ Let say x3,xp, -, xy are drawn from g(-). And we have K functions g1(-), g(:), - - , gx(-) such
that for k=1, --- , K,

N
Z 8r(xi)p(xi) > au

o Let E={p:> ,p(a)gk(a) > ax,k=1,--- K}
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Method of Type Large deviation theory

SETES

@ Let say x3,xp, -, xy are drawn from g(-). And we have K functions g1(-), g(:), - - , gx(-) such

that for k=1, --- , K,
ng xi)p(xi) = o

o Let E={p:> ,p(a)gk(a) > ax,k=1,--- K}

M — p*(a), where
p* = argmin KL(p||q)
peE

@ From conditional limit theorem,
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Method of Type Large deviation theory

SETES
@ Let say x3,xp, -, xy are drawn from g(-). And we have K functions g1(-), g(:), - - , gx(-) such

that for k=1, --- , K,

ng xi)p(xi) = o

o Let E={p:> ,p(a)gk(a) > ax,k=1,--- K}

@ From conditional limit theorem, M — p*(a), where
p* = argmin KL(p||q)
peE

@ This is a simple constrained optimization problem and can be solved with KKT conditions. If you

go through the conditions, you will find that
p*(X) X q(X)zszzl )‘kgk(X)’

with M\e(>, p(a)gk(a) — aw) =0, A >0, and >, p(a)gk(a) > au
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Method of Type Large deviation theory

SETES

| think this example below gives a nice demonstration that the technique we have learned
today can solve some amazing puzzle!
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Method of Type Large deviation theory

SETES

| think this example below gives a nice demonstration that the technique we have learned
today can solve some amazing puzzle!

A fair dice is thrown 10,000 times and the sum of all outcomes is larger than 40,000, out of
the 10,000 throw, how many ones do you think there are?
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Method of Type Large deviation theory

Fair dice

@ From the result of previous example, let g1(x) = x and a; = 4, we expect
.. 2)\i
pPU)= =

for some \
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Method of Type Large deviation theory

Fair dice

@ From the result of previous example, let g1(x) = x and a; = 4, we expect
.. 2)\i
pPU)= =

for some A
e A#0since Y, p(a)gi(a) =35<4=a;ifso
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Method of Type Large deviation theory

Fair dice

@ From the result of previous example, let g1(x) = x and a; = 4, we expect
.. 2)\i
pPU)= =

for some A
e A#0since Y, p(a)gi(a) =35<4=a;ifso
@ Since A # 0, by the complementary slackness constraint A\¢(> ", p(a)gk(a) — ax) =0,

> pla)gi(a) = a1 =4
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Method of Type Large deviation theory

Fair dice

@ From the result of previous example, let g1(x) = x and a; = 4, we expect
.. 2)\i
pPU)= =

for some A
A # 0since Y _p(a)gi(a) =35 <4 =aifso
Since X # 0, by the complementary slackness constraint A¢(> ", p(a)gk(a) — ax) =0,

> pla)gi(a) = a1 =4

@ This gives us A = 0.2519, and thus p* = (0.103,0.123,0.146,0.174,0.207,0.247)
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Method of Type Large deviation theory

Fair dice

@ From the result of previous example, let g1(x) = x and a; = 4, we expect
.. 2)\i
pPU)= =

for some A
e A#0since Y, p(a)gi(a) =35<4=a;ifso
@ Since A # 0, by the complementary slackness constraint A\¢(> ", p(a)gk(a) — ax) =0,

> pla)gi(a) = a1 =4

@ This gives us A = 0.2519, and thus p* = (0.103,0.123,0.146,0.174,0.207,0.247)
@ # ones &~ 0.103 x 10000 = 1030

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming November 5, 2023



Multivariate Gaussian

Multivariate Gaussian
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Multivariate Gaussian Covariance matrices

Normal distribution

2

_x=w)
e Univariate Normal: N(x; u,02%) = \/lee 22
o
e Multivariate Normal: N(x; p, X) = @ef%(xfﬂ)ﬁ:_l(xﬂi)

Note that N'(x; p, X) = N(w; x,X). It is trivial but quite useful

Y. is known to be the covariance matrices and it has to be (symmetric) positive definite

Consequently, symmetric matrices are carefully studied and understood by statisticians and
information theorists (more discussion couple slides later)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming November 5, 2023



Multivariate Gaussian Covariance matrices

Covariance matrices

Definition (Covariance matrices)
Recall that for a vector random variable X = [X1, Xz, -+, X,,] T, the covariance matrix
¥ £ E[(X - p)(X — )T

Covariance matrices are always positive semi-definite since Vu,
uTEu = E[u” (X — p)(X — )] = E[(X — ) Tu[]2] > 0

In general, we usually would like to assume ¥ to be strictly positive definite. Because otherwise it
means that some of its eigenvalues are zero and so in some dimension, there is actually no variation and
is just constant along that dimension. Representing those dimension as random variable is troublesome
since “1/a?" which occurs often will become infinite. Instead we can always simply strip away those

dimensions to avoid complications

November 5, 2023
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Multivariate Gaussian Covariance matrices

Symmetric matrices

(MT) "= (M7
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Multivariate Gaussian Covariance matrices

Symmetric matrices

(MT) " = (M7

(M H)TMT =(MM)T == (M~1)7 is inverse of M7 0

If M is symmetric, so is M~!
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Multivariate Gaussian Covariance matrices

Symmetric matrices

(MT) " = (M7

(M HTMT = (MM~1)T == (M~1)7 is inverse of MT O

If M is symmetric, so is M~*

(Mfl)T _ (MT)fl — M1
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Multivariate Gaussian Covariance matrices

Hermitian matrices

@ An extension of transpose operation to complex matrices is the hermitian transpose
operation, which is simply the transpose and conjugate of a matrix (vector)

@ We denote the hermitian transpose of M as M & WT, when M is the complex conjugate
of M

o A matrix is Hermitian if Mt = M. Note that a real symmetric matrix is Hermitian
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Multivariate Gaussian Covariance matrices

Eigenvalues of Hermitian matrices

If M is Hermitian (Mt = M), all eigenvalues are real
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Multivariate Gaussian Covariance matrices

Eigenvalues of Hermitian matrices

If M is Hermitian (Mt = M), all eigenvalues are real

AxTx) = (M) Tx = (Mx)Tx = xTMTx = xTMx = xT(Ax) = M\(xTx) O

If M is Hermitian, eigenvectors of different eigenvalues are orthogonal
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Multivariate Gaussian Covariance matrices

Eigenvalues of Hermitian matrices

If M is Hermitian (M' = M), all eigenvalues are real

AxTx) = (M) Tx = (Mx)Tx = xTMTx = xTMx = xT(Ax) = M\(xTx) O

_

If M is Hermitian, eigenvectors of different eigenvalues are orthogonal

)\1XIX2 = (Mxl)Tx2 = XIMXZ = /\2xi[x2

=\ 75 A2 :>XIX2 =0
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Multivariate Gaussian Covariance matrices

Hermitian matrices are diagonizable

Hermitian matrices are diagonizable

We will sketch the proof by construction. For any n-d Hermitian matrix M, consider an eigenvalue \
and corresponding eigenvector u, without loss of generality, let's also normalize u such that |ju|| = 1.
Consider the subspace orthogonal to u, U+, and let vy, --- , v,_; be arbitrary orthonormal basis of U'.
Note that for any k, My, will be orthogonal to u since

u' My = utMty, = (/\/Iu)Tvk =Aulve =0.

Thus, (u, Vi, v,,_;l)T M (u, Vi, v,,_l) = (3 ,8,,). Moreover, M’ is also a Hermitian matrix with

one less dimension. We can apply the same process on M’ and “diagonalize” one more row/column.
A0 -
That is, (é ,g,)T PtMP ((1) ,_9/) = (0 X ) We can repeat this until the entire M is diagonalized [
M

11
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Multivariate Gaussian Covariance matrices

Hermitian matrices are diagonalizable

We can find a orthogonal set of eigenvectors that diagonalize a Hermitian matrix. That is
A1 0 -
T 0 A
(Vlv"'7vn) M(V]_,"',Vn):<_ 2 )7
v ’ ’

and V is unitary (orthogonal), i.e., VIV = I and thus V= = V. Note that viLv; if Aj # \j.
Otherwise, we may use Gram-Schmidt

The reverse is obviously true. If a matrix can be diagonalized by a unitary matrix into a real diagonal

matrix, the matrix is Hermitian

Recall that real-symmetric matrices are Hermitian, thus can be diagonalized by its eigenvectors also

November 5, 2023
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Multivariate Gaussian Covariance matrices

Positive definite matrices

Definition (Positive definite)

For a Hermitian matrix M, it is positive definite iff Vx, xTMx > 0

Definition (Positive semi-definite)

For a Hermitian matrix M, it is positive semi-definite iff Vx, xTMx > 0

M is positive definite (semi-definite) iff all its eigenvalue is larger (larger or equal to) 0
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Multivariate Gaussian Covariance matrices

Positive definite matrices

Definition (Positive definite)

For a Hermitian matrix M, it is positive definite iff Vx, xtMx >0

Definition (Positive semi-definite)

For a Hermitian matrix M, it is positive semi-definite iff Vx, xtMx >0

M is positive definite (semi-definite) iff all its eigenvalue is larger (larger or equal to) 0

=: assume positive definite but some eigenvalue < 0, WLOG, let \; < 0, then v{r Mvi =1 <0
contradicts that M is positive definite

< If Yk, A\ > 0, for any x, xTMx = (V]LX)Jr (

A1

0
_ ) Vix = 52 A(Vix)2 > 0 O

™ = = = vyt

0
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Multivariate Gaussian Covariance matrices

Eigenvectors and eigenvalues of covariance matrices

e WLOG, let's assume X = [Xy, Xo, -+, X,] T is zero mean. So the covariance matrix
Y x = E[XXT]
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Multivariate Gaussian Covariance matrices

Eigenvectors and eigenvalues of covariance matrices

e WLOG, let's assume X = [Xy, Xo, -+, X,] T is zero mean. So the covariance matrix
Y x = E[XXT]
e Covariance matrices are real symmetric (hence Hermitian) and so can be diagonalized by
its eigenvectors. That is,
o PTYxP =D, where P = [u1, us,--- , up] with uy being eigenvectors of ¥ and D is a
diagonal matrix with eigenvalues A1, Az, --- , A, as the diagonal elements
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Multivariate Gaussian Covariance matrices

Eigenvectors and eigenvalues of covariance matrices

e WLOG, let's assume X = [Xy, Xo, -+, X,] T is zero mean. So the covariance matrix
Y x = E[XXT]

e Covariance matrices are real symmetric (hence Hermitian) and so can be diagonalized by
its eigenvectors. That is,

o PTYxP =D, where P = [u1, us,--- , up] with uy being eigenvectors of ¥ and D is a
diagonal matrix with eigenvalues A1, Az, --- , A, as the diagonal elements

o Let Y = PTX, note that the covariance matrix of Y
Yy = E[YYT] = E[PTXXTP] = PTE[XXT]P =P "sxP =D

is diagonalized
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Multivariate Gaussian Covariance matrices

Eigenvectors and eigenvalues of covariance matrices

e WLOG, let's assume X = [Xy, Xo, -+, X,] T is zero mean. So the covariance matrix
Y x = E[XXT]
e Covariance matrices are real symmetric (hence Hermitian) and so can be diagonalized by
its eigenvectors. That is,
o PTYxP =D, where P = [u1, us,--- , up] with uy being eigenvectors of ¥ and D is a
diagonal matrix with eigenvalues A1, Az, --- , A, as the diagonal elements

o Let Y = PTX, note that the covariance matrix of Y
Yy = E[YYT] = E[PTXXTP] = PTE[XXT]P =P "sxP =D

is diagonalized
e So the variance of Yy is simply A\
o E[Y;Y]]=0fori#j. Thatis, Y; L Yjfori#j
o Note that the projection X to the eigenvectors resulting in Y = P7 X being independent,
showing that eigenvectors are the principal compoents
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Multivariate Gaussian Principal component analysis

Principal component analysis (PCA)

@ Recall that ¥ = E[XXT] (assume X is zero-mean) and Y = P X with
E[YYT|=PTzP =D

@ Assume that the diagonal of D (note that those are eigenvalues) are arranged in
descending order that A1 > Ao > --- > A,

'tr(AB) = 32,7 aijbyi = >, X, byiai; = tr(BA)

November 5, 2023
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Multivariate Gaussian Principal component analysis

Principal component analysis (PCA)

@ Recall that ¥ = E[XXT] (assume X is zero-mean) and Y = P X with
E[YYT]|=PTLP =D
@ Assume that the diagonal of D (note that those are eigenvalues) are arranged in
descending order that \; > Ao > -+ > A,
o Generate an approximate Y of Y by setting all components except first k as 0

'tr(AB) = 32,7 aijbyi = >, X, byiai; = tr(BA)
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Multivariate Gaussian Principal component analysis

Principal component analysis (PCA)

@ Recall that ¥ = E[XXT] (assume X is zero-mean) and Y = P X with
E[YYT]|=PTLP =D
@ Assume that the diagonal of D (note that those are eigenvalues) are arranged in
descending order that A1 > Ao > --- > A,
o Generate an approximate Yof Y tly setting all components except first k as 0
o The mean square error (mse) of! Y = E[(Y — Y)T(Y —Y)]

'tr(AB) = 32,7 aijbyi = >, X, byiai; = tr(BA)
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Multivariate Gaussian Principal component analysis

Principal component analysis (PCA)

@ Recall that ¥ = E[XXT] (assume X is zero-mean) and Y = P X with
E[YYT]|=PTLP =D

@ Assume that the diagonal of D (note that those are eigenvalues) are arranged in
descending order that A1 > Ao > --- > A,

o Generate an approximate Yof Y tly setting all components except first k as 0 A
o The mean square error (mse) of! Y = E[(Y = Y)T(Y = Y)] = tr(E[(Y = Y)"(Y - Y)])

'tr(AB) = 32,7 aijbyi = >, 2, byiai; = tr(BA)
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Multivariate Gaussian Principal component analysis

Principal component analysis (PCA)

@ Recall that ¥ = E[XXT] (assume X is zero-mean) and Y = P X with
E[YYT]|=PTLP =D
@ Assume that the diagonal of D (note that those are eigenvalues) are arranged in
descending order that A1 > Ao > --- > A,
o Generate an approximate Yof Y by setting all componenAts except first k as 0 A
o The mean square error (mse) of' Y = E[(Y =Y)T(Y =Y)] = tr(E[(Y = Y)T(Y - Y)])
= E[tr((Y = Y)7(Y - Y))]

'tr(AB) = 32,7 aibii = >, byiai; = tr(BA)
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Multivariate Gaussian Principal component analysis

Principal component analysis (PCA)

@ Recall that ¥ = E[XXT] (assume X is zero-mean) and Y = P X with
E[YYT]|=PTLP =D
@ Assume that the diagonal of D (note that those are eigenvalues) are arranged in
descending order that A1 > Ao > --- > A,
o Generate an approximate Yof Y tly setting all components except first k as 0 A
o The mean square error (mse) of' Y = E[(Y —Y) TA(Y —Y)] = tr(E[(Y — Y)TQY -Y)])
= E[tr((Y = Y)T(Y = Y))] = E[tr((Y = Y)(Y = Y) )] = tr(E[(Y = Y)(Y = Y)T])

'tr(AB) = 32,7 aibii = >, byiai; = tr(BA)
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Multivariate Gaussian Principal component analysis

Principal component analysis (PCA)

@ Recall that ¥ = E[XXT] (assume X is zero-mean) and Y = P X with
E[YYT]|=PTLP =D
@ Assume that the diagonal of D (note that those are eigenvalues) are arranged in
descending order that A1 > Ao > --- > A,
o Generate an approximate Yof Y by setting all components except first k as 0
o The mean square error (mse) of! Y= E[(Y - Y) TA(Y -Y) = tr(E[(Y — ?)TQY -Y)))
= E[tr((Y = Y)T(Y = Y))] = E[tr((Y = Y)(Y = Y) )] = tr(E[(Y = Y)(Y = Y)T])
= Z?=k+1 Ai . . . . .
o Similarly, if we “reconstruct” X as X = PY. The mse of X = E[(X — X)T(X — X)] =
tr(E[(X = X)(X ~ X)7])

'tr(AB) = 32,7 aibii = >, byiai; = tr(BA)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming November 5, 2023



Multivariate Gaussian Principal component analysis

Principal component analysis (PCA)

@ Recall that ¥ = E[XXT] (assume X is zero-mean) and Y = P X with
E[YYT]|=PTLP =D
@ Assume that the diagonal of D (note that those are eigenvalues) are arranged in
descending order that A1 > Ao > --- > A,
o Generate an approximate Yof Y by setting all components except first k as 0
o The mean square error (mse) of! Y= E[(Y - Y) TA(Y -Y) = tr(E[(Y — ?)TQY -Y)))
= E[tr((Y = Y)T(Y = Y))] = E[tr((Y = Y)(Y = Y) )] = tr(E[(Y = Y)(Y = Y)T])
= Z?=k+1 Ai . . . . .
o Similarly, if we “reconstruct” X as X = PY. The mse of X = E[(X — X)T(X — X)] =
tr(E[(X — X)(X = X)T])= tr(PE[(Y — Y)(Y — Y)]PT)

'tr(AB) = 32,7 aibii = >, byiai; = tr(BA)
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Multivariate Gaussian Principal component analysis

Principal component analysis (PCA)

@ Recall that ¥ = E[XXT] (assume X is zero-mean) and Y = P X with
E[YYT]|=PTLP =D
@ Assume that the diagonal of D (note that those are eigenvalues) are arranged in
descending order that A1 > Ao > --- > A,
o Generate an approximate Yof Y by setting all components except first k as 0
o The mean square error (mse) of! Y= E[(Y - Y) TA(Y -Y) = tr(E[(Y — ?)TQY -Y)))
= E[tf((Y - Y)T(Y = Y))] = E[tr((Y = Y)(Y = ¥)T)] = tr(E[(Y = Y)(Y = Y)T])
= ik A
o Similarly, |f we “reconstruct” X as X = PY. The mse of X = E[(X — X)TQX X) )] =
tr(E[(X — X)(X = X)T])= tr(PE[(Y = Y)(Y = Y)]PT)= tr(PT PE[(Y — Y)(Y = Y))])

'tr(AB) = 32,7 aibii = >, byiai; = tr(BA)
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Multivariate Gaussian Principal component analysis

Principal component analysis (PCA)

@ Recall that ¥ = E[XXT] (assume X is zero-mean) and Y = P X with
E[YYT]|=PTLP =D
@ Assume that the diagonal of D (note that those are eigenvalues) are arranged in
descending order that A1 > Ao > --- > A,
o Generate an approximate Yof Y by setting all components except first k as 0
o The mean square error (mse) of! Y= E[(Y - Y) TA(Y -Y) = tr(E[(Y — ?)TQY -Y)))
= E[tf((Y - Y)T(Y = Y))] = E[tr((Y = Y)(Y = ¥)T)] = tr(E[(Y = Y)(Y = Y)T])
= ik A
o Similarly, |f we “reconstruct” X as X = PY. The mse of X = E[(X — X)TQX X) )] =
tr(E[(X — X)(X = X)T])= tr(PE[(Y = Y)(Y = Y)]PT)= tr(PT PE[(Y — Y)(Y = Y))])
= Z?:kJrl Ai

'tr(AB) = 32,7 aijbii = >, 2, byiai = tr(BA)
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Multivariate Gaussian Principal component analysis

Principal component analysis (PCA)

@ Recall that ¥ = E[XXT] (assume X is zero-mean) and Y = P X with
E[YYT]|=PTLP =D
@ Assume that the diagonal of D (note that those are eigenvalues) are arranged in
descending order that A1 > Ao > --- > A,
o Generate an approximate Yof Y by setting all components except first k as 0
o The mean square error (mse) of! Y= E[(Y - Y) TA(Y -Y) = tr(E[(Y — ?)TQY -Y)))
= E[tf((Y - Y)T(Y = Y))] = E[tr((Y = Y)(Y = ¥)T)] = tr(E[(Y = Y)(Y = Y)T])
= ik A
o Similarly, |f we “reconstruct” X as X = PY. The mse of X = E[(X — X)TQX X) )] =
tr(E[(X — X)(X = X)T])= tr(PE[(Y = Y)(Y = Y)]PT)= tr(PT PE[(Y — Y)(Y = Y))])
= Z?:kJrl Ai

o Note that the eigenvectors of X (columns of P) are known as the principal components

'tr(AB) = 32,37 aijbii = >, bjiai; = tr(BA)
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Multivariate Gaussian Principal component analysis

Practical PCA

In practice, we typically are given a dataset with samples of X instead of the distribution or
covariance matrix of X. Denote the data as X’ with each row is a data point and a total of m
data points. Thus X is an m by n matrix

?| used the matlab notations for ones(-) and mean(-) here
3Note that 3 won't be full rank and positive definite as one would hope
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Multivariate Gaussian Principal component analysis

Practical PCA

In practice, we typically are given a dataset with samples of X instead of the distribution or
covariance matrix of X. Denote the data as X’ with each row is a data point and a total of m
data points. Thus X is an m by n matrix

@ Data are rarely zero-mean to begin with, but we can easily preprocess it by subtracting
the mean. That is?> X < X — ones(m, 1)mean(X)

?| used the matlab notations for ones(-) and mean(-) here
3Note that 3 won't be full rank and positive definite as one would hope
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Multivariate Gaussian Principal component analysis

Practical PCA

In practice, we typically are given a dataset with samples of X instead of the distribution or
covariance matrix of X. Denote the data as X’ with each row is a data point and a total of m
data points. Thus X is an m by n matrix
@ Data are rarely zero-mean to begin with, but we can easily preprocess it by subtracting
the mean. That is?> X < X — ones(m, 1)mean(X)
o Note that & = %XTX. We could directly compute the eigenvectors and eigenvalues of >
as discussed previously. But in many cases, m < n making 3 a bad approximate3

?| used the matlab notations for ones(-) and mean(-) here
3Note that 3 won't be full rank and positive definite as one would hope
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Multivariate Gaussian Principal component analysis

Practical PCA

In practice, we typically are given a dataset with samples of X instead of the distribution or
covariance matrix of X. Denote the data as X’ with each row is a data point and a total of m
data points. Thus X is an m by n matrix
@ Data are rarely zero-mean to begin with, but we can easily preprocess it by subtracting
the mean. That is?> X < X — ones(m, 1)mean(X)
o Note that & = %XTX. We could directly compute the eigenvectors and eigenvalues of >
as discussed previously. But in many cases, m < n making 3 a bad approximate3

o A more common approach is to decompose X with singular value decomposition (SVD)
instead

?| used the matlab notations for ones(-) and mean(-) here
3Note that 3 won't be full rank and positive definite as one would hope
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Multivariate Gaussian Principal component analysis

Singular value decomposition (SVD)

L M AV o Every matrix M can be decomposed as M = UDV,
where D is diagonal and U, V' are unitary. The diagonal
l [ terms in X are known to be the singular values
V= U
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Multivariate Gaussian Principal component analysis

Singular value decomposition (SVD)

M o\ o Every matrix M can be decomposed as M = UDV,
where D is diagonal and U, V' are unitary. The diagonal
terms in X are known to be the singular values

l‘/* [U o For real matrix M, we can write M = UDV'T instead.
U, V are now “real unitary” or orthogonal
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Multivariate Gaussian Principal component analysis

Singular value decomposition (SVD)

M o\ o Every matrix M can be decomposed as M = UDV,
where D is diagonal and U, V' are unitary. The diagonal
terms in X are known to be the singular values

l‘/* [U o For real matrix M, we can write M = UDV'T instead.
U, V are now “real unitary” or orthogonal

= o Note that MTM = VDTUTUDVT = VD>V,
\ Nt Therefore, V are really eigenvectors of M7 M with
eigenvalues equal to the square of the singular values
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Multivariate Gaussian Principal component analysis

Singular value decomposition (SVD)

L M o\ o Every matrix M can be decomposed as M = UDV,
where D is diagonal and U, V' are unitary. The diagonal
terms in X are known to be the singular values

l‘/* [U o For real matrix M, we can write M = UDV'T instead.
U, V are now “real unitary” or orthogonal

5 p o Note that MTM = VDTUTUDVT = VD>V,
\ - % Therefore, V are really eigenvectors of M7 M with
eigenvalues equal to the square of the singular values
M=UY V* o Similar, we have MMT = UD?UT
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Multivariate Gaussian Principal component analysis

PCA with SVD

So from previous slides, instead of first estimating the covariance matrix and then diagonalize
it. We should directly decompose the data X with SVD instead. The process is summarized
below
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Multivariate Gaussian Principal component analysis

PCA with SVD

So from previous slides, instead of first estimating the covariance matrix and then diagonalize
it. We should directly decompose the data X with SVD instead. The process is summarized
below

@ Estimate mean from data and subtract mean from that
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Multivariate Gaussian Principal component analysis

PCA with SVD

So from previous slides, instead of first estimating the covariance matrix and then diagonalize
it. We should directly decompose the data X with SVD instead. The process is summarized
below

@ Estimate mean from data and subtract mean from that
@ Decomposed the mean subtracted data with SVD. We get X = UDV'T
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Multivariate Gaussian Principal component analysis

PCA with SVD

So from previous slides, instead of first estimating the covariance matrix and then diagonalize
it. We should directly decompose the data X with SVD instead. The process is summarized
below

@ Estimate mean from data and subtract mean from that

@ Decomposed the mean subtracted data with SVD. We get X = UDV'T

@ Note that column of V are now the principal components, and we can transform a data
column as VT x. The entire data set can be transformed as )) = X'V
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Multivariate Gaussian Principal component analysis

PCA with SVD

So from previous slides, instead of first estimating the covariance matrix and then diagonalize
it. We should directly decompose the data X with SVD instead. The process is summarized
below

o Estimate mean from data and subtract mean from that

@ Decomposed the mean subtracted data with SVD. We get X = UDV'T

@ Note that column of V are now the principal components, and we can transform a data
column as VT x. The entire data set can be transformed as )) = X'V

o The first few columns of ) will contain most “information” regarding the original X
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Multivariate Gaussian Principal component analysis

PCA with SVD

So from previous slides, instead of first estimating the covariance matrix and then diagonalize
it. We should directly decompose the data X with SVD instead. The process is summarized
below

@ Estimate mean from data and subtract mean from that

@ Decomposed the mean subtracted data with SVD. We get X = UDV'T
@ Note that column of V are now the principal components, and we can transform a data
column as VT x. The entire data set can be transformed as )) = X'V
o The first few columns of ) will contain most “information” regarding the original X

e For example, they can be taken as features for recognition or one can omit other columns
besides the first few for “compression” as discussed earlier
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Multivariate Gaussian Processing multivariate normal distribution

Marginalization of normal distribution

o Consider Z ~ N(pz,Xz) and let say X is a segment of Z. That is, Z = (X

Y) for some
Y. Then how should X behave?
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Multivariate Gaussian Processing multivariate normal distribution

Marginalization of normal distribution

o Consider Z ~ N(pz,Xz) and let say X is a segment of Z. That is, Z = (X

Y
Y. Then how should X behave?
@ We can find the pdf of X by just marginalizing that of Z. That is

) for some

p(x) = / p(x,y)dy

s oo (3 () () )
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Multivariate Gaussian Processing multivariate normal distribution

Marginalization of normal distribution

@ Denote ¥~ ! as A (also known as the precision matrix). And partition both ¥ and A into

Zxx ny) (/\XX /\XY>
> = and A =
(zYX 2yy Ayx  Avyy
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Multivariate Gaussian Processing multivariate normal distribution

Marginalization of normal distribution

@ Denote ¥~ ! as A (also known as the precision matrix). And partition both ¥ and A into

Zxx ny) (AXX /\XY>
> = and A =
(zYX 2yy Ayx  Avyy

@ Then we have

p(x) = W [ ( (¢ — 11x) A (x — 1)

+(y = py) TAYx (x — px) + (x — px) T Axy (Y — )
0y — ) Ay — )] ) dy
(X HX) AXX(X Hx)

\/m / ( (¥ = 1) T Ayx (x = pix)

H(x = px) TAxy (Y = my) + (v = v) T Ay (y — my)]) dy
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Multivariate Gaussian Processing multivariate normal distribution

Marginalization of normal distribution

To proceed, let's apply the completing square trick on

(y — pov) TAyx (x = px) + (x = 1x) T Axy (¥ — 12v) + (¥ — py) "Ayy (y — py). For the ease of
exposition, let us denote X as x — ux and ¥y as y — py. We have
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Multivariate Gaussian Processing multivariate normal distribution

Marginalization of normal distribution

To proceed, let's apply the completing square trick on

(y — pov) TAyx (x = px) + (x = 1x) T Axy (¥ — 12v) + (¥ — py) "Ayy (y — py). For the ease of
exposition, let us denote X as x — ux and ¥y as y — py. We have

97 Ayx% + % Axy§ + 57 Ayy§

=(§ + AevAvx%) T Ayy (§ + AyyAvx®) — %7 Axy Ayy Ay,

where we use the fact that A = X1 is symmetric and so Axy = Ayx
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Multivariate Gaussian Processing multivariate normal distribution

Marginalization of normal distribution

<T
*" (Axx ’\xv gy Avx)
Gy AvxA) "vv GHAGy Avx®)

plx) = Jdet(2nx) / y
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Multivariate Gaussian Processing multivariate normal distribution

Marginalization of normal distribution

iT(/\ AXVAYV Ayx )%

e Gy AvxA) "Yv GHAGy Avx®)

plx) = Jdet(2nx) / y

det(27r/\;\1() . iT(/\XX _ /\XYA;i/\YX)i
= — e&X —
det(27%) 2
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Multivariate Gaussian Processing multivariate normal distribution

Marginalization of normal distribution

<T
*" (Axx ’\xv gy Avx)
Gy AvxA) "Yv GHAGy Avx®)

plx) = Jdet(2nx) / y

det(27rA;Y) . iT(/\XX _ /\XYA;i/\YX)i
= — e&X —
det(27%) 2

(a

—

det(27AyL $Ty-1ls
(2mAyy) o % Y yxX
det(27%) 2
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Multivariate Gaussian Processing multivariate normal distribution

Marginalization of normal distribution

<T
*" (Axx ’\xv gy Avx)
Gy AvxA) "Yv GHAGy Avx®)

JW /< ’

det(27rA;Y) . iT(/\XX _ /\XYA;i/\YX)i
= — e&X —
det(27%) 2

p(x) =

—

T Jdet(2nx) 2

1 xTY (1%
D o e XXX
det(27TZxx) 2

2 \/det(2mALy) (ﬂz,&x)
VIR o [ XX

—
=

S. Cheng (OU-ECE)

Information Theory and Probabilistic Programming
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Multivariate Gaussian Processing multivariate normal distribution

Marginalization of normal distribution

<7
2T (A ’\xv ’\vv Ayx )%

( ) e / y+/\YY/\YXX) /\yy(H/\yY/\vxx)
X) =
P det(27y) g
= M ex _)N(T(/\xx - /\XYA\?\erYX)’N(
det(27%) 2
@ VIV (ST
det(27Y) 2
(b)

1 xTY (1%
e _ep| XXX
det(27TZxx) 2

1 (_(x — 1x) Tk (x — ux))
) P )

——————€X
det(27erx

where (a) and (b) will be shown next
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Multivariate Gaussian Processing multivariate normal distribution
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Multivariate Gaussian Processing multivariate normal distribution

(b) det(aX) = det(aZyy) det(alyx)

B A B\ _ A-1
D) then det (C D> = det(D)det(A™")

) D

posme (4 B) =
(€ 8)=6 5)(ohe = o)l Do)

= det (A B> — det(D)det(A — BD~1C) = det(D)det(A~1) O

Cc D

N.B. A— BD~LC is known as Schur complement
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Multivariate Gaussian Processing multivariate normal distribution

Conditioning of normal distribution

o Consider the same Z ~ N (pz,Xz) and Z = (é) What will X be like if Y is observed

to be y?

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming November 5, 2023



Multivariate Gaussian Processing multivariate normal distribution

Conditioning of normal distribution

o Consider the same Z ~ N(pz,Xz) and Z = (X

Y)' What will X be like if Y is observed

to be y?
e Basically, we want to find p(x|y) = p(x,y)/p(y)
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Multivariate Gaussian Processing multivariate normal distribution

Conditioning of normal distribution

o Consider the same Z ~ N (pz,Xz) and Z = (é) What will X be like if Y is observed
to be y?

@ Basically, we want to find p(x|y

p(x,y)/p(y)
y) = N(y; py, Zyy). Therefore,

p(xly) x exp (—; [( )TZI (5)- NTZYYyD

1. . . .
X exp <_2[XT/\XXX + %" Axyy + YT/\YXX]) ;

)=
(

@ From previous result, we have p

L X
»t

where we use X and ¥ as shorthands of x — pux and y — py as before
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November 5, 2023



Multivariate Gaussian Processing multivariate normal distribution

Conditioning of normal distribution

o Completing the square for X, we have
. . YA .
p(x|y) oc exp (—2(X + A Axy ) T Axx (% + /\x)l(/\xv)’)>
1 1 T
= exp _E(X — px + AxAxy (Y — my)) " Axx
(x — px + AxAxy (Y — y)))
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Multivariate Gaussian Processing multivariate normal distribution

Conditioning of normal distribution

o Completing the square for X, we have

1. _ ~ . _ .
p(x|y) oc exp (—2(X + A Axy ) T Axx (% + /\x)l(/\xv)’)>

1 _
= exp (—2(x — px + /\X)l(/\xv(y — my)) " Axx
(x — px + AgxAxy (Y — my)))

@ Therefore X|y is Gaussian distributed with mean pux — A;)l(/\xy(y — py) and covariance
Axx
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Multivariate Gaussian Processing multivariate normal distribution

Conditioning of normal distribution

o Completing the square for X, we have
1. _ ~ . _ ~
p(x|y) oc exp (‘2(X + A Axy ) T Axx (% + /\x)l(/\xv)’)>

1 _
= exp <—2(X — px + /\X)l(/\XY(y - MY))T/\XX

(x — px + AgxAxy (Y — my)))

@ Therefore X|y is Gaussian distributed with mean pux — A;)l(/\xy(y — py) and covariance
Axx
@ Note that since AxxXxy + AxyXyy =0 :>/\;ol(/\xy = —nyz;%( and from (a), we have
Xy ~ N(px + ZxyZoy (¥ — £v), Txx — ZxyZyy Zyx),

where Yxx — nyZQ\l(Zyx £ ¥ |Xyy is a Schur complement
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Multivariate Gaussian Processing multivariate normal distribution

Interpretation of conditioning

X[y ~ N (px + ZxyZyy(y = y), Txx — TxyZyyZvx)

@ When the observation of Y is exactly the mean, the conditioned mean does not change
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Multivariate Gaussian Processing multivariate normal distribution

Interpretation of conditioning

X[y ~ N (px + ZxyZyy(y = y), Txx — TxyZyyZvx)

@ When the observation of Y is exactly the mean, the conditioned mean does not change

@ Otherwise, it needs to be modified and the size of the adjustment decreases with Zyy,
the variance of Y for the 1-D case.
o The observation is less reliable with the increase of Xyy. The adjustment is finally scaled by
> xy, which translates the variation of Y to the variation of X
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Multivariate Gaussian Processing multivariate normal distribution

Interpretation of conditioning

X[y ~ N (px + ZxyZyy(y = y), Txx — TxyZyyZvx)

@ When the observation of Y is exactly the mean, the conditioned mean does not change
@ Otherwise, it needs to be modified and the size of the adjustment decreases with Zyy,
the variance of Y for the 1-D case.
o The observation is less reliable with the increase of Xyy. The adjustment is finally scaled by

> xy, which translates the variation of Y to the variation of X
e In particular, if X and Y are negatively correlated, the sign of the adjustment will be reversed
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Multivariate Gaussian Processing multivariate normal distribution

Interpretation of conditioning

X[y ~ N (px + ZxyZyy(y = y), Txx — TxyZyyZvx)

@ When the observation of Y is exactly the mean, the conditioned mean does not change
@ Otherwise, it needs to be modified and the size of the adjustment decreases with Zyy,
the variance of Y for the 1-D case.
o The observation is less reliable with the increase of Xyy. The adjustment is finally scaled by
> xy, which translates the variation of Y to the variation of X
e In particular, if X and Y are negatively correlated, the sign of the adjustment will be reversed
@ As for the variance of the conditioned variable, it always decreases and the decrease is
larger if Xyy is smaller and xy is larger (X and Y are more correlated)
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Multivariate Gaussian Processing multivariate normal distribution

Uncorrelated implies independence

X[y ~ N (px + Zxy ey (¥ — #y), Txx — Zxy gy Zyx)
If X and Y are uncorrelated, xy = 0. Then
Xly ~ N(px, Zxx)

Note that the statistics of X does not change with respect to y and so X is independent of Y
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Multivariate Gaussian Processing multivariate normal distribution

X L Y|Zif pxzpvz = pxy

Given multivariate Gaussian variables X,Y and Z, we have X and Y are conditionally
ind d e L _ h _ _ E[(X-E(X))(Z-E(2))] =
independent given Z if pxzpyz = pxy, where pxz JEXEOORIEIZED) © the
correlation coefficent between X and Z. Similarly, pyz and pxy are the correlation coefficients

between Y and Z, and X and Y, respectively.
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Multivariate Gaussian Processing multivariate normal distribution

X L Y|Zif pxzpvz = pxy

) oXX VOXXOYYPXY \/OXX02ZPXZ
@ From the definition of correlation coefficient, ¥ = [ voxxovyexy oyy \VOYYOzzPYZ
VOXX02ZPXZ \/OYYOTZZPYZ 0zz
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Multivariate Gaussian Processing multivariate normal distribution

X L Y|Zif pxzpvz = pxy

) oXX VOXXOYYPXY \/OXX02ZPXZ
@ From the definition of correlation coefficient, ¥ = [ voxxovyexy oyy \VOYYOzzPYZ
VOXX02ZPXZ \/OYYOTZZPYZ 0zz

@ Then from the conditioning result, we have

T XX VOXXOYY PXY
VOXXOYYPXY oyy

—1 [ \/OXXOZzzpPxz
— (VoxxOzzpxz \/OvvOzzpvz) 077
VOYYOZZPYZ

_ oxx(1 — pxz) Voxxovy(pxy — pxzpyz)
Voxxovy(pxy — pxzpyz) ovy(1 — p37)

()=
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Multivariate Gaussian Processing multivariate normal distribution

X L Y|Zif pxzpvz = pxy

i ) oXX VOXXOYYPXY \/OXX02ZPXZ
@ From the definition of correlation coefficient, ¥ = [ voxxovyexy oyy \VOYYOzzPYZ
VOXX02ZPXZ \/OYYOTZZPYZ 0zz

@ Then from the conditioning result, we have

OXxx VOXXTYY PXY
VOXXOTYY PXY Oyy

—1 (/Oxx0zzpxz
— (Voxx0zzpxz  \/Ovv0zzpvz) 07z
VOvyozzpyz

_ oxx(1 — pxz) Voxxovy(pxy — pxzpyz)
Voxxovy(pxy — pxzpyz) ovy(1 — p37)

()=

@ Therefore, X and Y are uncorrelated given Z when the off-diagonal is zero and this gives
us pxy = pxzpyz- Since for Gaussian variables, uncorrelatedness implies independence.
This concludes the proof.
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Multivariate Gaussian Processing multivariate normal distribution

Gaussian Process

@ Consider a 1-D discrete-time signal, and say the signal is joint Gaussian and two points
are conditional independent given points in the middle

o If the variance is stationary and say the correlation coefficent between two adjacent points
is p, further assume that the variance is normalized to 1. WLOG, then

1 p p> -
2
p 1 p p
Y =
P op 1 p
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Multivariate Gaussian Processing multivariate normal distribution

Product of normal distributions

@ Assume that we tries to recover some vector parameter x, which is subject to multivariate
Gaussian noise
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Multivariate Gaussian Processing multivariate normal distribution

Product of normal distributions

@ Assume that we tries to recover some vector parameter x, which is subject to multivariate
Gaussian noise

e Say we made two measurements y; and y», where Y1 ~ N (x,Xy,) and Y2 ~ N(x, Zy,).
Note that even though both measurements have mean x, they have different covariance

e This variation, for instance, can be due to environment change between the two
measurements
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Multivariate Gaussian Processing multivariate normal distribution

Product of normal distributions

@ Assume that we tries to recover some vector parameter x, which is subject to multivariate
Gaussian noise

e Say we made two measurements y; and y», where Y1 ~ N (x,Xy,) and Y2 ~ N(x, Zy,).
Note that even though both measurements have mean x, they have different covariance
e This variation, for instance, can be due to environment change between the two
measurements

e Now, if we want to compute the overall likelihood, p(y1,y2|x). Assuming that Y; and Y
are conditionally independent given X, we have

p(y1,y2/x) = p(y1|x)p(y2(x)
= N(y1; %, Zy, )NV (y2; X, Ly,).

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming November 5, 2023



Multivariate Gaussian Processing multivariate normal distribution

Product of normal distributions

@ Assume that we tries to recover some vector parameter x, which is subject to multivariate
Gaussian noise

e Say we made two measurements y; and y», where Y1 ~ N (x,Xy,) and Y2 ~ N(x, Zy,).
Note that even though both measurements have mean x, they have different covariance

e This variation, for instance, can be due to environment change between the two
measurements

e Now, if we want to compute the overall likelihood, p(y1,y2|x). Assuming that Y; and Y

are conditionally independent given X, we have

p(y1,y2/x) = p(y1|x)p(y2(x)
= N(y1; %, Zy, )NV (y2; X, Ly,).

o Essentially, we just need to compute the product of two Gaussian pdfs. Such computation
is very useful and it occurs often when one needs to perform inference
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Multivariate Gaussian Processing multivariate normal distribution

Product of normal distributions

As in previous cases, the product turns out to be normal also. However, unlike them, the product is not
a pdf and so it does not normalize to 1. So we have to compute both the scaling factor and the
exponent explicitly. Let us start with the exponent.

N(y1: %, Xy, )N (y2; %, Xy,)
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Multivariate Gaussian Processing multivariate normal distribution

Product of normal distributions

As in previous cases, the product turns out to be normal also. However, unlike them, the product is not
a pdf and so it does not normalize to 1. So we have to compute both the scaling factor and the
exponent explicitly. Let us start with the exponent.

N(y1: %, Xy, )N (y2; %, Xy,)

cerp (3106 y0) v, (x = 31) + (x - y2) v (x - v
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Multivariate Gaussian Processing multivariate normal distribution

Product of normal distributions

As in previous cases, the product turns out to be normal also. However, unlike them, the product is not
a pdf and so it does not normalize to 1. So we have to compute both the scaling factor and the
exponent explicitly. Let us start with the exponent.

N(y1: %, Xy, )N (y2; %, Xy,)

cerp (3106 y0) v, (x = 31) + (x - y2) v (x - v

1
xexp <_2[XT(/\Y1 + /\Yz )X - (y2T/\Y2 + le/\Y1 )X - XT(AYzyZ + /\Y1y1)]>
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Multivariate Gaussian Processing multivariate normal distribution

Product of normal distributions

As in previous cases, the product turns out to be normal also. However, unlike them, the product is not
a pdf and so it does not normalize to 1. So we have to compute both the scaling factor and the
exponent explicitly. Let us start with the exponent.

N(y1: %, Xy, )N (y2; %, Xy,)

cerp (3106 y0) v, (x = 31) + (x - y2) v (x - v

1
xexp <_2[XT(/\Y1 + /\Yz )X - (y2T/\Y2 + le/\Y1 )X - XT(AYzyZ + /\Y1y1)]>

xe~ FIx—(Avy +Av,) T A, Y2+ AV, Y1) T (Av, +AY, ) (x— (v, +Av, ) (A, ya+Ay, y1))]
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Multivariate Gaussian Processing multivariate normal distribution

Product of normal distributions

As in previous cases, the product turns out to be normal also. However, unlike them, the product is not
a pdf and so it does not normalize to 1. So we have to compute both the scaling factor and the
exponent explicitly. Let us start with the exponent.

N(y1: %, Xy, )N (y2; %, Xy,)

cerp (3106 y0) v, (x = 31) + (x - y2) v (x - v

ocexp <—;[XT(/\Y1 +AV)x = (y3 Ay, + Y7 Av)x — xT (Av,y2 + /\Y1YI)]>
oce S0 (v +Av) T (v, y2 Ay y1) T (g v, ) (= (Avy v, ) (v, v Ay, 1))
oN(x; (Ay, + Av,) " HAY,Y2 + Av,y1), (Ay, + Ay,) ™)
Therefore,
N(y1: %, Zy, )N (y2: %, v, )
=K(y1,¥2, Zvy, Ty, )N (% (Ay; + Ay,) T HAYLY2 + Avyyn), (Ay, + Ay,) ™)

for some scaling factor K(y1,y2, Xv,, Ly,) independent of x

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming November 5, 2023



Multivariate Gaussian Processing multivariate normal distribution

Product of normal distributions

@ One can compute the scaling factor K(y1,y2, Xy,, Xy,) directly
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Multivariate Gaussian Processing multivariate normal distribution

Product of normal distributions

@ One can compute the scaling factor K(y1,y2, Xy,, Xy,) directly

@ However, it is much easier to take advantage for the following setup when Y3 L Y3|X as
shown below

Yy > X—» —»Y,

!

UNN((),EYQ) VNN(OaEYl)
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Multivariate Gaussian Processing multivariate normal distribution

Product of normal distributions

@ One can compute the scaling factor K(y1,y2, Xy,, Xy,) directly

@ However, it is much easier to take advantage for the following setup when Y3 L Y3|X as
shown below

Yy > X—» —»Y,

!

U~N(0,2y,) V~N(0ZZy,)
e Since N(y2;x,Xv,) = N(x;y2,Xy,) and Y1 L Y3|X, we have

N(y1:i %, Xy )N (y2; x, Xy,) = N(y1;x, Ty, ) V(X ¥2, Zv,) = p(y1, X|y2)

p(y1|x)=p(y1|x,y2) p(x|y2)
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Multivariate Gaussian Processing multivariate normal distribution

Product of normal distributions

@ Then, marginalizing x out from p(y1, x|y2), we have p(y1]y2) = [ p(y1, x|y2)dx. However, from

Y, X Y,

T

the figure, U~NO.Ev) VANO3y,)

/ p(y1, xly2)dx = p(y1ly2) = N(¥1:¥2: Tva + Tv,)
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Multivariate Gaussian Processing multivariate normal distribution

Product of normal distributions

@ Then, marginalizing x out from p(y1, x|y2), we have p(y1]y2) = [ p(y1, x|y2)dx. However, from

Y, X Y,

T

the ﬁgure, U~N(©0.Zy,) V~N(0,3Sy,)
[ plos.xiyz)x = plsalye) = Nysiye, By, + T,)

@ On the other hand,
/P(Y1,X|Y2)dX= /N(Yl;xvzvl)N(sz,ZYz)dX

= / K(yla Y2, ZYNZYz)N(X; (AY1 + /\Yz)_l(/\Y2y2 + /\Yly)’ (/\Yz + /\Yl)_l)dx

:K(yl, Y2, ZYU ZYZ)'
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Multivariate Gaussian Processing multivariate normal distribution

Product of normal distributions

@ Then, marginalizing x out from p(y1, x|y2), we have p(y1]y2) = [ p(y1, x|y2)dx. However, from

Y, X Y,

T

the ﬁgure, U~N(©0.Zy,) V~N(0,3Sy,)
[ plos.xiyz)x = plsalye) = Nysiye, By, + T,)

@ On the other hand,
/P(Y1,X|Y2)dX= /N(Yl;xvzvl)N(sz,ZYz)dX

= / K(yla Y2, ZYNZYz)N(X; (AY1 + /\Yz)_l(/\Y2y2 + /\Yly)’ (/\Yz + /\Yl)_l)dx

:K(Y1,Y2,ZY1;ZY2)o
@ Thus we have K(y17y2;ZY1, ZYQ) = /\/'(yl;yg,):yz + Zyl)
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Multivariate Gaussian Processing multivariate normal distribution

Product of normal distributions

@ Then, marginalizing x out from p(y1, x|y2), we have p(y1]y2) = [ p(y1, x|y2)dx. However, from

Y, X Y,

T

the figu re, U~N(©0.Zy,) V~N(0,3Sy,)
[ plos.xiyz)x = plsalye) = Nysiye, By, + T,)

@ On the other hand,
[ plosxiya)ax = [ Nyrix By )V (vzix T, )ox

= / K(yla Y2, ZYNZYz)N(X; (AY1 + /\Yz)_l(/\Y2y2 + /\Yly)’ (/\Yz + /\Yl)_l)dx
:K(Y1,Y2, ZYUZYZ)'
@ Thus we have K(y1,¥2,Xv,,Xy,) = N(y1;¥2, Xy, + Xy, ) and so
N(yl; X, Xy, )N(y2; X, ZY2)
=N(y1;¥2, Zv, + Zv, )N (% (Av; + Av,) “HAYY2 + Avyy), (Ay, + Ay,) ™)
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Multivariate Gaussian Processing multivariate normal distribution

Division of normal distributions

@ To compute % note that from the product formula earlier

N(x; p2, )N (% (A = A2) " (Arpa — Mapa), (A — A2) 1)
=N (p2; (M = A2) " H(Arpr — Aopo), A1+ (A — A2) "HN(x; p1, T1)
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Multivariate Gaussian Processing multivariate normal distribution

Division of normal distributions

@ To compute % note that from the product formula earlier

N(x; p2, )N (% (A = A2) " (Arpa — Mapa), (A — A2) 1)
=N (p2; (M = A2) " H(Arpr — Aopo), A1+ (A — A2) "HN(x; p1, T1)

@ Therefore,

Nxip,T1) N (M — N2) " H(Arpr — Aopz), (A1 — A2) 1)
N(xip2,22)  N(p2; (M = A2) " H(Arpa — Aaprz), AT+ (A — A2) 1)
N(x; g, (M = A2) ™)

T N ST+ (A — Ag)1)

where = (A1 — Ap) (A1 — Aop)
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Multivariate Gaussian Processing multivariate normal distribution

Division of normal distributions

@ To compute % note that from the product formula earlier

N(x; po, T2)N(x; (AL — A2) H(Arpn — Aop2), (A — A2)7H)
=N (p2; (M = N2) " H(Arp — Aap2), At + (A — A2) DN (x; pa, T1)
@ Therefore,

Nxip,T1) N (M — N2) " H(Arpr — Aopz), (A1 — A2) 1)
N(xip2,22)  N(p2; (M = A2) " H(Arpa — Aaprz), AT+ (A — A2) 1)
N(x; g, (M = A2) ™)

T N ST+ (A — Ag)1)

where = (A1 — Ap) (A1 — Aop)

@ Note that the final pdf will be Gaussian-like if Ay = As. Otherwise, one can still write out
the pdf using the precision matrix. But the covariance matrix will not be defined (Try plot
some pdfs out yourselves)
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Multivariate Gaussian Processing multivariate normal distribution

Product of normal distributions

Let us try to interpret the product as the overall likelihood after making two observations.
Consider the simpler case when X, Y1 and Y5 are all scaler
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Multivariate Gaussian Processing multivariate normal distribution

Product of normal distributions

Let us try to interpret the product as the overall likelihood after making two observations.
Consider the simpler case when X, Y1 and Y5 are all scaler
@ The mean considering both observations, (Ay, + Ay,) 1(Ay,y2 + Ay,y), is essential a
weighted average of observations y, and y;
o The weight is higher when the precision Ay, or Ay, is larger
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Multivariate Gaussian Processing multivariate normal distribution

Product of normal distributions

Let us try to interpret the product as the overall likelihood after making two observations.
Consider the simpler case when X, Y1 and Y5 are all scaler
@ The mean considering both observations, (Ay, + Ay,) 1(Ay,y2 + Ay,y), is essential a
weighted average of observations y, and y;
o The weight is higher when the precision Ay, or Ay, is larger
@ The overall variance (Ay, + Ay, ) ™! is always smaller than the individual variance Ty, and
Yy,
e We are more certain with x after considering both y; and y»

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming November 5, 2023



Multivariate Gaussian Processing multivariate normal distribution

Product of normal distributions

Let us try to interpret the product as the overall likelihood after making two observations.
Consider the simpler case when X, Y1 and Y5 are all scaler
@ The mean considering both observations, (Ay, + Ay,) 1(Ay,y2 + Ay,y), is essential a
weighted average of observations y, and y;
o The weight is higher when the precision Ay, or Ay, is larger
@ The overall variance (Ay, + Ay, ) ™! is always smaller than the individual variance Ty, and
Yy,
e We are more certain with x after considering both y; and y»
@ The scaling factor, N(yl; y2, 2y, + Zyl), can be interpreted as how much one can believe
on the overall likelihood.

e The value is reasonable since when the two observations are far away with respect to the
overall variance Xy, + Xy, the likelihood will become less reliable

o The scaling factor is especially useful when we deal with mixture of Gaussian to be discussed
next
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Mixture of Gaussians

Mixture of Gaussians
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Mixture of Gaussians Mixture of “Gaussians”

Mixture of Gaussians

Consider an electrical system that outputs signal of different statistics when it is on and off

@ When the system is on, the output signal S behaves like N'(5,1). When the system is off
is off, S behaves like N'(0,1)
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Mixture of Gaussians Mixture of “Gaussians”

Mixture of Gaussians

Consider an electrical system that outputs signal of different statistics when it is on and off
@ When the system is on, the output signal S behaves like N'(5,1). When the system is off
is off, S behaves like N'(0,1)
@ If someone measuring the signal does not know the status of the system but only knows

that the system is on 40% of the time, then to the observer, the signal S behaves like a
mixture of Gaussians
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Mixture of Gaussians Mixture of “Gaussians”

Mixture of Gaussians

Consider an electrical system that outputs signal of different statistics when it is on and off

@ When the system is on, the output signal S behaves like N'(5,1). When the system is off
is off, S behaves like N'(0,1)

@ If someone measuring the signal does not know the status of the system but only knows
that the system is on 40% of the time, then to the observer, the signal S behaves like a
mixture of Gaussians

@ The pdf of S will be 0.4N(s;5,1) + 0.6N/(s;0,1) as shown below
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Mixture of Gaussians Mixture of “Gaussians”

Mixture of Gaussians

@ A main limitation of normal distribution is that it is unimodal
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Mixture of Gaussians Mixture of “Gaussians”

Mixture of Gaussians

@ A main limitation of normal distribution is that it is unimodal
@ Mixture of Gaussian distribution allows multimodal and can virtually model any pdfs. But
there is a computational cost for this gain
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Mixture of Gaussians Mixture of “Gaussians”

Mixture of Gaussians

@ A main limitation of normal distribution is that it is unimodal

@ Mixture of Gaussian distribution allows multimodal and can virtually model any pdfs. But
there is a computational cost for this gain

@ Let us illustrate this with the following example:
o Consider two mixtures of Gaussian likelihood of x given two observations y; and y» as follows:
p(y1]x) = 0.6 N (x;0,1) + 0.4N(x;5,1);
p(y2|x) = 0.5N(x; —2,1) + 0.5N (x; 4,1).
What is the overall likelihood, p(y1, y2|x)?
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Mixture of Gaussians

@ A main limitation of normal distribution is that it is unimodal
@ Mixture of Gaussian distribution allows multimodal and can virtually model any pdfs. But
there is a computational cost for this gain
@ Let us illustrate this with the following example:
o Consider two mixtures of Gaussian likelihood of x given two observations y; and y» as follows:
p(y1|x) = 0.6N(x;0,1) + 0.4N(x; 5, 1);
p(y2]x) = 0.5N(x; —2,1) + 0.5M (x; 4,1).
What is the overall likelihood, p(y1, y2|x)?

@ As usual, it is reasonable to assume the observations to be conditionally independent
given x. Then,

p(y1; y2|x) = p(y1|x)p(y2|x)
= (0.6N(x;0,1) + 0.4N(x;5,1))(0.5N (x; —2,1) + 0.5N (x; 4,1))
= 0.3NM(x; 0, )N (x; —2,1) + 0.2A(x; 5, )NV (x; —2,1)
+ 0.3N(x; 0, 1)N(x;4,1) + 0.2N (x; 5, 1)N(x; 4,1)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming November 5, 2023



Mixture of Gaussians Mixture of “Gaussians”

Explosion of Gaussians

@ The last step involves computing products of Gaussians but we have learned it in previous
sections. Using the previous result,

p(y1, y2|x) = 0.3NM(—2;0,2)N(x; —1,0.5) + 0.2N(—2; 5,2)N(x; 1.5,0.5)
+0.3NV(4;0,2)N (x;2,0.5) + 0.2N(4;5,2)N (x; 4.5,0.5).
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Explosion of Gaussians

@ The last step involves computing products of Gaussians but we have learned it in previous
sections. Using the previous result,

p(y1, y2|x) = 0.3NM(—2;0,2)N(x; —1,0.5) + 0.2N(—2; 5,2)N(x; 1.5,0.5)
+0.3NV(4;0,2)N (x;2,0.5) + 0.2N(4;5,2)N (x; 4.5,0.5).

So we have the overall likelihood is a mixture of four Gaussians
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Explosion of Gaussians

@ The last step involves computing products of Gaussians but we have learned it in previous
sections. Using the previous result,

p(y1, y2|x) = 0.3NM(—2;0,2)N(x; —1,0.5) + 0.2N(—2; 5,2)N(x; 1.5,0.5)
+0.3NV(4;0,2)N (x;2,0.5) + 0.2N(4;5,2)N (x; 4.5,0.5).

So we have the overall likelihood is a mixture of four Gaussians

@ Let's repeat our discussion but with n observations instead. The overall likelihood will be a
mixture of 2" Gaussians!

e Therefore, the computation will quickly become intractable as the number of observations
increases
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Explosion of Gaussians

@ The last step involves computing products of Gaussians but we have learned it in previous
sections. Using the previous result,

p(y1, y2|x) = 0.3NM(—2;0,2)N(x; —1,0.5) + 0.2N(—2; 5,2)N(x; 1.5,0.5)
+0.3NV(4;0,2)N (x;2,0.5) + 0.2N(4;5,2)N (x; 4.5,0.5).

So we have the overall likelihood is a mixture of four Gaussians
@ Let's repeat our discussion but with n observations instead. The overall likelihood will be a
mixture of 2" Gaussians!

e Therefore, the computation will quickly become intractable as the number of observations
increases

o Fortunately, in reality, some of the Gaussians in the mixture tend to have a very small weight
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Reduce number of components in Gaussian mixtures

@ For instance, in our previous numerical example, if we continue our numerical
computation for the two observation example, we have

p(y1, y2|x) = 0.4163N(x; —1,0.5) + 3.5234 x 107°N/(x; 1.5,0.5)
+ 0.0202N/ (x; 2,0.5) + 0.5734N/(x; 4.5, 0.5).
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Reduce number of components in Gaussian mixtures

@ For instance, in our previous numerical example, if we continue our numerical
computation for the two observation example, we have

p(y1, y2|x) = 0.4163N(x; —1,0.5) + 3.5234 x 107°N/(x; 1.5,0.5)
+ 0.0202N/ (x; 2,0.5) + 0.5734N/(x; 4.5, 0.5).

@ We can see that the weight for the component at mean 1.5 is very small. And the
component at mean 2 has a rather small weight also.
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Reduce number of components in Gaussian mixtures

@ For instance, in our previous numerical example, if we continue our numerical
computation for the two observation example, we have

p(y1, y2|x) = 0.4163N(x; —1,0.5) + 3.5234 x 107°N/(x; 1.5,0.5)
+ 0.0202N/ (x; 2,0.5) + 0.5734N/(x; 4.5, 0.5).

@ We can see that the weight for the component at mean 1.5 is very small. And the
component at mean 2 has a rather small weight also.

@ Even with the four Gaussian components, the overall likelihood is essentially just a
bimodal distribution as shown in the figure below
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Reduce number of components in Gaussian mixtures

@ Therefore, we may approximate p(y1, y2|x) with only two of its original component as
0.4163/(0.4163 + 0.5734)N(x; —1,0.5) + 0.5734/(0.4163 + 0.5734)\/(x; 4.5,0.5) =
0.4206N (x; —1,0.5) 4+ 0.5794N/(x; 4.5,0.5)
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Reduce number of components in Gaussian mixtures

@ Therefore, we may approximate p(y1, y2|x) with only two of its original component as
0.4163/(0.4163 + 0.5734)N(x; —1,0.5) + 0.5734/(0.4163 + 0.5734)\/(x; 4.5,0.5) =
0.4206N (x; —1,0.5) 4+ 0.5794N/(x; 4.5,0.5)

@ However, it is not always a good approximation strategy just to dump away the small components
in a Gaussian mixture
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Another example

Consider

p(x) = 0.IN(x; —0.2,1) + 0.IN(x; —0.1,1) + 0.IN(x; 0, 1) 4+ 0.1N(x; 0.1, 1)
+0.1M(x;0.2,1) + 0.5 (x; 5, 1).
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Another example

Consider

p(x) = 0.1N(x; —0.2,1) + 0.1V (x; —0.1,1) + 0.1V (x;0,1) + 0.1N/(x; 0.1, 1)
+ 0.1V (x;0.2,1) + 0.5N(x; 5,1).
@ Let say we want to reduce p(x) to only a mixture of two Gaussians. It is tempting to just

dumping four smallest one and renormalized the weight. For example, if we choose to remove the
first four components, we have

p(x) = 1/6N(x;0.2,1) +5/6/N(x;5,1)
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Another example

Consider

p(x) = 0.IN(x; —0.2,1) + 0.IN(x; —0.1,1) + 0.IN(x; 0, 1) 4+ 0.1N(x; 0.1, 1)
+ 0.1V (x;0.2,1) + 0.5N(x; 5,1).
@ Let say we want to reduce p(x) to only a mixture of two Gaussians. It is tempting to just
dumping four smallest one and renormalized the weight. For example, if we choose to remove the

first four components, we have

p(x) = 1/6N(x;0.2,1) +5/6/N(x;5,1)

@ The approximation p(x) is significantly different from p(x) as shown below
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Merging components

@ The problem is that while the first five components are all relatively small compared to
the last one, they are all quite similar and their combined contribution is comparable to
the latter
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Merging components

@ The problem is that while the first five components are all relatively small compared to
the last one, they are all quite similar and their combined contribution is comparable to
the latter

@ Actually the first five components are so similar that their combined contribution can be
accurately modeled as one Gaussian
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Merging components

@ The problem is that while the first five components are all relatively small compared to
the last one, they are all quite similar and their combined contribution is comparable to
the latter

@ Actually the first five components are so similar that their combined contribution can be
accurately modeled as one Gaussian

@ So rather than discarding the components, one can get a much more accurate

approximation by merging them. The approximation is illustrated as p(x) in the figure
below
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Merging components

To successfully obtain such approximation p(x), we have to answer two questions:
@ which components to merge?

@ how to merge them?

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming November 5, 2023



Mixture of Gaussians Mixture of “Gaussians”

Which Components to Merge?

It is reasonable to pick similar components to merge. The question is how do will gauge the
similarity between two components.

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming November 5, 2023



Mixture of Gaussians Mixture of “Gaussians”

Which Components to Merge?

It is reasonable to pick similar components to merge. The question is how do will gauge the
similarity between two components.

e Consider two pdfs p(x) and g(x), note that we can define an inner product of p(x) and
q(x) by

(p(x). q(x)) = / p(x)q(x)dx
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Which Components to Merge?

It is reasonable to pick similar components to merge. The question is how do will gauge the
similarity between two components.

e Consider two pdfs p(x) and g(x), note that we can define an inner product of p(x) and
q(x) by

(p(x). q(x)) = / p(x)q(x)dx

@ Note that the inner product is well defined and (p(x), p(x)) > 0
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Which Components to Merge?

It is reasonable to pick similar components to merge. The question is how do will gauge the
similarity between two components.

e Consider two pdfs p(x) and g(x), note that we can define an inner product of p(x) and
q(x) by

(p(x). q(x)) = / p(x)q(x)dx

@ Note that the inner product is well defined and (p(x), p(x)) > 0
@ By Cauchy-Schwartz inequality,

(p(x), a(x)) B )G LG L S
V(p(x), p(x))(q(x), q(x \/fp (x)2dx [ q(x)?dx -
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Which Components to Merge?

It is reasonable to pick similar components to merge. The question is how do will gauge the
similarity between two components.

e Consider two pdfs p(x) and g(x), note that we can define an inner product of p(x) and
q(x) by

(p(x). q(x)) = / p(x)q(x)dx

@ Note that the inner product is well defined and (p(x), p(x)) > 0
@ By Cauchy-Schwartz inequality,

(p(x), a(x)) B )G LG L S
V(p(x), p(x))(q(x), q(x \/fp (x)2dx [ q(x)?dx -

@ The inner product maximizes (= 1) when p(x) = g(x). This suggests a very reasonable
similarity measure between two pdfs
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Similarity measure

@ Let's define

J p(x)q(x)dx

Sim(p(x), a(x)) = \/ [ p(x)2dx [ g(x)2dx
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Similarity measure

@ Let's define
J p(x)q(x)dx
VJ p(x)2dx [ q(x)2dx

e In particular, if p(x) = N(x; pup, Xp) and q(x) = N(x; pq, Xq), we have (please verify)

Sim(p(x), q(x)) =

N(pr' Hq, ZP + ZCI)
VN(0;0,2%,)N(0;0,2%,)

Sim(N (pp, Lp), N (g, q)) =

which can be computed very easily and is equal to one only when means and covariances
are the same
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How to Merge Components?

Say we have n components N'(p1,X1), N(p2,X2), -+, N(tn, Xn) with weights
wi, Wo, - -+, Wy, What should the combined component be like?

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming November 5, 2023



Mixture of Gaussians Mixture of “Gaussians”

How to Merge Components?

Say we have n components N'(p1,X1), N(p2,X2), -+, N(tn, Xn) with weights
wi, Wo, - -+, Wy, What should the combined component be like?
e Combined component weight should equal to total weight >"7 ; w;
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How to Merge Components?

Say we have n components N'(p1,X1), N(p2,X2), -+, N(tn, Xn) with weights
wi, Wo, - -+, Wy, What should the combined component be like?
e Combined component weight should equal to total weight >"7 ; w;

Wi

@ Combined mean will simply be 27:1 W;p;, where w; = ST oW
i=1 "
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How to Merge Components?

Say we have n components N'(p1,X1), N(p2,X2), -+, N(tn, Xn) with weights
wi, Wo, - -+, Wy, What should the combined component be like?
e Combined component weight should equal to total weight >"7 ; w;

Wi

@ Combined mean will simply be 27:1 W;p;, where w; = ST oW
i=1 "

e For combined covariance, it may be tempting to approximate it as 7 ; W;X;.
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How to Merge Components?

Say we have n components N'(p1,X1), N(p2,X2), -+, N(tn, Xn) with weights
wi, Wo, - -+, Wy, What should the combined component be like?
e Combined component weight should equal to total weight >"7 ; w;

Wi

@ Combined mean will simply be 27:1 W;p;, where w; = ST oW
i=1 "

e For combined covariance, it may be tempting to approximate it as 7 ; W;X;.
e However, it is an underestimate
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How to Merge Components?

Say we have n components N'(p1,X1), N(p2,X2), -+, N(tn, Xn) with weights
wi, Wo, - -+, Wy, What should the combined component be like?
e Combined component weight should equal to total weight >"7 ; w;
o Combined mean will simply be >"7" ; Wjp;, where W; = %
e For combined covariance, it may be tempting to approximate it as 7 ; W;X;.
e However, it is an underestimate
o Because the weighted sum only counted the contribution of variation among each
component, it did not take into account the variation due to different means across
components.
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How to Merge Components?

Say we have n components N'(p1,X1), N(p2,X2), -+, N(tn, Xn) with weights
wi, Wo, - -+, Wy, What should the combined component be like?

e Combined component weight should equal to total weight >"7 ; w;
Wi

@ Combined mean will simply be 27:1 W;p;, where w; = ST oW
i=1 "

e For combined covariance, it may be tempting to approximate it as 7 ; W;X;.
e However, it is an underestimate
o Because the weighted sum only counted the contribution of variation among each
component, it did not take into account the variation due to different means across

components.
o Instead, let's denote X as the variable sampled from the mixture. That is, X ~ N (i, X;)

with probability ;. Then, we have (please verify)
Y = E[XXT] - E[X]E[X]T

n
= wi(%i + pip]) Zzw,ku,
i=1

i=1 j=1
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Now, go back to our previous numerical example

@ Recall that p(x) = 0.1V (x; —0.2,1) + 0.1V (x; —0.1,1) + 0.1V (x; 0,1) +
0.1NM(x;0.1,1) + 0.1N(x;0.2,1) + 0.5N(x;5,1)
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Mixture of Gaussians Mixture of “Gaussians”

Now, go back to our previous numerical example
@ Recall that p(x) = 0.1N(x; —0.2,1) + 0.1V (x; —0.1,1) + 0.1N(x;0,1) +
0.1NM(x;0.1,1) + 0.1N(x;0.2,1) + 0.5N(x;5,1)
@ If we merge the five smallest components (one can easily check that they are also more
similar to each other than to the last component), we have
p(x) = 0.5N(x;0,1.02) 4+ 0.5N(x;5,1) as shown again below. The approximate pdf is
virtually indistinguishable from the original

November 5, 2023
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Review multivariate normal

@ Marginalization of a normal distribution is still a normal distribution
@ Conditioning of normal distribution:
X[y ~ N(px + Zxy ey (¥ — #v), Txx — Zxy Zyy Zyx)
@ Product of normal distribution:
N(Yl; X, ZY1 )N(y2; X, zYz) =
N(y1:y2: Ty, + Ty )N (X (Ay, + Av,) HAv,y2 + Avyy), (Ay, +Ay,) ™)
@ Division of normal distribution:

N p1, L) Nxp, (AL —A)™1)

N(x; 2, 22)  N(poi e, AE+ (M — Ag)~L)

where = (Ay — Ap) (A1 — Aop)
@ Similarity measure

' N(ppipg Tp+ %
Sim(N (tp, £p), N (g, Zq)) (Bpi g Tp + Zq)

N VN(0;0,2%,)N(0;0,2%,)’
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Normal distribution revisit

For a univariate normal random variable, the pdf is given by

Norm(x|p, 0%) =

with
E[X|u,0%] = p,

E[(X = p)?|u, 0% = 0,

Recall that A = % is the precision parameter that simplifies computations in many cases
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Conjugate prior of normal distribution for fixed o>

Consider o2 fixed and p as the model parameter, then the posterior probability is given by

p(ulx; o) o p(p, x; 0°)
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Conjugate prior of normal distribution for fixed o>

Consider o2 fixed and p as the model parameter, then the posterior probability is given by

p(ulx; o) o p(p, x; 0°)
=p(p)Norm(x|p; o°)
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Conjugate prior of normal distribution for fixed o>

Consider o2 fixed and p as the model parameter, then the posterior probability is given by

p(ulx; o) o p(p, x; 0°)
=p(p)Norm(x|p; o°)

ocp(p)exp (—(X_u)z>

2072
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Conjugate prior of normal distribution for fixed o>

Consider o2 fixed and p as the model parameter, then the posterior probability is given by

p(ulx; o) o p(p, x; 0°)
=p(p)Norm(x|p; o°)

ocp(p)exp (—(X_u)z>

2072

It is apparent that the posterior will keep the same form if p(u) is also normal. Therefore,
normal distribution is the conjugate prior of itself for fixed variance
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Posterior distribution of normal variable for fixed o2

Given prior p(u) = Norm(u|uo, o3) and likelihood Norm(x|u; o?). Let's find the posterior
probability,

p(ulx; a2, po, o5)
= Const - Norm( |0, 03) Norm(x|p; )
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Posterior distribution of normal variable for fixed o2

Given prior p(u) = Norm(u|uo, o3) and likelihood Norm(x|u; o?). Let's find the posterior
probability,

p(/'L|X; 027 Ko, 0(2))
= Const - Norm( |0, 03) Norm(x|p; )
(x—p)? _ (n— uo)Z)

=Const2 - exp | — 5oz 203

=Norm (,u; /1,62) ,
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Posterior distribution of normal variable for fixed o2

Given prior p(u) = Norm(u|uo, o3) and likelihood Norm(x|u; o?). Let's find the posterior
probability,

p(ulx; a2, po, o5)
=Const - Norm(u\uo, ag)Norm(xm; o?)

2 _ 2
=Const2 - exp — (n ZO)
202 20§

—Norm (u ji,5%)
2 2
% 2+ 5. Alternatively, X\ = Ao + A and ji = ~X+ Fto- Note

that we have already came across the more general expression when we studled product of
multivariate normal distribution

where fi = and 52 =
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Conjugate prior of normal distribution for fixed u

Consider p fixed and A as the model parameter

p(x|A; p) ocp(x, A; ) = p(A) Norm(x|A; )
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Conjugate prior of normal distribution for fixed u

Consider p fixed and A as the model parameter

p(x|A; p) ocp(x, A; ) = p(A) Norm(x|A; )

xp(A)V A exp <—A(X2_“)2>
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Conjugate prior of normal distribution for fixed u

Consider p fixed and A as the model parameter

p(x|A; p) ocp(x, A; ) = p(A) Norm(x|A; )

xp(A)V A exp <—A(X2_“)2>

More generally, when we have N observations from the same source,

p(x1, -, xn, A\ ) HNorm Xi|A; 1)
i=1

N N (= p)?
xp(A)A2 exp (—)\Z (,2,u)>

i=1
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Conjugate prior of normal distribution for fixed u

Consider p fixed and A as the model parameter

p(x|A; p) ocp(x, A; ) = p(A) Norm(x|A; )

xp(A)V A exp <—A(X2_“)2>

More generally, when we have N observations from the same source,

p(x1, -, xn, A\ ) HNorm Xi|A; 1)
i=1

N N (= p)?
xp(A)A2 exp (—)\Z (,2,u)>

i=1

From inspection, the conjugate prior should have a form A exp(—bA)
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Mixture of Gaussians Mixture of “Gaussians”

Gamma distribution

The distribution with the desired form described in previous slide turns out to be the Gamma
distribution. Its pdf, mean, and variance (please verify the mean and variance) are given by

1
Gamma(\|a, b) = Ta)ba)\a_lexp(—b)\)

EN =+

Var[A\] = %,

where a,b > 0and A >0

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming November 5, 2023



Mixture of Gaussians Mixture of “Gaussians”

Gamma distribution

The distribution with the desired form described in previous slide turns out to be the Gamma
distribution. Its pdf, mean, and variance (please verify the mean and variance) are given by

1
Gamma(\|a, b) = Ta)ba)\a_lexp(—b)\)

EN =+

Var[A\] = %,

where a,b > 0and A >0
N.B. when a = 1, Gamma reduces to the exponential distribution. When a is integer, it
reduces to Erlang distribution
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Mixture of Gaussians Mixture of “Gaussians”

Posterior distribution of normal variable for fixed u

Posterior probability given Normal likelihood (fixed mean) and Gamma prior

p(Alx, a, b; u) =Constl - Gamma(\|a, b)Norm(x|A; 1)
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Mixture of Gaussians Mixture of “Gaussians”

Posterior distribution of normal variable for fixed

Posterior probability given Normal likelihood (fixed mean) and Gamma prior
p(Alx, a, b; u) =Constl - Gamma(\|a, b)Norm(x|A; 1)

_ )2
=Const2 - A>T exp(—bA\)V A exp (—)\()(2’u)>

=Gamma (z\; a, B) ,

X—

Whereéea—i—%andfﬂ_b_F#

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming November 5, 2023



Mixture of Gaussians

Conjugate prior summary

Mixture of “Gaussians”

Distribution Likelihood p(x|0) Prior p(0) Distribution
Bernoulli (1 — 0)(1=x)gx x (1 —6)a—Dgb—1) Beta
Binomial o (1 —0)N=¥)gx | (1 —g)@-Dpb-1) Beta

Multinomial x 0703207 o 6517105271933~ | Dirichlet

N | X—0)2 )2
(ﬁx(;:jm;z) X exp (—%) X exp (—%) Normal
N | x—p1)? _
(fi;g(TZ) x VOexp (—M) o 02~ Lexp(—b6) Gamma
Poisson x 6% exp(—0) o 02~ Lexp(—bb) Gamma
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Mixture of Gaussians Rate-distortion problem

Rate-distortion problem

XN
Encoder m

A
A,

p(x) Decoder — XN

e We know that H(X) bits are needed on average to represent each sample of a source X
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Mixture of Gaussians Rate-distortion problem

Rate-distortion problem

XN
Encoder m

A
A,

p(x) Decoder — XN

e We know that H(X) bits are needed on average to represent each sample of a source X

e If X is continuous, there is no way to recover X precisely
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Mixture of Gaussians Rate-distortion problem

Rate-distortion problem

p(x)

XN m

Decoder

A,

Encoder

A

— XN

e We know that H(X) bits are needed on average to represent each sample of a source X

e If X is continuous, there is no way to recover X precisely

o Let say we are satisfied as long as we can recover X up to certain fidelity, how many bits

are needed per sample?

S. Cheng (OU-ECE)
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Mixture of Gaussians Rate-distortion problem

Rate-distortion problem

XN m

p(x) == Encoder Decoder — XN

A,

e We know that H(X) bits are needed on average to represent each sample of a source X

e If X is continuous, there is no way to recover X precisely

o Let say we are satisfied as long as we can recover X up to certain fidelity, how many bits
are needed per sample?

@ There is an apparent rate (bits per sample) and distortion (fidelity) trade-off. We expect
that needed rate is smaller if we allow a lower fidelity (higher distortion). What we are
really interested in is a rate-distortion function
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Mixture of Gaussians Rate-distortion problem

Rate-distortion function

me{1,2,---, M}

XN -
p(x) Encoder |-~ Decoder [— XN

A,
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Mixture of Gaussians Rate-distortion problem

Rate-distortion function

me{1,2,---, M}

XN -
p(x) Encoder |-~ Decoder [— XN
_ logM _ ON yNy L ¢
R=—7 D=Ed&" x")]=F .E d(Xi, X;)
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Mixture of Gaussians Rate-distortion problem

Rate-distortion function

me{1,2,---, M}

XN -
p(x) Encoder |-~ Decoder [— XN
_ logM _ ON yNy L ¢
R==7 D=Ed&" x")]= N§ d(Xi, X;)

e Maybe you can guess at this point. For given X and X, the required rate is simply /(X; X)
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Mixture of Gaussians Rate-distortion problem

Rate-distortion function

me{1,2,---, M}

XN -
p(x) Encoder |-~ Decoder [— XN
_ logM _ ON yNy L ¢
R==7 D=Ed&" x")]= N§ d(Xi, X;)

e Maybe you can guess at this point. For given X and X, the required rate is simply /(X; X)
@ How is it related to the distortion though?
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Mixture of Gaussians Rate-distortion problem

Rate-distortion function

me{1,2,---, M}

XN m N

p(x) Encoder —| Decoder — XN
_ logM _ ON yNy L »
R=—y~  D=E[dX"X )]_de(X,,X,)

e Maybe you can guess at this point. For given X and X, the required rate is simply /(X; X)

@ How is it related to the distortion though?

o Note that we have a freedom to pick p(X|x) such that E[d(XN, XN)] (less than or) equal
to the desired D
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Mixture of Gaussians Rate-distortion problem

Rate-distortion function

me{1,2,---, M}

XN -
p(x) Encoder |-~ Decoder [— XN
_ logM _ ON yNy L ¢
R=—7 D=Ed&" x")]=F .E d(Xi, X;)

e Maybe you can guess at this point. For given X and X, the required rate is simply /(X; X)

@ How is it related to the distortion though?

o Note that we have a freedom to pick p(X|x) such that E[d(XN, XN)] (less than or) equal
to the desired D

@ Therefore given D, the rate-distortion function is simply

R(D) = miny s /(X; X)
such that E[d(XN,XN)] <D
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Mixture of Gaussians Rate-distortion problem

Binary symmetric source

@ Let’s try to compress outcome from a fair coin toss
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Mixture of Gaussians Rate-distortion problem

Binary symmetric source

@ Let’s try to compress outcome from a fair coin toss

@ We know that we need 1 bit to compress the outcome losslessly, what if we have only 0.5
bit per sample?
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Mixture of Gaussians Rate-distortion problem

Binary symmetric source

@ Let’s try to compress outcome from a fair coin toss

@ We know that we need 1 bit to compress the outcome losslessly, what if we have only 0.5
bit per sample?

@ In this case, we can't losslessly recover the outcome. But how good will we do?

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming November 5, 2023



Mixture of Gaussians Rate-distortion problem

Binary symmetric source

@ Let’s try to compress outcome from a fair coin toss

@ We know that we need 1 bit to compress the outcome losslessly, what if we have only 0.5
bit per sample?

@ In this case, we can't losslessly recover the outcome. But how good will we do?

@ We need to introduce a distortion measure first. Note that we have two types of errors:
taking head as tail and taking tail as head. A natural measure will just weights both error

equally

d(X =
d(X =

d(X
d(X

T)

H,
H, X = H)

><> ><>
||

><> ><>
H ||
H

November 5, 2023
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Mixture of Gaussians Rate-distortion problem

Binary symmetric source

Let's try to compress outcome from a fair coin toss

We know that we need 1 bit to compress the outcome losslessly, what if we have only 0.5
bit per sample?

In this case, we can't losslessly recover the outcome. But how good will we do?

We need to introduce a distortion measure first. Note that we have two types of errors:
taking head as tail and taking tail as head. A natural measure will just weights both error

equally
T)

H)

d(X
d(X

d(X =
d(X =

H,
H,

><> ><>
||

I
I
I
><> ><>
H ||
H ||

If rate is > 1 bit, we know that distortion is 0. How about rate is 0, what distortion
suppose to be?
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Mixture of Gaussians Rate-distortion problem

Binary symmetric source

@ Let’s try to compress outcome from a fair coin toss

@ We know that we need 1 bit to compress the outcome losslessly, what if we have only 0.5
bit per sample?

@ In this case, we can't losslessly recover the outcome. But how good will we do?

@ We need to introduce a distortion measure first. Note that we have two types of errors:
taking head as tail and taking tail as head. A natural measure will just weights both error

equally
T)

H)

d(X
d(X

d(X =

H,
H, d(:

><> ><>
||

><> ><>
H ||
H

o If rate is > 1 bit, we know that distortion is 0. How about rate is 0, what distortion
suppose to be?

@ If decoders know nothing, the best bet will be just always decode head (or tail). Then
D = E[d(X,H)] =05
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Mixture of Gaussians Rate-distortion problem

Binary symmetric source

For 0 < D < 0.5, denote Z as the prediction error such that X = X+2Z
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Mixture of Gaussians Rate-distortion problem

Binary symmetric source

For 0 < D < 0.5, denote Z as the prediction error such that X = X + Z. Note that
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Mixture of Gaussians Rate-distortion problem

Binary symmetric source

For 0 < D < 0.5, denote Z as the prediction error such that X = X + Z. Note that

R = miny (s /(X; X) = minys ) H(X) — H(X|X)
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Mixture of Gaussians Rate-distortion problem

Binary symmetric source

For 0 < D < 0.5, denote Z as the prediction error such that X = X + Z. Note that

R = miny (s /(X; X) = minys ) H(X) — H(X|X)
= m/np(;dx)H( ) H(X + Z’X)
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Mixture of Gaussians Rate-distortion problem

Binary symmetric source

For 0 < D < 0.5, denote Z as the prediction error such that X = X + Z. Note that

R = miny (s /(X; X) = minys ) H(X) — H(X|X)
= mm,,wx)H( ) — H(X + 7|X)
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Mixture of Gaussians Rate-distortion problem

Binary symmetric source

For 0 < D < 0.5, denote Z as the prediction error such that X = X + Z. Note that

><>
5
Il

> 3
f
T

(X) = H(X|X)
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Mixture of Gaussians Rate-distortion problem

Binary symmetric source

For 0 < D < 0.5, denote Z as the prediction error such that X = X + Z. Note that

Pr(Z=1)=D
R = miny (s /(X; X) = minys ) H(X) — H(X|X)
= miny(s0H(X) — HX + Z|X)
= minp(X‘X)H(X) H(Z’)gz
= minp(X‘X)H( ) H(Z) 06
—1— H(D) 04"
0.2
D
0.1 0.2 03 04 05

N.B. The above can be modelled by X going through a BSC with cross-over probability D
with the output X. Such BSC is often called a test channel. Note that the channel has to be
symmetric. Otherwise, Z will not be independent of X
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Lecture 13

Lecture 13
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Lecture 13 Review

Previously...

@ Converse Proof of Channel Coding Theorem
@ Non-white Gaussian Channel

@ Rate-distortion problems
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Lecture 13 Overview

This time

@ Proof of the Rate-distortion Theorem
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Lecture 13 Rate-distortion problem

Gaussian source

o Consider X ~ N(0,0%). To determine the rate-distortion function, we need first to
decide the distortion measure. An intuitive will be just the square error. That is,

d(X,X) = (X = X)?
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Lecture 13 Rate-distortion problem

Gaussian source

o Consider X ~ N(0,0%). To determine the rate-distortion function, we need first to
decide the distortion measure. An intuitive will be just the square error. That is,

d(X,X) = (X = X)?

e Given E[d(X, X)] = D, what is the minimum rate required?
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Lecture 13 Rate-distortion problem

Gaussian source

o Consider X ~ N(0,0%). To determine the rate-distortion function, we need first to
decide the distortion measure. An intuitive will be just the square error. That is,

d(X,X) = (X = X)?

e Given E[d(X, X)] = D, what is the minimum rate required?
o Like before, let us denote Z = X — X as the prediction error. Note that Var(Z) =D
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Lecture 13 Rate-distortion problem

Gaussian source

o Consider X ~ N(0,0%). To determine the rate-distortion function, we need first to
decide the distortion measure. An intuitive will be just the square error. That is,

d(X,X) = (X = X)?

e Given E[d(X, X)] = D, what is the minimum rate required?
o Like before, let us denote Z = X — X as the prediction error. Note that Var(Z) =D

R(D) = m/np(X|X)I(X X) = minpz1h(X) — h(X|X)
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Lecture 13 Rate-distortion problem

Gaussian source

o Consider X ~ N(0,0%). To determine the rate-distortion function, we need first to
decide the distortion measure. An intuitive will be just the square error. That is,

d(X, X) = (X = X)?
e Given E[d(X, X)] = D, what is the minimum rate required?
o Like before, let us denote Z = X — X as the prediction error. Note that Var(Z) =D
R(D) = m/np(X|X)I(X X) = minpz1h(X) — h(X|X)
= m/np(;<|x)h(X) — h(Z + X|X)
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Lecture 13 Rate-distortion problem

Gaussian source

o Consider X ~ N(0,0%). To determine the rate-distortion function, we need first to
decide the distortion measure. An intuitive will be just the square error. That is,

d(X,X) = (X = X)?

e Given E[d(X, X)] = D, what is the minimum rate required?
o Like before, let us denote Z = X — X as the prediction error. Note that Var(Z) =D

R(D) = m/np(X|X)I(X X) = minpz1h(X) — h(X|X)
= m/np(;<|x)h(X) — h(Z + X|X)
= minp(;<|x)h(X) — h(Z‘X)
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Lecture 13 Rate-distortion problem

Gaussian source

o Consider X ~ N(0,0%). To determine the rate-distortion function, we need first to
decide the distortion measure. An intuitive will be just the square error. That is,

d(X, X) = (X = X)?
e Given E[d(X, X)] = D, what is the minimum rate required?
o Like before, let us denote Z = X — X as the prediction error. Note that Var(Z) =D
R(D) = min (X|X)I(X X) = minpz1h(X) — h(X|X)
= m/np(;<|x)h(X) — h(Z + X|X)
= minp(;<|x)h(X) — h(Z‘X)
= minp(;dx)h(X) — h(Z)
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Lecture 13 Rate-distortion problem

Gaussian source

o Consider X ~ N(0,0%). To determine the rate-distortion function, we need first to
decide the distortion measure. An intuitive will be just the square error. That is,

d(X,X) = (X = X)?

e Given E[d(X, X)] = D, what is the minimum rate required?
o Like before, let us denote Z = X — X as the prediction error. Note that Var(Z) =D

R(D) = m/np(X|X)I(X X) = minpz1h(X) — h(X|X)
= m/np(;<|x)h(X) — h(Z + X|X)
= minp(;<|x)h(X) — h(Z‘X)
= minp(;dx)h(X) — h(Z)
— 1 | 2
=3%p
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Lecture 13 Rate-distortion Theorem

Forward proof

Forward statement

Given distortion constraint D, we can find scheme such that the require rate is no bigger than
R(D) = min I(X; X),
P(X|x)

where the X introduced by p(%|x) should satisfy E[d(X,X)] < D
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Lecture 13 Rate-distortion Theorem

Forward proof

Forward statement

Given distortion constraint D, we can find scheme such that the require rate is no bigger than
R(D) = min I(X; X),
p(X1x)

where the X introduced by p(%|x) should satisfy E[d(X,X)] < D

Code book construction

Let say p*(X|x) is the distribution that achieve the rate-distortion optimiation problem.
Randomly construct 2R codewords as follows
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Lecture 13 Rate-distortion Theorem

Forward proof

Forward statement

Given distortion constraint D, we can find scheme such that the require rate is no bigger than
R(D) = min I(X; X),
p(X1x)

where the X introduced by p(%|x) should satisfy E[d(X,X)] < D

Code book construction

Let say p*(X|x) is the distribution that achieve the rate-distortion optimiation problem.
Randomly construct 2R codewords as follows

e Sample X from the source and pass X into p*(%|x) to obtain X
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Lecture 13 Rate-distortion Theorem

Forward proof

Forward statement

Given distortion constraint D, we can find scheme such that the require rate is no bigger than
R(D) = min I(X; X),
p(X1x)

where the X introduced by p(%|x) should satisfy E[d(X,X)] < D

Code book construction

Let say p*(X|x) is the distribution that achieve the rate-distortion optimiation problem.
Randomly construct 2R codewords as follows

e Sample X from the source and pass X into p*(%|x) to obtain X
@ Repeat this N time to get a length-N codeword
@ Store the i-th codeword as C(/)
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Lecture 13 Rate-distortion Theorem

Forward proof

Forward statement

Given distortion constraint D, we can find scheme such that the require rate is no bigger than
R(D) = min I(X; X),
p(X1x)

where the X introduced by p(%|x) should satisfy E[d(X,X)] < D

Code book construction

Let say p*(X|x) is the distribution that achieve the rate-distortion optimiation problem.
Randomly construct 2R codewords as follows

e Sample X from the source and pass X into p*(%|x) to obtain X
@ Repeat this N time to get a length-N codeword
@ Store the i-th codeword as C(/)

NR
Note that the code rate is % = R as desired
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Lecture 13 Rate-distortion Theorem

Covering lemma and distortion typical sequences

We say joint typical sequences xV and £/ are distortion typical ((x",&V) € AN ) if
|d(x",%M) — E[d(X, X)]| < €
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Lecture 13 Rate-distortion Theorem

Covering lemma and distortion typical sequences

We say joint typical sequences xV and £/ are distortion typical ((x",&V) € AN ) if
|d(x", %) — E[d(X, X)]| < €
@ By LLN, every pair of sequences sampled from the joint source will virtually be distortion
typical
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Lecture 13 Rate-distortion Theorem

Covering lemma and distortion typical sequences

We say joint typical sequences xV and £/ are distortion typical ((x",&V) € AN ) if
|d(x", %) — E[d(X, X)]| < €
@ By LLN, every pair of sequences sampled from the joint source will virtually be distortion
typical

e Consequently, (1 — 6)2N(H(X’)A<)_6) < |A(’.X€| < oN(H(XX)+€) a5 before

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming November 5, 2023



Lecture 13 Rate-distortion Theorem

Covering lemma and distortion typical sequences

We say joint typical sequences x"V and %" are distortion typical ((xV,xN) € AQ{E) if
|d(xV,%N) — E[d(X, X)]| < e
@ By LLN, every pair of sequences sampled from the joint source will virtually be distortion
typical
e Consequently, (1 — 6)2N(H(X’)A<)_6) < |A(’.X€| < oN(H(XX)+€) a5 before

@ For two independently drawn sequences XN and XV, the probability for them to be
distortion typical will be just the same as before. In particular,
(1 - §)2-MIXX)=2) < pr((XM, kM) € AY, (X, X))
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Lecture 13 Rate-distortion Theorem

Covering lemma for distortion typical sequences
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Lecture 13 Rate-distortion Theorem

Covering lemma for distortion typical sequences

Pr((XN, X" (m)) ¢ AE,Z)(X,)A() for all m)
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Lecture 13 Rate-distortion Theorem

Covering lemma for distortion typical sequences

Pr((XN, X" (m)) ¢ AE,Z)(X,)A() for all m)
M
=TT Pr(x™,. xM(m)) ¢ AL (X, X))

m=1
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Lecture 13 Rate-distortion Theorem

Covering lemma for distortion typical sequences

Pr((XN, X" (m)) ¢ AE,Z)(X,)A() for all m)

Pr((XV, XM (m)) ¢ ANV (X, X))

-

3
Il
N

=

[1 — Pr((X",X"(m)) Agﬁ)(X,X))}

3
Il
=
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Lecture 13 Rate-distortion Theorem

Covering lemma for distortion typical sequences

Pr((XN, XN (m ))¢.A ( X) for all m)

M
=T Pr((x™, X"M(m)) ¢ ALV (X, X))

=

[1 — Pr((X",X"(m)) Agﬁ)(X,X))}

S( _ (1 _ 5)2—N(I(5(;X)+3e))M
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Lecture 13 Rate-distortion Theorem

Covering lemma for distortion typical sequences

Pr((XN, XN (m ))¢.A ( X) for all m)

M
=T Pr((x™, X"M(m)) ¢ ALV (X, X)) 0
-2
(1= Pr((xM, XM(m)) € AKX _a |

=

S( _ (1 _ 5)2—N(I(5(;X)+3e))M
< exp(—M(l - 5)27N(I()A(;X)+3e))
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Lecture 13 Rate-distortion Theorem

Covering lemma for distortion typical sequences

Pr((XN, XN (m ))¢.A ( X) for all m)

M
=TT Pr((x™, XM (m)) ¢ AYD (X, X)) 0
m=1 s
M
=11 [1 — Pr((X",XN(m)) € Ag@(x,x»} 4l
e i 0 2 4
<(1— (1= §)2~ NUXX)+3 M R
<exp(—M(1 - 5)2*N(I()A<;X)+3e)) m X

<exp(—(1 — §)2-NUKX)=R+36)) 5 0 a5 N — 00 and R > I(X; X) + 3¢
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Lecture 13 Rate-distortion Theorem

Forward proof

Encoding

Given input XV, find out of the codewords the one that is jointly typical with XV. And say, if
the codeword is C(i), output index i to the decoder
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Lecture 13 Rate-distortion Theorem

Forward proof

Encoding

Given input XV, find out of the codewords the one that is jointly typical with XV. And say, if
the codeword is C(i), output index i to the decoder

Decoding
Upon receiving the index i, simply output C(/)

Performance analysis

o First of all, the only point of failure lies on encoding, that is when the encoder cannot
find a codeword jointly typical with X"

e By covering Lemma, encoding failure is negligible as long as R > I(X; X)

o If encoding is successful, C(i) and X" should be distortion typical. Therefore,
E[d(C(i); XM)] ~ E[d(X, X)] < D as desired
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Lecture 13 Rate-distortion Theorem

Converse proof

Converse statement

If rate is smaller than R(D), distortion will be larger than D
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Lecture 13 Rate-distortion Theorem

Converse proof

Converse statement
If rate is smaller than R(D), distortion will be larger than D

Alternative statement

If distortion is less than or equal to D, the rate must be larger than R(D)

In the proof, we need to use the convex property of R(D). That is,
R(aDy + (1 — a)D3) > aR(D1) + (1 — a)R(D2)

So we will digress a little bit to show this convex property first
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Lecture 13 Rate-distortion Theorem

Log-sum inequality

Log-sum inequality

For any a1, --- ,a, >0 and by, -+, b, > 0, we have

Z aj Iog2 Z aj Iog2 b
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For any a1, --- ,a, >0 and by, -+, b, > 0, we have

Z aj |og2 <Z a,) |og2 b
_

We can define two distributions p(x) and g(x) with p(x;) = Z 5 and g(x;) = E 5+ Since

p(x) and g(x) are both non-negative and sum up to 1, they are indeed valid probability mass
functions.
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We can define two distributions p(x) and g(x) with p(x;) = Z 5 and g(x;) = E 5+ Since
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Log-sum inequality

Log-sum inequality

For any a1, --- ,a, >0 and by, -+, b, > 0, we have

Z aj |og2 <Z a,) |og2
_

We can define two distributions p(x) and g(x) with p(x;) = Z 5 and g(x;) = E 5+ Since

p(x) and g(x) are both non-negative and sum up to 1, they are indeed valid probability mass
functions. Then, we have

0 < KL(p(x)lla(x)) = 3 _ p(xi)log, 5&3

aj aj Z,- aj
N Z Zi dj <|0g2 E, ~ o2 Zi bi>

= = =

8
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Lecture 13 Rate-distortion Theorem

Convexity of KL-Divergence

For any four distributions pi(-), p2(+), g1(-), and g2(-), we have

MKL(p1]lg1) + Mo KL(p2||g2) > KL(A1p1 + Aop2||A1g1 + A2go),
where A;, Ao > 0and A\ + X =1
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For any four distributions pi(-), p2(+), g1(-), and g2(-), we have

MKL(p1]lg1) + Mo KL(p2||g2) > KL(A1p1 + Aop2||A1g1 + A2go),
where A;, Ao > 0and A\ + X =1
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Convexity of KL-Divergence

For any four distributions pi(-), p2(+), g1(-), and g2(-), we have

MKL(p1]lg1) + Mo KL(p2||g2) > KL(A1p1 + Aop2||A1g1 + A2go),
where A;, Ao > 0and A\ + X =1

M KL(p1|lgr) + Ao KL(p2]g2)

=21 Y pi(x) log 2 X)+/\ Zp

xeX )
- Z Arpr(x) |og 1&3 + Aop2(x) log )\zngx
x€X

)
A1pi(x) + Aopa(x) . .
> );((Alpl(X) + A2p2(x)) log M a100) £ Aaa(x) (by log-sum inequality)

=KL(A1p1 + Xop2||A1g1 + X2g2)
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Lecture 13 Rate-distortion Theorem

Convexity of /(X; Y) with respect to p(y|x)

For any random variables X and Y, /(X; Y) is a convex function of p(y|x) for a fixed p(x)
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Thomas and will be omitted here
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For any random variables X and Y, /(X; Y) is a convex function of p(y|x) for a fixed p(x)

I(X;Y) is concave with respect to p(x) for fixed p(y|x) though. A proof is given in Cover and
Thomas and will be omitted here

Let us write
I(X;Y) = KL(p(x, y)lIp(x)p(y))
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Convexity of /(X; Y) with respect to p(y|x)
For any random variables X and Y, /(X; Y) is a convex function of p(y|x) for a fixed p(x)

I(X;Y) is concave with respect to p(x) for fixed p(y|x) though. A proof is given in Cover and
Thomas and will be omitted here

Let us write
I(X;Y) = KL(p(x, y)lIp(x)p(y))
= KL(p(x)p(y1X)||p(x) Y- p()P(yIx)) 2 F(p(yIx)

We want to show
M (pr(y[x)) + (1 = N f(p2(y[x)) = f(Apr(y|x) + (1 = N)p2(y[x))
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Lecture 13 Rate-distortion Theorem

Proof

Continue from previous slide, we have

A (p(y1x)) + (1 = M (pa(y 1))
“AKL(p()p2(y1x) () Y p(x)pr(y1x) )

+ (1= MKL(p(P(y1)] | p() Y P2y 1))
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Continue from previous slide, we have

A (p(y1x)) + (1 = M (pa(y 1))
“AKL(p()p2(y1x) () Y p(x)pr(y1x) )

+ (1= MKL(p(p2(y1x) () > p(x)Pay1))
zKL(Ap<x)p1(y\x) + (1= Ny 1) 3000 3 plc)on )
+(1-2) Zp pz(y\X)
=KL(p(x>[Ap1(y\x) + (1= D219 260 PPty + (1 = ealyi])

=f(Ap(y[x) + (1 = A)pa(y[x))
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Lecture 13 Rate-distortion Theorem

Convexity of R(D)

Recall that R(D) = minpsx) /(X X) with E[d(X, X)] < D
We want to show that

R(AD1 + (1 — \)D2) < AR(D1) + (1 — N)R(D2)
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time share between the two distributions. That is, using pj(X|x) with X fraction of time and
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We want to show that
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Therefore,
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Recall that R(D) = minpsx) /(X X) with E[d(X, X)] < D
We want to show that
R(AD1 + (1 — \)D2) < AR(D1) + (1 — A)R(D»)

Let pj(k|x) and p3(X|x) be the distributions that optimize R(D;) and R(D3). Let’s try to
time share between the two distributions. That is, using pj(X|x) with X fraction of time and
p5(X|x) with (1 — ) fraction of time. The resulting distortion will be AD; + (1 — \)D>.

Therefore,
AR(D1) + (1 — NR(D2) = M(X1; X) 4+ (1 — M) I(X2; X)
=A(pr(X]x)) + (1 = A)f(pz(X[x)) > f(Ap1(X[x) + ( — A)p2(%[x))

=1(X; X)
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Convexity of R(D)

Recall that R(D) = minpsx) /(X X) with E[d(X, X)] < D
We want to show that
R(AD1 + (1 — \)D2) < AR(D1) + (1 — A)R(D»)

Let pj(k|x) and p3(X|x) be the distributions that optimize R(D;) and R(D3). Let’s try to
time share between the two distributions. That is, using pj(X|x) with X fraction of time and
p5(X|x) with (1 — ) fraction of time. The resulting distortion will be AD; + (1 — \)D>.

Therefore,

S

AR(D1) + (L = MR(D2) = M(X1; X) + (1 = \)I(Xe; X)
=Af(p1(X]x)) + (1 = A)f(pa(X]x)) = F(Ap1(%|x) +( — A)pz(%x))
=I(X; X) > R(AD1 + (1 — \)Dy

where X — ):<1 with \ fraction of time
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Lecture 13 Rate-distortion Theorem

Converse proof

p(x) = Encoder ~ Decoder — XN
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Converse proof

Lecture 13

Rate-distortion Theorem

p(x)

XN

Encoder

m

Decoder

H(M) > H(M) — H(M|XN) = 1(M; XV
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Converse proof

Lecture 13

Rate-distortion Theorem

p(x)

XN

Encoder

m

Decoder

— XN

H(M) > H(M) — HM|XNY = I(M; XN) > I(XN; XN)

S. Cheng (OU-ECE)
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Lecture 13 Rate-distortion Theorem

Converse proof

XN c
p(x) | Encoder — | Decoder XN

H(M) > H(M) — H(M|X") = /(IVI XNy > I(X"’ XNy

= H(XN) — H(XNM| XN = Z H(X, Z H(X;| XN, X1
i=1
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p(x) | Encoder — | Decoder XN
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= H(XN) — H(XNM| XN = Z H(X, Z H(X;| XN, X1
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N
> > HXi) - _Z H(Xi|X;) = Z 1(X;; X:)
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Converse proof

XN c
p(x) | Encoder — | Decoder XN

H(M) > H(M) — H(M|X") = /(IVI XNy > I(X"’ XNy

= H(XN) — H(XNM| XN = Z H(X, Z H(X;| XN, X1
i=1

EN: X)—ZHX|X)_ZIX,,X

o N
Z (E[d(X:, X))]) = N(LZR(E[d(X,-;X-)]O
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Lecture 13 Rate-distortion Theorem

Converse proof

XN c
p(x) | Encoder — | Decoder XN

H(M) > H(M) — H(M|X") = /(IVI XNy > I(X"’ XNy

— HXY) = HOXV XYY = Z H(X, Z H(X;| XN, X1
N
zz X)—ZHX|X)_ZIX,,X

Mz

1

N
R(ETA(X:, X)) = N ( 7 R(EA0 fc-)]))

i=1

N 1 N .
>N ( Z [dX,,X)]) :NR(E[NZd(X;;Xi)

)
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Converse proof

XN c
p(x) | Encoder — | Decoder XN

H(M) > H(M) — H(M|XN) = /(IVI XNy > I(X"’ XM

— HXY) = HOXV XYY = Z H(X, Z H(X;| XN, X1
N
zz X)—ZHX|X)_ZIX,,X

Mz

1

N
R(ETA(X:, X)) = N ( 7 R(EA0 fc-)]))

i=1

1 & . 1 & .
R (N > E[d(X;; x,-)]) = NR (E lN ; d(Xi; Xi)

%

i=1
= NR(E[d(X"; X")]) > NR(D)

)
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Lecture 13 Rate-distortion Theorem

More inequalities

Lemma (Anup Rao, CSE 533, Lecture 2, Lemma 3)
If k < n/2, then S5 (7) < 2nH(k/m)

Consider length-n binary sequence Xi, X, - -- , X, uniformly sampled from a set of binary
sequences with at most k 1's. Since there are Z:I'(:o ('I’) SO many sequences,

H(X1, Xa, -+, Xn) = log Sk, (7). On the other hand,

H(X1, X2, -+, Xa) <314 H(X;) = nH(k/n). Raise both sides with the power of two and we

get the proof

O]
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Lecture 13 Rate-distortion Theorem

Example

Say we have 2" people watching a subset of 2n movies. Each of them have at least watch 90%
of all movies. At least two people actually watch the same set

Let's count how many different subsets a person can watch, which is

2n 0.1(2n)
Z (2”> _ Z (2”) < 920H(0.1) _ o
i—0.9(2n) ' i—o !

since H(0.1) = 0.469 < 0.5.
As we have 2" people, by pigeon hole principle, there must be at least a pair who watched the

same set O
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