
Information theory and probabilistic inference Samuel Cheng

Preface

There has been a strong resurgence of AI in recent years. One core technology of AI is statistical
learning, which aims to automatically “program” machines with data. While the idea can date back
to the ’50s of the last century, the plethora of data and inexpensive computational power allow the
techniques to thrive and penetrate every aspect of our daily lives - customer behavior prediction,
financial market prediction, fully automatic surveillance, self-driving vehicles, autonomous robots,
and beyond.

Information theory (IT) was first introduced and developed by the great communications engi-
neer, Claude Shannon, in the ’50s of the last century. The theory was introduced in an attempt to
explain the principle behind point-to-point communication and data storage. However, the tech-
nique has been incorporated into statistical learning and has inspired many underlying principles.
In this book, we will explore the exciting area of statistical learning, particularly probabilistic infer-
ence, from the view of IT. It facilitates students to understand the omnipresent field of statistical
learning and appreciate the widespread significance of IT.

The book will start by providing an overview of IT and statistical learning. We will then aid
students to establish a solid foundation on core IT principles, including information measures,
typical sequences, and source and channel coding theories. We will then apply this foundation to
better understand statistical learning concepts and techniques such as cross-entropy, evidence-lower
bound, and decision trees, consequently offering a bridge between IT and statistical learning. We
will wrap up with a concise chapter on probabilistic inference on graphical models. There we will
explain how the decoding of the low-density parity-check (LDPC) codes works. This finishes a
circle of connecting IT and statistical learning by providing an example of using statistical learning
(probabilistic inference) to IT since the LDPC codes are one of the most important error-correcting
codes used in channel coding. To maintain a succinct manuscript, we have to make a difficult choice
to exclude materials (such as rate-distortion theory and the method of type) that are often included
in a more conventional information theory textbook.

The book is aimed to be self-contained. It should be accessible by undergraduate students with
solid calculus and some probability background. As a solid foundation on probability is essential for
a deep understanding of IT, a review of probability is included as an early chapter. Some common
misconceptions such as the difference between independence and conditional independence will be
highlighted. Another often used tool in IT is constrained optimization, where a reader may not have
a background in. Consequently, a section on Lagrange multiplier and Karush-Kuhn-Tucker (KKT)
conditions is included in the appendix. Moreover, for many real-world problems with numerical

Page 1 of 177

2

inputs, the results can be solved with a probabilistic programming package at ease. We will describe
how some of the numerical problems can be solved with the Lea probabilistic programming package
in the appendix. Despite that there are many other probabilistic programming packages, we choose
Lea as it is probably the easiest to use.

How to use this book

This book is suitable for a one-semester upper-level undergraduate or first-year graduate course
on Information Theory (IT) and probabilistic inference. Due to the prerequisites of solid prob-
ability knowledge, a brief review of Chapter 2 is recommended, particularly to clarify common
misconceptions about independence and conditional independence.

For a graduate course or students with a strong background in calculus and probability, covering
the entire book in one semester is feasible. For a concise introductory course on IT, consider covering
Chapters 1-6. For a short course on probabilistic inference, cover Chapters 2-7, skipping Chapter
6.

Instructors may want to review constrained optimization (Appendix C) in class, as it is used
throughout the material and may be easier to understand through lectures. Students can likely
learn Python and the Lea package (Appendix A) independently. The remaining appendices can be
used as reference materials.

Some Notes on Symbols and Notation

Throughout this book, all logarithmic operations will be base 2 unless otherwise noted. That is,
logx , log2 x. For natural logarithms, we will use the notation ln instead.

I have placed icons in the sidebar near text where readers should pay extra attention. This
includes conventions and results that may be counterintuitive to students first learning the subject.

Information theory and probabilistic inference Samuel Cheng

Contents

1 Introduction 7
1.1 Shannon’s information . 7

1.1.1 Amount of information revealed . 8
1.1.2 Entropy: average information of a random variable 8

1.2 Limitation of information theory . 9
1.3 Summary . 10

2 Probability review 11
2.1 Probability models and random variables . 11

2.1.1 Measure theory and Lesbegue integral . 13
2.1.2 Union bound . 15

2.2 Expectation and summary statistics . 15
2.2.1 Expectation . 15
2.2.2 Summary statistics . 16

2.3 Joint probabilities and conditional probabilities . 17
2.3.1 Joint distributions and marginal distributions 17
2.3.2 Conditional probability, Bayes’ rule, and the chain rule 18

2.4 Independence and conditional independence . 20
2.4.1 Independent variables . 20
2.4.2 Conditionally independent variables . 22
2.4.3 Independence but not conditional independence 23
2.4.4 Conditional independence but not independence 24

2.5 Markov chain . 24
2.6 Probabilistic inference . 25

2.6.1 ML vs MAP vs Bayesian inference . 25
2.6.2 Conjugate prior . 28

2.7 Exercises . 30

3 Quantify information with compression 33
3.1 Overview of entropy . 33

3.1.1 Limitation of entropy . 34

Page 3 of 177

4 CONTENTS

3.2 Source coding theory . 35
3.2.1 Source coding model . 35
3.2.2 A glimse of source coding theorem . 36

3.3 Uniquely decodable code . 37
3.3.1 Prefix-free code . 37

3.4 Quantify information by minimizing expected codeword length 37
3.4.1 Kraft’s Inequality . 38
3.4.2 A proof of Source Coding Theorem . 40

3.5 Quantify entropy using LLN . 42
3.5.1 Law of Large Number (LLN) . 42
3.5.2 Asymptotic equipartition and typical sequences 44

3.6 Quantify entropy by construction . 46
3.6.1 Shannon-Fano-Elias code . 46
3.6.2 A constructive proof of Source Coding Theorem 48

3.7 Exercise . 49

4 Information measures 51
4.1 Entropy and differential entropy . 51

4.1.1 Revisiting the entropy . 51
4.1.2 Differential entropy . 52
4.1.3 Connection between differential entropy and entropy 54
4.1.4 Bounds of entropy and differential entropy . 55
4.1.5 Joint entropy . 58

4.2 Conditional entropy . 59
4.2.1 Conditional entropy as an average of entropy over the conditioned random

variable (r.v.) . 59
4.2.2 Conditional entropy and compression with side information 60
4.2.3 Chain rule . 60
4.2.4 Converse proofs of source coding theorems . 62

4.3 KL-Divergence . 64
4.3.1 Some applications of Kullback-Leiber divergence (KL-divergence) 65

4.4 Mutual Information . 72
4.4.1 Properties of Mutual Information . 73
4.4.2 Mutual information for continuous variables 75

4.5 Venn diagram for information measures . 76
4.6 Summary . 77
4.7 Exercise . 77

5 Interlude: Some IT application examples 79
5.1 Shannon’s Perfect Secrecy . 79
5.2 Identifying Vampires . 80

5.2.1 Picking good attributes based on counting . 81
5.2.2 Information theoretic approach . 82
5.2.3 Potential Extensions in Decision Tree Analysis 84

5.3 Exercise . 84

CONTENTS 5

6 Channel coding 87
6.1 What is channel coding? . 87

6.1.1 Channel Coding Components . 87
6.1.2 Channel Coding Rate and Channel Capacity 88
6.1.3 Capacities of continuous channels . 88

6.2 Communication Channel Examples . 89
6.2.1 Binary symmetric channel . 90
6.2.2 Simple Gaussian Channel . 90
6.2.3 Additive White Gaussian Noise Channel . 91
6.2.4 Gaussian Colored Noise Channels . 91

6.3 Jointly typical sequences . 93
6.3.1 What are jointly typical sequences . 94
6.3.2 Packing and Covering Lemmas . 95

6.4 Forward proof of channel coding theorem . 97
6.4.1 Setup coding scheme . 98
6.4.2 Performance analysis . 98

6.5 Converse proof of channel coding theorem . 99
6.5.1 Fano’s inequality . 100
6.5.2 Converse proof . 100

6.6 Summary . 101
6.7 Exercise . 101

7 Graphical models 103
7.1 Bayesian networks . 103

7.1.1 D-separation in Bayesian networks . 106
7.1.2 Burglar and raccoon . 107

7.2 Undirected graphs and factor graphs . 108
7.2.1 Factor graph representation . 109
7.2.2 The moralization of Bayesian networks . 110
7.2.3 Limitations of different graphical models . 110

7.3 BP algorithm . 112
7.3.1 Low-density parity-check code . 116
7.3.2 BP and statistical physics . 118

7.4 Gaussian BP . 123
7.4.1 Manipulating multivariate Gaussian . 124
7.4.2 Gaussian BP Update . 127
7.4.3 Kalman filter and BP . 129

8 Score, Fisher information, Cramér-Rao lower bound, and score matching 133
8.1 Overview of Fisher information and Cramér-Rao lower bound 133
8.2 The score function . 134
8.3 Fisher Information . 134
8.4 Cramér-Rao Lower Bound . 135
8.5 Score matching . 137

8.5.1 When MLE fails: Energy-Based Models (EBMs) 137
8.5.2 Score Matching for energy-based model (EBM) 137

6 CONTENTS

8.5.3 Example: Score Matching for Multivariate Gaussian Distribution 139
8.6 Exercise . 141

A Using Lea to solve IT problems 143
A.1 Installation . 143
A.2 Examples . 143

A.2.1 Burglar alarm . 144
A.2.2 A fair dice and a loaded dice . 145
A.2.3 Weather on a tropical island . 147

B Common distributions 151
B.1 Normal distribution . 151

B.1.1 Multivariate normal distribution . 152
B.2 Bernoulli distribution . 153
B.3 Binomial distribution . 154
B.4 Beta Distribution . 155
B.5 Multinomial distribution . 157
B.6 Dirichlet distribution . 158
B.7 Exercise . 159

C Lagrange multiplier and Karush-Kuhn-Tucker (KKT) conditions 161
C.1 Constrained optimization . 161
C.2 Lagrange multiplier . 161

C.2.1 Geometric intuition . 162
C.2.2 Algebraic proof . 163
C.2.3 Physical interpretation of Lagrange multiplier 165

C.3 Karush-Kuhn-Tucker (KKT) conditions . 165

D Exponential family distributions and their conjugate priors 167
D.1 Motivation . 167

D.1.1 Gaussian distribution as an exponential family distribution 168
D.2 Cumulant generating function . 169
D.3 Conjugate priors of exponential family distribution 170

D.3.1 Binomial distribution as an exponential family distribution 171
D.3.2 Conjugate prior of unit variance Gaussian distribution 172

D.4 Exercise . 173

Index 177

Information theory and probabilistic inference Samuel Cheng

Chapter 1
Introduction

We are flooded with information every day. If you believe in the simulation hypothesis, the world
may be composed entirely of information. At the same time, “information” is such an overloaded
word that everyone “knows” what it means, yet most will have trouble defining it when asked.

Information theory is a discipline that studies information through the lens of probability theory.
It is one of the rare cases where the foundation of a subject was established by a single person. The
father of information theory is Claude Shannon, who aimed to ignore the content of information
and instead focus on how to quantify and transmit it effectively. His discoveries were published
in the seminal paper “A Mathematical Theory of Communication,” in the Bell System Technical
Journal in 1948.1

1.1 Shannon’s information
Rather than trying to precisely define what information means, Shannon focused on how to quantify
information. The definition of information is rather vague, and any statement can be considered a
piece of information. For example:examples of

information
• Today’s high temperature is 25◦C.

• Tomorrow’s average temperature will be higher than today.

• The sun is going to rise from the east tomorrow.

• John Kennedy was assassinated on November 22, 1963.

All of the above statements can be considered pieces of information. How do we quantify how much
information each of them contains? This seems to be a rather tricky and subjective question. It
may not be easy to even compare which statement has more information than another.

1Interestingly, the unit bit, which stands for binary digit and is commonly used in computer science and engi-
neering, was also introduced in that paper.

Page 7 of 177

8 CHAPTER 1. INTRODUCTION

1.1.1 Amount of information revealed
Shannon approached this problem using probability theory, treating every piece of news as a re-
alization of a random variable. Let us explain this with a simple example: a coin toss. Given an
unbiased coin, how much information is revealed if we toss the coin and get a head?

Since the unbiased coin can only have two equally likely outcomes, head (H) and tail (T), and
representing two possible values requires one binary digit (bit), the amount of information obtained
from knowing the coin toss result is head is 1 bit. counting bits

If we toss the coin three times and get heads for all three tosses, there are a total of 8 possible
outcomes (HHH, HHT, HTH, HTT, THH, THT, TTH, TTT). We need log2 8 = 3 bits to store one
of the 8 outcomes. Therefore, the amount of information from revealing our toss outcomes (HHH)
is 3 bits. From another viewpoint, each coin flip gives us 1 bit of information, so it is reasonable to
get 3 bits from 3 coin tosses.

1.1.2 Entropy: average information of a random variable
For the coin examples, all outcomes are equally likely. But what if we have a biased coin, where
the probabilities of heads and tails are different? Suppose the probability of heads is 1

4 and the
probability of tails is 3

4 . Which outcome provides more information, heads or tails?
Intuitively, getting heads is more informative since it is less likely to happen. Referring back

to an earlier statement, “The sun is going to rise from the east tomorrow” should contain no
information since we know that it will always happen, unless the world is ending tomorrow. So,
information that states something always true has no information. Conversely, if the statement is
“The sun is going to rise from the west tomorrow” and indeed it happens, it contains an enormous
amount of information. Therefore, knowing that a rare event has happened carries much more
information than knowing an event that is likely to happen. rare events

count moreReturning to the coin toss problem, how much information do we get if we know and get
heads? Since the probability of getting heads is 1

4 , we might imagine that there are actually 1
1
4

= 4

hypothetical outcomes that could have happened but didn’t. Using the same argument as before,
the amount of information is log2 4 = 2 bits. In general, for an outcome with probability p, knowing
that it happened will give us log2 1

p = − log2 p bits of information.
Now, how much average information do we gain from tossing the biased coin with a 1

4 probability
of heads and 3

4 probability of tails? Since we get heads 1
4 of the time and tails 3

4 of the time, we
gain − log2 1

4 bits 1
4 of the time and − log2 3

4 bits 3
4 of the time. The average information gain from

knowing the outcome is
−1

4
log2

1

4
− 3

4
log2

3

4
.

In general, any discrete random variable X has on average entropy

−
∑
x∈X

p(x) log2 p(x)

bits of information. This quantity is called entropy by Shannon.2 Entropy can be interpreted as the
2There is an interesting anecdote regarding the origin of the term ”entropy.” Shannon originally wanted to name

the expression ”information measure.” However, after a discussion with John von Neumann, who pointed out that
the term was already in use in statistical thermodynamics and would provide an edge in debates because of its

1.2. LIMITATION OF INFORMATION THEORY 9

average knowledge gained from the realization of a probabilistic event. It also serves as a measure
of the uncertainty or unpredictability associated with these events. We will provide a more formal
argument for this expression as a way to quantify information in Chapter 3.

1.2 Limitation of information theory

As we see throughout this book, information theory is extremely powerful and is useful from
communications, informatics, economics, and beyond. However, it has its limitations. We will try
to summarize them in this short section.

First,need knowledge
of distribution

information theory is based on probability and information measure such as entropy
is usually defined out of the distribution of a random variable. So information measure may
be computable only if the entire statistics of the variable that characterized by the distribution
is known. For example, when only summary statistics such as means and variances are given,
we cannot quantify the information in general unless further assumption such as the kind of the
distribution of the variable is given.

Second,depend on
observer

quantifying information can be subjective based on the observers as different observers
could have different estimate of the distributions. For example, the statement “there are aliens in
the universe” can have different amount of information based on different belief of the interpretable.
One who strongly believes in alien existence will find the statement not informative and vice versa.

Third,can’t go beyond
probability

it is Shannon’s ingenious insight to frame information in the context of probability
theory. It makes information theory extremely powerful tools for many disciplines, but at the same
time information theory is essentially a subfield of applied probability and thus cannot explain
things cannot be described with probability. For example, information theory is futile to quantify
the amount of information of π. For a probabilistic view point, each digit of π appears to be
completely random given earlier digit. At least, it is unclear how we can build a distribution of one
digit given earlier digit. On the other hand, as we know from the Leibniz formula that

π = 4

(
1− 1

3
+

1

5
− 1

7
+

1

9
− 1

11
+ . . .

)
,

π is deterministic and thus should contain no information under Shannon’s standpoint. Yet, saying
it has no information ignores the amount of effort required to recover its value. A more useful
terminology in this situation could be the Kolmogorov complexity, which quantifies information as
the size of the smallest program that can describe it. While Kolmogorov complexity is conceptually
elegant, it is almost impossible to use in practice. Therefore, we will not elaborate on it further
beyond this point.

Finally,ignore
complexity

information theory generally ignores the complexity of a solution. It is interested in
theoretical limits such as the amount of information contained by a variable or the maximum
amount of information that can be passed through a noisy channel. However, in the latter case,
for example, it provides a theoretical bound on how much information can be passed through the
channel but generally does not consider the amount of effort (complexity) required to achieve it.

ambiguous meaning, Shannon used ”entropy” and ”uncertainty” interchangeably in his writings.

10 CHAPTER 1. INTRODUCTION

1.3 Summary
We provided a concise, self-contained introduction to information theory in this chapter. We
introduced Shannon’s concept of information and argued in a hand-waving manner that entropy
is a reasonable measure for quantifying information. We also briefly described the limitations of
information theory. Since information theory is ultimately a subfield of applied probability, it
requires a solid foundation in basic probability. In the next chapter, we will include a short review
of probability from an applied standpoint. Readers who are familiar with probability may skip the
next chapter and proceed directly to Chapter 3, where we will delve deeper into the expression of
entropy from the perspective of information compression.

Information theory and probabilistic inference Samuel Cheng

Chapter 2
Probability review

In this chapter, we offer a comprehensive and self-contained introduction to probability theory. Our
coverage includes a review of fundamental concepts such as random variables, outcomes, events,
sample spaces, probability distributions, expectation, and summary statistics. We also delve into
the important topics of independence and conditional independence of variables. Additionally, we
present an introduction to probability inference, encompassing maximum likelihood estimation,
maximum a posteriori (MAP) estimation, and Bayesian inference. This chapter aims to equip
readers with a solid understanding of probability theory and its applications in inference.

2.1 Probability models and random variables

A probability model is used to describe random phenomenonrandom variable,
outcome, sample
space

that can have non-deterministic
outcomes, where we call the set of all outcomes as the sample space and the “undetermine”
object itself as a random variable (r.v.). If the sample space is continuous, the random variable
is continuous. Otherwise, the random variable is discrete.

The probabilityprobability of an outcome depicts the relative chance of getting that outcome. For a
random variable X, we often denote the probability of X taking outcome a as Pr(X = a). By
convention, a probability is always non-negative and a probability of zero means that the outcome
will never happen. On the other hand, a probability of one indicates that the outcome will certainly
happen. So by definition, all possible outcomes should sum up to one as at least one of the outcome
will certainly happen.

A word on convention

We often denote a r.v. using upper case (such as X) and its realization
realization

(what was actually
observed) using lower case (such as x). Therefore, Pr(x = x0) is a bad notation since x is
not random and Pr(x = x0) = 0 in general unless x and x0 turn out to be identical.

Page 11 of 177

12 CHAPTER 2. PROBABILITY REVIEW

Example 2.1: Coin toss

Let’s try to model a coin toss with a probability model. Let’s denote the random variable as
X and the outcomes head and tail as H and T , respectively.
Then the sample space is {H,T}. The probability of the entire space should sum up to 1.
Thus Pr(X = H) + Pr(X = T) = 1.

In the context of probability, an event eventis simply a set of outcomes and a subset of the sample
space. For each possible event, we need a way to measure the probability of the event. So we need
to have a probability function to map all possible events to a positive value since probability cannot
be negative by definition. Since an event is just a set, for a discrete X, such probability measure
can be intuitively constructed as probability mass

function
P (E) =

∑
x∈E

Pr(X = x) =
∑
x∈E

pX(x), (2.1)

where pX(o) is often known as the probability mass function.
In principle, we can do the same thing a continuousX by just replacing summation to integration

to get

P (E)
(a)
= lim

∆x→0

∑
n∈Z

n∆x∈E

Pr(X ⊂ [n∆x, (n+ 1)∆x))︸ ︷︷ ︸
pX(n∆x)∆x

(b)
=

∫
x∈E

pX(x)dx. (2.2)

The expression led from (a) may look a bit obscure. But what we did is simply partition the entire
real axis into segments of width ∆x, and add the probability of the segment whenever the lower
end of the segment is in E. This of course is an approximation for finite ∆x but will be equal to
P (E) as ∆x shrinks to zero.

Another remark is that in general it is not meaningful to write Pr(X = x) when X is continuous.
Because this value is likely to be zero. For example, for uniformly distributed X between 0 to 1,
the probability of getting exactly X = 0.5 will be zero. After all, even if we have X = 0.5 + 10−10,
it is still not equal to 0.5. Instead, it is reasonable to only ask the probability of X falling into a
particular range such as Pr(X ∈ [x, x+∆x]). However, we can often define a probability density
function probability

density function
roughly translate to how probable we get a sample X near the function argument. More

precisely, we can define the pdf as

pX(x) = lim
∆x→0

Pr(X ∈ [x, x+∆x))

∆x
(2.3)

and that is how we get the expression under the curly bracket inside the expression after (a). With
the pdf defined, we finally get the succinct expression after (b).

And note that from the definition above in (2.3), we have

Pr(a ≤ X ≤ b) =
∫ b

a

pX(x)dx

where the integral is just the area underneath pX(x) between a and b. Moreover, since X has to

2.1. PROBABILITY MODELS AND RANDOM VARIABLES 13

take some value in the real axis,

Pr(−∞ ≤ X ≤ ∞) =

∫ ∞

−∞
pX(x)dx = 1 (2.4)

Note that since we can interpret probability density function (PDF) just as a normalized prob-
ability function, pX(x) ≥ 0 just as the original definition of the probability.

A remark on notation

In probability textbook, it often use fX(x) to denote the PDF of X. However, we will follow
the classic text of Cover and Thomas and use pX(x) directly to denote the PDF as there
should be little confusion on notation. And we can free up the common symbol f(·) for other
places. We just need to remind ourselves that when X is continuous, pX(x) 6= Pr(X = x).

Example 2.2: PDF of the uniform distribution

Let’s take a r.v. X that is uniformly distributed between 0 and 1 as an example. The PDF
is simply

pX(x) =

{
1, 0 ≤ x ≤ 1,

0, otherwise

Note that the area underneath pX(x) is 1 as expected.

2.1.1 Measure theory and Lesbegue integral
While the above discussion is intuitive, it is not applicable to all situations. Given a uniformly
distributed X between 0 and 1, consider the question of asking the probability of X to be a
rational number. We cannot answer the question as in (2.2) even we know the pdf, which is just 1
when 0 ≤ x ≤ 1. We can try to write out the probability as in (2.2) as

P (E) =

∫
0≤x≤1
x∈Q

dx, (2.5)

where E = {X ∈ Q} and Q denotes the rational numbers. The question is, what should be the
value of the integral?

The problem is more fundamental than probability but on how we interpret integration in
calculus. From our first class in calculous, we don’t actually have tools to find integral as in (2.5).
The integration that we learned in our introductory calculous class, i.e., the Riemann integrationRiemann

integral
,

essentially sums the product of the function and an infinitely small partition of x-axis. The problem
is that if the function or the region of integration are extremely discontinuous as in (2.5), then the
Riemann integral will not be well-defined.

To resolve this, we need measure theory and extend Riemann integral to Lebesgue integral.
Those are more advanced topics that will not be covered fully in this book. Luckily, we are not losing
much in practice since the situation where we need to ask something like the earlier questions are
rare in real-world setting. Having said that, let’s also give a very high level explanation of measure

14 CHAPTER 2. PROBABILITY REVIEW

theory and Lebesgue integral through our earlier example. The idea to resolve the dilemma of the
Riemann integral is that we define a measure µ for all plausible measurable measure and

measurable sets
sets1. It sounds like

an overarching task to create such a measure. However, there are some reasonable rules for the
measure so that wee can extend it without the need of defining it for all measurable sets.

µ(φ) = 0 (2.6)
µ(A ∪B) = µ(A) + µ(B) if A ∩B = φ (2.7)

Given the measure µ, let’s consider a simple function f(x) = a · I(x ∈ A) + b · I(x ∈ B) such
that A and B are measurable, the Lebesgue integral Lebesgue

integral
of f with measure µ will simply be∫

f(x)dµ =

∫
a · I(x ∈ A) + b · I(x ∈ B)dµ (2.8)

= a · µ(A) + b · µ(B). (2.9)

The Lebesgue integral depends on the definition of the measure. And we should choose the measure
such that the integral coincide with classic results from Riemann integral. Consequently, it is
reasonable to have

µ([x, y]) = y − x. (2.10)

Now, back to the integration in (2.5), note that we have [0, 1] = ([0, 1] ∩Q) ∪ ([0, 1] ∩ (R \Q)),
where [0, 1]∩Q is just the set of all rational numbers between 0 and 1 and [0, 1]∩ (R \Q) is the set
of all irrational numbers between the same range. From (2.7) and (2.10), we have 1 = µ([0, 1]) =
µ([0, 1] ∩ Q) + µ([0, 1] ∩ (R \ Q)). Since there are infinitely many irrational number comparing to
rational number, we should have µ([0, 1] ∩Q) = 0 and µ([0, 1] ∩ (R \Q)) = 1. Consequently,

P (E) =

∫
{x|x∈[0,1]∩Q}

dx = µ([0, 1] ∩Q) = 0 (2.11)

as one would expect.

When applying measure theory to probability theory, the approach is analogous to the Lebesgue
integral example described earlier. The primary difference lies in the probability measure having
more flexibility, without being constrained by (2.10), as we aimed to reconcile the results of Lebesgue
and Riemann integrals in the previous example. However, we require the probability measure probability

measurep(A) ≥ 0 for all A, ensuring that probability values are always non-negative.

1Formally, all measurable set forms a so-called σ-algebra, which satisfies the following: the empty set is measurable,
and countably unions and intersections are measurable as well.

2.2. EXPECTATION AND SUMMARY STATISTICS 15

2.1.2 Union bound
Let’s recap the three fundamental conditions of a probability measure p introduced in the previous
section:

p(A) ≥ 0, for any event A (2.12)
p(φ) = 0 (2.13)

p(A ∪B) = p(A) + p(B), if A ∩B = φ (2.14)

The first condition ensures that probability values are non-negative. The second and third
conditions are required because a probability measure is also a Lebesgue measure, as discussed
earlier.

Notably, the third condition can be derived from the elementary probability definition without
using measure theory. For instance, when A and B are disjoint events, we have

p(A ∪B) =
∑

x∈A∪B
p(x) =

∑
x∈A

p(x) +
∑
x∈B

p(x) = p(A) + p(B) (2.15)

and

p(A ∪B) =

∫
x∈A∪B

p(x)dx =

∫
x∈A

p(x)dx+

∫
x∈B

p(x)dx = p(A) + p(B) (2.16)

for both discrete and continuous cases.
If A is a superset of B, we can write A = B∪ (A\B) and note that B∩ (A\B) = φ. Therefore,

we have

p(A) = p(B) + p(A \B) ≥ p(B), (2.17)

which probably is expected from the readers.
A useful extension of this result is the union bound, which states thatunion bound

p(A ∪B) ≤ p(A) + p(B). (2.18)

The proof is straightforward and is left as an exercise.

2.2 Expectation and summary statistics
Expectation is a fundamental concept in probability theory, serving as a crucial building block for
defining essential summary statistics, including the mean and variance. These statistics provide
valuable insights into the central tendency and dispersion of random variables, enabling us to better
understand and analyze probability distributions.

2.2.1 Expectation
Consider a r.v. X and a deterministic function g(·). g(X) is a r.v. as well. Each sample of g(X)
will be different. However, as we sample g(X) multiple times, the empirical average will converge

16 CHAPTER 2. PROBABILITY REVIEW

as we obtain more and more samples. The converged value is called the expectation of g(X), and
it is denoted by E[g(X)]. Mathematically, expectation

E[g(X)] =
1

N
lim
N→∞

(g(x1) + g(x2) + · · ·+ g(xN)) , (2.19)

where xi is the ith sample of X.
For discrete r.v.s, for any outcome x from the sample space X , there will be a fraction p(x) of

time that x occurs. Therefore, we can rewrite (2.19) as

E[g(X)] =
∑
x∈X

pX(x)g(x). (2.20)

For continuous r.v.s, note that the PDF does not equal the probability explicitly, as explained
in the last section. Consequently, the expression becomes an integral instead. That is,

E[g(X)] =

∫
pX(x)g(x) dx, (2.21)

since

E[g(X)] = lim
∆→0+

∞∑
n=−∞

[pX(n∆)∆]︸ ︷︷ ︸
Pr(n∆≤X≤(n+1)∆)

g(n∆), (2.22)

which is just the definition of
∫
pX(x)g(x) dx.

Expectation is linear

One of the most important properties of expectation is that E[·] as an operation is linear. This
means that for any two r.v.s X and Y and two constants a and b, we have

E[aX + bY] = aE[X] + bE[Y]. (2.23)

The above result can be readily verified because, as we see from (2.20) and (2.21), the definitions
of expectation for both discrete and continuous r.v.s just involve either a sum or an integral, and
both of these operations are linear. Similarly, for any r.v. X and constant C,

E[X + C] = E[X] + C. (2.24)

We will leave the proofs of the above results as exercises.

2.2.2 Summary statistics

With a different function g(·), we can compute E[g(X)] as a summary description of the distribution
pX(·). Such a description is known as a summary statistic. The most common summary statistics
are the mean and the variance.

2.3. JOINT PROBABILITIES AND CONDITIONAL PROBABILITIES 17

Mean

The mean of a r.v. X is simply the expected value of X itself, denoted by E[X]. Since we are taking
the expectation of X directly, we expect that the variable X is numerical rather than categorical.
For example, it wouldn’t make much sense to compute the mean of a coin toss unless we map the
outcomes of heads and tails to some numerical values.

From (2.19), we see that the empirical average of samples of X should converge to the mean.mean
That is, given samples x1, x2, · · · , xN ,

1

N
(x1 + x2 + · · ·+ xN)→ E[X] (2.25)

as N goes to infinity.

Variance

The variancevariance of X describes how much X fluctuates from its mean. It is defined as E[(X − X̄)2],
where X̄ , E[X] is the mean of X. Note that the mean X̄ is a constant despite X being a r.v..
Expanding E[(X − X̄)2], we have

E[(X − X̄)2] = E[X2 − 2X̄X + X̄2] (2.26)
(a)
= E[X2]− 2X̄E[X] + X̄2 (2.27)
= E[X2]− 2X̄X̄ + X̄2 (2.28)
= E[X2]− X̄2, (2.29)

where it is often more convenient to compute the variance of X using the last expression, and (a)
comes from the linear property of expectation.

2.3 Joint probabilities and conditional probabilities
Up to now we only consider a single scalar r.v. at a time. Let’s consider multiple r.v.s and how
they interact with one another in this section.

2.3.1 Joint distributions and marginal distributions

Given two discrete r.v.s X and Y , the joint probability mass function (PMF)joint
distribution

pX,Y (x, y) , Pr(X =
x, Y = y) provides all the statistical information with respect to X and Y . Moreover, we can
compute the probability of one variable regardless of the value of the other. For example,marginalization

pX(x) =
∑
y∈Y

pX,Y (x, y). (2.30)

The above procedure of summing out all the dummy variables from the joint probability is known
as marginalization, and the resulting probability pX(x) is known as a marginal distribution.

18 CHAPTER 2. PROBABILITY REVIEW

For continuous variables, the marginalization step is similar, except the summation is replaced
by an integral. For example, for continuous r.v.s X and Y ,

pX(x) =

∫
pX,Y (x, y) dy. (2.31)

Example 2.3: Weather forecast

Let’s denote P and W as the predicted weather and actual weather tomorrow, where both
variables can take the outcomes of sunny or rainy. Assume the joint probability pP,W (·, ·) is
tabulated as below:

P
W Sunny Rainy

Sunny 0.6 0.06
Rainy 0.04 0.3

As a sanity check, first note that the joint probability should sum up to one (0.6 + 0.06 +
0.04 + 0.3 = 1). The probability of sunny weather tomorrow is

pP,W (sunny, sunny) + pP,W (rainy, sunny) = 0.6 + 0.04 = 0.64,

and the probability of rainy weather tomorrow is

pP,W (sunny, rainy) + pP,W (rainy, rainy) = 0.06 + 0.3 = 0.36,

which, of course, is just equal to 1 minus the probability of sunny weather tomorrow: 1 −
0.64 = 0.36.

2.3.2 Conditional probability, Bayes’ rule, and the chain rule
The joint probability gives us the probability of all variables with the desired outcomes. For
example, pP,W (sunny, sunny) in the example of the last subsection gives us the probability that
both the predicted and actual weather will be sunny tomorrow. Often, we are interested in finding
the probability when some variables are already fixed and known. For example, if we have already
predicted that the weather will be sunny tomorrow, what is the probability that the actual weather
will also be sunny?

Since only pP,W (sunny, sunny) and pP,W (sunny, rainy) correspond to a sunny prediction, and
among them, we are interested in the case where the actual weather is also sunny, the probability
should be conditional

probability
pP,W (sunny, sunny)

pP,W (sunny, sunny) + pP,W (sunny, rainy)
, (2.32)

which is known as the conditional probability of the weather being sunny given that the predic-
tion is sunny, and is often denoted as pW |P (sunny|sunny).

Note that by the marginalization rule described in the last subsection, the denominator in (2.32)

2.3. JOINT PROBABILITIES AND CONDITIONAL PROBABILITIES 19

is just pP (sunny), and so

pW |P (sunny|sunny) = pP,W (sunny, sunny)
pP (sunny)

. (2.33)

In general, we have

pX|Y (x|y) =
pX,Y (x, y)

pY (y)
. (2.34)

Therefore, we have pX,Y (x, y) = pY (y)pX|Y (x|y). By the same token, pX,Y (x, y) = pX(x)pY |X(y|x).
Thus, pX(x)pY |X(y|x) = pY (y)pX|Y (x|y) and pY |X(y|x) = pY (y)pX|Y (x|y)

pX(x) , or simplyBayes’ rule

p(y|x) = p(y)p(x|y)
p(x)

. (2.35)

This last expression is the famous Bayes’ rule, but it is just a straightforward result of (2.34).

Despite the fame of Bayes’ rule, the following chain rule is much more useful and general in
practice. Note that we can rewrite (2.34) as

p(x, y) = p(y)p(x|y), (2.36)

and this can be generalized to the case even when the right-hand side is conditioned. For example,

p(x, y|z) (a)
=

p(x, y, z)

p(z)
(2.37)

(b)
=
p(x, z)p(y|x, z)

p(z)
(2.38)

=
p(x, z)

p(z)
p(y|x, z) (2.39)

(c)
= p(x|z)p(y|x, z), (2.40)

where (a) is from (2.34) treating (x, y) as a single variable, (b) is from (2.36) treating (x, z) as a
single variable, and (c) is from (2.34) again with y replaced by z.

Combining (2.36) and (2.40), we havechain rule

p(x1, x2, · · · , xN) = p(x1)p(x2, · · · , xN |x1)
= p(x1)p(x2|x1)p(x3, · · · , xN |x1, x2)
= p(x1)p(x2|x1)p(x3|x1, x2)p(x4, · · · , xN |x1, x2, x3)
= p(x1)p(x2|x1)p(x3|x1, x2) · · · p(xN |x1, · · · , xN−1),

where we will simply refer to as the chain rule.

20 CHAPTER 2. PROBABILITY REVIEW

A shorthand notation

It is a good place to introduce another shorthand used throughout this book. For a list of
variables, xk, xk+1, xk+2, · · · , xN , we may shorthand them as xNk . And when k = 1, we may
shorthand it further to xN . For example, we can rewrite the above chain rule as

p(xN) = p(x1)p(x2|x1)p(x3|x2) · · · p(xN |xN−1). (2.41)

2.4 Independence and conditional independence

As the name suggests, we say two r.v.s are independent if they have no effect on one another. For
example, the outcomes of tossing two different dice should be independent. On the other hand, the
forecast variable P should depend on the actual weather W in our earlier example.

Conditional independence is a similar concept, but it considers whether two variables may have
an effect on one another given that some third variable is known. It may be surprising to those who
first encounter these concepts, but independence and conditional independence are “independent”
concepts. One property does not imply the other and vice versa.

2.4.1 Independent variables

Consider the joint probability of two r.v.s X and Y . Given a value x, we can consider the conditional
probability pY |X(y|x) as a function of y parameterized by x. If pY |X(y|x1) = pY |X(y|x2) for all
x1, x2 ∈ X , then X and Y must be independent because the conditional distribution does not
change regardless of the value X takes. Moreover, if X and Y are independent, independencethen

pY (y) =
∑
x∈X

pX,Y (x, y) =
∑
x∈X

pX(x)pY |X(y|x)

(a)
= pY |X(y|x)

∑
x∈X

pX(x)

(b)
= pY |X(y|x), (2.42)

where (a) holds because pY |X(y|x) is the same for all x and (b) follows from
∑
x∈X pX(x) = 1.

Furthermore, we have

pX,Y (x, y)
(a)
= pX(x)pY |X(y|x) (b)

= pX(x)pY (y), (2.43)

where (a) is from the chain rule and (b) is from (2.42). Note that (2.43) is usually used as the
formal “definition” of independence in most probability textbooks. However, I believe that (2.42)
is more natural and easier to understand.

2.4. INDEPENDENCE AND CONDITIONAL INDEPENDENCE 21

Example 2.4: Tossing two coins

Let’s denote X1 and X2 as the outcomes of tossing two coins. Let’s also assume that the
probabilities of getting a head for X1 and X2 are p1 and p2, respectively. Unless the coins
interact in some mysterious way, it is safe to assume that their outcomes are independent.
The probability of getting both heads will be p1 · p2. We can tabulate the joint probability
as shown below.

X1

X2 Head Tail

Head p1 · p2 p1(1− p2)
Tail (1− p1)p2 (1− p1)(1− p2)

Let’s also try to tabulate the conditional probability distribution pX2|X1
. Since

pX2|X1
(x2|x1) = p(x1,x2)

p(x1)
, we can create a table of pX2|X1

by simply dividing each row of
the above table by the respective p(x1). That is, p1 for the first row, and 1 − p1 for the
second row. And so we get pX2|X1

given by

X1

X2 Head Tail

Head p2 1− p2
Tail p2 1− p2

Note that each row of the above table is the same. That means that pX2|X1
(·|x1) does not

change with different x1. Therefore, X1 and X2 are indeed independent.

Example 2.5: Weather forecast (con’t)

Let’s continue with the example from Section 2.3. Recall that the joint probability pP,W (·, ·)
is tabulated as below

P
W Sunny Rainy

Sunny 0.6 0.06
Rainy 0.04 0.3

Let’s try to tabulate the conditional probability pW |P instead. Just as in the coin toss
example earlier, we should divide each row of the above table by the respective marginal
probabilities (0.6 + 0.06 = 0.66 and 0.04 + 0.3 = 0.34). Therefore, we have:

P
W Sunny Rainy

Sunny 0.91 0.09
Rainy 0.12 0.88

Note that the two rows are very different, meaning that pW |P (·|p) changes significantly with
different p. Therefore, W and P must depend on one another.

22 CHAPTER 2. PROBABILITY REVIEW

Notation for independence

Note that we often denote X⊥Y when X and Y are independent, i.e., when (2.42) and (2.43)
are satisfied.

2.4.2 Conditionally independent variables
Now, let us consider three variables X, Y , and Z. From now on, we simplify the notation by
removing the subscript of p. For example, p(x|y, z) ≡ pX|Y,Z(x|y, z). We say that X and Y are
conditionally independent conditional

independence
given Z if

p(x|y1, z) = p(x|y2, z) (2.44)

for any z, y1, and y2.
The condition should be self-evident. It states that given a fixed z, the conditional distribution

of X given Y and z does not depend on the choice of Y . So, given z, X and Y will be independent.
Moreover, we have

p(x|z) =
∑
y∈Y

p(x, y|z) (2.45)

(a)
=
∑
y∈Y

p(y|z)p(x|y, z) (2.46)

(b)
= p(x|y, z)

∑
y∈Y

p(y|z) (2.47)

(c)
= p(x|y, z), (2.48)

where (a) comes from the chain rule (cf. (2.41)), (b) is from (2.44), and (c) is due to the probabilities
summing up to 1.

Note that the conditional joint probability p(x, y|z) can now be expanded as

p(x, y|z) = p(y|z)p(x|y, z) = p(y|z)p(x|z), (2.49)

where the last equality is due to (2.48). Like (2.43), (2.49) is often written as the “definition” of
conditional independence in many probability textbooks, even though (2.44) is more natural and
easier to interpret and understand.

Example 2.6: Naïve Bayes classifier

Naïve Bayes NaÏ’ve Bayes
classifier

is a simple machine learning algorithm used to classify an object based on some
given features. A major assumption of Naïve Bayes is that the features are conditionally
independent given the object class. Suppose O denotes the object and c(O) denotes its
corresponding class. Let f1(O), f2(O), · · · , fK(O) denote the K features of the object. For
simplicity, let’s rewrite c(O) as C and fi(O) as Fi. It is important to realize that the
“randomness” of c(O) and fi(O) originates from O.

2.4. INDEPENDENCE AND CONDITIONAL INDEPENDENCE 23

p(c|f1, · · · , fK) =
p(c, f1, · · · , fK)

p(f1, · · · , fK)

=
p(c)p(f1, · · · , fK |c)
p(f1, · · · , fK)

=
p(c)p(f1|c) · · · p(fK |c)

p(f1, · · · , fK)

∝ p(c)p(f1|c) · · · p(fK |c)

To classify an object, we compute the product p(c)p(f1|c) · · · p(fK |c) for each class c, and
the output class should be the one with the maximum value.

Notation for conditional independence

To conclude this section, we would like to note that when X and Y are conditionally inde-
pendent given Z, this is often denoted by X ⊥ Y |Z. This notation indicates that (2.48) and
(2.49) are satisfied.

2.4.3 Independence but not conditional independence
As we mentioned at the beginning of this section, a common mistake beginners make is to as-
sume that independence implies conditional independence or vice versa. It turns out that the two
properties are entirely “independent.”

independence
but not
conditional
independence

Let’s map the outcomes of two coin tosses to zero (tail) and one (head) and denote them as
X1 and X2. Without any magical correlation, X1 and X2 should be independent. Let’s say the
probability of heads for both X1 and X2 is p. The joint probability is given by:

X1

X2 1 0

1 p2 p(1− p)
0 p(1− p) (1− p)2

One can verify that p(x1, x2) = p(x1)p(x2) for all combinations above, satisfying the independence
condition given by (2.43).

Now, let’s define Y = X1 ⊕X2, where ⊕ is the exclusive-or operator. Note that while X1⊥X2,
X1⊥X2|Y does not hold. In fact, note that Y = X1 ⊕ X2 implies X2 = X1 ⊕ Y , so given Y , we
can compute X2 deterministically from X1. There is no way X1 and X2 are independent given Y .

To gain further insight, let’s tabulate the conditional distributions pX2|X1,Y (·|x1, y) below

Y = 0

X1

X2 1 0

1 1 0
0 0 1

Y = 1

X1

X2 1 0

1 0 1
0 1 0

24 CHAPTER 2. PROBABILITY REVIEW

For X1⊥X2|Y , the rows in each table should be identical (p(x2|x1, y) = p(x2|y)). The rows
being so different suggests that X1 and X2 are highly correlated given Y .

2.4.4 Conditional independence but not independence
conditional
independence
but not
independence

Let’s consider two noisy observations Y1 and Y2 of a r.v. X. For simplicity, let’s assume all three
variables are binary. The noises Z1 = X ⊕ Y1 and Z2 = X ⊕ Y2 are independently generated from
a binary symmetric source with a probability p of being 1. Let’s also assume that the probability
of X = 1 is q.

Since Y1 and Y2 are independent observations of X, we would expect that they will be indepen-
dent given X. On the other hand, it is reasonable to assume that Y1 and Y2 won’t be independent
(actually, they should be very correlated). Let’s first show Y1⊥Y2|X.

Let’s tabulate the joint probability p(y1, y2, x) as below

X = 0

Y1

Y2 1 0

1 (1− q)p2 (1− q)(1− p)p
0 (1− q)(1− p)p (1− q)(1− p)2

X = 1

Y1

Y2 1 0

1 q(1− p)2 qp(1− p)
0 qp(1− p) qp2

From the tables above, let’s tabulate the conditional probability p(y2|y1, x) = p(y2,y1,x)
p(y1,x)

below
as

X = 0

Y1

Y2 1 0

1 p 1− p
0 p 1− p

X = 1

Y1

Y2 1 0

1 1− p p
0 1− p p

Note that both rows in each table are the same. This means that p(y2|y1, x) = p(y2|x), and
thus Y1⊥Y2|X.

On the other hand, let’s tabulate the joint probability p(y1, y2) as follows:

Y1

Y2 1 0

1 (1− q)p2 + q(1− p)2 (1− q)(1− p)p+ qp(1− p)
0 (1− q)(1− p)p+ qp(1− p) (1− q)(1− p)2 + qp2

It can be readily verified that, in general, we won’t have p(y1, y2) = p(y1)p(y2). Therefore, Y1
and Y2 are not independent.

2.5 Markov chain
Many sequential random variables have relatively local influence on each other. For example, if we
consider the price of a stock each day as a sequence of r.v.s, the stock price today is probably more
correlated with the price yesterday than the price last month. To an extreme, we may assume that

2.6. PROBABILISTIC INFERENCE 25

all historical information regarding today’s price is summarized completely by yesterday’s price.
Even though it is not entirely true, it would be a good approximation to start with, and we say
these price variables form a Markov chain.

Mathematically, let X1, · · · , XN be the sequence of price variables.Markov chain We say the variables form
a Markov chain if, for any k and l (l < k − 1), Xk is conditionally independent of Xl given
Xk−1. We often denote the chain by X1 ↔ X2 ↔ · · · ↔ XN . Some textbooks also use a one-
directional arrow for the notation. However, we prefer to use a double-sided arrow to indicate that
the definition is indeed symmetric. That is, if we have a chain X1 ↔ X2 ↔ · · · ↔ XN , we have
XN ↔ XN−1 ↔ · · · ↔ X1. Note that the Markov property implies that we can express the joint
probability as

p(xN) = p(x1)p(x2|x1)p(x3|x2) · · · p(xN |xN−1)

= p(x1)p(x2|x1)p(x3|x2) · · · p(xN |xN−1). (2.50)

2.6 Probabilistic inference

One of the most common problems we encounter in probability is estimating some latent variables
based on observations. These latent variables, in turn, will depend on the model we choose, which
is often determined by some model parameters.

2.6.1 ML vs MAP vs Bayesian inference

MAP

Let o, θ, and z be the observed variable, the model parameter, and the latent variable, respectively.
Given the model parameter θ and the observation o, it is natural to estimate z asMAP

ẑ = arg max
z
p(z|θ, o). (2.51)

Note that we can rewrite p(z|θ, o) = p(z,o|θ)
p(o|θ) = p(o|z,θ)p(z|θ)

p(o|θ) . Since the denominator does not depend
on z, (2.51) can be rewritten as

ẑ = arg max
z
p(o|z, θ)p(z|θ). (2.52)

Often, the observation does not depend on the model parameter once the latent variable z is given.
Therefore, we can simplify (2.52) to

ẑ = arg max
z

p(o|z)︸ ︷︷ ︸
likelihood

p(z|θ)︸ ︷︷ ︸
prior

, (2.53)

where p(o|z) is known as the likelihood function and p(z|θ) is the prior. Equations (2.51) through
(2.53) describes the so-called Maximum a-posteriori (MAP) estimator.

26 CHAPTER 2. PROBABILITY REVIEW

ML

It is sometimes impossible to determine the prior p(z|θ). In that case, the best we can do is to
ignore p(z|θ) and assume it to be a constant. Hence, (2.53) becomes Maximum

likelihood
ẑ = arg max

z
p(o|z), (2.54)

and this is known as maximum likelihood (ML) estimation.

Bayesian estimation

In both MAP and ML, we estimate z from the mode of some functions (p(z|o, θ) and p(o|z)).
However, it is often a waste to discard all model information except for the mode. Bayesian
estimation Bayesian

estimation
is more conservative and tries to leverage all possible z by computing a weighted sum

of them as the estimate. More precisely, we have

ẑ =
∑
z∈Z

z p(z|θ, o). (2.55)

Often, we are not fundamentally interested in z but rather in some function f that depends on
z. In this case, we create an estimate as∑

z∈Z
f(z) p(z|θ, o). (2.56)

In contrast, for MAP and ML, we simply output f(ẑ), where ẑ is the latent variable that maximizes
the a posteriori or the likelihood function.

To consolidate the idea, let’s consider a simple toy example below.

Example 2.7: Three types of coins

Let’s say we have three types of identically looking coins, but only the first type is fair. The
second type is heavily biased towards heads with p(Head) = 0.8 and the third type is biased
towards tails with p(Head) = 0.4.
We have an unknown number of these coins put into a jar. Then, we randomly draw a coin
from the jar and toss the coin three times. Let’s say we got two tails for the first two tosses.
What is the probability of getting a head on the last toss?

Our estimated result heavily relies on the estimation method we use. Let’s tackle the problem
separately using ML, MAP, and Bayesian inference.

Example 2.8: Solving the coin problem with ML

Let’s denote Z ∈ {1, 2, 3} as the type of the coin that was actually picked. Let x(z) be the

2.6. PROBABILISTIC INFERENCE 27

probability of getting a head when a type-z coin is picked. Then,

x(z) =

0.5, z = 1,

0.8, z = 2,

0.4, z = 3

For ML, we assume no prior knowledge of Z, and the best estimate of Z is simply

ẑ = arg max
z∈{1,2,3}

p(o|z),

where the observation o is (T)ail, (T)ail. Thus,

p(o|z) =

0.5 · 0.5 = 0.25, z = 1,

0.2 · 0.2 = 0.04, z = 2,

0.6 · 0.6 = 0.36, z = 3.

Since p(o|z) is largest for z = 3, we will estimate ẑ = 3, and the predicted probability of
heads for the last toss is 0.4.

Example 2.9: Solving the coin problem with MAP

When using ML, we do not assume any prior knowledge of Z. Let’s assume that there are
two type-1 coins, seven type-2 coins, and only one type-3 coin in the jar. Thus, we have

p(z) =

0.2, z = 1,

0.7, z = 2,

0.1, z = 3.

For MAP, we compute the best estimate of z as

ẑ = arg max
z∈{1,2,3}

p(z|o) (a)
= arg max

z∈{1,2,3}

p(z)p(o|z)
p(o)

(b)
= arg max

z∈{1,2,3}
p(z)p(o|z),

where (a) is due to Bayes’ rule and (b) is because p(o) is a constant with respect to z. Since

p(z)p(o|z) =

0.2 · 0.25 = 0.05, z = 1,

0.7 · 0.04 = 0.028, z = 2,

0.1 · 0.36 = 0.036, z = 3,

the best estimate is ẑ = 1, and so the predicted probability of heads for the last toss is 0.5.

28 CHAPTER 2. PROBABILITY REVIEW

Example 2.10: Solving the coin problem with Bayesian estimation

Rather than picking a single best model parameter as in MAP, Bayesian estimation leverages
all models and makes a prediction as the weighted average of estimates from all models. That
is, we estimate x as

x̂ =
∑

z∈{1,2,3}

x(z)p(z|o).

Note that p(z|o) ∝ p(z)p(o|z) and should normalize to 1. Therefore, we can compute p(z|o)
as

p(z|o) =

0.05

0.05+0.028+0.036 = 0.4386, z = 1,
0.028

0.05+0.028+0.036 = 0.2456, z = 2,
0.036

0.05+0.028+0.036 = 0.3158, z = 3.

Therefore,
x̂ = 0.4386 · 0.5 + 0.2456 · 0.8 + 0.3158 · 0.4 = 0.5421.

2.6.2 Conjugate prior

0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

Figure 2.1: A continuous prior:
Beta(x; 3, 3)

In the example given in the last section, we have exactly
three types of coins and we know precisely the probability
of heads for each type. In many real problems, the prior
knowledge can be more vague. What if we don’t know the
exact probability of heads for the coin but tend to believe
that we are more likely to have a fair coin (probability of
heads close to 0.5) than an unfair coin? In this case, we may
impose a prior similar to the one shown in Figure 2.1.

There are many ways we can parametrize a prior, as
shown in Figure 2.1. The real challenge is which function
we should choose. Note that the likelihood function p(o|x) is
given by (1− x)2. More generally, if we have u heads and v
tails in u+ v tosses,

p(o|x) = xu(1− x)v. (2.57)

To estimate x with MAP, we want

x̂ = arg max
x

p(o|x)p(x) = arg max
x

xu(1− x)vp(x).

Different people may have different opinions on the choice of p(x). However, if we select p(x) of a
form

p(x) ∝ xu
′
(1− x)v

′
,

then the resulting conjugate priorposterior distribution has the same form as before. This choice is often made
for practical purposes, and a prior with the same “form” as its likelihood (and thus posterior) is
known as the conjugate prior.

It turns out that the conjugate prior with p(x) ∝ xu
′
(1 − x)v′ is the Beta distribution. Here,

2.6. PROBABILISTIC INFERENCE 29

we will just state a few facts useful for our discussion. A reader may find more details of the Beta
distribution in the Appendix.Beta

distribution
A Beta distribution has two parameters (a, b) and its PDF is denoted

by Beta(x; a, b) ∝ xa−1(1− x)b−1. The mode of its PDF is given by
a−1
a+b−2 , a, b > 1,

[0, 1], a = b = 1,

0 or 1, otherwise.
(2.58)

And the mean of the Beta distribution is given by a
a+b . If a prior Beta(a, b) is chosen, and u heads

and v tails are observed when tossing a coin u+ v times, the posterior probability is given by

p(x|o) = K1 · Beta(x; a, b)p(o|x) (2.59)
= K1 · Beta(x; a, b)xu(1− x)v (2.60)
= K2 ·K1 · xa−1(1− x)b−1xu(1− x)v (2.61)
= K2 ·K1 · xu+a−1(1− x)v+b−1 (2.62)
= K3 ·K2 ·K1︸ ︷︷ ︸

1

Beta(x;u+ a, v + b), (2.63)

where K1,K2, and K3 are some normalization factors, and note that the product K1K2K3 = 1
since both p(x|o) and Beta(x;u+ a, v + b) normalize to 1 as we integrate over all x.

In summary, the posterior probability after observing u heads and v tails is simply another Beta
distribution but with parameters changed as follows,

a← u+ a, (2.64)
b← v + b. (2.65)

Example 2.11: Revisit coin problem with Beta(3, 3) prior

Let’s revisit the coin tossing problem but without restricting to any specific types of coin.
Instead, we will simply assume the prior probability of heads is Beta(3, 3), which is the one
actually shown in Figure 2.1.
After observing two tails, the posterior probability has a distribution Beta(3, 3 + 2) =
Beta(3, 5).
If we are going to estimate the probability of heads with MAP, we should pick the mode of
Beta(x; 3, 5), which will be 3−1

3+5−2 = 1
3 .

If we try to estimate the probability using Bayesian inference, the estimate should be∫
x

x p(x|o) dx =

∫
x

xBeta(x; 3, 5) dx =
3

3 + 5
=

3

8
.

In the above example, we assumed that a prior shown in Figure 2.1 was used. What if we don’t
have any prior knowledge? It seems reasonable to use a uniform prior, i.e., a constant everywhere.
Recall that Beta(x; a, b) ∝ xa−1(1 − x)b−1. Thus, we have a uniform prior if we pick a = 1 and

30 CHAPTER 2. PROBABILITY REVIEW

b = 1.

Example 2.12: Revisit coin problem with uniform (Beta(1, 1)) prior

Let’s repeat the last example but just pick a uniform prior Beta(1, 1). Thus after observing
two tails, the posterior probability has a distribution Beta(1, 1 + 2) = Beta(1, 3).
If we are going to estimate the probability of heads with MAP, we should pick the mode of
Beta(x; 1, 3), which will be 1−1

1+3−2 = 0. Note that this result is rather extreme as it essentially
rules out the possibility of getting a head for the next toss.
Note that since the prior Beta(1, 1) is really a constant, the MAP estimation with such a
prior is actually just the ML estimate.
Instead, if we try to estimate the probability using Bayesian inference, the estimate will be
the mean of Beta(x; 1, 3), which is∫

x

x p(x|o) dx =

∫
x

xBeta(x; 1, 3) dx =
1

1 + 3
=

1

4
.

It may seem surprising at first that the ML estimation (or MAP with a uniform prior) result is so
extreme. But without additional information, the best guess of the probability is from statistically
counting, and the estimate of zero head probability seems reasonable from that perspective, as none
out of two historical tosses were heads.

When we impose a non-uniform prior such as Beta(3, 3) as in our example, it introduces a
“regularization” effect Bayesian

estimation offers
free
regularization

that makes the estimate less extreme. Just by inspection, we can see that
the Beta(3, 3) prior can be interpreted as if some prior experiment had been performed before our
observations. In particular, the prior experiment included 4 = (3 + 3 − 2) tosses, out of which
2 = (3 − 1) were heads. Even though for Beta(u, v) with non-integer u and v, it would be much
more difficult to interpret the physical meaning of such a prior.

Another interesting observation from the above example is that Bayesian inference includes some
free regularization even when a non-informative uniform prior is used. The estimated probability
of heads is 1

4 rather than 0 as in MAP or ML. The averaging effect over many model parameters
creates a less extreme estimate and thus offers some regularization effect.

2.7 Exercises
1. Show the union bound p(A∪B) ≤ p(A)+p(B). Hint: note that we can write A∪B = A∪(B\A)

such that A and B \A are disjoint.

2. Show that for a r.v. X, E[X + C] = E[X] + C when C is a constant, regardless of whether
X is continuous or discrete.

3. Show that if X and Y are independent, then X and Y are uncorrelated. That is, E[XY] =
E[X]E[Y].

4. Show that if X and Y and independent, for any deterministic function f(·) and g(·), f(X)
and g(Y) are independent as well.

2.7. EXERCISES 31

5. Let X be a continuous random variable uniformly distributed in the interval [−1, 1]. Let
Y = X2.

(a) Show that X and Y are uncorrelated, i.e., E[XY] = E[X]E[Y].
(b) Consider deterministic functions f(·) and g(·) such that f(x) = x2 and g(y) = y. Show

that f(X) and g(Y) are not uncorrelated.

This example illustrated that X and Y being uncorrelated does not imply f(X) and g(Y)
being uncorrelated in general.

6. For X and Y that are uncorrelated (i.e., E[XY] = E[X]E[Y]), show that

Var(X + Y) = E[(X + Y − E[X + Y])2]

= E[(X − E[X])2] + E[(Y − E[Y])2] = Var(X) + Var(Y).

7. Show that X1 ↔ X2 ↔ · · · ↔ XN implies XN ↔ XN−1 ↔ · · · ↔ X1. That is, if

p(xN) = p(x1)p(x2|x1)p(x3|x2) · · · p(xN |xN−1),

we have
p(xN) = p(xN)p(xN−1|xN)p(xN−2|xN−1) · · · p(x1|x2)

as well.

32 CHAPTER 2. PROBABILITY REVIEW

Information theory and probabilistic inference Samuel Cheng

Chapter 3
Quantify information with compression

You should call it entropy for two reasons:
first because that is what the formula is in
statistical mechanics but second and more
important, as nobody knows what entropy
is, whenever you use the term you will
always be at an advantage

John von Neumman

In this chapter, we will quantify the amount of information in a random variable, which ends
up being the entropy of the r.v.. This concept is typically introduced through the source coding
theorem. We will present multiple proofs of the theorem, each providing further insights into
information theory. Notably, the second proof will introduce the concept of typical sequences, a
special case of the law of large numbers, which serves as a crucial tool in information theory.

3.1 Overview of entropy
Information is an abstract concept and is challenging to define and quantify. Comparing “the sun
will rise from the east tomorrow” and “it is going to rain this coming Wednesday,” which one should
have more information? We will argue that the latter is more informative since, unless you are
from another planet, everyone knows that the former is always true.

On the other hand, if a comet is going to hit Earth so hard tomorrow that its rotation flips,
the statement “the sun will rise from the west the day after tomorrow” is very informative to all
of us as it is not something we expect every day. Sadly, we probably wouldn’t survive to see it if it
really happens.

How should we quantify the amount of information of an event then?rare events have
more
information but
on average are
not

By using probability!
We will formally show later in this chapter that we should value an outcome with probability
p with − log p bits, as argued in Chapter 1, if the outcome indeed happened. For example, say
the probability that the sun will rise from the east tomorrow is 0.9999999 (hopefully, it should
be larger than that in reality), and someone tells us that this will happen. The “value” of this

Page 33 of 177

34 CHAPTER 3. QUANTIFY INFORMATION WITH COMPRESSION

piece of information will then be − log2 0.9999999 ≈ 0.00000014 bits. What will be the amount
of information if the sun rises from the west tomorrow?1 The value of this piece of information
is − log2(1 − 0.9999999) ≈ 23.25 bits. However, this piece of information has no value unless the
outcome actually happens.

Now, say if someone can accurately predict if the sun rises from the east the day after, what is the
average value of his prediction? It would be 0.9999999 · 0.00000014+ 0.0000001 · 23.25 ≈ 0.0000025
bits. This may be surprising to some as it does not contain a lot of “value”.

The average value we just computed is known as the entropy. For any r.v., the entropy of the r.v.,
which only depends on the distribution of the r.v., can be interpreted as the amount of uncertainty
of that variable. If we view the r.v. as an information source through repeatedly sampling the r.v.,
the number of bits on average needed to store the outcome of the r.v. is precisely the entropy as
well. This fact is known as the source coding2 theorem. Essentially, the Source Coding Theorem
not only states that on average we can compress an output from a discrete memoryless source to
its entropy, but it also states that, on average, we can’t compress a source beyond that theoretical
limit.

In this chapter, we will present three different forward proofs of the Source Coding Theorem.
The first proof is based on optimization and is likely the most intuitive and natural one for most
readers. The second proof is based on the law of large numbers and typical sequences, which may
appear more abstract to some but probably is the most elegant. Finally, we will provide a more
constructive proof using the Shannon-Fano-Elias (SFE) code.

In the next chapter, we will provide a converse proof of the source coding theorem after we learn
more information measures beyond entropy.

3.1.1 Limitation of entropy
As discussed, entropy can’t

estimate
economic values

entropy quantifies the average number of bits required to represent a r.v.. However,
this only computes how much storage is needed on average to keep the information. It does not
evaluate the economic value of the information. For example, the entropy of a winning lottery
ticket will be less than 100 bits, which is less than the exact counts of different species of insects in
my backyard. However, the latter piece of information is likely to have very little economic value,
perhaps only satisfying my own curiosity.

Even if we understand that entropy entropy can be
counterintuitive

only quantifies the “amount” of information in a variable,
this interpretation can still be counterintuitive and confusing at times. Note that a more random
(more uniform) r.v. will have higher entropy than a less random (more skewed) r.v.. Intuitively,
we might think the reverse should be true; something less random should have more information
as it is more likely to be artificially created. For example, a randomly generated piece of text will
have higher entropy than an encyclopedia article given the same character count. But while the
latter probably contains valuable information, no one would likely agree that the former contains
any useful information at all.

Finally, entropy requires
knowledge of
distribution

we have assumed so far that we have access to the distribution of a r.v.. We never
questioned how and where we got the distribution. Getting the distribution may be easy for some
problems but can be very hard for others. For example, as in our earlier example, how can we
estimate the probability that the sun will rise from the east tomorrow? How about the probability
of having alien life forms in the universe? Obtaining the distribution itself is beyond the scope of

1For simplicity, we assume the sun will always rise and either from the west or the east.
2Source coding is just a fancy name for compression among information theorists.

3.2. SOURCE CODING THEORY 35

DMS Encoder Decoder X̂N
XN c(Xn)

Figure 3.1: Source coding model

information theory. Like most information theory literature, we will treat the distribution of the
r.v. as a given truth for the rest of the book, something akin to an axiom in mathematics that we
must accept before proceeding. Note that even for problems often treated with probability, such as
estimating the probability of drawing an Ace of Spades from a deck of cards, the probability model
will only reflect reality if no cheating is involved. Your probability model (assuming no cheating)
can be very different from that of your opponent, who cheats and takes that into account.

When in doubt, it is always useful to step back and remember what entropy fundamentally
represents.

What is Entropy?

Given a r.v., its entropy simply quantifies the average number of bits required to represent
the r.v..

It is convenient to interpret entropy as a way to quantify the amount of information from a
random source, but it is important to be aware of the caveats mentioned above.

3.2 Source coding theory
Before stating exactly the Source Coding Theorem, we need to define the source coding model.

3.2.1 Source coding model
We will begin by introducing the concept of a discrete memoryless source (DMS),discrete

memoryless
source

which is generated
by repeatedly sampling from a discrete r.v.. The source is considered memoryless because we assume
that samples obtained at different times are independent.

Consider a sequence X1, X2, · · · , XN sampled from a DMS. The problem of source coding is
to determine, on average, how many bits are needed to represent each symbol Xi losslessly. The
sequence will be compressed by an encoder and later decompressed by a decoder, as shown in Figure
3.1. In plain English, source coding is just the problem of lossless compression. It is important
that the compression considered here is lossless, meaning each Xi should be perfectly reconstructed
later on.

Encoder

The encoderencoder compresses a sequence xN = x1, x2, · · · , xN from the DMS into a representation c(xN)
of a ”smaller” size. We will assume for the moment that each symbol xi will be mapped separately
into a binary sequence c(xi) and c(xN) will simply be a concatenation of c(x1)c(x2) · · · c(xN).

36 CHAPTER 3. QUANTIFY INFORMATION WITH COMPRESSION

Generally, we will call c(xN) a codeword codeword and
codebook

, and the collection of all codewords a codebook,
which can be imagined as a table storing each codeword c(xN) for each entry xN . By the way, since
c(x) is just a special case of c(xN) for N = 1, we will call c(x) a codeword as well.

Mapping each symbol independently seems to be a major constraint of the model. But this is
not the case in reality since we can always group some symbols together to form a super-symbol
and treat each super-symbol independently instead. symbol group

trick
For example, we may group two symbols and

treat the pair as one unit. Then, we will have c(xN) = c(x1, x2)c(x3, x4) · · · c(xN−1, xN) instead.
We call this the symbol grouping trick and will need to use it later. One thing to be aware of is
that symbol grouping allows us to achieve fractional code rates. In principle, if we allow grouping
of M symbols, we can achieve any fractional code rate as M goes to infinity.

Now, back to the case of treating each symbol separately, say we have lengths of c(xi) to be
l(xi). Then, our goal will be to simply minimize the expected length of the symbol E[l(X)].

Decoder

Given a binary sequence (the output of the encoder c(xN) = c(x1)c(x2) · · · c(xN)), the decoder decoder
d(·) = c−1(·) simply tries to reverse the operation and find xN . Note that since the compression is
lossless, we should have d(c(xN)) = xN .

At an abstract level, we can consider that the codebook is available for both the encoder and
the decoder. The decoder could recover xN through a simple table lookup. However, this is usually
not computationally feasible, and other techniques are involved. But that is typically beyond the
scope of information theory and our discussion here. Yet, in the last section of this chapter, we will
discuss the SFE code, which provides a glimpse of what real compression systems might look like.

Source coding rate

The source coding rate source coding
rate

is defined as the average number of bits per symbol required to encode
a source sequence. For our model, it is simply

R =
1

N
E[length(c(XN))] = E[l(X)],

where l(x) denotes the length of c(x).

3.2.2 A glimse of source coding theorem
Now that we have established the necessary terminology, we can describe the source coding theorem. source coding

theoremSource Coding Theorem

For a DMS created by a r.v. X, we can find a lossless encoder-decoder pair if the coding
rate is at least H(X) , E[− log p(X)].
Moreover, if the coding rate is less than H(X), lossless reconstruction will not be possible.

Showing the existence forward and
converse proofs

of an encoder-decoder pair is usually known as the forward proof, while
demonstrating that no such pair exists when the coding rate is less than the entropy is known as
the converse proof. In the rest of the chapter, we will present the forward proof in three different
ways.

3.3. UNIQUELY DECODABLE CODE 37

3.3 Uniquely decodable code
For lossless compression,uniquely

decodable code
all input sequences should map to different compressed outputs. Other-

wise, if we have c(x) = c(x′) for some x 6= x′, there is no way for the decoder to determine whether
the original input was x or x′. Therefore, we need c(x) 6= c(x′) if x 6= x′, meaning c(·) must be
injective. A code that satisfies this property is known to be uniquely decodable.

Recall that c(xN) = c(x1)c(x2) · · · c(xN). When a code is uniquely decodable, c(·) must be
injective, meaning each c(x) must be distinct for different x. However, the opposite is not true; an
injective c(·) does not guarantee that the code is uniquely decodable. Consider a simple example
where X has only four outcomes, say X = {α, β, γ, δ}. Let c(α) = 1, c(β) = 0, c(γ) = 10, and
c(δ) = 01. While c(·) is injective, the resulting c is not uniquely decodable. For example, a decoder
receiving 10 cannot determine whether the original input was γ or αβ.

3.3.1 Prefix-free code
For practical purposes, we would like to be able to decode a symbol as soon as it becomes available.
Consider a code with the following mapping:

α 7→ 10, β 7→ 00, γ 7→ 11, δ 7→ 110. (3.1)

One can show that this code is uniquely decodable, and we will leave this as an exercise.
Now, consider an input sequence γβββ that maps to 11000000. Note that when the decoder

reads the first 3 bits, it is not able to tell if the first input symbol is γ or δ. Actually, it will not be
until the decoder reads the last bit that it will be able to confirm that the first input symbol is γ.
This is definitely not desirable.

Instead,prefix-free code let’s change the code for δ from 110 to 011. We can argue that we can always decode a
symbol as soon as it becomes available. We call a code with such a property an instantaneous code.
Why don’t we have the problem of mixing up symbols anymore? In the original code, γ could be
mixed up with δ since γ is a prefix of δ, i.e., 11. However, in the new code, none of the codewords
can be a prefix of another, so no such confusion is possible. Therefore, an instantaneous code is
also sometimes known as a prefix-free code.

Besides its “instant” decoding property, another nice property of a prefix-free code is that it is
very easy to verify if a code is prefix-free or not by simply ensuring that none of the codewords
can be a prefix of another. And when the code is prefix-free, it is apparent that it will be uniquely
decodable. In contrast, it is quite difficult to verify if a code is uniquely decodable if it is not
prefix-free, as we see from our earlier example.

3.4 Quantify information by minimizing expected codeword
length

Now, let’s return to the question of quantifying the amount of information in a DMS. Namely, on
average, what is the minimum number of bits needed to represent a source symbol losslessly?

Recall that c(xN) = c(x1)c(x2) · · · c(xN) and l(xi) is the length of c(xi). The expected length
of the code per symbol is E[l(X)]. Our objective is to make E[l(X)] as small as possible for some
allowable length profile l(x), x ∈ X .

38 CHAPTER 3. QUANTIFY INFORMATION WITH COMPRESSION

Note that l(x) cannot be chosen arbitrarily, as it is simply impossible to have a uniquely
decodable code (and hence lossless compression) for some length profiles. length profileFor example, take
X = {α, β, γ, δ} and l(α) = l(β) = 1, l(γ) = l(δ) = 2. One example could be c(α) = 1, c(β) =
0, c(γ) = 10, c(δ) = 01. It should be apparent that we can never have a uniquely decodable code
for this length profile because c(γ) or c(δ) would be mixed up with a combination of c(α) and c(β).

While it is easy to verify if a code is prefix-free when we see one, how can we determine a length
profile that can facilitate a uniquely decodable code? It turns out that we can verify this very easily
with a simple condition known as Kraft’s Inequality.

3.4.1 Kraft’s Inequality

Kraft stated a magical condition that whenever the condition is satisfied by a length profile, we can
find a uniquely decodable code with that length profile. Otherwise, no uniquely decodable code
with the given length profile is possible.

More precisely, consider a length profile l1, l2, · · · , lK . If Kraft’s
inequality

K∑
k=1

2−lk ≤ 1 (3.2)

then there exists a uniquely decodable code with the given profile. That is, we have l(x1) = l1,
l(x2) = l2, · · ·, l(xK) = lK for symbols x1, x2, · · · , xK . Otherwise, no such uniquely decodable code
is possible.

Intuition

Let’s get some intuition on where Kraft’s inequality in (3.2) comes from. We can represent every
codeword of a code by a node in a binary tree. As shown in Fig. 3.2, a left branch split corresponds
to a zero, and a right branch split corresponds to a one. So, the codeword 000 will correspond to
the leftmost leaf node in the tree, as in Fig. 3.2.

Note that if a codeword is a prefix of another one, its corresponding node will be an ancestor
of the latter. Therefore, if a code is prefix-free, the corresponding nodes of all codewords can only
be leaf nodes of the tree. Moreover, the descendants of distinct codeword nodes must not overlap!

Let lmax be the maximum length of a coded symbol, that is, lmax = maxx∈X l(x). For a length-l
codeword, note that the number of its descendants at the lmax-level is simply 2lmax−l. If a code is
prefix-free, the descendant sets of all codewords must be disjoint. Therefore, the total number of
all length-lmax descendants must be less than or equal to all possible length-lmax codewords, i.e.,

K∑
k=1

2lmax−lk ≤ 2lmax ⇒
K∑
k=1

2−lk ≤ 1.

Conversely, if Kraft’s inequality is violated, the descendant sets must not be disjoint. Therefore,
two codewords must share a descendant, and consequently, one must be a prefix of the other. One
can easily verify the latter, and we will leave it as an exercise. As a result, if the descendant sets
of codewords are not disjoint, the code is not prefix-free.

3.4. QUANTIFY INFORMATION BY MINIMIZING EXPECTED CODEWORD LENGTH 39

1

101

0

101

000 001

0 1

0 1

0 1

(a) Prefix-free

1

01

000

00

0 1

0 1

0

(b) Not prefix-free

Figure 3.2: Understanding Kraft’s inequality: The left tree corresponds to a prefix-free code, while
the right one does not. Note that the grey nodes are the codewords. For a prefix-free code,
any descendant of a codeword cannot overlap with another codeword and its descendants. For
example, in the left figure, the codeword 101, which is a descendant of 1, cannot overlap with any
other codeword and its descendants. On the other hand, in the right figure, the descendant of 00,
which is 000, overlaps with another codeword 000, illustrating a violation of the prefix-free property.

Forward Proof of Kraft’s Inequality

Hereprefix-code
exists for length
profile that
satisfies Kraft’s
inequality

we will show that as long as Kraft’s inequality is satisfied, we will be able to find a prefix-free
code and hence a uniquely decodable code with the given profile.

Given l1, l2, · · · , lK that satisfy
∑K
k=1 2

−lk ≤ 1, we can assign codewords to nodes on a tree and
ensure all nodes have disjoint descendants as follows. First, assign one codeword at a time starting
from the smallest index and assign it to the highest available node at the li-level. Once a node is
assigned, cross out the assigned node and all its descendants, which will become unavailable for
future selection. Repeat this until all codewords are assigned.

From our earlier discussion, as long as Kraft’s inequality is satisfied, we know that there are
sufficient tree nodes to be assigned. Thus, the corresponding code is apparently prefix-free and,
therefore, uniquely decodable.

Converse Proof of Kraft’s Inequality

From our discussion near the end of the “Intuition” subsection, we see that no prefix-free code
can have a length profilecode with length

profile that
violates Kraft’s
inequality is not
uniquely-
decodable

that violates Kraft’s inequality. However, one may wonder if we could
find a uniquely decodable code with a length profile violating Kraft’s inequality. After all, not all
uniquely decodable codes are prefix-free. However, we will show here that this is simply impossible.
Essentially, the length profile of any uniquely decodable code has to satisfy Kraft’s inequality.

Recall that lmax = maxx∈X l(x) is the maximum length of a coded symbol. We will show that∑
x∈X 2−l(x) ≤ (klmax)

1/k if the code is uniquely decodable. Consequently,
∑
x∈X 2−l(x) ≤ 1 as we

allow k to go to infinity, thus satisfying Kraft’s inequality. Now, let’s get into the details. Consider
a code sequence from coding k symbols x = x1, x2, · · · , xk, we have

40 CHAPTER 3. QUANTIFY INFORMATION WITH COMPRESSION

(∑
x∈X

2−l(x)

)k
=

(∑
x1∈X

2−l(x1)

)(∑
x2∈X

2−l(x2)

)
· · ·

(∑
xk∈X

2−l(xk)

)
=

∑
x1,x2,··· ,xk∈Xk

2−(l(x1)+l(x2)+···+l(xk))

=
∑

x∈Xk

2−l(x) =

klmax∑
m=1

a(m)2−m,

where a(m) is the number of codewords with length m. In the last equality, we tally the sum dif-
ferently from before. Rather than summing over all k-symbol inputs, we sum over coded sequences
of different lengths. Since there are 2m different binary sequences of length m, a(m), the number of
length-m codewords, has to be less than or equal to 2m if the code is uniquely decodable. Therefore,
we have (∑

x∈X
2−l(x)

)k
=

klmax∑
m=1

a(m)2−m ≤
klmax∑
m=1

2m2−m = klmax.

Consequently, ∑
x∈X

2−l(x) ≤ (klmax)
1/k → 1 as k goes to infinity.

Thus, any uniquely decodable code satisfies Kraft’s inequality as stated in (3.2).

3.4.2 A proof of Source Coding Theorem

Now, let’s provide a proof of the source coding theorem by finding the minimum rate required to
compress a source losslessly. Recall that the rate is simply E[l(X)] =

∑K
k=1 p(xk)l(xk) =

∑K
k=1 pklk,

where we define pk , p(xk) and lk , l(xk) for simplicity. For lossless recovery, the code must satisfy
Kraft’s inequality. Therefore, we can find the minimum rate by solving the following optimization
problem:

min
l1,l2,··· ,lK

K∑
k=1

pklk

subject to
K∑
k=1

2−lk ≤ 1 and l1, · · · , lK ≥ 0

≡ max
l1,l2,··· ,lK

−
K∑
k=1

pklk

subject to
K∑
k=1

2−lk − 1 ≤ 0 and − l1, · · · ,−lK ≤ 0.

Let’s write down the KKT conditions (please see Appendix). We have:

3.4. QUANTIFY INFORMATION BY MINIMIZING EXPECTED CODEWORD LENGTH 41

−∇

(
K∑
k=1

pklk

)
− µ0∇

(
K∑
k=1

2−lk − 1

)
+

K∑
k=1

µk∇lk = 0 (3.3)

K∑
k=1

2−lk − 1 ≤ 0, l1, · · · , lK ≥ 0, µ0, µ1, · · · , µK ≥ 0 (3.4)

µ0

(
K∑
k=1

2−lk − 1

)
= 0, µklk = 0. (3.5)

Without loss of generality, we will assume all pk 6= 0 and expect lk > 0. Consequently, µk = 0
from (3.5). Consider the j-th element in (3.3), we have

pj + µ02
−lj log 2 = 0⇒ 2−lj =

pj
µ0 log 2

. (3.6)

Moreover, from Kraft’s inequality,
∑K
k=1 2

−lk ≤ 1, we have

K∑
k=1

pk
µ0 log 2

=
1

µ0 log 2
≤ 1⇒ µ0 ≥

1

log 2
(3.7)

Note that as µ0 decreases, pj
µ0 log 2 increases and lj decreases as from (3.6). Therefore, if we want

to decrease the code rate, we should reduce µ0 as much as possible. From (3.7), we should take
µ0 = 1

log 2 . Thenoptimum code
length 2−lj = pj ⇒ lj = − log2 pj .

Thus, the minimum rate becomes

K∑
k=1

pklk = −
K∑
k=1

pk log2 pk , H(p1, · · · , pK) = H(X).

Remark

The above proof suggests that we can achieve the theoretical compression limit H(X) if we assign
the codeword length for message j, lj , to − log2 pj . This reaffirms that a message occurring with
probability p should have information content of − log2 p.

Moreover, since − log2 pj is typically not an integer, attaining the theoretical limit necessitates
the use of fractional codeword lengths. In contrast, our current setup of encoding individual symbols
only results in integer codeword lengths. However, by leveraging the symbol grouping technique
mentioned earlier, we can, in principle, achieve code lengths with arbitrary precision by allowing
the grouping of a large number of symbols. This enables us to approach the compression limit as
close as we want.

42 CHAPTER 3. QUANTIFY INFORMATION WITH COMPRESSION

3.5 Quantify entropy using LLN

We will now try to show the Source Coding Theorem again but from a different perspective. This
is my favorite proof of the theory. But we need to introduce a new idea known as a typical sequence
to proceed.

For sufficiently long sequences sampled from a DMS, one can show that they all behavior
similarly statistics-wise. We call sequences that share the similar statistics typical sequences. typical sequence
The definition is almost a tautology. As almost all sequences sampled from a DMS will be typical.
Before discussing typical sequences, we need to introduce the Law of Large Number (LLN), which
essentially says that the empirical average will converge to the statistical average given enough
sample.

3.5.1 Law of Large Number (LLN)

Consider samples x1, x2, · · · , xN drawn from a DMS. The LLN states that the empirical average of
f(xi) will approach the expected value as N →∞. That is, law of large

number
1

N

N∑
i=1

f(xi) = E[f(X)] as N →∞

The LLN should be nothing surprising as we use it in everyday life. This is precisely how polls
are supposed to work. Pollsters randomly draw samples from a portion of the population and
expect the prediction from the sample mean to converge to the population mean as the sample size
becomes sufficiently large.

The LLN is a rather strong result. We will only show a weak version here. For any a > 0,
Pr
(∣∣∣ 1N ∑N

i=1 f(Xi)− E[f(X)]
∣∣∣ ≥ a)→ 0 as N →∞. (i.e., the empirical average converges to the

expectation in probability.) More precisely, we will show

Pr

(∣∣∣∣∣ 1N
N∑
i=1

f(Xi)− E[f(X)]

∣∣∣∣∣ ≥ a
)
≤ V ar(f(X))

Na2
∝ 1

N
.

To show that, we will use the Chebyshev’s Inequality, Chebyshev’s
inequality

which says

Pr(|Y − E[Y]| ≥ a) ≤ V ar(Y)

a2

Let’s first prove the Chebyshev’s Inequality.

Proof of Chebyshev’s Inequality. First note that for any r.v. X ≥ 0, we have

Pr(X ≥ b) ≤ E[X]

b
, (3.8)

3.5. QUANTIFY ENTROPY USING LLN 43

which is known as the Markov’s Inequality and can be shown readily as

X = I(X ≥ b) ·X + I(X < b) ·X
≥ I(X ≥ b) · b

⇒ E[X] ≥ Pr(X ≥ b) · b

Now, take X = |Y − E[Y]|2 and b = a2, by Markov’s Inequality stated in (3.8),

Pr(|Y − E[Y]| ≥ a) = Pr(|Y − E[Y]|2 ≥ a2)

≤E[|Y − E[Y]|2]
a2

=
V ar(Y)

a2

Proof of weak LLN. Let ZN = 1
N

∑N
i=1 f(Xi), apparently E[ZN] = E[f(X)] and

V ar(ZN) =
1

N2

N∑
i=1

V ar(f(X)) =
V ar(f(X))

N

Thus, by Chebyshev’s Inequality,

Pr

(∣∣∣∣∣ 1N
N∑
i=1

f(Xi)− E[f(X)]

∣∣∣∣∣ ≥ a
)

=Pr(|ZN − E[ZN]| ≥ a) ≤ V ar(ZN)

a2
=
V ar(f(X))

Na2

Before continuing with typical sequences, let’s consider an interesting application of LLN in the
following as an example.

Example 3.1: Optimal repeated bets: Kelly’s Criterion

Let’s assume I initially have 1 dollar and I bet an r fraction of my current net worth each
time on an a-for-1 bet. This means that for each dollar bet, I will collect “a” dollars if I win
the bet and lose the entire dollar otherwise.
Given that the probability of winning the bet is p, the expected wealth after one bet is

1− r + rpa.

Clearly, if pa < 1, I shouldn’t bet any money at all. However, if pa > 1, the expected wealth
after one bet is maximized when r = 1. Does this mean we should always go all-in?
Now, let’s consider repeated bets. Let Yi represent the fraction of wealth after the ith bet.

44 CHAPTER 3. QUANTIFY INFORMATION WITH COMPRESSION

The net wealth WN after N bets is given by:

WN =

N∏
i=1

Yi

where

Yi =

{
(1− r) + ar with probability p
1− r with probability (1− p)

By the Law of Large Numbers (LLN), we have

1

N
logWN =

1

N

N∑
i=1

logYi → E[logY].

Thus,
logWN → N [p log(1 + (a− 1)r) + (1− p) log(1− r)] .

To maximize this gain, we need to maximize the function:

f(r) = p log(1 + (a− 1)r) + (1− p) log(1− r)

with respect to r. Setting the derivative df
dr to zero, we get:

p(a− 1)

1 + r(a− 1)
− 1− p

1− r
= 0⇒ r =

ap− 1

a− 1
.

Note that we should never go all-in unless p = 1!

3.5.2 Asymptotic equipartition and typical sequences

Consider a sequence of symbols x1, x2, . . . , xN sampled from a discrete memoryless source (DMS).
We want to compute the sample average of the log-probabilities of each sampled symbol. By the
Law of Large Numbers (LLN), we have

1

N

N∑
i=1

log 1

p(xi)
→ E

[
log 1

p(X)

]
= H(X) (3.9)

Now, for the left-hand side (LHS):

1

N

N∑
i=1

log 1

p(xi)
=

1

N
log 1∏N

i=1 p(xi)
= − 1

N
log p(xN), (3.10)

where xN = (x1, x2, . . . , xN).

3.5. QUANTIFY ENTROPY USING LLN 45

Combining (3.9) and (3.10), we have the probability of the sampled sequence

p(xN)→ 2−NH(X) (3.11)

for any sequence sampled from the source!

Set of typical sequences

We will describe the sequence xN with p(xN) ∼ 2−NH(X) as typical. More precisely, let’s define
the set of typical sequences as follows

set of typical
sequences

ANε (X) = {xN | 2−N(H(X)+ε) ≤ p(xN) ≤ 2−N(H(X)−ε)}. (3.12)

By the Law of Large Numbers (LLN), for any ε > 0, we can find a sufficiently large N such
that any sampled sequence from the source is typical. Consequently, all these sequences will have
almost the same probability. This phenomenon is referred to as the Asymptotic equipatition (AEP),asymptotic equal

partition which implies that the probability space is asymptotically equally partitioned by typical sequences
of equal probability.

Size of typical set

Since all typical sequences have probability ∼ 2−NH(X) and they fill up the entire probability space
(everything is typical), there should be approximately 1

2−NH(X) = 2NH(X) typical sequences.
More precisely, the size of the typical setsize of typical

set
ANε (X) is bounded by

(1− δ)2N(H(X)−ε) ≤ |ANε (X)| ≤ 2N(H(X)+ε) (3.13)

This can be shown rather easily as follows.

1 ≥ Pr(XN ∈ ANε (X)) =
∑

xN∈AN
ε (X)

p(xN)
(a)

≥
∑

xN∈AN
ε (X)

2−N(H(X)+ε)

= |ANε (X)|2−N(H(X)+ε),

where (a) is from the definition of ANε (X). And for any δ > 0, given a sufficiently large N , we have

1− δ
(a)

≤ Pr(XN ∈ ANε (X)) =
∑

xN∈AN
ε (X)

p(xN)
(b)

≤
∑

xN∈AN
ε (X)

2−N(H(X)−ε)

= |ANε (X)|2−N(H(X)−ε),

where (a) is because of the LLN and (b) is from the definition of ANε (X).

Example 3.2: Coin flipping example

Consider flipping a bias coin with Pr(Head) = 0.3 say N = 1000 times

• All typical sequences will have approximately 300 heads and 700 tails. That means,

46 CHAPTER 3. QUANTIFY INFORMATION WITH COMPRESSION

we should get approximately 300 heads out of the 1000 tosses.

• AEP (and LLN) tells us that it is almost impossible to get, say, a sequence of 100 heads
and 900 tails

Now, with the knowledge of typical sequences, we can give a very simple proof of the Source
Coding Theorem.

A forward proof of Source Coding Theorem using AEP

Consider a DMS X and all length-N sequences that can be generated from X. By AEP,
all these sequences are typical for sufficiently large N . Moreover, there are 2NH(X) such
sequences. Therefore, we can create a code that simply index all these sequences with
log 2NH(X) = NH(X) bits. Thus, the required source coding rate, i.e., bits needed to
represent each symbol on average, is NH(X)

N = H(X) bits.

3.6 Quantify entropy by construction
We argued how we can represent a DMS with H(X) bits per symbol through optimization in Section
3.4 and AEP in Section 3.5. However, in both cases, the codes described are rather abstract and not
quite concrete. In this section, we will yet give another proof of the Source Coding Theorem with
a more “constructive” approach. Hopefully, this gives further insight for this important theorem.

We will begin by introducing the SFE code. Although it may not appear to be highly efficient,
it is straightforward to analyze and sufficient for our discussion.

3.6.1 Shannon-Fano-Elias code

0.05

=

0.00001 · · ·

=

F̄ (a)

0.2

=

0.0011 · · ·

=

F̄ (b)

0.45

=

0.011 · · ·

=

F̄ (c)

0.8

=

0.110 · · ·

=

F̄ (d)

0.1

F (a)

0.3

F (b)

0.6

F (c)
a b c d

Figure 3.3: A SFE code example

The key idea of the SFE code Shannon-Fano-
Elias code

is to create a code word from the binary representation of any
number within the interval [0, 1].

To generate the SFE codebook for a DMS X, we first sort the alphabet of X and then create
the cumulative mass function F (·) of X, where F (x) =

∑
x′≤x p(x

′). Next, we define F̄ (x) =
F (x)− 0.5 · p(x). The codeword for x is then obtained by taking the first l(x) bits of the fractional
part of the binary representation of F̄ (x), where l(x) = d− log p(x)e+ 1.

3.6. QUANTIFY ENTROPY BY CONSTRUCTION 47

The process of constructing the codebook may seem mysterious at the moment. Before explain-
ing the reasoning behind these choices, let’s look at a concrete example.

Example 3.3: Example: A SFE code

Consider a DMS X as shown in Fig. 3.3 (p(α) = 0.1, p(β) = 0.2, p(γ) = 0.3, p(δ) = 0.4). We
have

F (α) = F̄ (α) = 0.05 ≈ 0.00001b
F (β) = 0.3, F̄ (β) = 0.2 ≈ 0.0011b
F (γ) = 0.6, F̄ (γ) = 0.45 ≈ 0.0111b

F (δ) = 1, F̄ (δ) = 0.8 ≈ 0.110b

As l(α) = d− log 0.1e + 1 = 5, l(β) = d− log 0.2e + 1 = 4, l(γ) = d− log 0.3e + 1 = 3, and
l(δ) = d− log 0.4e+ 1 = 3. We have

c(α) = 00001

c(β) = 0011

c(γ) = 011

c(δ) = 110

SFE code is prefix-free

One of the most important properties of the SFE code is that it is prefix-free given the described
construction. First, note that the conversion between codewords and intervals can go both ways.
We can map a fractional number within [0, 1] to a codeword, and we can also map any codeword
to an interval within [0, 1].

For example, the codeword 110 corresponds to

u(110) = [0.110b, 0.1101·b] = [0.11b, 0.111b) = [0.75, 0.875)

and the codeword 011 corresponds to

u(1) = [0.1b, 0.11·b] = [0.1b, 1b) = [0.5, 1).

With a slight abuse of notation, let’s denote u(x) as the codeword intervalcodeword
interval

corresponding to
the codeword of x. And we can make the following observations regarding u(x):

Observation 1 Given an SFE codeword c(x) with length l(x) = |c(x)|, the length of the corre-
sponding interval |u(x)| = 2−l(x).

Observation 2 If u(x1) and u(x2) do not overlap, then c(x1) and c(x2) cannot be prefixes of one
another. Consequently, if all codeword intervals do not overlap, the code must be prefix-free.

Observation 3 The respective intervals of all SFE codewords are disjoint.

48 CHAPTER 3. QUANTIFY INFORMATION WITH COMPRESSION

The first observation should be rather obvious. It may not be immediately clear with the other
two observations. Let’s give the quick proofs below.

Proof of Observation 2. Given statements A and B, note that A ⇒ B ≡ ¬B ⇒ ¬A. Therefore,
let’s show instead that if c(x1) and c(x2) are prefixes of one another, then u(x1) and u(x2) overlap.
For example, consider the codeword 101 and its prefix 10. The corresponding intervals [0.101, 0.11)
and [0.10, 0.11) do overlap with one another.

Without loss of generality, assume that c(x1) is a prefix of c(x2). The lower boundary of u(x1) is
below the lower boundary of u(x2), and the upper boundary of u(x1) is above the upper boundary
of u(x2). Thus, u(x2) ⊆ u(x1), and hence u(x1) and u(x2) overlap with each other.

Proof of Observation 3. From Observation 1, the length of the interval is

2−l(x) = 2−(d− log p(x)e+1) = 0.5 · 2−d− log p(x)e ≤ 0.5 · 2− log p(x) = 0.5 · p(x).

Since code intervals of
SFE codes are
disjoint

the interval must include F̄ (x) and F̄ (x) is 0.5 · p(x) away from the boundary of the
probability interval of x, the interval u(x) must fall completely within the probability interval of x.
Since the probability intervals of all x ∈ X are disjoint, the intervals u(x), x ∈ X , are disjoint as
well as illustrated in Figure 3.4.

Combining Observations 2 and 3, we thus show that SFE is prefix-free and consequently
uniquely-decodable. SFE codes are

prefix-free

F̄ (a) F̄ (b) F̄ (c) F̄ (d)

0.1

F (a)

0.3

F (b)

0.6

F (c)

u(a) u(b) u(c) u(d)

Figure 3.4: u(x) will not go beyond its probability interval and will not overlap with other intervals
as described by Observation 3. Consequently, an SFE code is prefix-free by Observation 2.

3.6.2 A constructive proof of Source Coding Theorem
From our earlier discussion, we can always construct an SFE code for any DMS X. Moreover, we
can easily verify that the average code rate of an SFE code is bounded by H(X) + 2 as follows∑

x∈X
p(x)l(x) =

∑
x∈X

p(x)

(⌈
log2

1

p(x)

⌉
+ 1

)
≤
∑
x∈X

p(x)

(
log2

1

p(x)
+ 2

)
= H(X) + 2

3.7. EXERCISE 49

The SFE code is not highly optimized. However, we can increase its efficiency easily with the
“symbol grouping” trick again.

Let’s first consider combining two adjacent symbols into a super symbol XS . By our earlier
discussion, the code rate is bounded by H(XS) + 2, where

H(XS) = −
∑

x1,x2∈X 2

p(x1, x2) log2 p(x1, x2)

= −
∑

x1,x2∈X 2

p(x1, x2) log2(p(x1)p(x2))

= −
∑

x1,x2∈X 2

p(x1, x2) log2 p(x1)−
∑

x1,x2∈X 2

p(x1, x2) log2 p(x2)

= −
∑
x1∈X

p(x1) log2 p(x1)−
∑
x2∈X

p(x2) log2 p(x2)

= 2H(X)

Therefore, the code rate per original symbol is then upper bounded by:

1

2
(H(XS) + 2) = H(X) + 1.

We see now that the code rate is closer to the compression limit H(X). By leveraging the
symbol grouping trick further with the SFE code, we can provide another forward proof of the
Source Coding Theorem as follows.

Forward Proof of Source Coding Theorem with SFE Code

In theory, we can group as many symbols as we want using the symbol grouping trick. Say
we group N symbols at a time and compress them using the SFE code. The code rate per
original symbol is then upper bounded by

1

N
(H(XS) + 2) =

1

N
(NH(X) + 2) = H(X) +

2

N
.

Therefore, as long as a given rate R > H(X), we can always find a large enough N such that
the code rate using the symbol grouping trick and SFE code is below R. This concludes the
forward proof.

One might think that using the “grouping trick” with many symbols is not realistic in practice,
since the encoder and decoder complexity would grow exponentially with N . However, it turns out
that it is possible to use very large N (essentially infinitely large N) in combination with the SFE
code. The resulting code is known as arithmetic coding. However, this is beyond the scope of this
book, and readers interested in the topic are referred to the original paper [1].

3.7 Exercise
1. Show that the code described in (3.1) is uniquely decodable.

50 CHAPTER 3. QUANTIFY INFORMATION WITH COMPRESSION

2. Show that if two codewords share a descendant, then one must be a prefix of the other.

3. Show that if Kraft’s inequality is violated, one codeword has to be a prefix of another.

4. If Kelly bet is applied every time as in Example 3.1, what is the approximate final wealth
after N bets?

Information theory and probabilistic inference Samuel Cheng

Chapter 4
Information measures

Besides the entropy that was introduced in Chapter ??, we will discuss in more detail other com-
mon information measures such as conditional entropy, differential entropy, joint entropy, mutual
information, and KL-divergence in this chapter.

4.1 Entropy and differential entropy

4.1.1 Revisiting the entropy
Recall from the last chapter, we defined the entropy of a discrete r.v. as

H(X) = −
∑
x∈X

p(x) log p(x) = E[− log p(X)]. (4.1)

The expression may look mysterious at first, but it suggests that the amount of information for
an outcome x is − log p(x) = log 1

p(x) , and the entropy is just the average information across all
outcomes.

This seems quite natural: a less likely outcome (small p(x)) should yield more information
(log 1

p(x)). The precise expression should also come as no surprise if we interpret it as follows. For
example, consider a uniform random variable with 4 outcomes; each outcome will have a probability
1
4 = 0.25 of occurring. To represent each outcome, we need log 4 = log 1

0.25 bits.

Key Takeaway

A less likely event has “more” information, but on average, the rare event often requires fewer
bits to store as it rarely happens. And H(X) is just the average number of bits required to
store all possible outcomes.

As we discussed in the last chapter, we define entropy as the minimum number of bits required
to store a r.v. on average. Alternatively, we can also treat entropy as the average uncertainty of

Page 51 of 177

52 CHAPTER 4. INFORMATION MEASURES

the outcome of the r.v., or the amount of information gained after the outcome is revealed. Thus,
if the r.v. is deterministic (not actually “random”), the entropy should be 0.

A Remark on Notation

It is most common to represent the entropy of a r.v. X by H(X). However, from the
expression in (4.1), H(X) only really depends on the distribution of X. Strictly speaking,
it is probably more appropriate to represent it by H(p(X)) instead. However, we will stick
with the notation H(X) as everyone else does. It is understood that H(X) means H(p(X)),
where p(X) is the PMF of X.
In the case of a binary r.v., p(X) can be completely characterized by a single parameter (say
p(X = 1) = q). One may write H(q) instead of H(p(X)). Thus, when q is scalar, we have

H(q) = −q log(q)− (1− q) log(1− q) (4.2)

Example 4.1: Entropy of a biased coin

Consider a biased coin with Pr(Head) = p

H(X) = −Pr(Head) logPr(Head)− Pr(Tail) logPr(Tail)
= −p log p− (1− p) log(1− p) = H(p).

Note that H(X) reaches its maximum value of 1 at p = 0.5, and it decreases to 0 when p = 0
or p = 1. These values make sense, as the outcome is most uncertain when p = 0.5 and
becomes deterministic when p = 0 or p = 1.

4.1.2 Differential entropy

The earlier definition makes little sense for a continuous X, since the probability of getting a
particular outcome x in the continuous case is always 0. Thus, we have a different definition in for
a continuous X as differential

entropy
h(X) = −

∫
x∈X

p(x) log p(x) dx = E[− log p(x)], (4.3)

where h(X) is known as the differential entropy and p(x) is now the PDF rather than the PMF. To
gain more insights, let’s compute the differential entropy for several common distributions in the
following.

4.1. ENTROPY AND DIFFERENTIAL ENTROPY 53

Example 4.2: Differential entropy for uniform distribution

Consider a r.v. with uniform distribution p(X) =

{
1/a 0 ≤ x ≤ a
0 otherwise

, the differential en-

tropy will then be

h(X) = −
∫ a

x=0

1

a
log 1

a
dx = log a.

Example 4.3: Differential entropy for exponential distribution

For an exponentially distributed r.v. T ∼ Exp(λ),

h(T) = E[− log p(T)] = E [− log (λ exp(−λT))]
= E [λT − logλ]
= 1− logλ.

Example 4.4: Differential entropy for Gaussian distribution

For a Gaussian distributed X ∼ N (µ, σ2),

h(X) = E[− log p(X)] = E

[
− log

(
1√
2πσ2

exp −(X − µ)
2

2σ2

)]
= E

[
log
√
2πσ2 +

(X − µ)2

2σ2
log e

]
= log

√
2πσ2 +

1

2
log e

= log
√
2πeσ2.

It is worth mentioning that h(X) only depends on σ2 and is independent of µ as one would
expect.

54 CHAPTER 4. INFORMATION MEASURES

Example 4.5: Differential entropy for multivariate Gaussian

For N -dim multivariate Gaussian distributed X ∼ N (µ,Σ),

h(X) = E[− log p(X)]

= −E

[
log

(
1√

det (2πΣ)
exp

(
−1

2
(X− µ)TΣ−1(X− µ)

))]

(a)
= log

√
det (2πΣ) + log e

2
E

∑
i,j

(Xi − µi)
[
Σ−1

]
i,j

(Xj − µj)

(b)
= log

√
det (2πΣ) + log e

2

∑
i,j

[
Σ−1

]
i,j
E [(Xj − µj)(Xi − µi)]

(c)
= log

√
det (2πΣ) + log e

2

∑
i,j

[
Σ−1

]
i,j

Σj,i

(d)
= log

√
det (2πΣ) + log e

2

∑
i,j

IN

= log
√

det (2πΣ) + N log e
2

= log
√
eN det (2πΣ) = log

√
det (2πeΣ),

where (a) just results from expanding the matrix multiplications, (b) follows from applying
expectation to each term of the sum and with the deterministic scalars [Σ−1]i,j pulling out
from the expectations, (c) is due to covariance Σi,j = Σj,i , E[(Xj − µj)(Xi − µi)], and IN
is the identity matrix of size N in (d).

4.1.3 Connection between differential entropy and entropy

p(x) Quantizer X∆
X

Figure 4.1: The entropy of the
quantized X∆ and the differen-
tial entropy of X are related by
H(X∆) = h(X)− log2 ∆.

As the amount of information contained in a continuous r.v. is
always infinite, one may wonder how we should interpret dif-
ferential entropy physically. Fortunately, we can connect the
differential entropy of a continuous r.v. with the entropy of a
quantized version of the r.v..

Let’s consider a continuous random variable X and let X∆

be a “quantized” version of it with a quantization step size of
∆ as in Figure 4.1. Then,

4.1. ENTROPY AND DIFFERENTIAL ENTROPY 55

H(X∆) =
∑
−pX∆

(x∆) log pX∆
(x∆)

≈
∑
−pX(x∆)∆ log(pX(x∆)∆)

≈
∫
−pX(x) log(pX(x)∆) dx

=

∫
−pX(x) log pX(x) dx−

∫
pX(x) log∆ dx

= h(X)− log∆

Thisconnection
between
differential
entropy and
entropy

shows how the entropy of a quantized version of a continuous r.v. relates to its differential
entropy. It is an important result and so we will highlight it as below.

Connecting entropy to differential entropy

H(X∆) = h(X)− log∆ (4.4)

Example 4.6: Bits needed to store the processing time of a packet

Question: Consider that the processing time of a packet follows an exponential distribution
with an average of 1 ms. If we want to store the time with a precision of 0.01 ms, about how
many bits are needed to store the result?
Answer: The processing time T follows an exponential distribution with parameter λ =
1/1 = 1ms−1. Thus, the corresponding differential entropy is h(T) = 1−log(λ) = 1. To store
the time with a precision of 0.01 ms, we need h(T)− log 0.01 ≈ 1− log(0.01) ≈ 1− (−2) = 3
bits.
However, the correct calculation should account for the base-2 logarithm:

h(T)− log2(0.01) ≈ 1− log2(0.01) ≈ 1− (−6.64) = 7.64bits.

So, approximately 7.64 bits are needed to store the result.

4.1.4 Bounds of entropy and differential entropy

Lower bound of entropy

entropy is
non-negative

It should be obvious that H(X) ≥ 0. After all, H(X) represents the required bits to compress the
source X and hence cannot be negative.

The proof is almost trivial. Since p(X) ≤ 1, − log p(X) ≥ 0, therefore:

H(X) = E[− log p(X)] ≥ 0.

56 CHAPTER 4. INFORMATION MEASURES

Differential Entropy Can Be Negative

The above is not true for differential entropy. We can have

h(X) < 0.

For example, for a uniformly distributed X from 0 to 0.5,

h(X) = log 0.5 = −1.

Upper bound of entropy

H(X) is upper bounded by log |X |, which can be readily shown by Jensen’s Inequality Jensen’s
inequality

as described
below.

Jensen’s Inequality

A convex (bowl-shaped) function f , as illustrated in Fig. 4.2, satisfies

E[f(X)] ≥ f(E[X]).

Moreover, when f(·) is strictly convex, i.e., pf(x1) + (1− p)f(x2) > f(px1 + (1− p)x2), we
have equality only if X is a constant. Then, E[f(X)] = f(E[X]).
To gain some intuition about the inequality, let us consider X with only two outcomes x1
and x2 with probabilities p and 1− p. It is easy to see that

E[f(X)] = pf(x1) + (1− p)f(x2) ≥ f(px1 + (1− p)x2) = f(E[X]).

We can extend the above argument to discrete variables with more than two outcomes using
induction. And the inequality generally holds for continuous r.v.s as well.

Example 4.7: A famous paradox

A person with an average weight and an average height is overweight.
At first glance, this assertion seems paradoxical. However, it’s crucial to realize that normal
weight should be proportional to volume, and thus proportional to H3. So in an idealized
world, we assume that if a person’s height is H, their weight W can be represented as
W = kH3 for some constant k.
For someone with an average height, the expected weight should be kE[H]3. But, given that
this person has an “average” weight, it is E[W] = E[kH3] = kE[H3]. Due to the strictly
convex nature of the function f(x) = x3, Jensen’s inequality gives us kE[H3] > kE[H]3.
This indicates that the individual’s weight is above what should be considered the standard
weight.

4.1. ENTROPY AND DIFFERENTIAL ENTROPY 57

Now, let’s try to find an upper boundentropy is upper
bounded by
log-cardinality

for H(X).

H(X) = E[− log p(X)] = E

[
log 1

p(X)

]
(a)

≤ logE
[

1

p(X)

]
(by Jensen’s inequality)

= log
∑
x∈X

p(x)
1

p(x)
= log

∑
x∈X

1 = log |X |,

where |X | denotes the cardinality or size of the outcome set of X.
Since log(·) is strictly convex, we can attain the upper bound log |X | if and only if the equality

at (a) holds. Consequently, we need 1
p(·) to be a constant function, in other words, p(·) must be

uniform.

Example 4.8: Coins and dices

The upper bound we just described should be unsurprising. For instance, to store the
outcome of an unbiased coin flip, we need log 2 = 1 bit. If the coin is biased, we will need
fewer bits to store the outcome. In the extreme case, if we always get a head or a tail, we
don’t need any bits to store the result.
Similarly, for an 8-sided die, on average we will need exactly log 8 = 3 bits to store the result
when the die is fair. Otherwise, fewer than 3 bits are needed.

Bounds of differential entropy

x

f (x)

E[f(X)]

f(E[X])

f(x2)

f(x1)

Figure 4.2: Jensen’s
inequality explained

As mentioned earlier, differential entropy in general does not have an
upper or lower bound. In particular, differential entropy can be negative
as shown in an example in (4.1.4).

Note that since we can still write h(X) = E[− log p(X)], by Jensen’s
inequality, we have

h(X) ≤ logE
[

1

p(X)

]
= log

∫
x∈X

p(x)
1

p(x)
dx = log |X |.

However, this expression is not quite useful since the support X may be
unbounded (e.g., X = (−∞,∞) as for a normally distributed X), and so
log |X | can be infinite as well.

shifting mean
won’t change
entropy

Thus, it makes much more sense to consider the upper bound of dif-
ferential entropy constrained by the statistics of the variable. But what
statistics should we consider? Let’s start with the simplest one: will the
entropy of a variable be bounded if we fix its mean, the first-order statistic?

The answer is no. Note that the differential entropy only depends on the shape of the distribu-

58 CHAPTER 4. INFORMATION MEASURES

tion, not its location. Shifting the distribution does not change the entropy because

h(X + C) = E[− log p(X + C)]

= −
∫
p(x+ C) log p(x+ C) dx

= −
∫
p(x) log p(x) dx = h(X).

So, a constraint on the mean, which is equivalent to shifting the distribution’s mean to the target
mean, will not affect the value of differential entropy.

Let’s consider the next least trivial statistic, the variance, which is a second-order statistic.
Increasing increasing

variance will
increase entropy

the variance will make the distribution more spread out and thus increase its entropy.
Even if the variance is the same, different shapes of the distributions will result in different entropy
values. It turns out that for a fixed variance σ2, the variable will have the largest differential
entropy if it is normally distributed (as will be shown later). Thus,

h(X) ≤ log
√
2πeσ2. (4.5)

4.1.5 Joint entropy

For multiple discrete random variables, say X and Y , we can extend the definition of entropy
naturally as joint entropy

H(X,Y) = E[− log p(X,Y)].

For N discrete variables X1, · · · , XN ,

H(X1, X2, · · · , XN) = E[− log p(X1, · · · , XN)].

The definition is essentially the same for continuous variables X and Y ,

h(X,Y) = E[− log p(X,Y)].

For N continuous variables X1, · · · , XN ,

h(X1, X2, · · · , XN) = E[− log p(X1, · · · , XN)].

Note, however, that the expectation E[·] is defined differently for continuous and discrete vari-
ables, where the former involves an integral and the latter involves a summation.

4.2. CONDITIONAL ENTROPY 59

4.2 Conditional entropy

We can expand the joint entropy H(X,Y) of X and Y as follows:

H(X,Y) = E[− log p(X,Y)] = E[− log p(X)− log p(Y |X)]

= E[− log p(X)] + E[− log p(Y |X)]

= H(X) + E[− log p(Y |X)]︸ ︷︷ ︸
H(Y |X)

.

The joint entropy ends up equal to the sum of the entropy H(X) and E[− log p(Y |X)], which
we define as the conditional entropy of Y given X. In other words, conditional entropy is defined
asconditional

entropy H(Y |X) , H(X,Y)−H(X).

The definition is self-explanatory. If H(X,Y) is the total uncertainty of both X and Y , it should
equal the uncertainty of X plus the uncertainty of Y knowing X.

Similarly, we can define the conditional differential entropy as

h(Y |X) , h(X,Y)− h(X).

Conditioning reduces entropy

Generally speaking, we expect that additional knowledge should reduce uncertainty. So we should
haveconditioning

reduces entropy
H(Y) ≥ H(Y |X), (4.6)

where this principle is sometimes referred to as conditioning reduces entropy. A formal proof is
given later in Section 4.4.1 after we introduce KL-divergence.

4.2.1 Conditional entropy as an average of entropy over the conditioned
r.v.

Let’s expand H(Y |X) in another way. One can easily show thatconditional
entropy is an
average over the
conditioned
variables

H(Y |X) =
∑
x

p(x)H(Y |x), (4.7)

60 CHAPTER 4. INFORMATION MEASURES

since

H(Y |X) = E[− log p(Y |X)]

=
∑
x,y

p(x, y)(− log p(y|x))

=
∑
x

p(x)
∑
y

p(y|x)(− log p(y|x))

=
∑
x

p(x)H(Y |x).

As shown in (4.7), the conditional entropy H(Y |X) is essentially the average of H(Y |x) over all
possible values of x.

4.2.2 Conditional entropy and compression with side information
Just like entropy can be considered as the minimum number of bits required to represent a DMS
losslessly, we can consider conditional entropy as the minimum number of bits required to required
to represent a DMS with side information losslessly. source coding

with side
information

Let’s consider a joint DMS (X,Y), and say the side information (a.k.a. helper information) Y
is available freely at both the encoder and decoder and we only need to compress X as shown in
Fig. 4.3. We can argue that the average bits required is H(X|Y) using the LLN as in the original
Source Coding Theorem.

p(x, y) Enc Dec x̂N
xN C

yN yN

Figure 4.3: Compressing X with side infor-
mation Y given at both encoder and decoder
requires on average H(X|Y) bits

For any particular y, let’s group all x values that
come with this y. Then, by the LLN, we can en-
code all these x values at the rate E[− log p(X|y)] ,
H(X|y) bits per sample.

As for the entire sequence, a fraction p(y) of them
will have the same y. So the overall required rate is
the weighted sum

∑
y∈Y p(y)H(X|y), which is just

equal to H(X|Y).

4.2.3 Chain rule
Recall that

H(X,Y) = H(X) +H(Y |X), (4.8)

we can extend this to the case with more variables as follows, chain rule of
entropy

H(X1, X2, · · · , XN) = H(X1) +H(X2|X1) +H(X3|X1, X2) + · · ·
+H(XN |X1, X2, · · · , XN−1).

The interpretation of the above equation is very natural. The total uncertainty ofX1, X2, · · · , XN

is equal to the uncertainty of X1 plus the uncertainty of X2 given X1, plus the uncertainty of X3

given X1 and X2, and so on.

4.2. CONDITIONAL ENTROPY 61

The expression is not difficult to show; we just need to repeatedly apply (4.8) and a conditional
version of (4.8) as below

H(X,Y |Z) = H(X|Z) +H(Y |X,Z), (4.9)

where we will leave the proof of (4.9) to the readers as an exercise. Using (4.8) and (4.9),

H(X1, X2, · · · , XN) = H(X1) +H(X2, · · · , XN |X1) (4.10)
= H(X1) +H(X2|X1) +H(X3, · · · , XN |X1) (4.11)
· · · (4.12)
= H(X1) +H(X2|X1) +H(X3|X1, X2) + · · ·
+H(XN |X1, X2, · · · , XN−1). (4.13)

It is easy to show that differential entropy satisfies a similar formula as follows,

h(X1, X2, · · · , XN) = h(X1) + h(X2|X1) + h(X3|X1, X2) + · · ·
+ h(XN |X1, X2, · · · , XN−1).

Example 4.9: Weather and umbrella

Say the joint probability distribution of a day’s weather and someone bringing an umbrella
is given below:

Pr(Rain, With umbrella) = 0.2 Pr(Rain, No umbrella) = 0.1

Pr(Sunny, With umbrella) = 0.2 Pr(Sunny, No umbrella) = 0.5

Let’s use W to denote the weather condition and U to denote if someone brought an umbrella
or not. So,

W ∈ {Rain, Sunny} U ∈ {With umbrella, No umbrella}

Let’s compute all combinations of (joint, marginal, and conditional) entropies of U and W :

• H(W,U) = −0.2 log 0.2− 0.1 log 0.1− 0.2 log 0.2− 0.5 log 0.5 = 1.76 bits.

• H(W) = −0.3 log 0.3 − 0.7 log 0.7 = 0.88 bits, since pW (Rain) = 0.2 + 0.1 =
0.3 and pW (Sunny) = 0.2 + 0.5 = 0.7.

• H(U) = −0.4 log 0.4 − 0.6 log 0.6 = 0.97 bits, since pU (With umbrella) = 0.2 + 0.2 =
0.4 and pU (No umbrella) = 0.1 + 0.5 = 0.6.

• H(W |U) = H(W,U)−H(U) = 0.79 bits.

• H(U |W) = H(W,U)−H(W) = 0.88 bits.

62 CHAPTER 4. INFORMATION MEASURES

4.2.4 Converse proofs of source coding theorems

Converse proof of source coding theorem

We have shown in the last chapter that a compression scheme exists for coding rates above H(X)
bits per sample. Let’s show the converse theorem that if the coding rate is less than H(X) bits per
sample, the recovered source has to be lossy.

We will use a tool known as Fano’s inequality. Fano’s inequalityThere are different variations of Fano’s inequality,
often used to show the converse proof of a theorem. We will come across other forms of Fano’s
inequality later this section and in 6.5.

Denote C as the compressed input and X̂N as the recovered sequence. If there is no error
(i.e., Pr(XN 6= X̂N) → 0), then 1

NH(XN |C) < ε for any ε > 0 given a sufficiently large N . This
essentially means that 1

NH(XN |C) can be made arbitrarily small if there is no decoding error.
This makes sense intuitively, as if there is no error, the original input XN should be completely
determined given C, thus the conditional entropy should go to zero.

Let’s delay the proof of Fano’s inequality and complete the converse proof of the source coding
theorem first. converse proof

of Source
Coding Theorem

Note that we will write the code rate slightly differently from before as H(C)
N rather

than log # messages
N since we need to connect the rate directly to H(C). This definition is reasonable

because it measures the actual information content of the compressed codeword per message symbol.
For any arbitrarily small ε, we have

R+ ε =
H(C)

N
+ ε

(a)

≥ 1

N
[H(C) +H(XN |C)]

(b)
=

1

N
H(C,XN) =

1

N
[H(XN) +������:0

H(C|XN)]

= H(X),

where (a) is due to Fano’s inequality and in (b), H(C|XN) equals 0 since C is deterministic given
XN .

Since ε can be made arbitrarily small by choosing a sufficiently large N , we can conclude that
R ≥ H(X) as the reconstruction error rate approaches zero. This is precisely the result we aimed
to prove for the converse theorem.

Now, let’s show the Fano’s inequality.

Proof of Fano’s inequality

Let’s show the statement that 1
NH(XN |C) < ε for any ε > 0 given a sufficiently large N if

Pr(XN 6= X̂N)→ 0. Let’s denote E as the error event so that E = 1 if XN 6= X̂N and 0 otherwise.

4.2. CONDITIONAL ENTROPY 63

Then

H(XN |C) (a)
= H(E,XN |C)−�������:0

H(E|C,XN)

(b)
= H(E|C) +H(XN |E,C)

(c)

≤ 1 + Pr(E = 0)
���������:0

H(XN |C,E = 0) + Pr(E = 1)H(XN |C,E = 1)

(d)

≤ 1 + Pr(E = 1)H(XN),

where (a) follows from the chain rule and the fact that E is completely determined given C and
XN , (b) is due to the chain rule, (c) follows from the fact that H(E|C) is bounded by 1 as E
is binary and that we can expand H(XN |E,C) over different outcomes of E as in (4.7), and for
(d), XN is deterministic given C when there is no error, and H(XN |C,E = 1) ≤ H(XN) since
conditioning reduces entropy. Thus, as Pr(E = 1) → 0, 1

NH(XN |C) ≤ 1
N + Pr(E = 1)H(X) < ε

for a sufficiently large N .

Converse proof of source coding with side information

In motivating the conditional entropy, we argued in Section 4.2.2 that we can compress a source
X losslessly with side information Y (given at both the encoder and decoder) at a rate H(X|Y).
However, the argument just upper-bounded the uncertainty of X given Y by H(X|Y). We didn’t
show that no other scheme can exist to compress X at a rate below H(X|Y). Let’s show that here
using another version of Fano’s inequality as before.

In a nutshell, Fano’sFano for coding
with side
information

inequality states that 1
NH(XN |C, Y N)→ 0 as the error rate goes to zero.

More precisely, for any ε > 0, we have 1
NH(XN |C, Y N) ≤ ε given a sufficiently large N . This is

reasonable since when there is no error, the original XN can be recovered perfectly and thus is
deterministic given the codeword C and the side information Y N .

The proof of this version of Fano’s inequality is very similar to the one discussed earlier; we will
leave that to the readers as an exercise. Now, let’s continue the converse proof of the source coding

64 CHAPTER 4. INFORMATION MEASURES

theorem with side information. converse proof
of source coding
with side
information

For any ε > 0, we have

1

N
(H(C) + ε)

(a)

≥ 1

N
(H(C|Y N) + ε)

(b)

≥ 1

N
[H(C|Y N) +H(XN |C, Y N)]

(c)
=

1

N
H(XN , C|Y N)

(d)
=

1

N
[H(XN |Y N) +

��������:0
H(C|XN , Y N)]

(e)
=

1

N

N∑
n=1

H(Xn|Y N , Xn−1)

(f)
=

1

N

N∑
n=1

H(Xn|Yn)

(g)
= H(X|Y),

where (a) is because conditioning reduces entropy, (b) comes from Fano’s inequality, (c) and (e)
are due to the chain rule, for (d), we use the chain rule again and H(C|XN , Y N) = 0 since C
is deterministic given input XN and Y N , (f) comes from the Markov property of Xn ↔ Yn ↔
Y n−1, Y Nn+1, X

n−1, and (g) is because the joint source (X,Y) is stationary.

4.3 KL-Divergence

In many applications, we would like to measure the difference between two probability distributions.
One great tool for this purpose is the KL-divergence, KL-divergencewhich is also known by various other names,
such as information divergence, discrimination information, and relative entropy in some literature.

KL-divergence

For two distributions of a discrete r.v. X, p(x) and q(x), we define the KL-divergence as

KL(p(x)‖q(x)) ,
∑
x∈X

p(x) log p(x)
q(x)

.

If X is a continuous r.v., the summation becomes an integral instead. That is,

KL(p(x)‖q(x)) ,
∫
x∈X

p(x) log p(x)
q(x)

dx.

Roughly speaking, KL-divergence measures the “distance” between two distributions. Note that
if p(x) = q(x) for all x, then KL(p(x)‖q(x)) = 0 as desired.

4.3. KL-DIVERGENCE 65

KL-divergence is neither symmetric nor a metric

It is important to note that

KL-divergence is
not symmetric

KL(p(x)‖q(x)) 6= KL(q(x)‖p(x)) in general, which is clear from
the definition. So, KL-divergence is not a metric or distance measure in the strict sense.
That’s why we call it KL-divergence rather than ”KL-distance.”

KL-divergence is non-negative

1 2 3

−1

1

2

y = ln(x)

y = x− 1

Figure 4.4: ln(x) ≤ x − 1, and
the equality holds only when
x = 1

As we use KL-divergence to measure the difference between two
distributions, it is important that the divergence itself be non-
negative. Indeed, we can show this easily as below.proof of

KL-divergence
being
non-negative

KL(p(x)‖q(x)) =
∑
x∈X

p(x) log p(x)
q(x)

= −
∑
x∈X

p(x) log q(x)
p(x)

= −
∑
x∈X

p(x)

ln 2
ln q(x)
p(x)

(a)

≥ −
∑
x∈X

p(x)

ln 2

(
q(x)

p(x)
− 1

)

=
1

ln 2

(∑
x∈X

p(x)−
∑
x∈X

q(x)

)
= 0, (4.14)

where (a) is due to ln(x) ≤ x− 1, which can be easily verified as
illustrated in Fig. 4.4.

Moreover, the equality only holds when x = 1.
One can easily show that KL(p(x)‖q(x)) ≥ 0 even for distri-

butions with continuous r.v.. The proof is almost identical to the
above, just replacing summations with integrals. I will leave the
proof as an exercise.

4.3.1 Some applications of KL-divergence
KL-divergence has many applications. We will just present some
in this section.

Gaussian distribution has highest entropy

We have derived the expression of entropy for a normal distribution earlier. We also mentioned
without proof in Section 4.1.4 that a normal distribution has the highest entropy for a fixed variance.
We can provide a proof here now using KL-divergence.

Let’s show the more general multivariate case. For all variables with a fixed covariance matrix Σ,
without loss of generality, let’s restrict the r.v. to zero mean. For convenience, denote N (x; 0,Σ) =

66 CHAPTER 4. INFORMATION MEASURES

1√
det(2πΣ)

e−
1
2 x>Σ−1x as φ(x). For any other distribution f(x) with the same covariance matrix Σ,

first note that ∫
x
f(x) logφ(x) dx =

∫
x
φ(x) logφ(x) dx,

because Gaussian has
highest entropy∫

x
φ(x) logφ(x) dx =

∫
x
φ(x)

[
− log

√
det(2πΣ)− 1

2
x>Σ−1x

]
dx

=

∫
x
φ(x)

− log
√

det(2πΣ)− 1

2

∑
i,j

xi
[
Σ−1

]
i,j
xj

 dx

=

∫
x
φ(x)

− log
√

det(2πΣ)− 1

2

∑
i,j

[
Σ−1

]
i,j
xixj

 dx

(a)
=

∫
x
f(x)

− log
√

det(2πΣ)− 1

2

∑
i,j

[
Σ−1

]
i,j
xixj

 dx

=

∫
x
f(x) logφ(x) dx,

where (a) is due to the fact that f(x) and φ(x) have the same covariance Σ.
Then,

0 ≤ KL(f‖φ) =
∫

x
f(x) log f(x)

φ(x) dx = −h(f)−
∫

x
f(x) logφ(x) dx

= −h(f)−
∫

x
φ(x) logφ(x) dx

= −h(f) + h(φ).

Therefore, h(f) ≤ h(φ) for any distribution f with covariance Σ.

Example 4.10: Connection with Second law of thermodynamics and central limit
theorem

The second law of thermodynamics states that the total entropy of an isolated system tends
to increase over time, approaching a maximum value. Entropy, a measure of disorder or
randomness, is intimately connected with the statistical behavior of large numbers of parti-
cles. In this context, the Central Limit Theorem (CLT) provides a mathematical framework
for understanding the evolution of such systems. The CLT asserts that the sum of a large
number of independent, identically distributed (i.i.d.) random variables with finite mean
and variance converges to a Gaussian distribution, regardless of the original distribution of
the variables. This convergence to a Gaussian distribution can be interpreted as the system
reaching a state of maximum entropy.
Consider a closed system containing a large number of particles initially localized at the

4.3. KL-DIVERGENCE 67

origin. As time progresses, each particle undergoes Brownian motion, moving randomly
from its previous position. The position of each particle at a given time is the sum of many
small, independent displacements. According to the CLT, the distribution of the particles’
positions will tend towards a Gaussian distribution as the number of steps increases. This
spreading of particle positions corresponds to an increase in disorder, or entropy, within
the system. Thus, the CLT provides insight into the second law of thermodynamics, which
states that the system evolves towards a state of higher entropy, represented by the Gaussian
distribution with maximum entropy for a given mean and variance.

Thiel index

The Thiel indexThiel index is a metric used to measure economic inequality among different groups or within
a group of individuals. The idea is to measure the closeness of the distribution of wealth in a
population to the distribution of the population itself using KL-divergence. The more similar the
distributions, the higher the equality of the population.

For a population split into groups, let pi be the economic wealth proportion of group i, and qi
be the population size proportion of group i. Then the Thiel index is simply defined as KL(p‖q).

Let’s look at a more concrete example of a group of N individuals. If they all have the same
wealth, both p and q are uniform (pi = qi = 1/N), thus the Thiel index KL(p‖q) = 0.

If one individual in the group owns everything, q is uniform but p is a δ-function. Thus the
Thiel index KL(p‖q) =

∑
i pi log pi

qi
= log 1

1/N = logN .

Cross-entropy and cross-entropy loss

In machine learning, it is often necessary to assess the quality of a trained system. Consider the
scores of two models classifying three images into cats, dogs, and ships, as shown below.

Model A
computed targets correct?
0.3 0.3 0.4 0 0 1 (cat) yes
0.3 0.4 0.3 0 1 0 (dog) yes
0.1 0.2 0.7 1 0 0 (ship) no

Model B
computed targets correct?
0.1 0.2 0.7 0 0 1 (cat) yes
0.1 0.7 0.2 0 1 0 (dog) yes
0.3 0.4 0.3 1 0 0 (ship) no

Under the computed column, the scores for the three classes for each sample are shown. The ground
truth is presented in the second column. For example, both models A and B correctly classify the
first sample as a cat.

At first glance, both models appear to perform equally well (or poorly), with each making one
classification error by misclassifying the last animal into a cat or a dog. However, a closer look
suggests that the predictions of the right model are better than those of the left one because its
scores are more skewed (indicating higher confidence) when it makes a correct classification.

Rather than evaluating the models solely based on classification error, which simply counts the
number of misclassifications, we can achieve a better assessment by treating both the computed
results and the target results as distributions and comparing them using KL-divergence. Specifically,

68 CHAPTER 4. INFORMATION MEASURES

KL(ptarget‖pcomputed) =
∑
group

ptarget(group) log ptarget(group)

pcomputed(group)

= −H(ptarget)−
∑
group

ptarget(group) log pcomputed(group)︸ ︷︷ ︸
cross entropy

Note that the first term H(ptarget) does not depend on the model and is therefore irrelevant in
evaluating the models. The second term is known as the cross-entropy, which is essentially a
simplified version of KL-divergence and is used widely in machine learning. cross-entropy

Cross-entropy

Cross entropy(p‖q) ,
∑
x

p(x) log 1

q(x)
= Ep[− log q(X)]

= H(p) +KL(p‖q)

Text processing and TF-IDF

In text processing, it is common to measure the similarity between two documents D1 and D2.
How should we represent documents? One common approach is the bag of words method.

This converts a document into a vector of numbers, where each number represents the count of a
corresponding word. One can then compare two documents using cross-entropy:

Cross-entropy(p1‖p2) =
∑
w

p1(w) log 1

p2(w)
,

where p1 and p2 are the word distributions of documents D1 and D2, respectively.
It may also be interesting to compare the word distribution of a document to the word distri-

bution across all documents. Let q be the word distribution across all documents, TF-IDF

Cross-entropy(p1‖q) =
∑
w

p1(w) log 1

q(w)

=
∑
w

of occurrences of w in D1

total # of words in D1
log total # of documents

of documents with w︸ ︷︷ ︸
TF-IDF(w)

,

where TF-IDF(w), short for term frequency-inverse document frequency, reflects how important
the word w is to the target document and is used in search engines.

4.3. KL-DIVERGENCE 69

Maximum likelihood estimation

Consider fitting {x1, x2, . . . , xm} drawn from pdata(x) to a model pθ using maximum likelihood
estimation. Consequently, we haveML minimizes

cross-entropy
and maximizes
KL-divergence θ∗ = arg max

θ

m∏
i=1

pθ(x
i) = arg max

θ
log

m∏
i=1

pθ(x
i)

= arg max
θ

m∑
i=1

log pθ(xi)

(a)
= arg max

θ

1

m

m∑
i=1

log pθ(xi)
(b)
≈ arg max

θ
Ex∼pdata [log pθ(x)]

= arg max
θ

∫
x

pdata(x) log pθ(x) dx

(c)
= arg min

θ

[
−
∫
x

pdata(x) log pθ(x) dx
]

(4.15)

= arg min
θ

Cross entropy(pdata‖pθ), (4.16)

where (a) is due to scaling not affecting the maximization process, (b) comes from the law of large
numbers (LLN), and (c) is due to maximizing f(x) being equivalent to minimizing −f(x).

We can also append a dummy term to (4.15) to have:

θ∗ = arg min
θ

[
−
∫
x

pdata(x) log pθ(x) dx
]

= arg min
θ

[
−
∫
x

pdata(x) log pθ(x) dx
]
+

∫
x

pdata(x) log pdata(x) dx

= arg min
θ

∫
x

pdata(x) log pdata(x)

pθ(x)
dx = arg min

θ
KL(pdata‖pθ) (4.17)

From (4.16) and (4.17), we see that fitting samples drawn from a pdata distribution using max-
imum likelihood estimation is the same as minimizing the cross-entropy or the KL-divergence
between the data distribution and the model distribution.

Model evidence with latent variables and Evidence lower bound (ELBO)

Given observations x and a model parameterizable by parameter θ, we often want to optimize the
model by fitting θ with the observation x. That is, we aim to maximize p(x; θ). However, often
there are hidden (latent) variables z involved, and we have p(x, z; θ) = p(x|z)p(z; θ), where p(x|z) is
often easily accessible in the problem (for example, consider the mixture model below). So instead,
to fit θ with the observation, we may solve:

max log p(x; θ) = max log
∑
z

p(x|z)p(z; θ),

70 CHAPTER 4. INFORMATION MEASURES

where maximizing log p is the same as maximizing p since the log function is monotonic. Often, we
want to fit θ with more than one observation; say we have x1, x2, · · · , xN , which are independent
given θ. The above becomes:

max log p(x1, · · · , xN ; θ) = max log
∑

z1,··· ,zN

N∏
i=1

p(xi|zi; θ)p(zi; θ), (4.18)

which quickly becomes intractable as N increases, since we are summing over a space of |Z|N .

To reduce the computation, we introduce a dummy distribution q(zN) and write evidence lower
bound

log p(x1, · · · , xN ; θ) =
∑
zN

q(zN) log p(x1, · · · , xN ; θ)

=
∑
zN

q(zN) log p(x
N , zN ; θ)

p(zN |xN ; θ)

=
∑
zN

q(zN) log p(x
N , zN ; θ)

q(zN)

q(zN)

p(zN |xN ; θ)

=
∑
zN

q(zN) log p(xN , zN ; θ)−H(q(zN))︸ ︷︷ ︸
ELBO

+KL(q(zN)‖p(zN |xN ; θ)), (4.19)

where ELBO stands for the Evidence Lower Bound. ELBO is a lower bound since the KL-divergence
in the last equation is always non-negative.

Introducing q(zN) and leveraging ELBO allows us to solve for θ in an iterative manner, leading
to the powerful Expectation-Maximization (EM) algorithm EM algorithmas follows. On one hand, we want to
minimize the KL-divergence term, which leads to:

q(zN)←
∏

qi(zi), (4.20)

where qi(zi) = p(zi|xi; θ) since each pair of xi, zi are independent given θ. This step is often known
as the Expectation step (E-step)1.

On the other hand, the step maximizing ELBO is often known as the Maximization step (M-

1The reason for the name E-step is not clear under this derivation, but it is so-called because the step can also be
derived as computing the expectation of the complete data likelihood. An imprecise but helpful mnemonic is that
this step computes q, which will be used as expected weights needed to compute θ.

4.3. KL-DIVERGENCE 71

step) for obvious reasons, which is the same as maximizing2:

∑
zN

q(zN) log p(xN , zN ; θ) '
∑
zN

q(zN) log
N∏
i=1

p(xi, zi; θ)

=
∑
zN

N∏
j=1

qj(zj)

N∑
i=1

log p(xi, zi; θ)

=

N∑
i=1

∑
zi

qi(zi) log p(xi, zi; θ)
∑
zN\zi

∏
j 6=i

qj(zj)

=

N∑
i=1

∑
zi

qi(zi) log p(xi, zi; θ)
∏
j 6=i

∑
zj

qj(zj)︸ ︷︷ ︸
1

=

N∑
i=1

∑
z

qi(z) log p(xi, z; θ). (4.21)

A concrete example is given below and it should makes things clearer.

Example 4.11: EM algorithm for mixture of Gaussian model

Consider a careless teacher who measures the height of a class of students without labeling
the data with names. After measuring the data, the teacher wants to estimate the average
heights of the male and female students separately. How can he do that without knowing
the gender of each height data point?
Let x1, x2, · · · , xN be the observed heights, and let zi ∈ {M,F} be the latent gender variable
for xi. The parameter θ = (µM , σM , µF , σF , wM , wF) contains the means and standard
deviations of the heights of male and female students. wM and wF are the fractions of male
and female students in the class, thus wM + wF = 1. We assume both male and female
populations are Gaussian distributed. So,

p(x, z; θ) = wzN (x;µz, σz)

The goal is to estimate θ = (µM , σM , µF , σF , wM , wF) with the observed data using the
Expectation-Maximization (EM) algorithm.EM for mixture

of Gaussian E-step:
For the E-step, the gender distribution of xi can be estimated as:

qi(z)← p(z|xi; θ) =
wzN (xi;µz, σz)

wMN (xi;µM , σM) + wFN (xi;µF , σF)

for z ∈ {M,F}.
M-step:
For the M-step, we maximize the Evidence Lower Bound (ELBO), which is equivalent to

2' indicates that the terms may not be equal but are equivalent terms to maximize

72 CHAPTER 4. INFORMATION MEASURES

maximizing:

N∑
i=1

∑
z

qi(z) log p(xi, z; θ)

This expression can be expanded as:

N∑
i=1

∑
z

qi(z)

(
logwz − log

√
2πσ2

z −
(xi − µz)2

2σ2
z

)
. (4.22)

To maximize this with respect to µM , µF , σM , σF , and wM , wF (keeping in mind the con-
straint wM + wF = 1), we introduce a Lagrange multiplier to handle the constrainta.
After solving the maximization problem, the updates for the parameters are given by

wz ←
1

N

N∑
i=1

qi(z) (4.23)

µz ←
∑N
i=1 qi(z)xi∑N
i=1 qi(z)

(4.24)

σ2
z ←

∑N
i=1 qi(z)(xi − µz)2∑N

i=1 qi(z)
(4.25)

These equations provide the necessary updates for the parameters during each iteration of
the EM algorithm, eventually converging to estimates of the average heights of male and
female students, along with their respective variances and proportions in the class.

aBe careful that we can’t take the derivative of (4.22) and set it to zero directly since we have the additional
constraint wM + wF = 1. We have to introduce a Lagrange multiplier λ and take the derivative of (4.22) +
λ(wF + wM) and set it to 0 instead.

4.4 Mutual Information
As H(X) is equivalent to the uncertainty of X and H(X|Y) is the remaining uncertainty of X
knowing Y , we expect thatH(X) ≥ H(X|Y) and the differenceH(X)−H(X|Y) should quantify the
amount of the uncertainty of X that can be resolved by Y . If we interpret H(X) to be the amount
of information revealed by knowing the outcome of X and H(X|Y) to be the amount of information
revealed by knowing the outcome of X given that we already know Y , then H(X)−H(X|Y) can be
interpreted as the information shared by X and Y . Therefore, we also call this difference “mutual
information,” where we usually denote it by I(X;Y)3.

Similarly, we can define the “conditional mutual information” as the difference of H(X|Z) and
H(X|Y, Z) and interpret that as the information shared between X and Y given Z.

3Some literature may use notations such as I(X : Y) and even I(X,Y). But the latter is a confusing one that
should be avoided. Since if we have more than two variables, say I(X,Y, Z), it becomes unclear if we mean I(X;Y, Z)
or I(X,Y ;Z).

4.4. MUTUAL INFORMATION 73

Mutual information and conditional mutual information

Mutual information between X and Y :mutual
information and
conditional
information

I(X;Y) , H(X)−H(X|Y)

Conditional mutual information between X and Y given Z: I(X;Y |Z) ,
H(X|Z)−H(X|Y, Z)

4.4.1 Properties of Mutual Information
Let’s look into some properties of mutual information in this section.

Mutual Information is Symmetric and Non-Negative

For any X and Y , we can easily show that

I(X;Y) = KL(p(x, y)‖p(x)p(y)) (4.26)

becausemutual
information is
symmetric and
non-negative

I(X;Y) = H(X)−H(X|Y) = E[− log p(X)]− E[− log p(X|Y)]

= −
∑
x

p(x) log p(x) +
∑
x,y

p(x, y) log p(x|y)

(a)
= −

∑
x,y

p(x, y) log p(x) +
∑
x,y

p(x, y) log p(x|y)

=
∑
x,y

p(x, y) log p(x|y)
p(x)

=
∑
x,y

p(x, y) log p(x, y)

p(x)p(y)

= KL(p(x, y)‖p(x)p(y)),

where (a) is due to reverse marginalization. Consequently, we have I(X;Y) = I(Y ;X). We can
also see that I(X;Y) is symmetric because

I(X;Y) = H(X)−H(X|Y)
(a)
= H(X) +H(Y)−H(X,Y),

where (a) is from the chain rule of joint entropy.
Moreover, since KL-divergence is non-negative as shown in Section 4.3, I(X;Y) ≥ 0.

Conditional mutual information is symmetric and non-negative

Similarly, we can show that

I(X;Y |Z) =
∑
z

p(z)KL(p(x, y|z)‖p(x|z)p(y|z)). (4.27)

74 CHAPTER 4. INFORMATION MEASURES

The proof is very similar to the unconditional case and we will leave it to the readers as an exercise.
Consequently, we also have I(X;Y |Z) = I(Y ;X|Z) ≥ 0 from (4.27). Just as in the unconditional

case, we can see that I(X;Y |Z) is symmetric as we can write conditional
mutual
information is
symmetric and
non-negative

I(X;Y |Z) = H(X|Z)−H(X|Y, Z) = H(X|Z) +H(Y |Z)−H(X,Y |Z).

Conditioning reduces entropy

Given more information, the residual information (uncertainty) should decrease. More precisely, proof of
conditioning
reduces entropyH(X) ≥ H(X|Y) and H(X|Y) ≥ H(X|Y, Z)

This is obvious from our previous discussion since H(X)−H(X|Y) = I(X;Y) ≥ 0 and H(X|Y)−
H(X|Y, Z) = I(X;Z|Y) ≥ 0. This precisely is a proof that conditioning reduces entropy, as
described in (4.6).

(Conditional) independence and (conditional) mutual information

From (4.26), we can readily see that I(X;Y) = 0 if and only if X⊥Y . Moreover, if X⊥Y |Z, we
have p(x, y|z) = p(x|z)p(y|z) for all z, and so from (4.27), we have I(X;Y |Z) = 0. Conversely, if (conditional)

independence if
and only if
(conditional)
mutual
information is
zero

I(X;Y |Z) =
∑
z

p(z)KL(p(x, y|z)‖p(x|z)p(y|z)) = 0,

since KL-divergence and probabilities are non-negative, this implies p(x, y|z) = p(x|z)p(y|z) for all
z such that p(z) > 0. Therefore, we have X⊥Y |Z.

Actually, the results should be hardly surprising. If there is no shared information between X
and Y , they should be independent! Similarly, if there is no shared information between X and Y
given Z, they should be conditionally independent given Z.

Chain rule for mutual information

Using the chain rule for joint entropy, we can derive a similar chain rule for mutual information chain rule for
mutual
informationI(X1, X2, · · · , XN ;Y) = H(X1, X2, · · · , XN)−H(X1, X2, · · · , XN |Y)

=

N∑
i=1

H(Xi|Xi−1)−H(Xi|Xi−1, Y)

=

N∑
i=1

I(Xi;Y |Xi−1)

This chain rule for mutual information allows us to decompose the mutual information between
multiple random variables and a single random variable into a sum of conditional mutual informa-
tion.

4.4. MUTUAL INFORMATION 75

Data processing inequality

The data processing inequalitydata processing
inequality

is a fundamental result in information theory that describes the
limits of information processing. It states that processing or transforming data cannot increase the
amount of information available for estimating a random variable.

Formally, if random variables X,Y, Z form a Markov chain (X ↔ Y ↔ Z), then the data
processing inequality can be expressed as:

I(X;Y) ≥ I(X;Z).

Proof.

I(X;Y) = I(X;Y, Z)− I(X;Z|Y)

= I(X;Y, Z) (since X ↔ Y ↔ Z)

= I(X;Z) + I(X;Y |Z)
≥ I(X;Z).

In essence, the data processing inequality asserts that processing or transforming data cannot
increase the amount of information available for estimating a random variable. This means that the
original observation Y contains the most information aboutX, and any processing or transformation
of Y into Z cannot increase this information. While this result assumes the existence of an optimal
estimator, in practice, data processing may be necessary to facilitate estimation when dealing with
noisy or complex data.

4.4.2 Mutual information for continuous variables

For continuous random variables X,Y, Z, we can define the mutual information between X and Y
as

I(X;Y) = h(X)− h(X|Y)

and the conditional mutual information between X and Y given Z as

I(X;Y |Z) = h(X|Z)− h(X|Y, Z).

Interestingly, all the properties of mutual information described in Section 4.4.1 still hold true
for continuous random variables. This includes the non-negativity of mutual information, i.e.,
I(X;Y) ≥ 0. This result may be especially surprising, since unlike the discrete case, differential
entropies do not need to be non-negative. However, the non-negativity of mutual information
follows from the fact that conditioning reduces entropy, i.e., h(X|Y) ≤ h(X), and similarly for
conditional entropies.

This result has important implications for continuous random variables, as it provides a measure
of the dependence between variables that is always non-negative, even when the individual entropies
may be negative.

76 CHAPTER 4. INFORMATION MEASURES

H(X|Y) H(Y |X)I(X;Y)

H(X) = H(X|Y) + I(X;Y) I(X;Y) +H(Y |X) = H(Y)

H(X,Y) = H(X|Y) + I(X;Y) +H(Y |X)

(a) Two variable case

H(X|Y,Z)

H(Y |X,Z) H(Z|X,Y)

I(X;Y |Z) I(X;Z|Y)

I(X;Y |Z)

I(X;Y ;Z)

(b) Three variable case

Figure 4.5: A Venn diagram is a powerful tool for visualizing and memorizing entropy formulas.
The intersection of regions corresponds to mutual information, while conditioning on a variable
excludes the area of the respective conditioned variable. For example, in the right figure, the dark
grey area represents I(X;Y |Z) and the light grey area represents I(X;Z). From the figure, we can
deduce that H(X) = H(X|Y, Z)+I(X;Y |Z)+I(X;Z). It is important to note that the intersection
of all three circles, sometimes denoted as I(X;Y ;Z), is not defined in many texts because it lacks
an intuitive physical meaning and does not need to be positive. Therefore, we must be cautious in
drawing conclusions when I(X;Y ;Z) is involved. For example, the inequality I(X;Y) ≥ I(X;Y |Z)
is generally not true, even though the figure may suggest otherwise.

4.5 Venn diagram for information measures
There are quite a few formulas involved for information measures in this chapter. One great
memorizing tool is to leverage a Venn diagram, as shown in Figure 4.5.

In Figure 4.5a, we show a two-variable case with variables X and Y . The two circles correspond
to H(X) and H(Y). The intersection corresponds to the mutual information I(X;Y). The left
crescent corresponds to H(X|Y), noting that when we condition on a variable, we exclude the
respective region of the variable. Similarly, the right crescent corresponds to H(Y |X). With the
respective areas in place, we can easily write out the formulas as shown in Figure 4.5a.

Now, let’s consider adding an additional variable Z, as shown in Figure 4.5b. The same rules
described above still hold. For example, the dark gray region corresponds to I(X;Y |Z) since it
is the intersection of regions corresponding to X and Y , excluding the region corresponding to Z.
The light gray area represents I(X;Z) since it is the intersection of regions corresponding to X
and Z. Consequently, we have:

H(X) = H(X|Y, Z) + I(X;Y |Z) + I(X;Z), (4.28)
⇒ H(X)−H(X|Y, Z) = I(X;Y |Z) + I(X;Z), (4.29)
⇒ I(X;Y, Z) = I(X;Y |Z) + I(X;Z) (4.30)

which is indeed true as the last line is just chain rule of mutual information.
Unlike the two-variable case, we have an additional area in the middle that we have not yet

discussed. We denote it as I(X;Y ;Z),
I(X;Y ;Z)

can be negative

even though this quantity is not unanimously defined. It
is important to note that I(X;Y ;Z) does not need to be non-negative, unlike the areas of other
regions. Therefore, we need to be very careful in drawing conclusions when I(X;Y ;Z) is involved.

4.6. SUMMARY 77

For example, in general, we do not have I(X;Y) ≥ I(X;Y |Z), even though the figure may suggest
so.

In fact, I(X;Y) can be less than I(X;Y |Z) when X and Y are independent but not conditionally
independent given Z (see Section 2.4.3). Even though we cannot determine whether I(X;Y) or
I(X;Y |Z) is larger from the Venn diagram alone, since I(X;Y) − I(X;Y |Z) = I(X;Y ;Z) =
I(X;Z)− I(X;Z|Y), we have I(X;Y) ≥ I(X;Y |Z) if and only if I(X;Z) ≥ I(X;Z|Y). And this
is not immediately apparent.

4.6 Summary
• Conditioning reduces entropy

• Chain rules:

– H(X,Y, Z) = H(Z) +H(Y |X) +H(Z|X,Y)

– H(X,Y, U |V) = H(X|V) +H(Y |X,V) +H(U |Y,X, V)

– I(X,Y, Z;U) = I(X;U) + I(Y ;U |X) + I(Z;U |X,Y)

– I(X,Y, Z;U |V) = I(X;U |V) + I(Y ;U |V,X) + I(Z;U |V,X, Y)

• Data processing inequality: if X⊥Y |Z, I(X;Y) ≥ I(X;Z)

• Independence and mutual information:

– X⊥Y ⇔ I(X;Y) = 0

– X⊥Y |Z ⇔ I(X;Y |Z) = 0

• KL-divergence: KL(p||q) ,
∑
x p(x) log p(x)

q(x) ≥ 0

4.7 Exercise
1. Show H(X,Y |Z) = H(X|Z) +H(Y |X,Z) as described in (4.9).

2. Prove Fano’s inequality used to show the converse proof of the source coding theorem with side
information, where side information Y is given to both the encoder and the decoder as shown
in Figure 4.3. More precisely, please show that for any ε > 0, we have 1

NH(XN |C, Y N) ≤ ε
given a sufficiently large N .

3. Show that given any two PDFs, p(x) and q(x) of a continuous variable X, we have KL(p‖q) ≥
0. Hint: the proof is very similar to the one for the discrete case as in (4.14).

4. Finish the derivation of the EM-algorithm by showing the update rules described in (4.23)-(4.25).

5. For multivariate Gaussian mixure models with vector observations x1, · · · ,xi, · · · ,xN , each
cluster z will behave like ∼ N (µz,Σz). Show that the update for mean µz and covariance
matrix Σz are respectively

µz ←
∑N
i=1 qi(z)xi∑N
i=1 qi(z)

(4.31)

78 CHAPTER 4. INFORMATION MEASURES

and

Σz ←
∑N
i=1 qi(z)(xi − µi)(xi − µi)

>∑N
i=1 qi(z)

(4.32)

6. Show that I(X;Y |Z) =
∑
z p(z)KL(p(x, y|z)‖p(x|z)p(y|z)) as in (4.27).

Information theory and probabilistic inference Samuel Cheng

Chapter 5
Interlude: Some IT application examples

In this chapter, we will apply the information measures learned in previous chapters to two inter-
esting applications: Shannon’s perfect secrecy in cryptography and decision trees in classification.

5.1 Shannon’s Perfect Secrecy
Imagine yourself as a spy, tasked with transmitting a sensitive message to a fellow agent while
maintaining utmost secrecy from adversaries and the public. This classic conundrum in cryptog-
raphy is often illustrated through a simple model. In this scenario, the original message, known
as the plaintextplaintext,

ciphertext, and
key

M , is encrypted into a ciphertext C using a specific key K. This key is also
shared with the intended recipient, enabling them to decrypt the message and access its contents.

Shannon’s seminal result in this domain states that to ensure perfect secrecy, the following
fundamental inequality must be satisfiedShannon’s

perfect secrecy
H(M) ≤ H(K). (5.1)

This inequality signifies that the entropy of the key should be at least the entropy of the message.
Without loss of generality, we assume a non-probabilistic encryption scheme. In such a

scheme, each plaintext message is uniquely mapped to a ciphertext given a fixed key, eliminating
any ambiguity during the decoding process. Consequently, the conditional entropy

H(M |C,K) = 0. (5.2)

A crucial requirement for perfect secrecy is the independence of the ciphertext and the plaintext
message. Ideally, one should not be able to infer any information about the message from the
ciphertext. Hence, C and M should be independent variables. This leads to the conclusion that
I(C;M) = 0. Therefore, we have

H(M) = H(M |C) (5.3)

since H(M)
(a)
= H(M |C) + I(C;M)

(b)
= H(M |C), where (a) is from the definition of mutual infor-

mation and (b) is due to the independence of M and C.ciphertext and
plaintext should
be independent Page 79 of 177

80 CHAPTER 5. INTERLUDE: SOME IT APPLICATION EXAMPLES

Next, note that we also have
H(M |C) ≤ H(K|C). (5.4)

since proof of
Shannon’s
perfect secrecy

H(M |C)
(a)

≤ H(M |C) +H(K|M,C)

(b)
= H(M,K|C)
(c)
= H(K|C) +H(M |K,C)
(d)
= H(K|C),

where (a) is due to the non-negativity property of entropy, (b) and (c) follow from the chain rule
of entropy, and (d) is due to H(M |K,C) = 0 for a non-probabilistic encryption scheme.

Combining (5.3) and (5.4), we immediately have

H(M) = H(M |C) ≤ H(K|C)
(a)

≤ H(K), (5.5)

where (a) is due to the property that conditioning reduces entropy.
Shannon’s concept of perfect secrecy presents a rather pessimistic outlook because to send a

message with perfect secrecy, a key of at least the same size as the message must be securely
distributed. The classic approach for achieving this is the one-time pad, which modulates the
message with a key of the same size. In practice, Shannon’s perfect secrecy is too expensive in
terms of key consumption.

Rather than striving for perfect secrecy, it is often sufficient for the message to be computa-
tionally secure. Computational security means that while it is theoretically possible to break the
encryption, it would require an infeasible amount of computational resources, such as time or pro-
cessing power, to do so. In other words, with current technology and knowledge, it would take
an impractically long time for an attacker to decrypt the message without the key. This form of
security relies on the assumption that certain mathematical problems (such as factoring large prime
numbers or computing discrete logarithms) are difficult to solve.

Modern cryptographic techniques, such as RSA, AES, and ECC, aim to provide computational
security. These methods do not require the key to be as large as the message, making them more
practical for everyday use. While they do not guarantee absolute security, they provide a level of
protection that is considered sufficient to keep information safe against all known attacks within a
reasonable time frame.

5.2 Identifying Vampires
Consider a world where real vampires are lurking among us. It is crucial to effectively identify
vampires so we can avoid them.1 Assume we have collected a small dataset of vampires and non-
vampires based on various attributes, attributeas shown in Table 5.1. These attributes include: Does
the individual have a shadow (yes, no, or unsure)? Does the individual like garlic? What is the
individual’s complexion like? Does the individual have an accent?

1This interesting example is borrowed from the late Patrick Winston at MIT.

5.2. IDENTIFYING VAMPIRES 81

Identifying vampires given these attributes presents several challenges. Firstly, we often deal
with non-numerical data, which limits the direct use of some tools such as regression. Next, the
relevance of certain information can vary; some attributes may be critical in certain contexts but
irrelevant in others. Additionally, obtaining these attributes can be costly (and potentially life
threatening), making it essential to minimize the number of attributes that need to be examined.

Vampire? Shadow? Garlic? Complexion? Accent?
No ? Yes Pale None
No Yes Yes Ruddy None
Yes ? No Ruddy None
Yes No No Average Heavy
Yes ? No Average Odd
No Yes No Pale Heavy
No No No Average Heavy
No ? Yes Ruddy Odd

Table 5.1: Romanian Data Base. The data entry with unsure shadow attribute is highlighted.

5.2.1 Picking good attributes based on counting
To facilitate a clearer understanding of the dataset presented in Table 5.1, we illustrate the distri-
bution of vampires and non-vampires based on each attribute’s outcomes using decision trees, as
shown in Figure 5.1. In these trees, the symbols have the following meanings:

• ‘+’ denotes the presence of a vampire

• ‘−’ denotes the presence of a regular folk (i.e., a non-vampire)

Garlic

Y

+++
--

N

Complexion

++
-

A

--

P

--
+

R

Accent

--
+

N

-
++

H

-+

O

Shadow

++
--

?

Y

+

N

Figure 5.1: Test trees for different attributes are shown, where each ‘+’ sign indicates a vampire
count, and each ‘-’ sign indicates a non-vampire count.

Each attribute produces a set of outcomes that are either homogeneous (indicated in white,
signifying a high probability of being or not being a vampire) or mixed. The total size of these
homogeneous sets can intuitively indicate the efficacy of each test, with larger sizes suggesting
better performance. For example, the total homogeneous set sizes are 4 for Shadow, 3 for Garlic, 2
for Complexion, and 0 for Accent, suggesting that Shadow is likely a more effective attribute than
Accent for identifying vampires.

However, this simple approach has two limitations:

1. As the dataset size increases, the probability of obtaining homogeneous sets decreases.

82 CHAPTER 5. INTERLUDE: SOME IT APPLICATION EXAMPLES

2. This approach neglects almost homogeneous sets, even if only one sample differs from the
rest.

.

5.2.2 Information theoretic approach
To determine the best attribute using information theory, we can treat the dataset as a represen-
tative sample of the real-world distribution. We consider the variable V to indicate whether a
sampled individual is a vampire, and the attributes G,C,A, and S (Garlic, Complexion, Accent,
and Shadow) as variables as well. We evaluate the importance of each attribute based on their
estimated empirical distributions.

Let’s denote the entropy of V as H(V), which represents the uncertainty about an individual
being a vampire. From the dataset with 3 vampires and 5 non-vampires, we calculate:

H(V) = −3

8
log2

3

8
− 5

8
log2

5

8
≈ 0.95.

To compare attributes, we use conditional entropies. For instance, conditional
entropy should
be minimized

if H(V |attribute) = 0,
knowing the attribute makes us certain about the individual being a vampire or not. In general,
smaller conditional entropies indicate greater certainty in our classification based on the attribute.

Let’s assess the conditional entropies individually using our example data. We’ll begin with the
Garlic attribute.

For Garlic, we calculate the conditional entropy H(V |G), which represents the uncertainty about
an individual being a vampire given their preference for garlic. Using the dataset, we can estimate
this value.

H(V |G) (a)
= Pr(G = Y)H(V |G = Y) + Pr(G = N)H(V |G = N) (5.6)
(b)
=

3

8
H(V |G = Y) +

5

8
H(V |G = N) (5.7)

(c)
=

3

8
· 0 + 5

8
H(V |G = N) (5.8)

(d)
=

5

8
H

(
3

5

)
=

5

8
· 0.97 = 0.61, (5.9)

where (a) follows from (4.7), (b) is derived from the fact that 3 out of 8 individuals like garlic, (c)
results from the observation that all individuals who like garlic are not vampires, and (d) follows
from the fact that 3 out of 5 non-garlic lovers are vampires, and recall that H(p) is a shorthand
notation for −p log2 p− (1− p) log2(1− p).

As for complexion, we have

H(V |C) (a)
= pC(A)H(V |C = A) + pC(P)H(V |C = P) + pC(R)H(V |C = R)

=
3

8
H

(
1

3

)
+

2

8
H(0) +

3

8
H

(
1

3

)
= 0.69, (5.10)

where pC(x) = Pr(C = x) in (a).

5.2. IDENTIFYING VAMPIRES 83

And for accent,

H(V |A) = pA(N)H(V |A = N) + pA(H)H(V |A = H) + pA(O)H(V |A = O)

=
3

8
H

(
1

3

)
+

3

8
H

(
1

3

)
+

2

8
H

(
1

2

)
= 0.94. (5.11)

Finally, for shadow,

H(V |S) = pS(?)H(V |S =?) + pS(Y)H(V |S = Y) + pS(N)H(V |S = N)

=
4

8
H

(
1

2

)
+

3

8
H (0) +

1

8
H (0) = 0.5. (5.12)

We observe that S is the optimal attribute for identifying vampires, as H(V |S) has the smallest
value. Furthermore, this result indicates the remaining uncertainty when knowing an individual’s
shadow.

Note that the conditional entropy 1 − H(V |attribute = x) measures the homogeneity of indi-
viduals with the specified attribute value.minimizing

conditional
entropy is
making
soft-decision

A highly homogeneous set has high certainty, resulting
in a small conditional entropy, and thus 1 − H(V |attribute = x) ≈ 1. Minimizing conditional
entropy is equivalent to maximizing homogeneity, similar to the initial approach. However, unlike
the earlier method, which makes a hard decision and only considers completely homogeneous cases,
the conditional entropy approach provides a soft decision that estimates a score for the degree of
homogeneity even when it’s not fully homogeneous.

Since I(V ; attribute) = H(V) − H(V |attribute), minimizing H(V |attribute) is equivalent to
maximizing I(V ; attribute).minimizing

conditional
entropy is same
as maximizing
mutual
information

This means we aim to select attributes that share the most relevant
information with the vampire classification. This further justifies the approach as a reasonable
choice.

Picking a Second Test

Garlic

--

Y

++

N
Complexion

+

A

-

P

-+

R

Accent

-+

N H

-+

O

Figure 5.2: Test trees for different attributes given Shadow is unknown. Each ‘+’ sign indicates a
vampire count, whereas each ‘-’ sign indicates a non-vampire count.

Shadow

Garlic

Not
vampire

Y

Vampire

N

?

Not
vampire

Y

Vampire

N

Figure 5.3: Overall decision tree

Now that Shadow is selected as the first test, we need to de-
termine the optimal second test. One straightforward approach
is to compare the conditional entropies H(V |S,G), H(V |S,A),
and H(V |S,C) and choose the attribute with the smallest value.

However, if we can select the second test based on the out-
come of the first test, we should analyze each case separately.
For instance, since H(V |S = Y) = H(V |S = N) = 0, no ad-
ditional testing is necessary when S = Y or S = N . For the

84 CHAPTER 5. INTERLUDE: SOME IT APPLICATION EXAMPLES

case where S =?, the test trees conditioned on S =? are shown
in Figure 5.2. The remaining uncertainty after the second tests
are respectively

H(V |S =?, G) =
2

4
H (V |S =?, G = Y) +

2

4
H (V |S =?, G = N)

=
2

4
H

(
0

2

)
+

2

4
H

(
0

2

)
= 0,

H(V |S =?, C)

=
1

4
H (V |S =?, C = A) +

1

4
H (V |S =?, C = P) +

2

4
H (V |S =?, C = R)

=
1

4
H

(
0

1

)
+

1

4
H

(
0

1

)
+

2

4
H

(
1

2

)
= 0.5,

and

H(V |S =?, A) =
2

4
H (V |S =?, A = N) +

2

4
H (V |S =?, A = O)

=
2

4
H

(
1

2

)
+

2

4
H

(
1

2

)
= 1.

Therefore, we conclude that the Garlic test is the optimal choice. Furthermore, after administer-
ing the Garlic test, we can determine with certainty whether the individual is a vampire or not,
rendering additional testing unnecessary. The overall decision tree for this scenario is illustrated in
Figure 5.3.

5.2.3 Potential Extensions in Decision Tree Analysis
In extending the decision tree methodology, it’s important to note that the test outcomes don’t
need to be discrete. Let Xi represent the test outcome of attribute i, where some Xi are continuous.
We simply need to select the attribute i that minimizes H(V |Xi), just as before.

Another extension involves constructing multiple trees and leveraging their outcomes to make
the final decision, which can help reduce overfitting. The high-level procedure is as follows: random forest

1. Select a random subset of training samples and a random subset of attributes.

2. Train a tree using the selected subset of samples and attributes.

3. Classify a test sample using each of the trees, and make the final decision based on a majority
vote.

This resulting algorithm is commonly known as the random forest algorithm.

5.3 Exercise
1. For the vampire identification problem, let’s determine the second test if we use complexion

as the attribute in the first test. Please build the entire decision tree so that a vampire can

5.3. EXERCISE 85

always be correctly identified for the training data.

86 CHAPTER 5. INTERLUDE: SOME IT APPLICATION EXAMPLES

Information theory and probabilistic inference Samuel Cheng

Chapter 6
Channel coding

Channel coding stands as a cornerstone in communication theory. This chapter will explore the
essential concepts and theorems in channel coding.

6.1 What is channel coding?

p(m) Encoder p(y|x) Decoder m̂
m xN yN

Figure 6.1: Channel coding setup

Channel codingchannel coding is a crucial component of communication systems, ensuring reliable data
transmission over noisy channels by introducing redundancy to the original data. This enables the
detection and correction of errors that occur during transmission, preventing significant information
loss or misinterpretation. Without channel coding, errors induced by noise, interference, or other
impairments in the communication channel could corrupt the transmitted data. By employing
channel coding techniques such as error detection and correction codes, the system can enhance
the integrity and accuracy of the received information, improving the overall performance and
reliability of the communication system. This is vital for applications ranging from simple data
transfers to complex and critical systems like satellite communications, mobile networks, and data
storage solutions.

6.1.1 Channel Coding Components
As shown in Figure 6.1, the channel coding setupchannel coding

setup
typically consists of:

1. Message Generation: Messages to be transmitted through the channel. We will assume
that they follow a probability distribution p(m).

2. Encoding Process: The encoder converts message m into a sequence xN for transmission.

Page 87 of 177

88 CHAPTER 6. CHANNEL CODING

3. Channel Behavior: Characterized by p(y|x), it impacts the transmitted signal, resulting in
yN .

4. Decoding Process: The decoder reconstructs the message, estimating m̂ from yN .

The channel’s memoryless nature implies that the output depends solely on the current input.
The probability of receiving yN for a given xN is p(yN |xN) =

∏N
i=1 p(yi|xi).

6.1.2 Channel Coding Rate and Channel Capacity
An important question in communication theory is how fast we can transmit signals reliably across
a channel. To quantify the speed of transmission, we use the channel coding rate channel coding

rate
, often denoted

by R. The channel coding rate is defined as the information content of the transmitted message
per channel use. Therefore, given N channel uses to transmit a message M , we have:

R =
H(M)

N
,

where H(M) is the entropy of the transmitted message.
We naturally desire a large channel coding rateR to achieve a higher transmission rate. However,

we cannot indefinitely increase R without compromising reliability. We call the maximum possible
channel coding rate that still maintains reliable transmission the channel capacity. capacityInterestingly,
it’s not immediately apparent that such a capacity even exists, as reliable transmission may not be
achievable regardless of how small the rate is.

A pivotal result by Shannon is the demonstration that channel capacity indeed exists. This
fundamental limit indicates that reliable communication is possible if the channel coding rate R is
less than the channel capacity C. If R > C, error-free transmission is impossible. This is known as
the Channel Coding Theorem, which we will state formally below.

Channel Coding Theorem

There is a capacity channel coding
theorem

C for any channel such that if the channel coding rate R is larger than
C, then there will be a non-zero error probability for the transmission. Conversely, if R < C,
one can find a channel coding scheme such that the error probability can be made arbitrarily
small. Moreover, the capacity is the maximum possible mutual information between the
channel input X and output Y , optimized over all possible input distributions p(x). That is,

C = max
p(x)

I(X;Y) (6.1)

The major highlight of this chapter will be the proof of the channel coding theorem. We will
defer this proof until later in the chapter. Before that, we will explore various examples to develop
a more nuanced appreciation for the theorem’s significance and how it applies to different scenarios.

6.1.3 Capacities of continuous channels
The original channel coding theorem is typically presented for discrete channels with discrete input
and output. However, it can be shown that the result also applies to continuous cases.

6.2. COMMUNICATION CHANNEL EXAMPLES 89

p(m) Enc D/A p(y|x) A/D Dec m̂
m xN∆ xN yN yN∆

Figure 6.2: A continuous channel is converted to a discrete channel (inside the dotted box) using
A/D (Analog-to-Digital) and D/A (Digital-to-Analog) converters.

Consider a continuous channel with both continuous input and output. To apply the channel
coding theorem, one approach is convert a discrete input to a continuous signal with Digital-to-
Analog (D/A) before sending through the channel and then convert the channel output back to
a discrete signal with Analog-to-Digital (D/A) converter. The channel, accompanied by these
converters, can then be treated as a discrete channel, as illustrated in Figure 6.2.

Let the quantization step size of the A/D and D/A converters be ∆ and denote C∆ as the
capacity of the resulting discrete channel, and X∆ and Y∆ be the discrete signals before converting
X and after converting Y with the D/A and A/D converters, respectively. Therefore, we havechannel coding

theorem holds
for continuous
channels as well

C∆ = max
p(x)

I(X∆;Y∆) = max
p(x)

H(Y∆)−H(Y∆|X∆)

(a)
≈ max

p(x)
h(Y)− log∆− h(Y |X∆) + log∆

= max
p(x)

h(Y)− h(Y |X) = max
p(x)

I(X;Y),

where we use (4.4) in (a). Moreover, as the quantization step size ∆→ 0, (a) becomes an equality
rather than an approximation, and C∆ approach the capacity of the original channel without
quantization. Thus we have

C = C∆ = max
p(x)

I(X;Y),

as ∆→ 0.

Note that the above argument can also be extended to the case with a mixture of discrete and
continuous signals. For example, we may have a discrete input X and continuous output Y , and
the capacity remains the same expression in (6.1).

6.2 Communication Channel Examples

We will examine several channel examples and evaluate their capacities using (??). First, let’s
consider the binary symmetric channel, where both the input and output are binary, and the error
probabilities given input 0 and 1 are symmetric as follows.

90 CHAPTER 6. CHANNEL CODING

6.2.1 Binary symmetric channel

In the case of a binary symmetric channel, both the input and output are binary, taking values 0
or 1. The channel is symmetric, characterized by the probabilities

pY |X(1|0) = pY |X(0|1) = p,

pY |X(0|0) = pY |X(1|1) = 1− p,

where p represents the crossover probability. The capacity of such a channel is given by capacity of
binary
symmetric
channel

C = max
p(x)

I(X;Y) = max
p(x)

[H(Y)−H(Y |X)]

(a)
= max

p(x)
[H(Y)−H(p)]

(b)
= 1−H(p),

where (a) follows from the fact that H(Y |X) = Pr(X = 0)H(Y |X = 0) + Pr(X = 1)H(Y |X =
1) = Pr(X = 0)H(p) + Pr(X = 1)H(p) = H(p)1, and (b) holds because H(Y) is maximized when
X is equally probable for 0 and 1, and thus Y is also equally probable for 0 and 1.

6.2.2 Simple Gaussian Channel

Let’s consider a simple continuous Gaussian channel capacity of
single Gaussian
channel

next, where the output Y is expressed as
X +Z, with Z being zero-mean Gaussian noise independent of the input X. The channel capacity
can then be evaluated as

C = max
p(x)

I(X;Y) = max
p(x)

h(Y)− h(Y |X) = max
p(x)

h(Y)− h(X + Z|X)

(a)
= max

p(x)
h(Y)− h(Z|X)

(b)
= max

p(x)
h(Y)− h(Z) = max

p(x)
h(Y)− 1

2
log 2πeσ2

Z

(c)
=

1

2
log 2πeσ2

Y −
1

2
log 2πeσ2

Z

(d)
=

1

2
log σ

2
X + σ2

Z

σ2
Z

=
1

2
log
(
1 +

σ2
X

σ2
Z

)
=

1

2
log(1 + SNR),

where in (a), given X makes X a constant and any constant shift does not change the entropy,
(b) is due to X ⊥ Z, (c) holds with equality if X and consequently Y are Gaussian, (d) follows
from Var(Y) = Var(X) + Var(Z) given X ⊥ Z, and SNR denotes the signal-to-noise ratio in the
last equation. Note that the capacity is a function of the input power and can be made arbitrarily
large with unlimited power. This is reasonable because increasing the power makes the noise less
significant by comparison.

1For a probability p such that 0 ≤ p ≤ 1, recall that H(p) , −p log2 p− (1− p) log2(1− p).

6.2. COMMUNICATION CHANNEL EXAMPLES 91

6.2.3 Additive White Gaussian Noise Channel
The simple Gaussian channel considered earlier only has one channel. In realistic communication
systems, we often have Gaussian channels in parallel from different frequency bands. The most
well-known and common one is the additive white Gaussian noise (AWGN) channeladditive white

Gaussian noise
channel

, where the
noise across all bands has the same noise power (hence called white2). Let’s try to find the capacity
of the AWGN channel.

Denote W as the bandwidth of the channel and N0 as the noise spectral density. It follows
from Nyquist and Shannon’s sampling results that a signal with bandwidth W requires at least
2W samples per second for full reconstruction. This suggests 2W degrees of freedom per second,
equivalent to 2W parallel Gaussian channels for every second. Given the noise power spectral
density N0, the signal-to-noise ratio (SNR) for each channel is given bycapacity of

AWGN channel

SNR (a)
=

σ2
X

2W (N0/2)
=

P

WN0
,

where we need to divide N0 by 2 in (a) since the noise power is spread across both positive and
negative frequencies.

Therefore, the channel capacity can be expressed as:

C = 2W · 1
2

log2(1 + SNR) =W log2
(
1 +

P

WN0

)
.

6.2.4 Gaussian Colored Noise Channels
What if the noise power is not white across the spectrum? In this case, we have a Gaussian colored
noise channel. Similar to the AWGN case, we essentially have parallel Gaussian channels, but each
channel has different noise power. The resulting channel is referred to as a Gaussian colored
noise channel.Gaussian colored

noise channel
Finding its capacity becomes a power allocation problem because, unlike AWGN,

we want to assign more power resources to the more effective channels. To simplify the discussion,
let’s consider a discrete approximation of parallel Gaussian channels, as shown in Figure 6.3, where
the colored channel is approximated as a number of parallel Gaussian channels with different noise
powers.

Figure 6.3: Discretize a colored noise channel: original channel (left), discretized channel (right).

Let K be the number of parallel Gaussian channels, each with noise powers σ2
1 , σ

2
2 , . . . , σ

2
K . Sup-

pose we can allocate a total power of P across all channels, with the powers assigned to individual
channels being P1, P2, . . . , PK such that

∑K
i=1 Pi ≤ P . For each k-th channel, it is possible to

transmit 1
2 log

(
1 + Pk

σ2
k

)
bits per channel use. Thus, we can summarize the optimization problem

2Consider white light as originating from a mixture of lights of about the same power.

92 CHAPTER 6. CHANNEL CODING

as finding capacity
of colored
channelmax

K∑
k=1

1

2
log
(
1 +

Pk
σ2
k

)
such that P1, · · · , PK ≥ 0,

K∑
k=1

Pk ≤ P.

KKT Conditions

The Karush-Kuhn-Tucker (KKT) conditions3 for this optimization problem can be listed as follows. KKT condition
for finding
colored channel
capacity

∂

∂Pi

[
K∑
k=1

1

2
log
(
1 +

Pk
σ2
k

)
+

K∑
k=1

λkPk − µ

(
K∑
k=1

Pk − P

)]
= 0, (6.2)

µ, λ1, · · · , λK ≥ 0, (6.3)
P1, · · · , PK ≥ 0, (6.4)

K∑
k=1

Pk ≤ P, (6.5)

µ

(
K∑
k=1

Pk − P

)
= 0, λkPk = 0, ∀k. (6.6)

Capacity of Parallel Channels

From (6.2), we can show that

Pi + σ2
i =

1

2(µ− λi)
. (6.7)

Using the complementary condition λiPi = 0 from (6.6), we know that for Pi > 0, λi = 0 and for
λi > 0, Pi = 0. Therefore, we have

Pi + σ2
i =

1

2µ
= constant, when Pi > 0 (6.8)

and

σ2
i =

1

2(µ− λi)
, when Pi = 0. (6.9)

where (6.9) is irrelevant physically as we are not too interested in the exact value of λi when we
already know that Pi = 0. On the other hand, (6.8) captures the essence for efficient allocation
and we will interpret it in more detail next.

Note that (6.8) also implies that µ cannot be zero, and consequently,
∑K
k=1 Pk = P from (6.6),

which makes sense, as we should always utilize all available power to maximize capacity.

6.3. JOINTLY TYPICAL SEQUENCES 93

(a) P = 0.9 (b) P = 2.2 (c) P = 4.8

Figure 6.4: Waterfilling interpretation of power allocation in parallel channels. Five available
channels have noise powers: σ2

1 = 3, σ2
2 = 2, σ2

3 = 1.7, σ2
4 = 2.5, σ2

5 = 4.

Waterfilling Interpretation

There is a nice interpretation of the solution described in (6.8). Let’s illustrate this with a simple
example using five parallel channels, as shown in Figure 6.4. In Figure 6.4a, the total power is 0.9,
and we want to allocate it such that P1+P2+P3+P4+P5 = 0.9 and Pi+σ2

i = constant when Pi 6= 0.
We start by allocating power to the least noisy channel, which is the third channel with σ2

3 = 1.7.
We allocate 0.3 to it, making P3 + σ2

3 = 2 = P2, the power of the second least noisy channel. Next,
we allocate the remaining power (0.9− 0.3 = 0.6) equally to the second and third channels, so that
P2 + σ2

2 = P3 + σ2
3 . This results in P2 = 0.3, P3 = 0.6, and P2 + σ2

2 = P3 + σ2
3 = 2.3, which is less

than σ2
1 , σ

2
4 , and σ2

5 . We can compute λ1, λ4, and λ5 from (6.9), but it’s unnecessary since we know
that P1 = P4 = P5 = 0. This is because we cannot have, for example, P1 + σ2

1 = P2 + σ2
2 unless

P1 < 0, which is not physically possible.
This process is analogous to pouring water into a hilly landscape. The water flows to the lowest

levels, and the water level should be the same everywhere. Areas above the water level will be dry,
suggesting that no power is allocated there. This way of allocating power is often known as the
waterfilling algorithm.waterfilling

algorithm We may continue our example as shown in Figure 6.4b, where P = 2.2. Instead of allocating
0.3 to both the second and third channels after the initial allocation of 0.3 to the third channel,
let’s allocate 0.5 in the next round. We now have P2 = 0.5, P3 = 0.5 + 0.3 = 0.8, and P2 + σ2

2 =
P3 + σ2

3 = 2.5 = σ2
4 . So, for the remaining power, we have to allocate to not just the second and

third channels but also the fourth one to ensure an equal water level everywhere. The remaining
power now is 2.2− 0.5− 0.8 = 0.9. So, as we split the remaining power across the three channels,
we finally have P2 = 0.5 + 0.3 = 0.8, P3 = 0.8 + 0.3 = 1.1, and P4 = 0.3. Moreover, we have
P2 + σ2

2 = P3 + σ2
3 = P4 + σ2

4 = 2.8 < σ2
1 and σ2

5 . So, again, we should have P1 = P5 = 0.
Using the same argument, we can try to allocate the power when P = 4.8 as shown in Figure

6.4c, but we will leave it as an exercise.

6.3 Jointly typical sequences
Before we present the forward proof of the channel coding theorem, we will first develop some
essential tools to facilitate our discussion. We will begin by extending the concept of typical
sequences, introduced in Section 3.5.2, to jointly typical sequences. Then, we will utilize this new
concept to establish two crucial lemmas: the packing lemma and the covering lemma.

3Please see appendix.

94 CHAPTER 6. CHANNEL CODING

6.3.1 What are jointly typical sequences

p(x, y)

xN

yN

Always
jointly
typical

(a) (xN , yN) sampled from p(x, y)

p(x)

p(y)

Jointly
typical?

xN

yN

(b) (xN , yN) sampled from p(x)p(y)

Figure 6.5: Any pair of sequences sampled from a joint source will be jointly typical, as illustrated
in the left figure. However, if the two sequences are sampled from two independent sources, there
is no guarantee that the sequences will be jointly typical as illustrated in the right figure.

For a pair of sequences xN and yN , we define them as jointly typical jointly typicalif both xN and yN are
typical and the following condition holds

2−N(H(X,Y)+ε) ≤ p(xN , yN) ≤ 2−N(H(X,Y)−ε). (6.10)

Sampling from a joint source is always jointly typical

Consider sampling a sequence pair (xN , yN) from a joint source, as illustrated in Figure 6.5a. Note
that we can treat each pair (xi, yi) as a single source. Using the same argument as for typical
sequences and the law of large numbers, the condition depicted in (6.10) will always be satisfied
as N becomes sufficiently large. sequences

sampled from
joint source are
jointly typical

Moreover, when we consider only one of the sources, say X only,
from the joint source, the sampled sequence xN will apparently be typical. The same holds for yN .
Therefore, all the conditions for jointly typical sequences will be satisfied. In summary, whenever we
sample a sequence pair from a joint source, the pair will be jointly typical, given that the sampling
length is sufficiently large.

Sampling from two separate sources

The more interesting case is when the sequence pair (xN , yN) is from two separate sources, as shown
in Figure 6.5b. In this case, each sequence, when considered independently, is typical. However,
they are not jointly typical since (6.10) is generally not satisfied.

Let’s denote A(N)
ε (X,Y) as the set of jointly typical sequences. Given a sequence pair randomly

sampled as in Figure 6.5b, how likely is it that the sample pair will be jointly typical? First, we
know that there are approximately 2NH(X) typical sequences of X with length N . If we consider the
pair (X,Y) as a single variable, there should be approximately 2NH(X,Y) jointly typical sequences
by the same argument. Therefore, |A(N)

ε (X,Y)| ≈ 2NH(X,Y).
More precisely, we have, probability of

independent
sequences to be
jointly typical

(1− δ)2N(H(X,Y)−ε) ≤ |ANε | ≤ 2N(H(X,Y)+ε) (6.11)

6.3. JOINTLY TYPICAL SEQUENCES 95

similar to (3.13). Note that the δ above can be made arbitrarily small by sufficiently increasing N .
Therefore, it can essentially be ignored in practice.

Thus we have,

Pr((XN , Y N) ∈ A(N)
ε (X,Y))

=
∑

{(xN ,yN)|(xN ,yN)∈A(N)
ε (X,Y)}

p(xN , yN)

(a)
=

∑
{(xN ,yN)|(xN ,yN)∈A(N)

ε (X,Y)}

p(xN)p(yN)

(b)

≤
∑

{(xN ,yN)|(xN ,yN)∈A(N)
ε (X,Y)}

2−N(H(X)−ε)2−N(H(Y)−ε)

≤2−N(I(X;Y)−3ε), (6.12)

where (a) is due to the independence of xN and yN , and (b) is directly from the definition of
typical sequences as in (3.12). Similarly, we can also evaluate the probability lower bound for these
sequences being jointly typical as

Pr((XN , Y N) ∈ A(N)
ε (X,Y))

=
∑

{(xN ,yN)|(xN ,yN)∈A(N)
ε (X,Y)}

p(xN , yN)

=
∑

{(xN ,yN)|(xN ,yN)∈A(N)
ε (X,Y)}

p(xN)p(yN)

(a)

≥
∑

{(xN ,yN)|(xN ,yN)∈A(N)
ε (X,Y)}

2−N(H(X)+ε)2−N(H(Y)+ε)

(b)

≥(1− δ)2−N(I(X;Y)+3ε), (6.13)

where (a) is from (3.12) and (b) is from (6.11)
In summary, we see that the probability of independently sampled sequences being jointly typical

is approximately 2−NI(X;Y), which decays asymptotically unless I(X;Y) = 0, indicating X and
Y are independent. In the case when XN and Y N are already expected to be independent in the
setup, i.e., I(X;Y) = 0, the bounds become useless as the sequences will be considered as jointly
typical even if they were sampled independently.

6.3.2 Packing and Covering Lemmas
As discussed in the previous section, we don’t expect two sequences independently sampled from
separate sources to be jointly typical for sufficiently long sequence lengths. However, what if we
have multiple such sequences? Specifically, if we want to guarantee finding at least one jointly
typical sequence among these sequences or ensure that no such jointly typical sequence exists, what
is the minimum number of sequences required and what is the maximum number of sequences we
can have? These questions are addressed by the covering and packing lemmas, which are presented

96 CHAPTER 6. CHANNEL CODING

in this section.

Packing Lemma

Let’s consider the second case first. Given a sequence Y N , we know that an independent XN is
unlikely to be jointly typical with Y N . However, if we have many such XN sequences, eventually,
one of them should be jointly typical with Y N . The question is, packing lemmahow many XN sequences can we
pack with Y N such that still, no XN is jointly typical with Y N? The answer of this question is
addressed by the so-called packing lemma. Since the probability of an arbitrarily sampled XN

being jointly typical with Y N is approximately 2−NI(X;Y), a reasonable guess for the number of
XN sequences we can pack is simply 1

2−NI(X;Y) = 2NI(X;Y). This guess turns out to be a correct
one, and we will now show it formally.

Let M = 2NR be the number of XN sequences to be drawn. The probability that any one of
these M sequences is jointly typical with Y N is upper bounded by

Pr(Any one of M XN jointly typical with Y N)
(a)

≤ MPr((XN , Y N) ∈ ANε (X,Y))

(b)

≤ M2−N(I(X;Y)−3ε)

(c)

≤ 2−N(I(X;Y)−R−3ε)

→ 0 as N →∞ and I(X;Y)− 3ε > R,

where (a) is due to the union bound, (b) is from (6.12), and (c) is due to 2NR =M .

As ε can be made arbitrarily small with increasing N , it follows that as long as I(X;Y) > R,
we can find a sufficiently large N such that we can pack 2NR XN sequences with Y N without any
of the XN being jointly typical with Y N .

Covering Lemma

1 2 3

−1

1

2

y = e−x

y = 1− x

Figure 6.6: e−x ≥ 1− x

The packing lemma states that as long as the number of sequences
XN packed with Y N is less than 2NI(X;Y), none of the XN se-
quences will be jointly typical with Y N . But what happens if we
have more than 2NI(X;Y) sequences? Does this imply that some
XN must be jointly typical with Y N? The answer is affirmative.
This result is known as the covering lemma, covering lemmawhich will be for-
mally proved in the following.

Let’s assume again that we draw M(= 2NR) such XN se-
quences. The probability that none of the XN sequences is jointly

6.4. FORWARD PROOF OF CHANNEL CODING THEOREM 97

typical with Y N is given by

Pr((XN (m), Y N) /∈ A(N)
ε (X,Y) for all m)

=

M∏
m=1

Pr((XN (m), Y N) /∈ A(N)
ε (Y,X))

=

M∏
m=1

[
1− Pr((XN (m), Y N) ∈ A(N)

ε (Y,X))
]

(a)

≤ (1− (1− δ)2−N(I(Y ;X)+3ε))M

(b)

≤ exp(−M(1− δ)2−N(I(Y ;X)+3ε))

(c)

≤ exp(−(1− δ)2N(R−I(Y ;X)−3ε))

→ 0 as N →∞ and R > I(X;Y) + 3ε,

where (a) is due to (6.13), (b) is due to the inequality e−x ≥ 1−x, as illustrated in Figure 6.6, and
(c) is due to the fact that M = 2NR.

As ε can be made arbitrarily small, the probability that none of the XN sequences are jointly
typical with Y N goes to zero when R > I(X;Y) or the number of XN sequences is larger than
2NI(X;Y). Consequently, we must have at least one XN sequence that is jointly typical with Y N in
that case.

Summary of Packing and Covering Lemmas

From the packing and covering lemmas, we see that 2NI(X;Y) acts as a critical point. If the number
of sequences XN is less than 2NI(X;Y), we are in one phase where the packing lemma tells us that
none of the XN sequences are jointly typical with Y N . Conversely, if the number exceeds 2NI(X;Y),
the covering lemma indicates that we must be able to find some XN sequences that are jointly
typical with Y N .

As we will see shortly, the packing lemma is instrumental in the forward proof of the channel
coding theorem, while the covering lemma is crucial in the proof of the rate-distortion theorem.
However, the rate-distortion theorem is beyond the scope of this book. Let’s continue with the
forward proof of the channel coding theorem.

6.4 Forward proof of channel coding theorem
Now, we have enough tools to give a forward proof of the channel coding theorem. That is, given
that the code rate is below the capacity, we should be able to find a reliable coding scheme to
transmit messages with the target code rate. One key idea of the proof is that we should use the
channel multiple times for every message sent. For each message to be sent, the encoder will map
the message to a length-N codeword to send through the channel. So each message will need N
channel uses. And if the code rate is R, then the number of different messages (and consequently
the size of the codebook) should be 2NR. The overall proof strategy is to construct a codebook
randomly, derive a pair of encoding and decoding scheme with the codebook, and finally analyze

98 CHAPTER 6. CHANNEL CODING

the error rate and show that the error rate can be made arbitrarily small and hence demonstrate a
reliable transmission.

6.4.1 Setup coding scheme
Codebook construction

Let’s start with codebook construction. Recall that from the channel coding theorem, the capacity
is given by C = maxp(x) I(X;Y). Assume that p∗(x) is the input distribution that actually acheive
the capacity, i.e., p∗(x) = arg maxp(x) I(X;Y). Recall that there should be 2NR messages and
consequently codewords given code rate R and length-N codewords. Here, we use a random
coding strategy. random codingWe will generate a random codebook with each codeword sampled from the
Discrete Memoryless Source (DMS) p∗(x) N times as

c(1) = (x1(1), x2(1), · · · , xN (1)),

c(2) = (x1(2), x2(2), · · · , xN (2)),

...
c(2NR) = (x1(2

NR), x2(2
NR), · · · , xN (2NR)).

Encoding and decoding procedures

The encoding procedure is straightforward: we simply map each message to its corresponding code-
word. Thus, given an input message m, the encoder output is c(m) = (x1(m), x2(m), · · · , xN (m)).

For decoding, upon receiving the sequence y = (y1, y2, · · · , yN), the decoder selects a se-
quence c(m) from the codebook {c(1), · · · , c(2NR)} such that (c(m), y) are jointly typical, i.e.,
pXN ,Y N (c(m), y) ≈ 2−NH(X,Y). If no such c(m) exists or if multiple such sequences exist, an error
is declared. Otherwise, the decoded message is output as m.

6.4.2 Performance analysis
Instead of focusing on the performance of a particular code instance, the trick of the random coding
argument is to consider the average performance over all codes randomly generated from p∗(x).
Assume that the original message M = m. A decoding error occurs when either of the following
error events decoding error

events
happens:

• E1: The codeword of the original message C(m) is not jointly typical with the received code
vector Y. That is, (C(m),Y) /∈ ANε (X,Y);

• E2: For some M ′ 6= m, we have (C(M ′),Y) ∈ ANε (X,Y).

We can quickly show that the probabilities of both events go to zero as N goes to infinity.
First, P (E1) goes to zero since (C(m),Y) is essentially drawn from the joint source p∗(x)p(y|x).

By the definition of jointly typical sequences and the law of large numbers, any sequence pair drawn
from the respective joint source will be jointly typical, so P (E1) goes to zero.

As for E2, recall that X is sampled from p∗(x), the distribution that achieves the capacity. To
emphasize this, let’s denote X here as X∗ and the channel output Y as Y ∗ ∼

∑
x p(y|x)p∗(x). Note

that we have C = I(X∗;Y ∗). Moreover, since R < C, the number of codewords, 2NR, is less than

6.5. CONVERSE PROOF OF CHANNEL CODING THEOREM 99

2NC = 2NI(X
∗;Y ∗). Consequently, by the packing lemma, there is no other codeword besides C(m)

that can be jointly typical with Y N as N goes to infinity. Therefore, P (E2)→ 0.

Additional considerations

Our goal is to show that there exists a code c∗(·) such that the probability of error Pr(error|c∗,m)
approaches zero for any message m. However, we actually demonstrated that the average error
probability over all random codes can be made arbitrarily small for a given message m. More
importantly, our earlier discussion does not guarantee that different messages can share the same
codebook, deviating from our original aim of finding a single codebook that works for all messages,
yielding zero error probability for the corresponding codewords.

Note that even if we specify a particular message m over our previous discussion, the early
argument still holds if the message is randomly drawn as well. This implies that the average error
over all codes and messages, ∑

m
p(m)

∑
c
p(c)Pr(error|c,m)

also tends to zero as the length of the codeword N increases. Therefore, the best code c∗ in terms
of the lowest average error must have∑

m
p(m)Pr(error|c∗,m) ≡ δ → 0.

However, we are not done yet. Even for this good codebook, the average error over all messages
goes to zero, but there is no guarantee that we can’t have a bad codeword and a respective message
with high error probability. To fix that, without loss of generality, we can first assume that all
messages are equally likely, leading to

1

2NR

∑
m

Pr(error|c∗,m) = δ.

Now, by discarding the worse half of the codewords, for any remaining messages m, we must have4

Pr(error|c∗,m) ≤ 2δ → 0 as N →∞.

Note that discarding the bad half of the messages reduces the rate from R to log2(2
NR/2)
N =

log2(2
N(R−1/N))
N = R− 1

N . However, the final rate can still be made arbitrarily close to the capacity
as N →∞.

6.5 Converse proof of channel coding theorem
In the forward proof, we show that there exists a reliable coding scheme as long as the code rate
is less than the capacity. For the converse, we want to show that as long as the rate is larger than

4Why? Consider a simple example of four ascending values x1 ≤ x2 ≤ x3 ≤ x4 with an empirical mean µ. If we
focus on the smaller half, x1 and x2, none of these values can be larger than 2µ. Otherwise, we have 2µ < x3 ≤ x4.
These two values alone would lead to a total sum exceeding 4µ and consequently an empirical mean larger than µ.

100 CHAPTER 6. CHANNEL CODING

the capacity, the error rate will be non-zero, making reliable transmission impossible.
Equivalently, as long as the probability of error is zero, the rate of the code R cannot exceed

the capacity. We will prove this statement instead.
To proceed with the converse proof, we need to introduce a result known as Fano’s inequality.

6.5.1 Fano’s inequality

Fano’s inequality

Fano’s inequality
for channel
coding theorem

Denote Pr(error) = Pe = Pr(M 6= M̂). Then,

H(M |Y N) ≤ 1 + PeH(M)

Intuitively, if Pe → 0, on average we will know M for certain given Y, and thus

1

N
H(M |Y N)→ 0

Proof. Let E = I(M 6= M̂), then

H(M |Y N) = H(M,E|Y N)−H(E|Y N ,M)

(a)
= H(M,E|Y N) = H(E|Y N) +H(M |Y N , E)

(b)

≤ H(E) +H(M |Y N , E)

(c)

≤ 1 + P (E = 0)H(M |Y N , E = 0) + P (E = 1)H(M |Y N , E = 1)

(d)

≤ 1 + 0 + PeH(M |Y N , E = 1)
(e)

≤ 1 + PeH(M),

where (a) is due to the fact that E is deterministic given Y N and M , (b) and (e) are due to the
principle that conditioning reduces entropy, (c) follows from the definition of conditional entropy
and the fact that E is binary, and (d) is due to M being deterministic given Y N when there is no
error.

6.5.2 Converse proof

We are now ready to proceed with the converse proof. Recall that our objective is to show that
if the error rate approaches zero, the code rate must be less than or equal to the capacity. In our
earlier discussion, we defined the code rate as the logarithm of the number of messages per channel
use. While this definition was reasonable, we need to establish a direct connection between the
code rate and the message variable M here. Therefore, we define the code rate more precisely as
R = H(M)

N , which represents the actual amount of message information transmitted through the

6.6. SUMMARY 101

channel per channel use. Thus,converse proof
of channel
coding theorem R =

H(M)

N
=

1

N

[
I(M ;Y N) +H(M |Y N)

]
(a)

≤ 1

N

[
I(XN ;Y N) +H(M |Y N)

]
=

1

N

[
H(Y N)−H(Y N |XN) +H(M |Y N)

]
(b)
=

1

N

[
H(Y N)−

∑
i

H(Yi|XN , Y i−1) +H(M |Y N)

]
(c)
=

1

N

[
H(Y N)−

∑
i

H(Yi|Xi) +H(M |Y N)

]
(d)
=

1

N

[∑
i

H(Yi|Y i−1)−
∑
i

H(Yi|Xi) +H(M |Y N)

]
(e)

≤ 1

N

[∑
i

H(Yi)−
∑
i

H(Yi|Xi) +H(M |Y N)

]

=
1

N

[∑
i

I(Xi;Yi) +H(M |Y N)

]
= I(X;Y) +

H(M |Y N)

N

(f)→ I(X;Y)

where (a) follows from the data processing inequality, (b) and (d) follow from the chain rule of
entropies and conditional entropies, (c) follows from the Markov chain Yi ↔ Xi ↔ (Xi−1, Y i−1),
(e) follows from the fact that conditioning reduces entropy, and (f) follows from Fano’s inequality
as N →∞.

6.6 Summary
Channel coding is crucial for efficient and reliable communication. Understanding its setup, rate,
and capacity is fundamental to modern communication technologies.

6.7 Exercise
1. Try to verify (6.7) in the derivation of the capacity of the Gaussian colored noise channel.

2. Try to find the optimal power allocation for the Gaussian colored noise channel as shown in
Figure 6.4c. How should we reallocate the power when P = 8 instead?

102 CHAPTER 6. CHANNEL CODING

Information theory and probabilistic inference Samuel Cheng

Chapter 7
Graphical models

graphical models provide a powerful framework for representing and reasoning about complex
dependencies among a set of random variables. While traditional Bayesian inference focuses on
updating beliefs about unknown parameters given observed data, graphical models extend this
approach by offering a structured way to visualize and analyze the relationships between multiple
variables. This added structure is particularly valuable in dealing with high-dimensional data and
intricate dependency structures that are common in real-world applications such as genetics, image
analysis, natural language processing, and social network analysis. By encapsulating conditional
dependencies and independencies, graphical models simplify the computation of joint and marginal
distributions, facilitate efficient algorithms for exact and approximate inference, and provide clear
insights into the underlying causal mechanisms. Thus, studying graphical models not only enriches
our understanding of probabilistic inference but also equips us with practical tools for tackling a
wide range of complex problems in data science and artificial intelligence.

In this chapter, we will provide a brief introduction to common graphical models. We will
then examine an efficient method for applying inference on graphical models: belief propagation
(BP) and its application in channel decoding. Additionally, we will demonstrate how BP can be
derived from the Bethe approximation in statistical physics. Finally, we will explore how BP can be
extended from discrete to continuous random variables through Gaussian approximation, resulting
in the Gaussian belief propagation (GaBP) algorithm. We will also demonstrate how the renowned
Kalman filter can be easily explained within the framework of GaBP.

7.1 Bayesian networks

A Bayesian network (BN)Bayesian
networks

represents the relationships between variables using a directed graph
without loops, known as a directed acyclic graph (DAG). The network structure encodes different
dependencies among the variables, allowing for the extraction of various conditional independence
relationships. This structure enables the representation of complex distributions in a more tractable
form, reducing model complexity and facilitating easier inference.

Consider a simple example with three variables X, Y , and Z. If the joint distribution can be

Page 103 of 177

104 CHAPTER 7. GRAPHICAL MODELS

X Y Z

(a) p(x)p(y|x)p(z|y)

Z Y X

(b) p(z)p(y|z)p(x|y)

Figure 7.1: BNs for joint distribution p(x, y, z) equal to p(x)p(y|x)p(z|y) and p(z)p(y|z)p(x|y).
Despite the difference in arrow direction, the two BNs represent the same underlying probability
structure.

X Y Z

(a) p(x)p(y)p(z)

X Y Z

(b) p(x)p(y|x)p(z)

X Y Z

(c) p(x|y)p(y)p(z|y)

X Y Z

(d) p(x)p(y|x, z)p(z)

XZ

Y

(e) p(x)p(y|x)p(z|x, y)

Figure 7.2: More BNs with three variables X,Y, and Z. The subcaption specifies the joint distri-
bution p(x, y, z) of the respective graph.

factorized as
p(x, y, z) = p(x)p(y|x)p(z|y)

then the corresponding BN will be a three-node graph with X, Y , and Z as vertices, as shown
in Fig. 7.1a. The graph contains two directed edges, one from X to Y and another from Y to Z,
representing the conditional dependencies between the variables. conditional

independence
but not
independence

By Bayes’ rule, we have:

p(x)p(y|x)p(z|y) =���p(x)
p(x, y)

���p(x)

p(z, y)

p(y)
=���p(y)p(x|y)p(z)p(y|z)

���p(y)
= p(z)p(y|z)p(x|y).

Therefore, the BN with directed edges from Z to Y and from Y to X, as shown in Fig. 7.1b,
represents the same underlying structure as in Fig. 7.1a. These networks are referred to as Markov
equivalent Markov

equivalent
in this case, highlighting the fact that they encode the same conditional independence

relationships between the variables.
Given X,Y , and Z, we may also have an empty graph with no edge at all, corresponding to the

case where
p(x, y, z) = p(x)p(y)p(z)

and all three variables are independent, as shown in Fig. 7.2a.
We may also have just one edge from x to y, corresponding to the case where

p(x, y, z) = p(x)p(y|x)p(z)

which describes the situation where Z is independent of X and Y , as shown in Fig. 7.2b.
Now, back to the cases with two edges, let’s consider the case where both directed edges are

coming out of the same variable. For example, we have two directed edges from Y to X and from

7.1. BAYESIAN NETWORKS 105

X Y Z

W

(a) p(w)p(x|y)p(y|w)p(z|y)

X Y Z

W

(b) p(w)p(x)p(y|x,w)p(z|y)

Figure 7.3: Two different BNs for four variables W,X, Y , and Z. If W does not exist, the two BNs
actually would be Markov equivalent.

Y to Z, as shown in Fig. 7.2c. This corresponds to the joint distribution

p(x, y, z) = p(y)p(x|y)p(z|y) (a)
= p(x)p(y|x)p(z|y),

where (a) is simply from Bayes’ rule. From (a), we can see that this case is actually the same as
the case we have earlier in Fig. 7.1. However, this Markov equivalence is not generalizable when
we have more variables. For example, if we also have another variable W and an edge from W to
Y , as shown in Fig. 7.3a, and we flip the direction of the edge Y to X, as shown in Fig. 7.3b, then
W and X become independent, but the earlier representation in Fig. 7.3a does not imply that.

Let’s revisit the scenario with only three variables and two edges, as described earlier. For the
model studied in Fig. 7.2c (Markov equivalent to networks in Fig. 7.1), variables X and Z are not
independent. However, they become conditionally independent given the variable Y in the middle.

The situation changes completely when we flip the edge directions, as shown in Fig. 7.2d. The
corresponding joint probability for this graph is

p(x, y, z) = p(x)p(z)p(y|x, z).

Here, X and Z are independent, since

p(x, z) =
∑
y

p(x, y, z) =
∑
y

p(x)p(z)p(y|x, z) = p(x)p(z).

However, we don’t have p(x, z|y) = p(x|y)p(z|y), implying that X and Z are not conditionally
independent given Y . This result may seem counterintuitive, especially for students encountering
this concept for the first time. The fact that two variables that are initially independent can become
dependent after observing additional variables may be difficult to grasp. The following concrete
example aims to illustrate this concept more clearly:independence

but not
conditional
independence

Example 7.1: Two independent binary variables

Let X and Z are two independent binary outcomes taking values {0, 1} and Y = X ⊕ Z,
where ⊕ is the XOR operation. In this case, X is completely determined by Z when Y is
given, making them maximally correlated given Y .

Now, let’s consider the case with three edges. Note that we cannot have edges forming a loop,

106 CHAPTER 7. GRAPHICAL MODELS

as BNs must be acyclic graphs. One possibility is having three directed edges: one from X to Y ,
one from Y to Z, and the last one from X to Z, as shown in Fig. 7.2e.

In this case, the joint probability will be

p(x, y, z) = p(x)p(y|x)p(z|x, y).

Note that the joint probability can be directly obtained using Bayes’ rule, and the graph itself does
not inherently assume any dependence or independence structure. Any other three-variable BNs
with three edges will be identical and will not imply any independence among the variables either.

7.1.1 D-separation in Bayesian networks

As we have seen, BNs can be used to derive the dependencies among variables. In fact, a key func-
tion of graphical models like BNs is to represent such dependencies. The concept of d-separation d-separation
highlights the conditional independence of variables given certain other variables, as can be ob-
served from the network structure. The “d” in d-separation refers to “directional”, emphasizing
the direction of the dependencies.

Rather than memorizing the rules of d-separation, it is more intuitive to understand the simple
examples with three variables. For instance, X and Z are conditionally independent given Y in
Figs. 7.1a, 7.1b, and 7.2c, but not in Fig. 7.2d.

Observing the conditioned variable can break the dependency path between variables. For
example, in the three-variable three-edge case (Fig. 7.2e), observing Y breaks the dependency path
X → Y → Z for X and Z. However, X and Z are not yet conditionally independent due to the
direct path X → Z.

Let’s consider one more example with four variables as below.

Example 7.2: Make observations

Consider four variables X,Y, Z, and W , and three edges (X → Y , Z → Y , and Z → W) as
shown in leftmost figure below.
X

Y

Z

W

X

Y

Z

W

X

Y

Z

W

Note that, as root nodes, X and Z are independent. Consequently, X and W are independent
since W only depends on Z. However, if Y is observed as in the middle figure, X and Z are
no longer independent, and neither are X and W . Therefore, X and W are not conditionally
independent given Y , or not d-separable given Y .
Finally, let’s observe Z instead as in the rightmost figure. Since Y and W depend on each
other through Z, they are no longer dependent when Z is observed. Consequently, Y and
W are d-separable given Z. Since X depends on W through its connection with Y , X and
W are also d-separable given Z.

7.1. BAYESIAN NETWORKS 107

7.1.2 Burglar and raccoon
Consider a scenario involving a burglar visit (B), a raccoon appearing (R), a dog barking (D),
cops being called (C), and a trash can falling (T). The relationships between these variables are
captured by the BN shown in Fig. 7.4. This network represents the conditional dependencies
and independencies among the variables, providing a compact and intuitive representation of the
relationships between the events.

B D C

R T

Figure 7.4: BN of the burglar and raccoon problem

According to the network, the joint probability distribution for this scenario can be factorized
as:

p(B,D,C, T,R) = p(B)p(R)p(D|B,R)p(C|D)p(T |R)

Fewer parameters in a Bayesian network representation

Comparing the number of parameters in the complete model versus the BN, we find that the BN
representation is more compact due to the introduced structural constraints.

The complete model requires 25− 1 = 31 parameters. In contrast, the BN, due to its structure,
reduces the number of parameters to 10 as counted below.graphical models

have fewer
parameters Probability Distribution Number of Parameters

P (C|D) 2
P (D|B,R) 4
P (B) 1
P (T |R) 2
P (R) 1
Total 10

Thus, the BN model significantly reduces the number of parameters to less than one-third of
the complete model.

Pre-sum-product algorithm for inference

Let’s estimate the probability of a burglar visiting given that the cop came but the trash can didn’t
fall. That is, we want to find p(b|c,¬t).

To compute that, we need to know the prior probabilities and conditional probabilities, which
are given below:

p(r) = 0.2, p(b) = 0.01.

108 CHAPTER 7. GRAPHICAL MODELS

B R p(d|B,R)
¬b ¬r 0.1
¬b r 0.5
b ¬r 0.85
b r 0.99

R p(t|R)
¬r 0.05
r 0.7

D p(c|D)
¬d 0.01
d 0.4

Let’s first find the joint probability p(b, c,¬t).

p(b, c,¬t) = p(b)p(c|d)p(d|b, r)p(¬t|r)p(r) + p(b)p(c|d)p(d|b,¬r)p(¬t|¬r)p(¬r)
+ p(b)p(c|¬d)p(¬d|b, r)p(¬t|r)p(r) + p(b)p(c|¬d)p(¬d|b,¬r)p(¬t|¬r)p(¬r) (7.1)

= p(b)[p(c|d)(p(d|b, r)p(¬t|r)p(r) + p(d|b,¬r)p(¬t|¬r)p(¬r))
+ p(c|¬d)(p(¬d|b, r)p(¬t|r)p(r) + p(¬d|b,¬r)p(¬t|¬r)p(¬r))] (7.2)

= p(b) · (p(c|d) · (0.99 · 0.3 · 0.2 + 0.85 · 0.95 · 0.8)
+ p(c|¬d) · (0.01 · 0.3 · 0.2 + 0.15 · 0.95 · 0.8))

= p(b) · (0.4 · 0.7054 + 0.01 · 0.1146)
= 0.01 · 0.2833 = 0.002833

Similarly, we can find p(¬b, c,¬t) = 0.049045.
Consequently,

p(b|c,¬t) = p(b, c,¬t)
p(c,¬t)

=
p(b, c,¬t)

p(b, c,¬t) + p(¬b, c,¬t)

=
0.002833

0.002833 + 0.049045
= 0.055

Now, let’s revisit the earlier computation. Probability inference often involves computing marginal
probabilities, as shown earlier. Marginal probabilities can be computed by summing joint proba-
bilities naively, as in (7.1). However, as shown in (7.2), we can pull out common factors from the
joint probabilities to defer the product later and save computation. For example, there are a total
of 4 · 4 = 16 multiplications and 3 additions in (7.1). In contrast, there are only 2 · 4 + 2 + 1 = 11
multiplications and 3 additions in (7.2). pull out common

factors can save
computation

While the computational saving may seem small in the
example above, the gain is significant as the number of variables increases and when the graphical
model is sparse.

We will see in a later section that the BP algorithm is essentially a message-passing procedure
to compute marginal probabilities systematically, as in (7.2). Before delving into the BP algorithm,
we will first introduce two other important graphical models: undirected graphs and factor graphs.

7.2 Undirected graphs and factor graphs
In the context of Bayesian inference, an undirected graph undirected

graph
(also known as a Markov network or

Markov random field) encodes the conditional independence relationships between random vari-
ables. In such a graph, nodes represent random variables, and edges represent direct probabilistic

7.2. UNDIRECTED GRAPHS AND FACTOR GRAPHS 109

dependencies between them. Unlike BNs, which imply causal relationships, undirected graphs rep-
resent mutual relationships without implying direction or causality. These graphs are particularly
useful for modeling situations where the direction of influence is either symmetric, not well-defined,
or unknown.

Compared to BNs, undirected graphs provide a more intuitive and straightforward approach to
reasoning about dependencies between variables.independence

conditions in
undirected
graphs

In an undirected graph, the independence of two
variables can be determined by simply checking if they are connected by any path: if they are not
connected, they are independent. Furthermore, two variables are conditionally independent given
some variables if they become disconnected when the nodes corresponding to the given variables are
removed from the graph. This simplicity makes undirected graphs an attractive choice for modeling
dependencies.

Example 7.3: Three-variable undirected graph

Consider a simple undirected graph with three variables X, Y , and Z with two edges X −Y
and Y − Z as shown below.

X Y Z

Variables X and Z are then conditionally independent given Y . The joint distribution can
be written as p(y)p(x|y)p(z|y).

An important concept in undirected graph is clique, which is defined in the following.

Clique

A cliqueclique in a graph is a subset of nodes such that every two distinct nodes are adjacent. As
in the example below, {X,Y, Z} and {Y,W} are two different cliques. But {X,Y, Z,W} and
{Y,W,Z} are not.

X Y

Z W

7.2.1 Factor graph representation
By a suprising result known as the Hammersley-Clifford theorem, the joint probability of any
undirected graph model is proportional to the product of factor functions of the form

∏
i φi(xi),

where xi contains variables that form a clique. For example, the joint probability of the graph in
Example 7.3 can be rewritten as f1(x, y)f2(y, z) with f1(x, y) = p(x|y) and f2(y, z) = p(y)p(z|y).
We can use a bipartite graph to represent the factor product above in the following way:

1. Represent each factor: Represent each factor in the product with a vertex (typically known

110 CHAPTER 7. GRAPHICAL MODELS

as a factor node and displayed with a square by convention). A factor corresponds to a clique
of variables that are fully connected to each other.

2. Represent each random variable: Represent each random variable with a vertex (typically
known as a variable node and displayed with a circle by convention).

3. Connect factor nodes to arguments: Connect each factor node to the corresponding
variable nodes of its arguments with undirected edges.

The graph constructed above is known as a factor graph. factor graphWhile BP can be applied directly
to undirected graphs, the factor graph is the most suitable representation for implementing BP. To
apply BP for Bayesian inference, we typically first convert a BN to an undirected graph and then
to a factor graph. The conversion of a BN to an undirected graph is done through a procedure
called moralization, which will be discussed in the next subsection.

Example 7.4: Three-variable factor graph

Consider the undirected graph described in Example 7.3, there are only two cliques {X,Y }
and {Y, Z}. Creating two factor nodes for each of the cliques and connecting respective
varaible nodes to the factor nodes, we have the respective factor graph as shown below:

X f1 Y f2 Z

7.2.2 The moralization of Bayesian networks
Consider again the simple BN with variables X, Y , and Z, and edges X → Y and Z → Y
(Figure 7.5b). What is the corresponding undirected graph that represents this structure?

A naive approach would be to simply replace the directed edges with undirected edges (Fig-
ure 7.5b). However, this fails to capture the dependency between X and Z. In the original model,
when Y is observed or given, X and Z are no longer independent. But the undirected graph in
Figure 7.5b implies that X and Z are conditionally independent given Y , which is not true in the
original model. To address this, we need to add an additional edge X − Z (Figure 7.5).

This process is known as moralization, analogous to “moralizing” moralizationa child born out of wedlock
by having the parents get married.

Note that even after moralization, the resulting undirected graph (Figure 7.5c) still does not
perfectly capture the properties of the original BN (Figure 7.5a). For instance, X and Z are
independent in the original model, but there is no such assumption in the moralized model. This
imperfect conversion is an inherent limitation of undirected graphs, which cannot perfectly capture
properties of some BNs. Similarly, there are undirected graphs that cannot be perfectly represented
by BNs, as we will discuss in the next subsection.

7.2.3 Limitations of different graphical models
One might expect that BNs have greater representation power than undirected graphs, since the
edge direction information is lost in the latter case. However, it turns out that there are also
undirected graphs that cannot be represented by BNs. In fact, both models have their own strengths

7.2. UNDIRECTED GRAPHS AND FACTOR GRAPHS 111

XZ

Y

(a) p(x)p(y|x, z)p(z)

XZ

Y

(b) Not moralized

XZ

Y

(c) Moralized

Figure 7.5: A BN (left) is converted to an undirected graph. Simply converting directed edges to
undirected edges (middle) is insufficient. The middle graph implies X ⊥ Z|Y , a property that does
not exist in the original model. To ensure that the resulting undirected graph does not introduce
properties that do not exist in the original graph, parents of any node must be connected (right).
This process is known as moralization.

and limitations, and neither has strictly greater representation power than the other. This means
that there are certain probability distributions that can be represented by a BN but not by an
undirected graph, and vice versa. This highlights the importance of choosing the appropriate
model for the specific problem at hand.

Undirected graphs cannot represent all Bayesian networks

We have seen that the BN in Figure 7.5a cannot be perfectly represented by any undirected graph.
Even after moralization, which adds an edge between X and Z, the resulting fully connected graph
with three vertices X, Y , and Z still fails to capture the independence between X and Z present
in the original BN.model only

representable by
BNs

So why bother with moralization at all? The reason is that adding edges reduces the assumptions
built into the model. Solving a relaxed problem with fewer assumptions may make the problem
more challenging, but it won’t lead to incorrect solutions. On the other hand, adding incorrect
assumptions that don’t exist in the original problem can yield severely wrong results. Therefore, the
moralization step is crucial when converting directed to undirected graphs. By keeping all parents
“in wedlock,” we ensure that the converted model does not introduce unwarranted assumptions,
even if it cannot perfectly capture the original model’s properties.

Bayesian networks cannot represent all undirected graphs

Does this mean that BNs have higher representation power than undirected graphs? Not necessarily,
as there are undirected graphs that cannot be captured by BNs either.model only

representable by
undirected
graphs

Consider the undirected graph with four variables X,Y, Z, and W and four edges X−Y , Y −W ,
Z −W , and Z −X as shown in Figure 7.6a. This graph captures the conditional independence of
X and W given Y and Z. However, this conditional independence is only captured by one of the
three possible BNs as in Figures 7.6b, 7.6c, and 7.6d.

When we convert these BNs to undirected graphs through moralization, we are required to add
an additional edge between parents Y and Z, resulting in the undirected graph shown in Figure 7.6e.
However, this graph fails to capture the conditional independence between Y and Z given W and
X. In conclusion, no BN can exactly capture the structure of the original undirected graph.

112 CHAPTER 7. GRAPHICAL MODELS

X Y

Z W

(a)

X Y

Z W

(b)

X Y

Z W

(c)

X Y

Z W

(d)

X Y

Z W

(e)

Figure 7.6: An undirected graph (a) cannot be represented by any BN. The undirected graph
embeds the property X ⊥ W |{Y, Z}. The only BNs that satisfy this conditional independence
property are shown in the middle ((b), (c), and (d)). However, by the requirement of moralization,
these BNs all require an additional connection Y −Z when converted back to an undirected graph
(e). This additional connection is not present in the original undirected graph (a), proving that it
cannot be represented by any BN.

7.3 BP algorithm
The BP algorithm, also known as the sum-product algorithm, is a widely used method in prob-
abilistic graphical models for performing inference on variables within a graph. It is exact for
tree-structured graphs, meaning that it can potentially compute the exact marginal probabilities
and most likely states in a single pass. For graphs with cycles, BP can be applied iteratively, but
may not always converge to the exact solution.

The BP algorithm is best explained using a factor graph. Consider a factor graph with variables
x1, x2, · · · , xi, · · · , where numerical numbers denote variable nodes, and alphabets a, b, · · · denote
factor nodes. Let’s use N(i) to denote the set of neighboring factor nodes of a variable node i and
N(a) to denote the set of neighboring variable nodes of the factor node a. Moreover, we write
xa = {xj}j∈N(a) as the set of variable connecting to factor node a. The BP algorithm can be
summarized as follows: belief

propagation
• Initialization: For any factor node a connecting to only one variable node i, set ma→i(xi) =
fa(xa) = fa(xi).

• Message passing:

– Variable node update: For variable node i and factor node a ∈ N(i), update the
message from variable node i to factor node a as BP variable

update
mi→a(xi) =

∏
b∈N(i)\a

mb→i(xi). (7.3)

– Factor node update: For factor node a and variable node i ∈ N(a), update the
message from factor node a to variable node i as BP factor

update
ma→i(xi) =

∑
xa\xi

fa(xa)
∏

j∈N(a)\i

mj→a(xj), (7.4)

where xa = {xj}j∈N(a) is the set of variable connecting to factor node a.

7.3. BP ALGORITHM 113

• Belief update: For variable node i, update the belief as1BP belief update

βi(xi) =
∏

a∈N(i)

ma→i(xi). (7.5)

• Stopping criteria: Repeat message update and/or belief update until the algorithm stops
when the maximum number of iterations is reached or some other conditions are satisfied.

One aspect that was not specified in the description is the schedule of message passing. Typically,
an alternating schedule is used, where variables pass messages to factor nodes, followed by factor
nodes passing messages to variable nodes. Although more efficient scheduling is possible, it can be
challenging to design. For instance, in the case of trees (graphs without loops), messages can be
scheduled from leaves to root, allowing for exact marginal probabilities to be calculated in a single
pass. However, when applying BP to graphs with loops2,loopy BP the solution will be an approximation in
any case, and optimal scheduling is difficult to achieve. As a result, a simple alternating schedule
is commonly used.

Intuitive interpretation of the BP algorithm

The message passing and update rules may seem mysterious at first, but they can be interpreted
in a more intuitive way. Consider a factor-to-variable message as the belief that a factor node has
about a variable node, and a variable-to-factor message as a variable node’s self-belief.BP message as

belief More precisely, we have
ma→i(xi) ∼ p(xi)

from the perspective of factor node a and

mi→a(xi) ∼ p(xi)

from the perspective of the variable node i thinking about itself. Then the variable node update in
(7.3) simply states variable i pass knowledge about itself to factor a from all message other than a
and assume the messages to be independent.

The factor node update in (7.4) can be interpreted in a similar manner if we consider

fa(xa) ∼ p(xi|xN(a)\i)

and
mj→a(xj) ∼ p(xj)

1We may want to normalize the belief as it may not be inherently normalized. Specifically, we update βi(xi) ←
βi(xi)∑
xj

βi(xj)
. Although it is not absolutely necessary, normalizing the messages after each update can help ensure

numerical stability.
2In the context of graphs with loops, BP is also referred to as loopy BP.

114 CHAPTER 7. GRAPHICAL MODELS

Then

ma→i(xi) =
∑
xa

fa(xa)
∏

j∈N(a)\i

mj→a(xj) (7.6)

∼
∑

xa\xi

p(xi|xN(a)\i))
∏

j∈N(a)\i

p(xj) (7.7)

=
∑

xa\xi

p(xa) = p(xi). (7.8)

Burlgar and raccoon revisit

Let’s revisit the burglar and raccoon problem using BP. We will begin by converting the BNs in
Fig. 7.4 to an undirected graph, as shown in Fig. 7.7a, and then to a factor graph, as shown in
Fig. 7.7b. Since the factor graph is a tree, we can use the BP algorithm to find the marginal
probabilities of all variables in a single pass (from leaves to root and then back)3. BP in action

Example 7.5: Burglar and raccoon problem

Let’s do a step-by-step update procedure to illustrate how the messages will be computed. To
avoid clutter, I exclude some messages such as mR→γ and mγ→T , but they can be computed
by the same manner as the listed messages.

Initialization:

mδ→B(b) = fδ(b) = p(b) = 0.01,

mλ→R(r) = fλ(r) = p(r) = 0.2

B D Cβ

R

α

Tγλ

δ

Variable node update:

mB→α(b) = mδ→B(b) = 0.01,

mR→α(r) = mλ→R(r) = 0.2

B D Cβ

R

α

Tγλ

δ

3In this example, although the final belief should be computed as the product of all neighboring messages, most
messages are actually non-informative and can be ignored. For instance, βD(d) would equal the product of messages
from both α and β, but it turns out that we can ignore the latter message, mβ→D. Therefore, βD(d) = mα→D(d) =
p(d) can be computed in one downward pass from leaves to root. In general, we need one downward pass and one
upward pass to get the exact marginal probabilities for a tree graph. If the graph has loops, we will need more
passes, and the solution may not even converge. However, for sparse loopy graphs, BP generally works quite well.

7.3. BP ALGORITHM 115

B D C

R T

(a) undirected graph

B D Cβ

R

α

Tγλ

δ

(b) Factor graph

Figure 7.7: The undirected graph and factor graph representations of the burglar and raccoon
problem are shown below. In the factor graph, a factor is formed for each clique, which includes
{B,D,R}, {C,D}, and {R, T}. Additionally, prior factors are included for B and R. The joint
probability is equal to the product of the factors: fα(B,D,R)fβ(C,D)fγ(R, T)fδ(B)fλ(R) where
fα(B,D,R) = p(D|B,R), fβ(C,D) = p(C|D), fγ(R, T) = p(T |R), fδ(B) = p(B), and fλ(R) =
p(R).

Factor node update:

mα→D(d) =
∑
B,R

fα(B,R, d)mB→α(B)mR→α(R)

= 0.1 ·mB→α(¬b)mR→α(¬r)
+ 0.5 ·mB→α(¬b)mR→α(r)

+ 0.85 ·mB→α(b)mR→α(¬r)
+ 0.99 ·mB→α(b)mR→α(r)

= 0.1 · 0.99 · 0.8 + 0.5 · 0.99 · 0.2
+ 0.85 · 0.01 · 0.8 + 0.99 · 0.01 · 0.2

= 0.187

B D Cβ

R

α

Tγλ

δ

Variable node update:

mD→β(d) = mα→D(d) = 0.187,

B D Cβ

R

α

Tγλ

δ

Factor node update:

mβ→C(c) =
∑
D

fβ(c,D)mD→β(D)

= 0.01 ·mD→β(¬d) + 0.4 ·mD→β(d)

= 0.01 · (1− 0.187) + 0.4 · 0.187
= 0.083

B D Cβ

R

α

Tγλ

δ

116 CHAPTER 7. GRAPHICAL MODELS

7.3.1 Low-density parity-check code
Low-Density Parity-Check (LDPC) LDPC codescodes are a class of error-correcting codes that play a crucial
role in ensuring reliable data transmission over noisy channels in digital communication systems.

In LDPC codes, the term “parity-check” refers to the constraints imposed by the parity-check
matrix on the codewords. Each row of the matrix represents a parity-check equation, a linear
constraint that the bits of a valid codeword must satisfy. Specifically, a codeword is valid if the
modulo-2 sum (XOR) of certain bits equals zero. These parity-check equations ensure the necessary
structure for detecting and correcting errors during data transmission or storage.

The “low-density” aspect refers to the sparsity of the parity-check matrix used to define the
code. This matrix is sparse, containing relatively few non-zero entries (ones) compared to zeros.
The sparse structure is crucial because it enables efficient encoding and decoding using iterative
algorithms like BP, making the computations practical and fast.

y1 f1(x1, y1) x1 fa(xa)

· · ·

m11 m1a

ma2

Figure 7.8: The factor graph of a
LDPC code

The major challenge was decoding LDPC codes effi-
ciently. Due to the lack of structure in random codes, the
tricks that enable fast decoding for structured algebraic
codes were no longer applicable. Fortunately, despite the
factor graph of a LDPC code having loops (not a tree),
the sparse structure ensures that BP works well for LDPC
codes, making BP a great decoding choice.

Decoding of LDPC code

Let’s represent the variable structure of an LDPC code
using a factor graph, factor graph of

LDPC code
as shown in Fig. 7.8. The transmit-

ted bits are represented by x1, · · · , xN (white), and the re-
ceived bits are represented by y1, · · · , yN (dark grey). Each
square represents a check bit with a value equal to the sum
of the code bits connecting to it. The vector x1, x2, · · · , xN
is a codeword only if all checks are zero.

The channel is modeled by factor functions fi(xi, yi),
which are typically stationary. For a binary symmetric
channel (BSC) with crossover probability q,

fi(xi, yi) = p(yi|xi) =

{
q, if yi 6= xi,

1− q, otherwise.

Upon receiving yi, the message from observed variable node yi to factor node fi(xi, yi) is simply
δ(y, yi). Consequently, the message from factor node fi(xi, yi) to variable node xi is

mi→i(xi) =
∑
y

fi(xi, y)δ(y, yi) = fi(xi, yi).

Note that this message does not change over time during decoding since the observation yi does
not change. Therefore, we only need to update messages for variable nodes xi and factor nodes
fa(·).

For the factor node fa(x) for the parity check a,

7.3. BP ALGORITHM 117

fa(x) =
{
0, if x contains an even number of 1s,
1, if x contains an odd number of 1s.

Now that we have defined the messages, we are ready to derive the BP update steps. Since the
unknown variables are binary, it is more convenient to represent the messages using likelihood or
log-likelihood ratios. We define the likelihood ratio aslikelihood and

log-likelihood
ratios

la→i ,
ma→i(0)

ma→i(1)
, La→i , log la→i

and

li→a ,
mi→a(0)

mi→a(1)
, Li→a , log li→a

for any variable node i and factor node a. Then, the update for the variable node xi isLDPC variable
update

Li→a =
∑

b∈N(i)\a

Lb→i.

Next, let’s consider the factor node update for check node a. Without loss of generality, assume
three variable nodes 1, 2, and 3 are connected to the check node a. The updates for the messages
from the check node to the variable nodes are

ma→1(1) = m2→a(1)m3→a(0) +m2→a(0)m3→a(1)

and

ma→1(0) = m2→a(0)m3→a(0) +m2→a(1)m3→a(1).

By substituting in the likelihood ratios and log-likelihood ratios, we obtain

la→1 ,
ma→1(0)

ma→1(1)
=

1 + l2→al3→a

l2→a + l3→a

and

eLa→1 = la→1 =
1 + eL2→aeL3→a

eL2→a + eL3→a
.

118 CHAPTER 7. GRAPHICAL MODELS

Note that we have a neat factor node update rule as follows

tanh
(
La→1

2

)
=
e

La→1
2 − e−

La→1
2

e
La→1

2 + e−
La→1

2

=
eLa→1 − 1

eLa→1 + 1
(7.9)

=
1 + eL2→aeL3→a − eL2→a − eL3→a

1 + eL2→aeL3→a + eL2→a + eL3→a
(7.10)

=
(eL2→a − 1)(eL3→a − 1)

(eL2→a + 1)(eL3→a + 1)
(7.11)

= tanh
(
L2→a

2

)
tanh

(
L3→a

2

)
. (7.12)

When we have more than three variable nodes connecting to the check node a, it is easy to show
using induction that LDPC factor

update
tanh

(
La→i

2

)
=

∏
j∈N(a)\i

tanh
(
Lj→a

2

)
.

7.3.2 BP and statistical physics

Previously, we have considered BP as a method for computing inference in graph models. Specif-
ically, given a probability distribution p(x) and a particular graph model, we aimed to find the
marginal probability p(xi) for some node i.

Now, we will explore BP from a different perspective—that of statistical physics. We will
demonstrate how BP can be derived using the Bethe approximation, a method commonly employed
in statistical physics.

In statistical physics, for a system with a number of states with energy E(x), the probability of
state x under Boltzmann statistics is given by Boltzmann

distribution

p(x) = e−
E(x)
kT∑

x e
−E(x)

kT

,
e−

E(x)
kT

Z
,

where T is the temperature of the system, k is the Boltzmann constant, and Z is the partition
function, essentially serving as a normalization factor. Without loss of generality, we can “absorb”
kT into E(x) by redefining the energy, assuming kT = 1. Therefore, we have

p(x) = e−E(x)

Z
. (7.13)

Given the energy of any particular state x, we can specify the average internal energy of any
ensemble of systems with any distribution b(x) as Boltzmann

internal energy
U(b) =

∑
x
b(x)E(x).

7.3. BP ALGORITHM 119

Moreover, the average entropy of the ensemble of systems will beBoltzmann
entropy

H(b) = −
∑

x
b(x) ln b(x).

The quantity F (b) = U(b) − H(b) is important and is sometimes known as the Gibbs free
energy in statistical physics. In the context of variational inference4, this is also referred to as the
variational free energy.variational free

energy
Note that

F (b) = U(b)−H(b)

=
∑

x
b(x)E(x) +

∑
x
b(x) ln b(x)

=
∑

x
b(x) (E(x) + ln b(x))

=
∑

x
b(x)

(
ln b(x) + E(x)− ln e−E(x)

)
=
∑

x
b(x) ln b(x)

e−E(x)

=
∑

x
b(x) ln b(x)

Zp(x)

= − lnZ +KL(b ‖ p),

where KL(b‖p) is the KL-divergence, which is always non-negative and is equal to zero only when
b = p. Therefore, F (b) takes its minimum value − lnZ when b = p.

We then have an alternative way to find p given E(x), namely,

p = arg min
b
F (b).

At first glance, this may seem redundant since we can obtain p(x) directly from the Boltzmann
distribution equation. However, there are practical reasons for using this approachwhy minimize

free energy?
• We may not have an explicit form of the normalization factor (partition function Z).

• We might not know the precise form of E(x). For example, consider the energy states of
atoms within a large molecule, where each variable represents the location of an atom. The
energy depends on the complex interactions between all atoms, making it difficult to determine
exactly.

• Instead of the joint distribution p(x), we might be interested in marginal distributions. For
example, we may care more about the distribution of a particular atom’s location rather than
the joint distribution of all atoms. This is analogous to our discussion on BP, where the
primary purpose is finding marginal distributions.

4The variational inference refers to the approach that involves approximating a complex probability distribution
by a simpler, tractable one. This is done by optimizing some functional, often an energy or a free energy, with
respect to the parameters of the simpler distribution.

120 CHAPTER 7. GRAPHICAL MODELS

a

3

21

b 4

r
1

r
2

r
3

Figure 7.9: A region is defined as a set of nodes that includes all neighboring variable nodes if a
factor node is included. For instance, r1, which comprises nodes a, 1, 2, and 3, is a valid region.
Similarly, r3, which only consists of node 4, is also a valid region. On the other hand, r2 is not a
valid region because it includes factor node b but excludes nodes 2 and 3, which are neighboring
variable nodes.

Now, let us incorporate our familiar factor notation. Suppose we have a system with a known
distribution described by its factor graph, where the probability of a state x is written as Boltzmann

factor
representation

p(x) =
∏M
a fa(xa)
Z

, (7.14)

where fa(·) is a factor function and xa is a subset of variables connecting to factor node a. We
can establish the energy of each state from p(x). Note that we denote xa as a subset of all state
variables x1, x2, · · · , xN . We assume there are M such factors and we denote

∏M
a as the product

over all factor nodes.
Comparing (7.13) and (7.14), we see that

E(xa) = − ln(fa(xa)). (7.15)

Region-Based Approximation

If we can optimize F (b) and find its marginal bi(xi) simultaneously, we can obtain p(xi), the
marginal probability for a particular node i. This is equivalent to the inference problem addressed
by BP. However, optimizing F (b) directly is challenging due to the dependencies introduced by
factor node connections. Instead, we seek an approximation of F (b) by decomposing it into a sum
of contributions from isolated regions.

In a factor graph, a region regionis defined as any combination of factor nodes and their neighboring
variable nodes. Figure 7.9 illustrates examples and a counterexample of regions. For any region r,
we can define the average energy and entropy as

7.3. BP ALGORITHM 121

Ur(b) =
∑
a∈r

∑
xa

b(xa) ln fa(xa)

and
Hr(b) = −

∑
a∈r

∑
xa

b(xa) ln b(xa).

Suppose we partition all nodes into a set of regions R = {r1,r2, · · · ,rK}. We can approximate
F (b) asregion-based

approximation
F̃ (b) =

∑
r∈R

Ur(b)−Hr(b)

However, this approximation often leads to significant overcounting of energy by including some
nodes multiple times. We can modify F̃ (b) to:

F̂ (b) =
∑
r∈R

crUr(b)− crHr(b)

where cr are as counting numbers that serve as scaling factors, ensuring that∑
r∈R

crI(a) =
∑
r∈R

crI(i) = 1 (7.16)

for any factor node a and variable node i.

Bethe Approximation

Bethe approximationBethe
approximation

is just a very simple case of region-based approximation with the set of all
regions R = RS ∪RL, where

• RS : the set of small regions where each small region is composed of a variable node

• RL: the set of large regions where each large region is composed of a factor node and its
corresponding neighboring variable nodes

• cr = 1 if r ∈RL

• cr = 1− dr if r ∈RS , where dr is the degree of the single variable node in r.

We can easily verify that the counting number conditions in (7.16) are satisfied. Further, we
have

UBethe(b) = −
M∑
a

∑
xa

ba(xa) ln fa(xa),

HBethe(b) = −
M∑
a

∑
xa

ba(xa) ln ba(xa) +
N∑
i=1

(di − 1)
∑
xi

bi(xi) ln bi(xi),

and
FBethe(b) = UBethe −HBethe.

122 CHAPTER 7. GRAPHICAL MODELS

Now, we can start optimizing FBethe over b. Note that since b is a probability distribution, its
marginals bi(xi) and ba(xa) have to satisfy∑

xi

bi(xi) = 1,∀i

and ∑
xa

ba(xa) = 1,∀a.

Moreover, since xa really represent {xi|i ∈ N(a)}, where N(a) is the set of all neighbors of a.
Therefore, we need to have ∑

xa\xi

ba(xa) = bi(xi),∀a,∀i ∈N(a), and ∀xi.

Incorporate the above constraints into the Lagrangian formulation, let

L(b) = FBethe(b) +
∑
a

γa

(∑
xa

ba(xa)− 1

)
+
∑
i

γi

(∑
xi

bi(xi)− 1

)

+
∑
a

∑
i∈N(a)

∑
xi

λai(xi)

∑
xa\xi

ba(xa)− bi(xi)

 .

Take deriative of L(b) over bc(x̃c) and bj(x̃j) and set them to 0. After some computation, we
have

− ln fc(x̃c) + ln b̂c(x̃c) + 1 + γc −
∑

i∈N(c)

λci(x̃i) = 0 (7.17)

and
−(dj − 1) ln b̂j(x̃j)− dj + 1 + γj +

∑
a∈N(j)

λaj(x̃j) = 0. (7.18)

This gives us

b̂c(x̃c) = fc(x̃c) exp

−1− γc + ∑
i∈N(c)

λci(x̃i)

 (7.19)

and

b̂j(x̃j) = exp

 1

(dj − 1)

−dj + 1 + γj +
∑

a∈N(j)

λaj(x̃j)

 (7.20)

With Lagrange
multiplier as
log-message

some profound inspiration, one may identify λci(x̃i) as the log-variable-to-factor node message
in BP, namely,

λci(x̃i) = lnmi→c(x̃i) = ln
∏

d∈N(i)\c

md→i(x̃i). (7.21)

7.4. GAUSSIAN BP 123

Substituting (7.21) into (7.19) and (7.20), we have

b̂c(x̃c) ∝ fc(x̃c)
∏

i∈N(c)

mi→c(x̃i) (7.22)

and

b̂j(x̃j) ∝ exp

 1

(dj − 1)

 ∑
a∈N(j)

∑
d∈N(j)\a

lnmd→j(x̃j)

∝ exp

 1

(dj − 1)

(dj − 1)
∑

d∈N(j)

lnmd→j(x̃j)

∝

∏
d∈N(j)

md→i(x̃j). (7.23)

Finally, for a variable node i adjacent to a factor node a, since b̂i(xi) is marginal distribution of
b̂a(xa), we havevariable update

implies factor
update under
Bethe
approximation

∑
xa\xi

b̂a(xa) =b̂i(xi)

⇒
∑

xa\xi

fa(xa)
∏

j∈N(a)

mj→a(xj) =
∏

c∈N(i)

mc→i(xi)

⇒mi→a(xi)
∑

xa\xi

fa(xa)
∏

j∈N(a)\i

mj→a(xj) =
∏

c∈N(i)

mc→i(xi)

(a)⇒
∏

c∈N(i)\a

mc→i(xi)
∑

xa\xi

fa(xa)
∏

j∈N(a)\i

mj→a(xj) =
∏

c∈N(i)

mc→i(xi)

⇒
∑

xa\xi

fa(xa)
∏

j∈N(a)\i

mj→a(xj) =ma→i(xi), (7.24)

where (a) is derived from the belief propagation (BP) variable node update rule (7.3) and we observe
that we can recover the BP factor node update rule (7.4) from (7.24). Therefore, if BP converges,
it will converge to the solution of (7.22) and (7.23), i.e., the solution of the Bethe approximation.

7.4 Gaussian BP
In this section, we generalize the discrete Belief Propagation (BP) algorithm to the continuous case
by introducing Gaussian BP. This variant parameterizes the model using Gaussian distributions,
which have desirable properties that simplify the update steps.

Recall that the BP update steps in (7.3), (7.4), and (7.5) involve the product of distributions
and marginalization. Fortunately, Gaussian distributions remain Gaussian under these operations,
ensuring that the updated distributions stay Gaussian if we assume Gaussian initial distributions.

We will first review the properties of multivariate Gaussian distributions, including how their

124 CHAPTER 7. GRAPHICAL MODELS

parameters change under marginalization, conditioning, and multiplication. Then, we will derive
the Gaussian BP update rules. Finally, we will demonstrate how the Kalman filter, a well-known
algorithm, can be derived using the Gaussian BP framework.

7.4.1 Manipulating multivariate Gaussian
A multivariate Gaussian distribution is characterized by its mean vector µ = E[X] and covariance
matrix Σ = E[(X − µ)(X − µ)>]. Its probability density function (PDF) can be specified in two
forms:

The moment form moment formof the Gaussian PDF is given by

N (x;µ,Σ) = 1√
det(2πΣ)

exp
(
−1

2
(x− µ)>Σ−1(x− µ)

)
, (7.25)

where the normalization factor
√

det(2πΣ) depends only on Σ and not on x. We can extract the
parameters µ and Σ from the exponent alone, and the normalization factor can be ignored in most
cases.

Alternatively, the Gaussian PDF can be written in the canonical form canonical formas

N (x;η,Λ) = 1

Z(η,Λ)
exp

(
−1

2
x>Λx + η>x

)
, (7.26)

where Z(η,Λ) is a normalization factor independent of x. The canonical form is often more con-
venient for operations such as product and conditioning. We will switch between the two forms as
needed, as some operations are easier to handle in one form than the other.

From the moment form, we can derive the canonical form as follows:

N (x;µ,Σ) ∝ exp
(
−1

2
(x− µ)>Σ−1(x− µ)

)
= exp

(
−1

2
x>Σ−1x +

1

2
x>Σ−1µ+

1

2
µ>Σ−1x− 1

2
µ>Σ−1µ

)
(a)
∝ exp

(
−1

2
x>Σ−1x +

1

2
(Σ−1µ)>x +

1

2
(Σ−1>µ)>x

)
(b)
= exp

(
−1

2
x>Σ−1x + (Σ−1µ)>x

)
(c)
= exp

(
−1

2
x>Σ−1x + x>(Σ−1µ)

)
,

where we drop the last term in (a) as it does not depend on x, and we use the fact that a>b = b>a
when a and b are vectors in (a) and (c), and we use the fact that Σ and consequently Σ−1 are
symmetric in (b).

Comparing to the canonical form in (7.26), we see that form conversion

Λ = Σ−1, (7.27)
η = Σ−1µ. (7.28)

7.4. GAUSSIAN BP 125

The matrix Λ is also known as the precision matrix, and its eigenvalues determine the variation of
the variable. The larger the eigenvalues of Λ, the smaller the variation, hence the name “precision”.

Marginalizing Gaussian

Consider a joint Gaussian distribution for the random vector X =

(
X1

X2

)
with mean

(
µ1

µ2

)
and

covariance matrix Σ =

(
Σ11 Σ12

Σ21 Σ22

)
.

It is easy to show that marginalizing X2 from X will still result in a Gaussian distribution.
Moreover, we have X1 ∼ N (µ1,Σ11). The proof is straightforward and is left as an exercise.

While it may not be immediately obvious that the resulting distribution after marginalization
is Gaussian, it is intuitive that the mean and covariance should not change after marginalization.
Therefore,marginalize

moment form
µ← µ1, (7.29)
Σ← Σ11. (7.30)

Now, let’s consider what happens if we parametrize with η and Λ instead. We will use the
following fact to help answer this question.

Schur complement

Fact 7.1. Assume
(
A B
C D

)−1

=

(
Ã B̃

C̃ D̃

)
, then A−1 = Ã− B̃D̃−1C̃, where the right hand

side is sometimes known as a Schur complement denoted as
(
Ã B̃

C̃ D̃

)∣∣∣∣ D̃
Proof. Note that

(
A B
C D

)(
Ã B̃

C̃ D̃

)
=

(
I 0
0 I

)
. Thus AÃ + BC̃ = I and AB̃ + BD̃ = 0.

So A(Ã− B̃D̃−1C̃) = AÃ− (AB̃)D̃−1C̃ = AÃ+BD̃D̃−1C̃ = AÃ+BC̃ = I

Since
(
Σ11 Σ12

Σ21 Σ22

)−1

=

(
Λ11 Λ12

Λ21 Λ22

)
, we have

Σ−1
11 = Λ11 − Λ12Λ

−1
22 Λ21

from Fact 7.1. Therefore, from (7.30) , we havemarginalize
canonical form

Λ← Σ−1
11 = Λ11 − Λ12Λ

−1
22 Λ21 (7.31)

and since (
η1

η2

)
=

(
Λ11 Λ12

Λ21 Λ22

)(
µ1

µ2

)
⇒

{
η1 = Λ11µ1 + Λ12µ2,

η2 = Λ21µ1 + Λ22µ2,
(7.32)

126 CHAPTER 7. GRAPHICAL MODELS

η ← Σ−1
11 µ1 = (Λ11 − Λ12Λ

−1
22 Λ21)µ1

= Λ11µ1 + Λ12µ2 − Λ12µ2 − Λ12Λ
−1
22 Λ21µ1

= (Λ11µ1 + Λ12µ2)− Λ12Λ
−1
22 (Λ22µ2 + Λ21µ1)

(a)
= η1 − Λ12Λ

−1
22 η2, (7.33)

where (a) is from (7.32).

Product of Gaussians

It is easier to manipulate product using the canonical form. So consider two Gaussian distributions
N (x;η1,Λ1) and N (x;η2,Λ2). The product is simply

N (x;η1,Λ1)N (x;η2,Λ2) ∝ exp
(
−1

2
x>Λ1x + η>

1 x− 1

2
x>Λ2x + η>

2 x
)

= exp
(
−1

2
x>(Λ1 + Λ2)x + (η1 + η2)

>x
)

So we simply have product of
canonical forms

η ← η1 + η2, (7.34)
Λ← Λ1 + Λ2. (7.35)

If we parametrize with the moment form instead, we have product of
moment forms

µ← Ση = Λ−1η = (Λ1 + Λ2)
−1(η1 + η2) = (Λ1 + Λ2)

−1(Λ1µ1 + Λ2µ2) (7.36)
Σ← Λ−1 = (Λ1 + Λ2)

−1 (7.37)

Note that the product of the two distributions can be interpreted as the distribution of the predicted
variable after incorporating two independent observations. Consequently, it is intuitive to view
the resulting precision matrix as the sum of individual precision matrices, which “adds up” the
information from each observation. Moreover, the resulting mean is a weighted sum of the means
from the two observations, where the weights are proportional to the precision matrices of individual
observations.

Conditioning Gaussian

While conditioning was not used in the BP algorithm earlier, we can also incorporate it to address
making direct observations of a variable. This is used, for example, in the Kalman filter example
elaborated later in this chapter.

Consider Z ∼ N (µZ,ΣZ) and Z =

(
X
Y

)
. What will X be like if Y is observed to be y?

Basically, we want to find p(x|y) = p(x,y)
p(y) . From previous results, we have p(y) = N (y;µY,ΣYY).

7.4. GAUSSIAN BP 127

Therefore,

p(x|y) ∝ exp

(
−1

2

[(
x̃
ỹ

)T
Σ−1

(
x̃
ỹ

)
− ỹTΣ−1

YYỹ
])

∝ exp
(
−1

2

[
x̃TΛXXx̃ + x̃TΛXYỹ + ỹTΛYXx̃

])
where we use x̃ and ỹ as shorthands for x− µX and y− µY, respectively.

Completing the square for x̃, we have

p(x|y) ∝ exp
(
−1

2

(
x̃ + Λ−1

XXΛXYỹ
)T

ΛXX
(
x̃ + Λ−1

XXΛXYỹ
))

= exp
(
−1

2

(
x− µX + Λ−1

XXΛXY(y− µY)
)T

ΛXX
(
x− µX + Λ−1

XXΛXY(y− µY)
))

Therefore, X|y is Gaussian distributed with mean µX − Λ−1
XXΛXY(y− µY) and covariance Λ−1

XX.
Note that since ΛXXΣXY + ΛXYΣYY = 0⇒ Λ−1

XXΛXY = −ΣXYΣ
−1
YY, and from Fact 7.1, we havecondition

moment form

X|y ∼ N (µX +ΣXYΣ
−1
YY(y− µY),ΣXX − ΣXYΣ

−1
YYΣYX) (7.38)

where ΣXX − ΣXYΣ
−1
YYΣYX , Σ|ΣYY is a Schur complement.

When the observation of Y is exactly the mean, the conditioned mean remains unchanged.
Otherwise, it requires modification, and the size of the adjustment decreases as ΣYY, the variance
of Y in the 1-D case, increases. A larger ΣYY implies a less reliable observation. The adjustment is
then scaled by ΣXY, which translates the variation in Y to the variation in X. Notably, if X and Y
are negatively correlated, the sign of the adjustment will be reversed.

Regarding the variance of the conditioned variable, it always decreases. The decrease is more
pronounced when ΣYY is “smaller” and ΣXY is “larger”5. This makes sense, as a smaller ΣYY
indicates a more reliable observation, and a larger ΣXY suggests a stronger correlation between X
and Y.

7.4.2 Gaussian BP Update
Let’s consider the update rules for GaBP one by one. We will use the canonical form for this
analysis.

Variable node update

Let’s begin by examining the variable node update. Assume we have two incoming factor node
messages, ma→1 = (ηa→1,Λa→1) and mb→1 = (ηb→1,Λb→1), as depicted in Figure 7.10a. Accord-
ing to (7.3), the outgoing message m1→c = (η1→c,Λ1→c) is simply the product of the incoming
messages. Therefore, using (7.34) and (7.35), we obtainGaBP variable

update
5When we say a positive definite matrix is larger or smaller, we mean that its eigenvalues are overall larger or

closer to zero.

128 CHAPTER 7. GRAPHICAL MODELS

a

b

x1 c

m
a→

1

mb→
1

m1→c

(a) Variable node update

x1

x2

a x3

m
1→

a

m2→
a

ma→3

(b) Factor node update

a

b

x1 c

m
a→

1

mb→
1

mc→1

(c) Belief update

Figure 7.10: Node updates for GaBP. (a) Variable node update: m1→c =
(η1→c,Λ1→c) = (ηa→1 + ηb→1,Λa→1 + Λb→1) (b) Factor node update: ma→3 =

(ηa→3,Λa→3) =

(
η3 −

(
Λ31 Λ32

)(Λ11 + Λ1→a Λ12

Λ21 Λ22 + Λ2→a

)−1(
η1 + η1→a

η2 + η2→a

)
,

Λ33 −
(
Λ31 Λ32

)(Λ11 + Λ1→a Λ12

Λ21 Λ22 + Λ2→a

)−1(
Λ13

Λ23

))
. (c) Belief update: x1 ∼ N (η1,Λ1) =

N (ηa→1 + ηa→2 + ηa→3,Λa→1 + Λb→1 + Λc→1).

η1→c = ηa→1 + ηb→1 (7.39)
Λ1→c = Λa→1 + Λb→1 (7.40)

Factor node update

Assume we have two incoming messages, m1→a = (η1→a,Λ1→a) and m2→a = (η2→a,Λ2→a), as
shown in Figure 7.10b. Let’s model the factor function fa(x1, x2, x3) with a multivariate Gaussian

PDF N (η,Λ) = N

η1

η2

η3

 ,

Λ11 Λ12 Λ13

Λ21 Λ22 Λ23

Λ31 Λ32 Λ33

.

The factor node update, as described in (7.4), can be interpreted in two steps: the product of
messages and the factor function, followed by marginalization. First, the product of messages and
the factor function results in

η =

η1 + η1→a

η2 + η2→a

η3

 , (7.41)

Λ =

Λ11 + Λ1→a Λ12 Λ13

Λ21 Λ22 + Λ2→a Λ23

Λ31 Λ32 Λ33

 . (7.42)

Next, marginalizing x1 and x2, from (7.33) and (7.31), we have GaBP factor
update

ηa→3 = η3 −
(
Λ31 Λ32

)(Λ11 + Λ1→a Λ12

Λ21 Λ22 + Λ2→a

)−1(
η1 + η1→a

η2 + η2→a

)
(7.43)

7.4. GAUSSIAN BP 129

. . .
x1 x2 xi xi+1

y1 y2 yi

ψ1 ψi

φ1 φ2 φi

(a) Prediction step

. . .
x1 x2 xi xi+1

y1 y2 yi yi+1

ψ1 ψi

φ1 φ2 φi φi+1

(b) Update step

Figure 7.11: Kalman filter as interepreted by BP algorithm.

and

Λa→3 = Λ33 −
(
Λ31 Λ32

)(Λ11 + Λ1→a Λ12

Λ21 Λ22 + Λ2→a

)−1(
Λ13

Λ23

)
. (7.44)

The above update rule can be easily generalized in the same manner when the number of incoming
messages is greater than two.

Belief update

Finally, the belief update at a node is simply the product of all incoming messages, as shown in
Figure 7.10c. The update rule, as given in (7.5), becomesGaBP belief

update
η1 = ηa→1 + ηb→1 + ηc→1, (7.45)
Λ1 = Λa→1 + Λb→1 + Λc→1. (7.46)

7.4.3 Kalman filter and BP

Let’s consider a simple Kalman filter setup with an unobserved state xi and an observed yi at time
i. For simplicity, we assume no control vector is applied to the system. The system is governed by
the following set of equationsKalman model

xi+1 = Axi + zi, (7.47)
yi+1 = Cxi+1 + wi, (7.48)

where zi ∼ N (0, Q) and wi ∼ N (0, R).
A factor graph can be constructed as shown in Figure 7.11. The joint probability of the variables

is proportional to the product of the factor functions, as given by

p(xN , yN) =
1

Z

N−1∏
i=1

ψ(xi, xi+1)

N∏
i=1

φ(xi, yi). (7.49)

There is freedom in choosing the factor functions as long as (7.49) is satisfied. A reasonable and

130 CHAPTER 7. GRAPHICAL MODELS

convenient choice would be Z = 1, Kalman factor
functions

ψ(xi, xi+1) =

{
p(x1, x2), if i = 1,

p(xi+1|xi), otherwise.
(7.50)

and

φ(xi, yi) = p(yi|xi). (7.51)

The objective of the Kalman filter is to estimate the state xi at each time step i, given the
observations. The estimation process can be divided into two steps: the prediction step, which
estimates xi+1 based on the previous state xi and observations, and the update step, which adjusts
the estimate of xi+1 after observing yi+1. Following the common convention in Kalman filtering,
we will use µi+1|i and Σi+1|i to denote the mean and covariance estimates, respectively, after the
prediction step. Similarly, we will use µi+1|i+1 and Σi+1|i+1 to denote the respective estimates
after the update step.

Prediction step

As shown in Figure 7.11a, the prediction step of xi+1 from xi can be interpreted as the factor node
update step of ψi. The message from xi to ψi, mi→ψi , essentially captures the probability of xi
given earlier observations yi. With a slight change of notation from the earlier GaBP discussion,
we will take mi→ψi

as p(xi|yi) rather than the parameters. By the original factor node update rule
in (7.4), we have6

mψi→i+1(xi+1) =

∫
xi

mi→ψi
(xi)ψi(xi, xi+1)dxi (7.52)

=

∫
xi

mi→ψi
(xi)p(xi+1|xi)dxi (7.53)

=

∫
xi

p(xi+1, xi|yi)dxi (7.54)

We can model p(xi+1, xi|yi) as a joint Gaussian distribution, since all linear manipulations
involved in the setup keep the distribution Gaussian. Here, we will use the moment form rather
than the canonical form as parameters to match the traditional Kalman filter discussion. To find
the precise model, we just need to compute the mean and covariance of (Xi,Xi+1). And without
affecting our discussion, we will drop the observation yi in the following.

Assume that E[Xi] = µi|i and cov[Xi] = Σi|i, then

E[Xi+1] = AE[Xi] + E[Zi] = Aµi|i (7.55)

6We use integration rather than summation here because we are dealing with continuous variables.

7.4. GAUSSIAN BP 131

and

E[(Xi − µi|i)(Xi+1 − µi+1|i)
>] = E[(Xi − µi|i)(AXi + Zi −Aµi)>] (7.56)

= E[(Xi − µi|i)(AXi −Aµi)>] + E[(Xi − µi|i)Z
>
i] (7.57)

(a)
= E[(Xi − µi|i)(AXi −Aµi)>] + E[Xi − µi|i]E[Z>

i] (7.58)
(b)
= E[(Xi − µi|i)(Xi − µi|i)

>A>] = Σi|iA
>, (7.59)

where (a) is due to Zi independent of Xi and (b) is because Zi is zero-mean. Moreover, we have

E[(Xi+1 − µi+1|i)(Xi+1 − µi+1|i)
>] (7.60)

= E[(AXi + Zi −Aµi|i)(AXi + Zi −Aµi)>] (7.61)

= E[(AXi −Aµi|i)(AXi −Aµi)>] + E[Zi(AXi −Aµi|i)>]

+ E[(AXi −Aµi|i)Z>
i] + E[ZiZ

>
i] (7.62)

(a)
= E[A(Xi − µi|i)(Xi − µi|i)

>A>] + E[ZiZ
>
i] = AΣi|iA

> +Q, (7.63)

where (a) is due to Zi independent of Xi and zero-mean.
Therefore we have

p(xi, xi+1|yi) = N
((

xi
xi+1

)
;

(
µi
Aµi

)
,

(
Σi|i Σi|iA

>

AΣi|i AΣi|iA
> +Q

))
(7.64)

Marginalizing xi, we getKalman
prediction step

Σi+1|i = AΣi|iA
> +Q, (7.65)

µi+1|i = Aµi|i. (7.66)

Update step

The update step is essentially the variable node update of xi+1. However, instead of directly using
the variable node update rule, we will derive the update from first principles. Note that

mψi→i+1(xi+1) · φi+1(xi+1, yi+1) = p(xi+1|yi)p(yi+1|xi+1) (7.67)
= p(xi+1, yi+1|yi), (7.68)

which can be modeled by a joint Gaussian as before. Assume that Xi+1 has a mean µi+1|i and
covariance Σi+1|i, from (7.48) and using the same argument as in the prediction step, we can

immediately model
(

Xi+1

Yi+1

)
by

N
((

µi+1|i
Cµi+1|i

)
,

(
Σi+1|i Σi+1|iC

>

CΣi+1|i CΣi+1|iC
> +R

))
(7.69)

132 CHAPTER 7. GRAPHICAL MODELS

Conditioning on Yi+1 = yi+1, we have

Xi+1|yi+1 ∼ N (µi+1|i+1,Σi+1|i+1),

where Kalman update
step

µi+1|i+1 = µi+1|i +Σi+1|iC
>(CΣi+1|iC

> +R)−1︸ ︷︷ ︸
G

(y− Cµi+1|i) (7.70)

= µi+1|i +G(y − Cµi+1|i) (7.71)

Σi+1|i+1 = Σi+1|i − Σi+1|iC
>(CΣi+1|iC

> +R)−1︸ ︷︷ ︸
G

CΣi+1|i (7.72)

= Σi+1|i −GCΣi+1|i (7.73)

and G is often referred to as the Kalman gain. Kalman gain

Exercise

1. Show that marginalizing X2 from joint Gaussian distributed X =

(
X1

X2

)
will still result in a

Gaussian distributed X1.

2. Try to verify (7.17) and (7.18) in the derivation of BP using Bethe approximation.

3. Let X =

(
X1

X2

)
has its PDF in the canonical form N

((
η1

η2

)
,

(
Λ11 Λ12

Λ21 Λ22

))
, what will be η

and Λ if X1|x2 ∼ N (η,)?

4. Write down the factor node update message ma→1 for GaBP for a factor node a connecting
to 4 variable nodes (x1, x2, x3, x4). Write down the message again assuming that a is only
connecting to two nodes x1 and x2.

Information theory and probabilistic inference Samuel Cheng

Chapter 8
Score, Fisher information, Cramér-Rao
lower bound, and score matching

In this chapter, we will explore the concepts of the score, Fisher information, and the renowned
Cramér-Rao lower bound. Roughly speaking, Fisher information quantifies the amount of informa-
tion that an observable random variable carries about an unknown parameter. Thus, the higher the
Fisher information, the more accurately we can estimate the parameter from the variable. The the-
oretical limit of this estimation accuracy is concretely described by the Cramér-Rao lower bound.
To conclude the first section, we will also discuss a very useful estimation technique known as score
matching. Using a slightly different definition of the score from classical statistics, score matching
avoids the effect of the normalization constant (or partition function) present in maximum likeli-
hood estimation (MLE). Moreover, a surprising result is that we do not need the actual score in the
objective function; rather, the objective function can be represented by the parameterized model
score only. These advantages make score matching an attractive alternative to MLE, and it has
gained significant popularity in the last couple of decades.

8.1 Overview of Fisher information and Cramér-Rao lower
bound

Given an observation X drawn from a distribution defined by the parameter θ, a fundamental
problem in statistical inference is to estimate θ based on X. As discussed in Section 2.6, this can be
addressed by the method of MLE, which seeks to optimize the parameter θ such that the likelihood
p(X = x; θ), or equivalently the log-likelihood log p(X = x; θ), is maximized for the observed data
X = x.

Upon obtaining an estimate of θ, a natural follow-up question arises: how reliable, or accurate,
is this estimate on average? This is crucial for understanding the quality and robustness of the
estimation process. The Cramér-Rao lower bound offers insight into this question. It establishes
a lower limit on the variance of any unbiased estimator of the parameter θ, which is directly
related to the so-called Fisher Information. This lower bound provides a benchmark to evaluate

Page 133 of 177

134CHAPTER 8. SCORE, FISHER INFORMATION, CRAMÉR-RAO LOWER BOUND, AND SCORE MATCHING

the performance of an estimator obtained through MLE or any other estimation procedure.

8.2 The score function
To facilitate the understanding of Fisher information, we first introduce the score function. The
score function score functionreflects the signed sensitivity of the log-likelihood to changes in the parameter θ.
Consider a family of probability density functions p(x; θ), parameterized by the scalar θ. The score
function is defined as

V (X; θ) ,
∂

∂θ
ln p(X; θ) =

1

p(X; θ)

∂p(X; θ)

∂θ
. (8.1)

Note that the score function itself is a random variable since X is random.
An important property of the score function is that its expected value is zero regardless of the

value of θ. This fact is so important that we will highlight it again in the following.

Expected score is zero

expected score is
zero

For any random observation X and respective parameter θ, E[V (X; θ)] = 0 regardless of the
value of θ.

The fact can be easily shown with a little bit calculus as follows. We can

E[V (X; θ)] =

∫ (
∂p(x; θ)

∂θ
· 1

p(x; θ)

)
p(x; θ)dx

(a)
=

∂

∂θ

∫
p(x; θ)dx

=
∂

∂θ
1 = 0, (8.2)

where we can pull the partial derivative out of the integral in (a) since the integral is with respect
to x rather than θ.

8.3 Fisher Information
Fisher information Fisher

information
provides a measure of the amount of information that an observable ran-

dom variable carries about an unknown parameter upon which the probability of the observation
depends.

It is intuitive that θ is more sensitive with X when the respective score V (X; θ) has a larger
magnitude. This suggests defining the average power of V (X; θ) as a measure to quantify the
potential of estimating θ from the observation X. We call this quantity the Fisher information,
usually denoted by JX(θ) or simply J(θ). We use the subscript X to emphasize that the Fisher
information is computed with respect to X. Since V (X; θ) is zero-mean, we have

JX(θ) , E[V (X; θ)2] = Var(V (X; θ)), (8.3)

where both expectation and variance are applied with respect to X.

8.4. CRAMÉR-RAO LOWER BOUND 135

In the context of multiple independent and identically distributed (i.i.d.) observationsX1, . . . , Xn,
note that the score with respect to (w.r.t.) the n observations is equal to the sum of the scoresscore of multiple

observations w.r.t. individual observations since

V (X1, . . . , Xn; θ) =
∂

∂θ
ln p(X1, · · · , Xn; θ) (8.4)

=
∂

∂θ

n∑
i=1

ln p(Xi; θ) (8.5)

=

n∑
i=1

V (Xi; θ). (8.6)

Moreover,Fisher
information of
multiple
observations

JX1,··· ,Xn
(θ) = E

[
V (X1, · · · , Xn)

2
]

(8.7)

= E

(n∑
i=1

V (Xi)

)2
 (8.8)

= E

[
n∑
i=1

V (Xi)
2

]
+ 2E

∑
i 6=j

V (Xi)V (Xj)

 (8.9)

= E

[
n∑
i=1

V (Xi)
2

]
+ 2

∑
i6=j

E[V (Xi)]E[V (Xj)] (8.10)

=

n∑
i=1

JXi(θ). (8.11)

Thus, the total Fisher information from multiple observations can be expressed as the sum of the
Fisher information from individual observations. This additive property is natural and desirable,
as it allows us to interpret the Fisher information as a measure of information, similar to entropy.

8.4 Cramér-Rao Lower Bound

If we restrict ourselves to unbiased estimators T (·) such that E[T (X)] = θ, the performance of an
estimator can be completely characterized by the variance of the estimate. Namely, the larger the
variance, the poorer the estimator.

The Fisher information JX(θ), which indicates the average sensitivity of the parameter θ to
the observation X, implies that an increase in JX(θ) should lead to a decrease in the variance or
uncertainty of the estimate. This relationship is succinctly articulated by the Cramér-Rao lower
bound,Cramér-Rao

lower bound
which elegantly captures this phenomenon.

136CHAPTER 8. SCORE, FISHER INFORMATION, CRAMÉR-RAO LOWER BOUND, AND SCORE MATCHING

Cramér-Rao Lower Bound

If E[T (X)] = θ, then the variance of T (X) satisfies:

Var(T (X)) ≥ 1

JX(θ)
. (8.12)

Proof of Cramér-Rao Lower Bound. The proof is straightforward using the Cauchy-Schwarz in-
equality (see Exercise 1) for random variables, i.e. E[XY]2 ≤ E[X2]E[Y 2] for all random variables
X and Y . To avoid notation clutter, I will not write X explicitly as an argument of T and V . It
should be clear by now that T and V depend on X and thus are themselves random variables. By
the Cauchy-Schwarz inequality, we have

E2[(T − E[T])(V − E[V])] ≤ E[(T − E[T])2]E[(V − E[V])2] (8.13)
= Var(T)Var(V) = Var(T)J(θ). (8.14)

Therefore,

Var(T) ≥ E[(T − E[T])(V − E[V])]

J(θ)

(a)
=

E[(T − E[T])V]

J(θ)
(8.15)

=
E[TV]− E[T]E[V]

J(θ)

(b)
=
E[TV]

J(θ)
(8.16)

=
1

J(θ)

∫
T (x)

∂p(x; θ)/∂θ

p(x; θ)
p(x; θ)dx (8.17)

=
1

J(θ)

∂

∂θ

∫
T (x)p(x; θ)dx (8.18)

=
1

J(θ)

∂

∂θ
E[T]

(c)
=

1

J(θ)

∂

∂θ
θ =

1

J(θ)
, (8.19)

where (a) and (b) follow from E[V] = 0, and (c) is due to the fact that T is an unbiased estimator.

Example 8.1: Estimating the Mean of a Normal Distribution

To illustrate the Cramér-Rao bound, consider the problem of estimating the mean µ of a
normally distributed population with known variance σ2. Given M samples X1, X2, . . . , XM ,
a natural estimator for µ is the sample mean:

µ̂(X1, · · · , XM) =
1

M

M∑
i=1

Xi. (8.20)

This estimator is unbiased, as E[µ̂(X1, · · · , XM)] = 1
M

∑M
i=1E[Xi] = µ, and its variance is

given by Var(µ̂) = 1
M

∑M
i=1 Var(Xi) =

σ2

M .
To demonstrate that this estimator is theoretically optimal, we will show that the variance

8.5. SCORE MATCHING 137

of the estimate is precisely the Cramér-Rao bound.
First, note that (see Exercise 2) the Fisher information for a single observation from the
normal distribution is JX(µ) = 1

σ2 . Hence, for M observations, the Fisher information is
JX1,...,XM

(µ) = M
σ2 . According to the Cramér-Rao lower bound, no unbiased estimator of µ

can have a variance smaller than JX1,··· ,XM
(µ)−1 = σ2

M . As the variance of the estimator is
precisely σ2

M , the sample mean estimator is indeed optimal.

8.5 Score matching
Before ending this chapter, it is worth mentioning score matching, a technique gaining popularity
in recent years as an alternative to MLE for parameter estimation in probability density models,
particularly when dealing with complex or high-dimensional data. Unlike MLE, which requires the
computation of a normalizing constant that can be intractable for many models, score matching
bypasses this issue by focusing on the score function. By matching the model’s score function
to that of the true data distribution, it becomes especially useful for models with unnormalized
densities. As a result, score matching has gained popularity in fields such as machine learning and
statistics, where it facilitates the training of sophisticated models like energy-based models and
offers a robust solution in scenarios where traditional likelihood-based methods falter.

8.5.1 When MLE fails: Energy-Based Models (EBMs)
An EBMenergy-based

model
is a type of probabilistic model where the probability density function is defined in terms

of an energy function E(x; θ). The density is given by:

pθ(x) =
exp(−E(x; θ))

Z(θ)

where Z(θ) =
∫

exp(−E(x; θ)) dx is the normalizing constant, also known as the partition function.
In MLE, we maximize the likelihood or equivalently the log-likelihood of the observed data,

which for an EBM involves maximizing:

L(θ) =
M∑
i=1

log pθ(xi) =
M∑
i=1

(−E(xi; θ)− logZ(θ))

The computation of the partition function Z(θ) is often intractable because it requires integrating
over the entire observation space, which is computationally prohibitive for high-dimensional or
complex data.

8.5.2 Score Matching for EBM
Score matching, on the other hand, does not require the computation of the normalizing constant.
Instead, it focuses on matching the scores, defined as the gradients of the log-density. Mathemati-

138CHAPTER 8. SCORE, FISHER INFORMATION, CRAMÉR-RAO LOWER BOUND, AND SCORE MATCHING

cally, the score function score
function for
EBM

for the EBM is defined as

ψ(x; θ) = ∇x log pθ(x) = −∇xE(x; θ)

One thing a cautious reader may have noticed is that the score definition here is slightly different
from that used in traditional statistics, where the partial derivative is taken with respect to the
parameter θ. Instead, the score here is computed as the gradient with respect to the data x directly.

The naive objective function attempts to minimize the expected square difference between the
observed score and the true score. That is,

J(θ) =
1

2

∫
‖ψ(x; θ)−∇x log p(x)‖2 p(x) dx (8.21)

≈ 1

M

M∑
m=1

‖ψ(x(m); θ)−∇x log p(x(m))‖2, (8.22)

where x(1), x(2), · · · , x(M) are M observed samples. The above naive objective is not practical as it
is impossible to know the true score function ∇x log p(·) to begin with.

Surprisingly, it can be shown that the earlier objective is equivalent to minimizing instead the
following objective

J(θ) =
1

2

∫ [
‖ψ(x; θ)‖2 + 2∇x · ψ(x; θ)

]
p(x) dx (8.23)

≈ 1

2M

M∑
m=1

‖ψ(xm; θ)‖2 + 2∇x · ψ(xm; θ), (8.24)

where ∇x · ψ(x; θ) denotes the divergence of ψ w.r.t. x, i.e., ∇x · ψ(x; θ) ,
∑N
n=1

∂ψ(x)
∂xn

. The above
objective only involves the score function and its derivatives, which can be computed directly from
the energy function without knowing the actual score or the need for Z(θ).

Derivation of the Score Matching Objective Function

We will show here that the objective function defined in (8.23) is equivalent to the original objective
function in (8.21). Let’s start with the definition of the score matching objective function:

J(θ) =
1

2

∫
‖ψ(x; θ)−∇x log p(x)‖2 p(x) dx,

where recall that ψ(x; θ) = ∇x log pθ(x) is the score function of the model.
Expanding the squared term inside the integral:

J(θ) =
1

2

∫
‖ψ(x; θ)‖2 p(x) dx−

∫
(ψ(x; θ) · ∇x log p(x)) p(x) dx

+
1

2

∫
‖∇x log p(x)‖2 p(x) dx. (8.25)

The last term does not depend on θ and can be ignored for optimization purposes.

8.5. SCORE MATCHING 139

For the cross-term,∫
(ψ(x; θ) · ∇x log p(x)) p(x)dx =

∫ (
ψ(x; θ) · ∇xp(x)

p(x)

)
p(x) dx (8.26)

=

∫
ψ(x; θ) · ∇xp(x) dx (8.27)

=

∫ (N∑
n=1

ψn(x; θ)
∂p(x)
∂xn

)
dx, (8.28)

where N is the dimension of the data x, and ψn(x; θ) and xn are the n-th components of ψ(x; θ)
and x, respectively.

We can pull out the dimension for xn from the multidimensional integral by splitting dx into
dxndx\n, where dx\n denotes dx1dx2 · · · dxn−1dxn+1 · · · . Swapping the order of the split integral
with summation, we have:∫ (N∑

n=1

ψn(x; θ)
∂p(x)
∂xn

)
dx (8.29)

=

∫
dx\n

N∑
n=1

∫ (
ψn(x; θ)

∂p(x)
∂xn

)
dxn (8.30)

(a)
=

∫
dx\n

N∑
n=1

∫ (
∂ (ψn(x; θ)p(x))

∂xn
− ∂ψn(x; θ)

∂xn
p(x)

)
dxn (8.31)

(b)
=

∫
dx\n

N∑
n=1

����������:0

ψn(x; θ)p(x)|∞xn=−∞ −
∫ (

∂ψn(x; θ)
∂xn

p(x)
)
dxn

 (8.32)

= −
∫
p(x)dx

N∑
n=1

(
∂ψn(x; θ)
∂xn

)
(8.33)

= −
∫
∇ · ψ(x; θ)p(x)dx, (8.34)

where (a) uses integration by parts and the first term in (b) goes to zero because p(x) goes to zero
as xn goes to infinity.

Combining the result in (8.34) with the first term of (8.25), we get the revised objective function
in (8.23).

8.5.3 Example: Score Matching for Multivariate Gaussian Distribution

Let’s try to apply score matching to a multivariate Gaussian distribution with mean vector µ and
precision matrix Λ (the inverse of the covariance matrix Σ). The probability density function is
given by:

p(x;µ,Λ) = 1

Z(µ,Λ)
exp

(
−1

2
(x− µ)TΛ(x− µ)

)

140CHAPTER 8. SCORE, FISHER INFORMATION, CRAMÉR-RAO LOWER BOUND, AND SCORE MATCHING

where x ∈ Rd, µ ∈ Rd, and Λ ∈ Rd×d is a symmetric positive-definite matrix. Here, Z(µ,Λ) is the
normalizing constant.

First, we need to compute the score function as

ψ(x;µ,Λ) = ∇x log p(x;µ,Λ) = −Λ(x− µ) (8.35)

Now, let’s substitute ψ(x;µ,Λ) into the alternative score matching objective as specified in
(8.23). Assuming that we have made M observations x1, · · · , xM , we can then approximate the
objective as

J(µ,Λ) =
1

2M

M∑
m=1

(
‖ψ(xm;µ,Λ)‖2 + 2∇x · ψ(xm;µ,Λ)

)
(8.36)

=
1

2M

M∑
m=1

(
‖Λ(xm − µ)‖2 − 2∇x · Λ(xm − µ)

)
(8.37)

(a)
=

1

2M

M∑
m=1

(
‖Λ(xm − µ)‖2 − 2 tr(Λ)

)
(8.38)

=
1

2M

M∑
m=1

(
(xm − µ)>Λ>Λ(xm − µ)− 2 tr(Λ)

)
, (8.39)

where (a) is due to

∇ · Λx =

N∑
n=1

∂(Λx)n
∂xn

=

N∑
n=1

∂
(∑N

n′=1 Λnn′xn′

)
∂xn

=

N∑
n=1

N∑
n′=1

Λn,n′δn,n′ =

N∑
n=1

Λn,n.

Taking the gradient of the objective function in (8.39) with respect to µ to minimize it, we have

∇µJ(µ,Λ) =
1

2M

M∑
m=1

∇µ

(
(xm − µ)>Λ>Λ(xm − µ)− 2 tr(Λ)

)
(8.40)

=
1

M

M∑
m=1

Λ>Λ(xm − µ) (8.41)

= Λ>Λ

(
1

M

M∑
m=1

xm − µ

)
, (8.42)

which is equal to zero only when µ equals the empirical mean 1
M

∑M
m=1 xm.

8.6. EXERCISE 141

Similarly, taking the gradient of J(µ,Λ) with respect to Λ, we have

∇ΛJ(µ,Λ) =
1

2M

M∑
m=1

∇Λ

(
(xm − µ)>Λ>Λ(xm − µ)− 2 tr(Λ)

)
(8.43)

(a)
=

1

2M

M∑
m=1

(
2Λ(xm − µ)(xm − µ)> − 2I

)
(8.44)

= Λ

(
1

M

M∑
m=1

(xm − µ)(xm − µ)>

)
− I, (8.45)

where (a) uses ∇Λ

(
y>Λ>Λy

)
= 2Λyy> and ∇Λ tr(Λ) = I. From (8.45), ∇ΛJ(µ,Λ) = 0 only when

Λ equals the empirical approximation of the inverse covariance matrix
(

1
M

∑M
m=1(xm − µ)(xm − µ)>

)−1

.

8.6 Exercise
1. Prove the Cauchy-Schwarz inequality E[X2]E[Y 2] ≥ E[XY]2 by considering E[(X−λY)2] ≥

0 and finding λ that minimizing E[(X − λY)2].

2. Show that for a fixed variance and an unknown mean, the Fisher information given a single
observation of a Gaussian distributed variable N (µ, σ2) is equal to 1

σ2 . That is, please show

that J(µ,Λ) = E

[(
∂
∂µ lnN (x;µ, σ2)

)2]
= 1

σ2 .

3. Given N observations of X ∼ N (0, σ2), X1, · · · , XN , show that the estimate 1
N

∑N
i=1X

2
i is

the optimal estimate of σ2
W by showing that the estimate reaches the Cramar-Rao Lower

Bound.

4. From the derivation of (8.45), please verify that ∇Λ

(
y>Λ>Λy

)
= 2Λyy> and ∇Λ tr(Λ) = I.

142CHAPTER 8. SCORE, FISHER INFORMATION, CRAMÉR-RAO LOWER BOUND, AND SCORE MATCHING

Information theory and probabilistic inference Samuel Cheng

Appendix A
Using Lea to solve IT problems

Lea is simple probabilistic programming Python package. There are quite a few probabilistic
programming environments such as ... But we select Lea here for its simplicity.

A.1 Installation
To install Lea, you will need to first install Python. The simplest option is to install Anaconda.
For Python beginners, one best environment to work with is the “jupyter-notebook”, which allows
users to put in both notes and codes in the same document. For those who have worked with
Mathematica before should find it at home, any Python code can be run by pressing shift-enter.
Inside jupyter-notebook, one can “pip” install Lea by1

1 !pip install lea

Let’s test our installation by computing H(0.38), the entropy of a Bernoulli variable with prob-
ability p = 0.38.

1 import lea
2 lea.bernoulli(0.38).entropy #H(0.38)

The code itself should be self-explanatory. The first line just load the Lea package. To access
Lea’s methods or variables, we should prefix any methods and variables with “lea.”

A.2 Examples
Python is well-regarded for its shallow learning curve and readability. Here we will assume that the
readers have some experience on Python/Numpy. For users with no exposure to Python/Numpy
at all, I would like to refer them to many great online tutorials online. For example, I highly
recommend the online tutorial2 by Justin Johnson.

1Note that the “!” before pip tells jupyter to run the command as system command rather than Python code. So
if you are in the terminal with pip available, you can simply type pip install lea to install Lea.

2https://cs231n.github.io/python-numpy-tutorial/

Page 143 of 177

144 APPENDIX A. USING LEA TO SOLVE IT PROBLEMS

A

EB

J M

Figure A.1: An undirected
graph for the burglar alarm
problem

Lea itself has some great documentation online3 as well. Rather
than repeating those, I will just provide several simple examples to
let readers get started quickly.

A.2.1 Burglar alarm
Let’s consider a variant of the classic burglar alarm example. Let
say there is a chance of 0.001 of a burglar broke in, and a proba-
bility of 0.002 of earthquake. And depending on the combination,
a burglar alarm may be activated. For example, if both burglary
and earthquake happen at the same time, 0.95 of chance the alarm
will ring. But if both do not happen, there is still 0.001 chance of
false positive and alarm rings.

Whenever the alarm rings, your neighbors John and Mary may
call with probabilities 0.9 and 0.7, respectively. They may still call
you even when alarm didn’t ring, but with smaller probabilities of
0.05 and 0.01. The events are depicted by the undirected graph as
shown in Figure A.1, where B, E, A, J and M corresponds to the
events of burglar broke in, earthquake happened, alarm rang, John called, and Mary called.

The entire problem is described in the Lea code below. Note that lea.event is very similar to
lea.bernoulli except the outcomes of the former are True and False rather than 1 and 0. In line 4, we
use lea.joint to describe the alarm variable as a conditional event. Depending on different outcomes
of burglary and earthquake, alarm will be defined by a different distribution. For example, line 5
indicates that when both burglary and earthquake are True, alarm will be defined as a Bernoulli
event with probability 0.95 to be True. The rest of the variables john_calls and mary_calls are
defined similarly.

1 import lea
2 burglary = lea.event(0.001)
3 earthquake = lea.event(0.002)
4 alarm = lea.joint(burglary,earthquake)\
5 .switch({ (True ,True) : lea.event(0.950),
6 (True ,False) : lea.event(0.940),
7 (False,True) : lea.event(0.290),
8 (False,False) : lea.event(0.001) })
9 john_calls = alarm.switch({ True : lea.event(0.90),

10 False : lea.event(0.05) })
11 mary_calls = alarm.switch({ True : lea.event(0.70),
12 False : lea.event(0.01) })

After the problem was set up, we can find the probabilities for different event readily. For
example, we may find the probability of alarm rang by

1 lea.P(alarm)

And you should get 0.0025164420000000002 if everything was typed correctly.
We can also find the conditional probability of Mary called given the alarm rang by

3https://bitbucket.org/piedenis/lea/wiki/Lea3_Tutorial_1

A.2. EXAMPLES 145

1 mary_calls.given(alarm)

It should return
1 False : 0.30000000000000004
2 True : 0.7

We can also compute some information measure directly. For example, we can compute the
mutual information between Mary called and John called by

1 lea.mutual_information(john_calls,mary_calls)

and we should get 0.001740282763951495.

A.2.2 A fair dice and a loaded dice
Considered a loaded dice is put into a jar along with three more fair dices. And assume that the
loaded dice is two times more likely to get a six then the rest of the outcomes. Let’s draw a dice
from the jar and toss the drawn dice twice. What is the chance that the dice is loaded if we get
both six?

Let’s model the whole setup as below.

1 import lea
2 import numpy as np
3

4 fair = lea.leaf.dice(1)
5 loaded = lea.pmf(dict(zip(range(1,7),np.array([1,1,1,1,1,2]))))
6

7 D = lea.vals(*'fffl') # dice: (f)air/(l)oaded
8 tosses = D.switch({'f':lea.joint(fair,fair.new()),
9 'l':lea.joint(loaded,loaded.new())})

In line 2, we import numpy as np, which is a common convention. Note that Lea has a built-in
method, lea.leaf.dice(), as defined in line 4. In line 5, we define a loaded dice by depicting its
p.m.f. from scratch using lea.pmf, which expects a Python dictionary4 as input, where the keys are
the outcomes and the values are the corresponding probabilities. Note that the values [1,1,1,1,1,2]
of the dictionary do not need to sum up to one as Lea will automatically normalize them. But
the values should be non-negative as they represent probabilities. The last 2 corresponds to the
probability of six, which is twice the rest as desired.

In line 7, we define the dice variable D with the population directly. We specified that there
are three (f)air dices and one (l)oaded dice5. In line 8, we construct toss as a conditional random
variable that the next two outcomes are drawn from a fair (loaded) dice if D is fair (loaded). Note
that new() is necessary in lines 8 and 9. Otherwise, the two toss outcomes will be identical.

Now, we can ask the original question of what is the chance of the dice to be loaded if we got
both six with the code below

4Note that we use zip and dict to create a dictionary input for lea.pmf in line 5. zip converts two equal-length
lists into a list of pairs, and dict converts the latter into a dictionary with the first element in each pair as key and
the second element as value.

5Note that * in line 7 is a dereferencing operator. In Python, any string is actually a list of characters, so ’fffl’ is the
same as [’f’,’f’,’f’,’l’] and * will remove the bracket of the list. Thus, the line is the same as D = lea.vals(’f’,’f’,’f’,’l’).

146 APPENDIX A. USING LEA TO SOLVE IT PROBLEMS

1 D.given(tosses==(6,6))

The code is self-explanatory and return the conditional distribution6 of D given the both outcomes
are six. Lea will output something like

1 f : 0.5051546391752577
2 l : 0.4948453608247423

Despite we got two six in a row, we probably should not accuse the opponent to be cheating yet
even seeing two six as the probability is still less than half. Btw, what is the probability of getting
a six again? It should be

Pr(D = f)Pr(6|D = f) + Pr(D = l)Pr(6|D = l)

= 0.505 · 1/6 + 0.495 · 2/7
= 0.226

Let’s modify our code slightly and compute it directly. Define tosses as outcome of three tosses
rather than two

1 tosses = D.switch({'f':lea.joint(fair,fair.new(),fair.new()),
2 'l':lea.joint(loaded,loaded.new(),loaded.new())})

Then, we can output the distribution of the last toss given the first two being six as

1 tosses[2].given(tosses[0:2]==(6,6))

And this returns
1 1 : 0.15488463426607757
2 2 : 0.15488463426607757
3 3 : 0.15488463426607757
4 4 : 0.15488463426607757
5 5 : 0.15488463426607757
6 6 : 0.22557682866961215

What if we want to find the probability of getting a six after getting 7 sixes to start with? We
can surly redefine tosses and repeat fair.new() and loaded.new() seven times. However, we can also
redefine it more flexibly as7

1 tosses=D.switch({'f':lea.joint(*[fair.new() for i in range(8)]),
2 'l':lea.joint(*[loaded.new() for i in range(8)])})

We can then compute distribution of the last toss given seven sixes by

1 tosses[7].given(tosses[:7]==tuple([6]*7))

6We may also return just the probability of the dice to be loaded by a slightly more wordy expression
lea.P(D.given(tosses==(6,6))==’l’).

7It may be tempting to replace lea.joint(*[fair.new() for i in range(8)]) by lea.joint(*([fair.new()]*8)). However,
the latter will not work as fair.new() will only be called once and the eight variables will be identical.

A.2. EXAMPLES 147

And this should returns something like

1 1 : 0.1443929328644471
2 2 : 0.1443929328644471
3 3 : 0.1443929328644471
4 4 : 0.1443929328644471
5 5 : 0.1443929328644471
6 6 : 0.27803533567776456

Note that the code will run a little while as the number of outcomes (68 = 1, 679, 616) is not actually
small and Lea is not optimized in computing conditional distribution.

Now, let’s try to compute the mutual information between two adjacent toss. To reduce the
amount of compute, let us only model four consecutive tosses and use lea.mutual_information to
compute the value.

1 tosses=D.switch({'f':lea.joint(*[fair.new() for i in range(4)]),
2 'l':lea.joint(*[loaded.new() for i in range(4)])})
3 lea.mutual_information(tosses[0],tosses[1])

You should get something like 0.000202. It may be surprising to some that the value is non-zero.
As we all learned from our first course in probability that consecutive tosses of a dice should be
independent event. However, this is only true when we have the complete statistical knowledge of
our dice8. Moreover, the mutual information for other tosses, say between toss[0] and toss[2] as
computed below,

1 lea.mutual_information(tosses[0],tosses[2])

should be the same as well.
Finally, let’s try to compute the conditional mutual information between two tosses given the

dice D. Note that Lea does not have a function for conditional mutual information, but we can
readily compute that as

H(tosses[1]|D)−H(tosses[1]|D, tosses[0]).

In Lea, this will be computed by

1 tosses[1].cond_entropy(D)-tosses[1].cond_entropy(lea.joint(D,tosses[0]))

and the value should be very close to zero. The result precisely coincides what we learned in
an elementary probability course when consecutive tosses should be independent when complete
statistical knowledge of the dice is given.

A.2.3 Weather on a tropical island
In a tropical island where temperature is rather stable throughout the year. Say the temperature
(in degree Celsius) is random with different distributions9 for sunny and rainy days as tabulated
in Table A.1.

8Here we mean complete statistical knowledge is that the probability distribution of the dice outcome is precisely
known and no hidden variable is involved. The statistical knowledge is not complete here as depends on the outcome
of the dice, which we do not know, the outcome distribution can vary.

9For simplicity we assume the temperature is discrete.

148 APPENDIX A. USING LEA TO SOLVE IT PROBLEMS

Table A.1: Temperature distributions of sunny and rainy days

Temp 22 23 24 25 26 27 28 29 30 31 32 33 34
Sunny 0 0 0 0 0.05 0.05 0.1 0.1 0.1 0.2 0.25 0.1 0.05
Rainy 0.1 0.2 0.3 0.2 0.1 0.1 0 0 0 0 0 0 0

Moreover, let’s assume that the weather of the island is first-order Markov. Namely, the weather
today (sunny or rainy) will only depend on the weather yesterday More precisely, if today is sunny,
the probability of tomorrow to be sunny is 0.95. If today is rainy, the probability of tomorrow
remaining rainy is only 0.2. Let’s first build the model as follows.

1 import numpy as np
2 from lea import markov
3

4 p_sunny=[0.05,0.05,0.1,0.1,0.1,0.2,0.25,0.1,0.05]
5 p_sunny=np.array(p_sunny)
6 p_rainy=[0.1,0.2,0.3,0.2,0.1,0.1]
7 p_rainy=np.array(p_rainy)
8

9 dist_sunny=lea.pmf(dict(zip(range(26,35),p_sunny)))
10 dist_rainy=lea.pmf(dict(zip(range(22,28),p_rainy)))
11

12 weather = markov.chain_from_matrix(('sunny','rainy'),
13 ('sunny',(0.95, 0.05)),
14 ('rainy',(0.8, 0.2)))

The code should be rather self-explanatory. We see most of the methods in the earlier examples
already. We have introduced two separate pmfs, dist_sunny and dist_rainy for the sunny and
rainy days, respectively. The only new method is chain_from_matrix from the lea.markov module.
That allows us to create a Markov model variable easily with the transition probabilities.

If it is rainy today, what is the expected temperature tomorrow?

We can use weather.next_state(’rainy’) to get the weather variable given rainy today. Using switch
to generate a conditional random variable as in previous example, we can find the expected tem-
perature as follows.

1 weather.next_state('rainy').switch({'sunny':dist_sunny.new(),
2 'rainy':dist_rainy.new()}).mean
3 >> 29.299999999999997

Therefore, the answer is 29.3 C.

What is the expected temperature tomorrow (without knowing the weather today)?

Without knowing the weather today, we should just assume that the weather distribution reaches
a steady state. We can assume it by iterate it by many times (say 1000) from any starting state
(say sunny). Thus, the expected temperature can be estimated as follows.

A.2. EXAMPLES 149

1 weather.next_state('sunny',1000).switch({'sunny':dist_sunny.new(),
2 'rainy':dist_rainy.new()}).mean
3 >> 30.182352941176468

Therefore, the expected temperature is 30.18 C.

What is the probability that today is sunny if the temperature is higher than 24.5 C?

Since the question does not provide any information of the weather, we will assume we are at the
steady state and approximate the weather state by iterating from a sunny state 1000 times (see line
1 below) as in the previous question. We can define the temperature variable (temp) conditioned
on today’s weather
by using the switch command as before (see line 2). Finally, we can find the conditional probability
of today’s weather given temperature larger than 24.5 C by using the given statement (see line 3).

1 today=weather.next_state('sunny',1000)
2 temp=today.switch({'sunny':dist_sunny.new(),'rainy':dist_rainy.new()})
3 today.given(temp>24.5) # 1c
4

5 >> rainy : 0.024390243902439025
6 >> sunny : 0.975609756097561

Therefore, the probability of sunny is approximately 0.98.

If today is rainy, what is the probability that the temperature tomorrow is above 25.5
C?

The question is similar to before but we know today is rainy already. So tomorrow weather will
be weather.next_state(’rainy’) and we can construct the temperature variable as in lines 1 and 2
below. Simply input temp > 25.5 as in line 3 below will find the probability of temperature below
25.5 C.

1 temp=weather.next_state('rainy')
2 .switch({'sunny':dist_sunny,'rainy':dist_rainy})
3 temp> 25.5
4

5 False : 0.16000000000000003
6 True : 0.8400000000000001

Thus, the probability is 0.84.

150 APPENDIX A. USING LEA TO SOLVE IT PROBLEMS

Information theory and probabilistic inference Samuel Cheng

Appendix B
Common distributions

−4 −2 2 4

0.1

0.2

0.3

0.4

x

f(x)

Figure B.1: Gaussian PDF

We introduce several common distributions used in this book.
The material here is self-contained, requiring only a back-
ground in calculus. However, the list of distributions con-
sidered here is by no means exhaustive. More information
on other distributions can be easily found online from sources
such as Wikipedia.

B.1 Normal distribution
Among all continuous distributions, the normal distribution
(also known as the Gaussian distribution) is probably the most
well-known and important. As shown in Fig. B.1, the proba-
bility density function (PDF) is symmetric around the mean
and has a bell shape that exponentially decays away from the
mean. Thus, the peak (mode) is exactly the mean as well.

By the Central Limit Theorem (CLT), if we add multiple
independent random variables together, the sum will tend to
become more and more like a normal distribution, regardless of the original distributions of the
variables. One interpretation of the Central Limit Theorem is related to the second law of ther-
modynamics. Given all other things fixed, entropy tends to increase as a system evolves. Since
the normal distribution has the highest entropy among all distributions with a fixed variance, any
system of random variables will tend to become more Gaussian as time goes on. See Section 4.3.1
for a detailed discussion on interpreting a special case of the Second Law of Thermodynamics as a
consequence of the CLT.

PDF

The normal distribution is a continuous probability distribution. Given a mean µ and a variance
σ2, its probability density function (pdf) is given by

Page 151 of 177

152 APPENDIX B. COMMON DISTRIBUTIONS

N (x;µ, σ2) =
1√
2πσ2

e−
(x−µ)2

2σ2 .

Although the expression may appear complicated, it is reasonably easy to remember. The
exponent decreases quadratically as the value of x moves away from the mean µ, scaled by
the variance σ2. The normalization factor 1√

2πσ2
ensures that the pdf integrates to one, since∫

x∈R e
− (x−µ)2

2σ2 dx =
√
2πσ2.

Summary statistics

The mean and variance of the normal distribution N (x;µ, σ2) are, of course, just µ and σ2. Inter-
estingly, the probability density function (pdf) is parameterized and completely characterized by
these two parameters alone.

B.1.1 Multivariate normal distribution

The multivariate normal (or Gaussian) distribution is a generalization of the one-dimensional Gaus-
sian distribution to higher dimensions. It is commonly used to model vectors of correlated random
variables.

PDF

The PDF of the multivariate Gaussian distribution for a random vector x ∈ RN is given by

N (x;µ,Σ) =
1√
|2πΣ|

exp
(
−1

2
(x− µ)TΣ−1(x− µ)

)
where µ ∈ RN is the mean vector and Σ ∈ RN×N is the covariance matrix.

Summary statistics

The mean vector µ is an N -dimensional vector that represents the expected value or average of the
random vector x. Each element µi of µ is the mean of the corresponding element xi of x.

The covariance matrix Σ is an N × N symmetric positive-definite matrix that describes the
covariance between each pair of elements in the random vector x. The diagonal elements σii of Σ
are the variances of the individual elements of x, while the off-diagonal elements σij (for i 6= j)
represent the covariances between different elements xi and xj , given by E[(Xi − µi)(Xj − µj)].

The covariance matrix Σ provides important information about the shape and orientation of
the distribution. When Σ is diagonal, the elements of x are uncorrelated and independent1, and
the distribution is spherical. When Σ has off-diagonal elements, it indicates correlations between
the elements of x, resulting in an elliptical distribution shape. See Fig. B.2 for a illustration.

1In general, independence is a stronger condition than uncorrelatedness. However, for the multivariate Gaussian
distribution, the two conditions imply one another.

B.2. BERNOULLI DISTRIBUTION 153

3 2 1 0 1 2 3
X1

3

2

1

0

1

2

3
X 2

Covariance Matrix: [1 0; 0 1]

3 2 1 0 1 2 3
X1

3

2

1

0

1

2

3

X 2

Covariance Matrix: [1 0.5; 0.5 1]

Figure B.2: The PDFs of 2-D multivariate normal distributions with covariance matrices
(
1 0
0 1

)
(left) and

(
1 0.5
0.5 1

)
(right).

B.2 Bernoulli distribution

The Bernoulli distribution is most well-known for describing the random behavior of tossing a coin
once.

PMF

Denote X = 1 for a head and X = 0 for a tail. Let Pr(X = 1) = p. Then the Bernoulli distribution
is simply

Bern(x; p) =

{
p, x = 1,

1− p, x = 0.

More concisely, we can write it as

Bern(x; p) = px(1− p)1−x,

154 APPENDIX B. COMMON DISTRIBUTIONS

Summary Statistics

The mean and variance can be easily computed as

E[X] = p · 1 + (1− p) · 0 = p, (B.1)
V ar[X] = p · (1− p)2 + (1− p) · p2 = p(1− p). (B.2)

B.3 Binomial distribution

The Binomial distribution, an extension of the Bernoulli distribution, describes the experiment of
N repeating Bernoulli trials.

PMF

Consider the coin tossing example again, where we will toss a coin N times. Let x be the number
of obtained heads. The probability mass function (PMF) is given by:

Bin(x; p,N) =

(
N

x

)
px(1− p)N−x,

where
(
N
x

)
is the binomial coefficient.

As shown in Fig. B.3, the binomial distribution can be approximated well with a normal distri-
bution for large N .

Summary Statistics

0 20 40 60 80 100
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Pr
ob

ab
ilit

y

Binomial Distribution (N=100,p=0.4)

Figure B.3: The binomial distribution is rep-
resented by solid bars, while the normal dis-
tribution approximation (with mean Np = 40
and variance Np(1 − p) = 24) is depicted by
the curve above them.

Using the fact that
∑N
x=0 Bin(x; p,N) = 1 for any

p and N , we can easily compute the mean of the
Binomial distribution as

E[X] =
N∑
x=0

Bin(x; p,N) · x

=

N∑
x=1

N !

(x− 1)!(N − x)!
px(1− p)N−x

= Np

N∑
x=1

(N − 1)!

(x− 1)!(N − x)!
px−1(1− p)N−x

= Np

N−1∑
x=0

Bin(x; p,N − 1)

= Np.

B.4. BETA DISTRIBUTION 155

Similarly, we have

E[X(X − 1)] =
N∑
x=2

N !

(x− 2)!(N − x)!
px(1− p)N−x

= N(N − 1)p2
N−2∑
x=0

Bin(x; p,N − 2)

= N(N − 1)p2.

Therefore, the variance is given by

Var[X] = E[X2]− E[X]2

= E[X(X − 1)] + E[X]− E[X]2

= N(N − 1)p2 +Np− (Np)2

= Np(1− p).

B.4 Beta Distribution
For a fixed N and a valid p (0 ≤ p ≤ 1), we can
specify a binomial distribution Bin(x; p,N). By
defining a distribution over all valid p, we can cre-
ate a distribution of binomial distributions.

This type of distribution is often used as a prior in Bayesian estimation. For example, the
posterior distribution will be proportional to Bin(x; p,N)q(p).

Note that there are infinite ways to define such a distribution of p as long as 0 ≤ p ≤ 1 and
the distribution is normalized such that

∫ 1

p=0
q(p) dp = 1, where q(p) is the PDF of p. However,

for mathematical convenience, it is useful to choose q(p) to have the same form as Bin(x; p,N).
Consequently, we have q(p) ∝ pa(1− p)b, resulting in the Beta distribution, which is known to be
the conjugate prior of Binomial distribution (see Section 2.6.2).

PDF

Given parameters a and b, the PDF of the Beta distribution is given by2

Beta(x; a, b) = xa−1(1− x)b−1

B(a, b)
,

where x ∈ [0, 1], B(a, b) = Γ(a)Γ(b)
Γ(a+b) , and Γ(z) =

∫ ∞

0

tz−1e−t dt is the Gamma function. The

normalization factor B(a, b) ensures that
∫ 1

x=0
Beta(x; a, b) dx = 1. The PDFs Beta(x; a, b) for

various values of a and b are shown in Figure B.4. Note that when a = b = 1, Beta(x; 1, 1) = 1,
resulting in a uniform prior.

2By convention, Beta(x; a, b) ∝ xa−1(1− x)b−1 rather than ∝ xa(1− x)b.

156 APPENDIX B. COMMON DISTRIBUTIONS

0.0 0.5 1.0
0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75

a=2, b=3

0.0 0.5 1.0

0.96

0.98

1.00

1.02

1.04

a=1, b=1

0.0 0.5 1.0
0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75

a=3, b=2

0.0 0.5 1.0

0.5

1.0

1.5

2.0

2.5

3.0

a=0.1, b=0.1

Figure B.4: PDF of different Beta distributions

Summary statistics

The Γ(z) in B(a, b) may look intimidating to some students. However, for most purposes, we only
need to remember one simple property to effectively manipulate it.

Fact For z > 1, we have
Γ(z) = (z − 1)Γ(z − 1) (B.3)

Proof.

Γ(z) =

∫ ∞

0

xz−1e−x dx

= −
∫ ∞

0

xz−1de−x

= −xz−1e−x
∣∣∣∣∞
0

+ (z − 1)

∫ ∞

0

xz−2e−x dx

= (z − 1)

∫ ∞

0

xz−2e−x dx

= (z − 1)Γ(z − 1).

By using the above fact repeatedly, we immediately have Γ(z) = (z − 1)! for integer z > 1.
Thus, we can interpret Γ(z) as a natural extension of (z − 1)! to the entire real domain.

Since
∫ 1

x=0
p(x|a, b) = 1, we have∫ 1

x=0

xa−1(1− x)b−1 dx = B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
. (B.4)

Along with (B.3), we have enough tools to find the mean and variance of a Beta-distributed X
easily.

B.5. MULTINOMIAL DISTRIBUTION 157

E[X] =

∫ 1

x=0

xBeta(x|a, b) dx =
Γ(a+ b)

Γ(a)Γ(b)

∫ 1

x=0

xa(1− x)b−1 dx

(a)
=

Γ(a+ b)

Γ(a)Γ(b)

Γ(a+ 1)Γ(b)

Γ(a+ b+ 1)

(b)
=

a

a+ b
,

where we take advantage of (B.4) and (B.3), respectively. Similarly,

E[X2] =
Γ(a+ b)

Γ(a)Γ(b)

∫ 1

x=0

xa+1(1− x)b−1 dx (B.5)

(a)
=

Γ(a+ b)

Γ(a)Γ(b)

Γ(a+ 2)Γ(b)

Γ(a+ b+ 2)
(B.6)

(b)
=

a(a+ 1)

(a+ b)(a+ b+ 1)
, (B.7)

where we again leverage (B.4) and (B.3) for (a) and (b) above. Thus,

V ar[X] = E[X2]− E[X]2

=
a(a+ 1)

(a+ b)(a+ b+ 1)
− a2

(a+ b)2

=
a(a+ 1)(a+ b)− a2(a+ b+ 1)

(a+ b)2(a+ b+ 1)

=
ab

(a+ b)2(a+ b+ 1)
.

Besides the mean and variance, knowing the mode of the Beta distribution can be handy, for
example, in the case of maximum likelihood estimation. The mode of a distribution is the peak of
the distribution. Recall that Beta(x|a, b) = xa−1(1−x)b−1

B(a,b) . Setting

∂Beta(x|a, b)
∂x

=
(a− 1)xa−2(1− x)b−1 − (b− 1)xa−1(1− x)b−2

B(a, b)
= 0,

we have (a− 1)(1− x) = (b− 1)x⇒ x = a−1
a+b−2 when a, b > 1. Note that when a or b is less than

or equal to 1, the peak appears at either x = 0 or x = 1.

B.5 Multinomial distribution
Binomial distribution models the probability of a binary outcome. For a random event with discrete
but non-binary (more than two) outcomes, we can model the event with a multinomial distribution.

PMF

Let’s say the probability of each possible outcome i is pi, where p1 + p2 + · · · + pn = 1. If we
have conducted N experiments, let xi be the number of times we obtain outcome i such that

158 APPENDIX B. COMMON DISTRIBUTIONS

x1 + x2 + · · ·+ xn = N . The probability of this specific set of outcomes is given by

Mult(x1, · · · , xn|p1, · · · , pn) =
N !

x1!x2! · · ·xn!
px1
1 p

x2
2 · · · pxn

n ,

where the multinomial coefficient N !
x1!x2!···xn!

counts the number of distinct ways to partition N
items into n groups of specified sizes x1, x2, · · · , xn.

B.6 Dirichlet distribution

Just as in the case of the Beta distribution for the Binomial distribution, it is convenient to select
a prior with the same form as the Multinomial distribution, i.e., pα1

1 pα2
2 · · · pαn

n . The resulting
conjugate prior of the Multinomial distribution is known as the Dirichlet distribution.

PDF

The PDF of the Dirichlet distribution is given by

Dir(x1, · · · , xn|α1, · · · , αn) =
Γ(α1 + · · ·+ αn)

Γ(α1)Γ(α2) · · ·Γ(αn)
xα1−1
1 xα2−1

2 · · ·xαn−1
n

Since the PDF should be normalized to 1, we have∫
x1,x2,...,xn≥0

x1+x2+···+xn=1

xα1−1
1 · · ·xαn−1

n dx1 · · · dxn =
Γ(α1)Γ(α2) · · ·Γ(αn)
Γ(α1 + · · ·+ αn)

. (B.8)

Note that x1, x2, · · · , xn represent the probabilities for the outcomes of a discrete random variable.
Therefore, the given constraints under the integral (x1, x2, . . . , xn ≥ 0 and x1 + x2 + · · ·+ xn = 1)
are necessary.

Summary statistics

Similar to the case of the Beta distribution, we can compute the mean using (B.3). Let’s compute
the mean of the first element X1. The means of the other elements can be computed in a similar
manner.

E[X1] =
Γ(α1 + · · ·+ αN)

Γ(α1) · · ·Γ(αN)

∫
xα1
1 xα2−1

2 · · ·xαN−1
N dx1 dx2 · · · dxN

(a)
=

Γ(α1 + · · ·+ αN)

Γ(α1) · · ·Γ(αN)

Γ(α1 + 1)Γ(α2) · · ·Γ(αN)

Γ(α1 + · · ·+ αN + 1)

(b)
=

α1

α1 + · · ·+ αN
,

where (a) and (b) are due to (B.8) and (B.3), respectively.

B.7. EXERCISE 159

Similarly,

E[X2
1] =

Γ(α1 + · · ·+ αN)

Γ(α1) · · ·Γ(αN)

∫
xα1+1
1 xα2−1

2 · · ·xαN−1
N dx1 dx2 · · · dxN

=
Γ(α1 + · · ·+ αN)

Γ(α1) · · ·Γ(αN)

Γ(α1 + 2)Γ(α2) · · ·Γ(αN)

Γ(α1 + · · ·+ αN + 2)

=
(α1 + 1)α1

(α1 + · · ·+ αN + 1)(α1 + · · ·+ αN)
.

Thus,

V ar(X1) = E[X2
1]− E[X1]

2

=
(α1 + 1)α1

(α1 + · · ·+ αN + 1)(α1 + · · ·+ αN)
− α2

1

(α1 + · · ·+ αN)2

=
α1(α1 + α0 − α1)− α2

1

(α1 + · · ·+ αN)2(α1 + · · ·+ αN + 1)

=
α1(α0 − α1)

α2
0(α0 + 1)

,

where α0 = α1 + · · ·+ αN .
One can show that the mode of Dir(α1, · · · , αN) with respect to αi when α1, · · · , αN > 1 is

αi − 1

α1 + · · ·+ αN −N
.

The derivation is similar to the case of the Beta distribution and is left as an exercise.

B.7 Exercise
1. Show that Beta(x; 1, 1) = 1.

2. Find the mode of Dir(x1, · · · , xN ;α1, · · · , αN) with respect to xi.

160 APPENDIX B. COMMON DISTRIBUTIONS

Information theory and probabilistic inference Samuel Cheng

Appendix C
Lagrange multiplier and
Karush-Kuhn-Tucker (KKT) conditions

C.1 Constrained optimization
The goal of an optimization problem is finding the maximum or minimum of some function. For
unconstrained optimization, there is no restriction on the possible input of the function. In contrast,
a constrained optimization problem comes with a set of constraints on the input. In a canonical
form, we can summarize all constrained optimization problems into something like the following:

min f(x) (C.1)
s.t. gi(x) ≤ 0,

hi(x) = 0,

where gi(·) are the inequality constraints and hi(·) are the equality constraints.
We know from calculus that the extremum (maximum or minimum) of a smooth function occur

when the point is flat or of zero gradient. However, for a constrained optimization problem, this
no longer needs to be true. For example, the minimum of x2 for x ≥ 1 is equal to 1 (at x = 1) as
shown in Figure C.1a, where the gradient (or slope) of x2 is 2x = 2 6= 0 at x = 1.

C.2 Lagrange multiplier
The idea of the technique of Lagrange multiplier is to absorb the constraints into the objective
function so as to reformulate the constrained optimization into an unconstrained optimization
problem. As for the earlier problem as shown in (C.1), we could reformulate it as

min f(x) +
∑
i

λigi(x) +
∑
i

µihi(x), (C.2)

Page 161 of 177

162APPENDIX C. LAGRANGE MULTIPLIER AND KARUSH-KUHN-TUCKER (KKT) CONDITIONS

x

y
x ≥ 1

(a)

1

2

3

x < 2 x > 2

(b)

Figure C.1: Understanding Lagrange multipler. In the left figure, the minimum of y = x2 for
x ≥ 1 is at x = 1, where the slope there is not zero as one would expect for unconstrained
optimization. In the right figure, we consider min f(x, y) s.t. g(x, y) = 0, with f(x, y) =

√
x2 + y2

and h(x, y) = x− 2. ∇f(x, y) and ∇h(x, y) are in parallel (∇f = λ∇h) at the minimum (2, 0).

where λi and µi are known as the Lagrange multipliers.

C.2.1 Geometric intuition
To understand why we can absorb the constraints as in (C.2). Note that it does not hurt to ignore
the inequality constraints conceptually. If the optimum x∗ satisfies an inequality constraint as an
equality (e.g., gi(x∗) = 0), then we can simply treat the constraint as another equality constraint.
On the other hand, if we have gi(x∗) < 0, the constraint is inactive and has no direct effect on
the optimal value1. Consequently, let us restrict ourselves to the equality contraints only in the
discussion in this sub-section.

Let us consider a trivial constrained optimization problem

min
√
x2 + y2 (C.3)

s.t. x = 2

as shown in Fig. C.1. Without the constraint, the solution is simply 0 with the optimum at (0, 0).
With the constraint, the minimum will be 2 as we are forced to pick x = 2 while we can still choose
0 for y.

From Fig. C.1b, we see at the optimum (2, 0) that the gradients of the objective function
f(x, y) =

√
x2 + y2 and the constraint h(x, y) = x − 2 must point to the same direction. This is

because the hyperplane (a line in this case) that satisfies the constraint is always perpendicular
to the gradient of the constrained function. So moving along this plane normal to the gradient
will always preserve the constraint. Apparently if the gradient of the objective function is also not
perpendicular to this plane, we can always make the value smaller by perturbing the point along the

1We will revisit shortly when we talk about KKT conditions.

C.2. LAGRANGE MULTIPLIER 163

plane. So both gradients must be normal to the constrained plane and thus they must be aligned.
Mathematically, we have ∇f = λ∇h, where λ is precisely the Lagrange multiplier. And thus

∇(f − λh) = 0 (C.4)

and this is equivalent to solving the unconstrained optimization problem

min f(x)− λh(x). (C.5)

C.2.2 Algebraic proof

Equality constraint

After gaining some intuition of the origin of the Lagrange multiplier, let’s try to argue the method
algebraically. Consider a simple optimization problem with a single equality constraint,

max
x
f(x) (C.6)

s.t. h(x) = 0

Define L(x, λ) , f(x)− λh(x) and let f̃(x) = minλ L(x, λ). Note that

f̃(x) =
{
f(x) if h(x) = 0

−∞ otherwise
(C.7)

because we can choose λ =∞ when h(x) is non-zero.
Consequently, we can never get any solution that does not satisfy h(x) = 0 when we try to

maximize f̃(x). Therefore, the original constrained problem is identical to maxx f̃(x) or

max
x

min
λ

(f(x)− λh(x)), (C.8)

where λ again is the Lagrange multiplier.
If the optimum is a saddle point2 that L(x, λ) is convex for w.r.t. λ and concave w.r.t. x, we

have

max
x

min
λ

(f(x)− λh(x))︸ ︷︷ ︸
Primal problem

= min
λ

max
x

(f(x)− λh(x))︸ ︷︷ ︸
Dual problem

,

where the original problem in (??) and the newly formulated problem on the R.H.S. are known as the
primal and dual problems, respectively. Furthermore, the dual problem contains maxx(f(x)−λh(x))
as a subproblem as discussed earlier.

2If the optimum is not a saddle point, the primal solution will be smaller than the dual solution, resulting a
duality gap. The solution of the dual problem will provide an upper bound of the solution of the original problem
instead.

164APPENDIX C. LAGRANGE MULTIPLIER AND KARUSH-KUHN-TUCKER (KKT) CONDITIONS

Inequality constraint

Now, let’s consider the following optimization problem with a single inequality constraint:

max
x
f(x)

g(x) ≤ 0

This time let’s define f̃(x) = minλ≥0(f(x)− λg(x)). By the same argument as before, note that

f̃(x) =
{
f(x) if g(x) ≤ 0

−∞ otherwise
(C.9)

Therefore, we can rewrite the problem as

max
x

min
λ≥0

(f(x)− λg(x)), (C.10)

where (C.12) is almost identical to (C.8) but λ has to be non-negative this time.
Assume that the optimum is at a saddle point that one can swap the max and min as before,

we have

max
x

min
λ≥0

(f(x)− λg(x))︸ ︷︷ ︸
Primal problem

= min
λ≥0

max
x

(f(x)− λg(x))︸ ︷︷ ︸
Dual problem

and the dual problem once again leads to the Lagrange problem maxx(f(x)− λg(x)).

Multiple constraints

We can easily generalize the above argument to problem multiple constraints. For example, con-
sider the following problem with N inequality constraints g1(x), g2(x), · · · , gN (x) and M equality
constraints h1(x), h2(x), · · · , hM (x)

max
x
f(x) (C.11)

s.t. gi(x) ≤ 0, hj(x) = 0

By the same argument as before, note that we can rewrite the problem as

max
x

min
λi≥0,µj

(f(x)−
N∑
i=1

λigi(x)−
M∑
j=1

µjhj(x)), (C.12)

where the dual problem once again leads to the Lagrange problem

max
x

f(x)− N∑
i=1

λigi(x)−
M∑
j=1

µjhj(x)

 . (C.13)

C.3. KARUSH-KUHN-TUCKER (KKT) CONDITIONS 165

C.2.3 Physical interpretation of Lagrange multiplier
A Lagrange multiplier can be physically interpreted as the rate of change of the optimum relative
to the respective active constraint. For example, consider the problem of a factory maximizing its
production with a cost constraint and energy constraint as follows,

max
x
P (x) (C.14)

s.t. C(x) ≤ C0,

where C(·) and C0 are the cost function and the cost budget, respectively.
As we apply Lagrange multipliers to the problem, we have3

∇P (x∗) = λ∗∇C(x∗) (C.15)

for the optimal x∗, λ∗, and µ∗. Let’s assume that the cost is an active constraint, namely C(x) = C0

reaches its maximum value. As we perturb the constraint, say to allow C(x) ≤ C0 +∆C. We will
have some ∆x such that C(x∗ +∆x) = C0 +∆C and the newly optimal production will then be

P (x∗) + ∆P = P (x∗ +∆x) (C.16)
= P (x∗) +∇P (x∗) ·∆x (C.17)
= P (x∗) + λ∗∇C(x∗) ·∆x (C.18)
= P (x∗) + λ∆C. (C.19)

Therefore, we have the Lagrange multiplier λ equal to the the rate of change of the optimum to
the change of the constraint λ = ∆P

∆C .

C.3 Karush-Kuhn-Tucker (KKT) conditions
The Karush-Kuhn-Tucker (KKT) is a set of conditions that the optimum of a constrained opti-
mization problem must satisfy. Most of the conditions are apparent using the Lagrange multiplier
technique.

For the general optimization problem as defined in (C.11), the KKT conditions are listed below

∇f(x∗)−
N∑
i=1

λ∗i∇gi(x∗)−
M∑
j=1

µ∗
j∇hj(x∗) = 0, (C.20)

gi(x∗) ≤ 0, i = 1, · · · , N, (C.21)
hj(x∗) = 0, j = 1, · · · ,M, (C.22)

λ∗i ≥ 0, i = 1, · · · , N, (C.23)
λ∗i gi(x∗) = 0, i = 1, · · · , N, (C.24)

where (C.20) just came from (C.13), (C.21) and (C.22) are the original constraints that need to
be satisfied, and (C.23) is needed to ensure the unconstrained objective function will reach minus
infinity when any inequality constraint is not satisfied (see (C.12) and the respective discussion).

3To avoid notation clutter, we write P (x)|x=x∗ as P (x∗) here. Similar notation is also applied to C(·).

166APPENDIX C. LAGRANGE MULTIPLIER AND KARUSH-KUHN-TUCKER (KKT) CONDITIONS

The last condition in (C.24) is commonly known as the complementary slackness condition, which
will be elaborated in the following.

Complementary slackness condition

The complementary slackness condition probably is not too surprising as at the optimum point
(x∗, λ∗i , µ

∗
j), we should have

f(x∗) = max
x
f(x)

g(x)≤0

≡ max
x

min
λ≥0

f(x)−∑
i

λigi(x)−
∑
j

µjhj(x)

 = f(x∗)−
∑
i

λ∗i gi(x∗)

This means that
∑
i λ

∗
i gi(x∗) = 0, which is not a proof but does suggest that individual λ∗i gi(x∗)

may equal to 0.
We can obtain a rigorous proof from the discussion in Section C.2.3. Note that as we perturb

the constraint for gi(·) with ∆gi, λ∗i = ∆f
∆gi

with ∆f as the change of the optimum value. When
the constraint is not active, i.e., gi(x∗) < 0, perturbing the constraint (∆gi 6= 0) should introduce
no change with the optimum value, and so λ∗i =

∆f
∆gi

= 0
∆gi

= 0. Thus, we have λ∗i gi(x∗) = 0.
On the other hand, if the constraint is active and gi(x∗) = 0, we have λ∗i gi(x∗) = 0 regardless

the value of λ∗i . So in either case, we have the complementary slackness condition satisfied for the
optimum values.

Information theory and probabilistic inference Samuel Cheng

Appendix D
Exponential family distributions and their
conjugate priors

D.1 Motivation

Consider a discrete random variable X with some known expectation E[Ti(X)] = µi, where Ti(·) is
some observation. One may ask, what is the most probable distribution for this random variable?

To answer this, we can maximize the entropy H(X) with given the constraints E[Ti(X)] = µi.
Along with the constraints p(x) ≥ 0 and

∑
x p(x) = 1, we can formulate the optimization problem

into the following,

max
p(x)

min
η1,··· ,ηm,λ
g̃(x)≥0

[
H(p) +

m∑
i=1

ηi(E[Ti(X)]− µi) + λ

(∑
x

p(x)− 1

)
+
∑
x

g̃(x)p(x)

]
︸ ︷︷ ︸

L(p)

, (D.1)

where λ, η1, η2, · · · , ηm, g̃(x) are the Lagrange multipliers.
For the optimum p(x), we want1

0 =
∂L(p)

∂p(x′)
= − log p(x′)− 1 +

m∑
i=1

ηiTi(x
′) + λ+ g̃(x′) (D.2)

⇒ p(x′) = exp g̃(x′)︸ ︷︷ ︸
g(x′)

exp(η>T (x′)− 1 + λ) (D.3)

1In most texts, the notation h(x) is used instead of g(x) for the formulas below. However, we employ g(x) in this
context to prevent any confusion with differential entropy.

Page 167 of 177

168APPENDIX D. EXPONENTIAL FAMILY DISTRIBUTIONS AND THEIR CONJUGATE PRIORS

where T (x′) =

T1(x

′)
T2(x

′)
...

Tm(x′)

 and η =

η1
η2
...
ηm

. Apply the constraint
∑
x p(x) = 1 and rename the

dummy variable x′ back to x, we have

p(x) =
g(x) exp(η>T (x))∑
x" g(x") exp(η>T (x"))

, (D.4)

where the denominator Z(η) ,
∑
x" g(x") exp(η>T (x")) is known as the partition function and

note that it is only a function of η alone (but not x). Denote A(η) , log(Z(η)) as the log-partition
function. We can rewrite (D.4) as

p(x) = g(x) exp(η>T (x)−A(η)), (D.5)

which is the canonical form of the exponential family distribution.

Remark 1. Although we assume X to be discrete in the above derivation, the derivation for
continuous variable is essentially the same, with summations being substituted by integrals. The
resulting canonical expression for the exponential family distributions remains the same, as presented
in (D.5).

Remark 2. Given the expression in (D.5), we observe that p(x) is derived by maximizing the entropy
subject to the constraints E[Ti(X)] = µi for i = 1, . . . ,m. Consequently, the set {E[Ti(X)]}mi=1

encompasses all the sufficient statistics required to determine the distribution for a member of the
exponential family.

D.1.1 Gaussian distribution as an exponential family distribution

Consider a continuous random variable X with mean and variance constrained to µ and σ2, re-
spectively. From Chapter 4, we show that the distribution that maximizes the differential entropy
is Gaussian with the tool of KL-divergence. Let’s take a more direct approach to show this here
through optimization. Given the constraints T1(X) = E[X] = µ and T2(X) = E[(X − µ)2] = σ2,
we can rewrite the optimization problem in (D.1) to

max
p(x)

min
η1,··· ,ηm,λ
g̃(x)≥0

[
h(p) + η1(E[T1(X)]− µ) + η2(E[T2(X)]− σ2) + λ

(∫
x

p(x)dx− 1

)
+

∫
x

g̃(x)p(x)dx

]
︸ ︷︷ ︸

L(p)

,

(D.6)

D.2. CUMULANT GENERATING FUNCTION 169

Minimizing L(p) by taking derivative of L with respect to p(x) and setting it to 0, we get2

δL

δp(x)
= − ln p(x)− 1 + η1T1(x) + η2T2(x) + λ+ g̃(x) = 0 (D.7)

⇒ p(x) = exp g̃(x) exp(η1T1(x) + η2T2(x)− 1 + λ) (D.8)
= exp g̃(x) exp(η1x+ η2(x− µ)2 − 1 + λ) (D.9)

Apparently, p(x) > 0 from the equation above. Because of the complementary slackness condition
g̃(x) p(x) = 0, g̃(x) = 0 and so we simply have

p(x) = exp(η1x+ η2(x− µ)2 − 1 + λ) (D.10)

Finally, η1, η2 and λ can be determined with the constraints E[X] = µ, E[(X − µ)2] = σ2, and∫
x
p(x) = 1. The only parameters to satisfy that will simply those of the Gaussian pdf. Thus,

p(x) = N (x;µ, σ2) =
1√
2πσ2

e−
(x−µ)2

2σ2 (D.11)

Note that the choice of T is not unique, for example, we may pick T1(x) = x and T2(x) = x2.
Since

p(x) =
1√
2πσ2

exp
(
(x− µ)2

2σ2

)
=

1√
2π︸ ︷︷ ︸

g(x)

exp

 µ

σ2︸︷︷︸
η1

x+
−1
2σ2︸︷︷︸
η2

x2 −
(
µ2

2σ2
+ logσ

)
︸ ︷︷ ︸

A

 , (D.12)

we have η1 = µ
σ2 , η2 = − 1

2σ2 , g(x) = 1√
2π

, and A(η) = µ2

2σ2 + logσ = − η21
4η2
− 1

2 log(−2η2) in this
case.

D.2 Cumulant generating function

Recall the canonical form of the exponential family distribution is given by:

p(x) = g(x) exp
(
η>T (x)−A(η)

)
, (D.13)

where η is known as the natural parameter. An ”unnatural” parametrization, denoted by θ, can
be represented as:

p(x) = g(x) exp
(
η(θ)>T (x)−A(θ)

)
. (D.14)

For the natural parametrization, the log-partition function coincides with the cumulant gener-

2We use δL
δp

rather than ∂L
∂p

as L is really a functional (function of a function) when p(x) is a continuous function.

170APPENDIX D. EXPONENTIAL FAMILY DISTRIBUTIONS AND THEIR CONJUGATE PRIORS

ating function. Specifically,

∂A(η)

∂ηi
= ln

∑
x

g(x) exp(η>T (x)) =
∑
x Ti(x)g(x) exp(η>T (x))∑

x g(x) exp(η>T (x))
(D.15)

=
∑
x

Ti(x)p(x) = E[Ti(X)]. (D.16)

Additionally, the following relationship can be easily verified:

∂2A(η)

∂ηj∂ηi
= E[Ti(X)Tj(X)]− E[Ti(X)]E[Tj(X)] = Cov[Ti(X), Tj(X)]. (D.17)

D.3 Conjugate priors of exponential family distribution

Consider observations xi ∼ p(·|η) for i = 1, · · · , n and the prior η ∼ p(·|λ). The posterior distribu-
tion of η is given by:

p(η|xn, λ) ∝ p(η|λ)
n∏
i=1

p(xi|η). (D.18)

Recall from Section 2.6.2 that if the prior p(η|λ) has the same form as the posterior, then we call
p(η|λ) a conjugate prior of likelihood p(x|η).

Any distribution from the exponential family has a conjugate prior, which also belongs to the
exponential family. Specifically, consider the form:

p(x|η) = g(x) exp(η>T (x)−A(η)). (D.19)

Its conjugate prior can be expressed as

p(η|λ) = g̃(η) exp(λ>1 η − λ2A(η)− Ã(λ)) (D.20)

= g̃(η) exp
(
[λ>1 , λ2]

(
η

−A(η)

)
− Ã(λ)

)
(D.21)

= g̃(η) exp
(
λ>
(

η
−A(η)

)
− Ã(λ)

)
(D.22)

with λ =

(
λ1
λ2

)
. Equation (D.22) shows that the conjugate prior belongs to the exponential family

as well. Moreover, the resulting posterior can be given by

p(η|xn, λ) ∝ p(η|λ)
n∏
i=1

p(xi|η) (D.23)

=

(
g̃(η)

n∏
i=1

g(xi)

)
exp

(
(λ1 +

n∑
i=1

T (xi))
>η − (λ2 + n)A(η)− Ã(λ)

)
. (D.24)

D.3. CONJUGATE PRIORS OF EXPONENTIAL FAMILY DISTRIBUTION 171

This means {
λ1 ← λ1 +

∑n
i=1 T (xi)

λ2 ← λ2 + n
(D.25)

after observing x1, · · · , xn.

D.3.1 Binomial distribution as an exponential family distribution

For a fixed n, the binomial distribution can be expressed in the exponential family form as:

f(x|η) = f(x|p) =
(
n

x

)
px(1− p)n−x (D.26)

=

(
n

x

)
︸︷︷︸
g(x)

exp

 x︸︷︷︸
T (x)

log
(

p

1− p

)
︸ ︷︷ ︸

η

−n log
(

1

1− p

)
︸ ︷︷ ︸

A(η)

 (D.27)

Recall that the Beta distribution serves as a conjugate prior for the binomial distribution, and we
can write:

f(p|α, β) = pα−1(1− p)β−1

B(α, β)
(D.28)

=
1

B(α, β)
exp ((α− 1) log(p) + (β − 1) log(1− p)) (D.29)

=
1

B(α, β)
exp

α− 1︸ ︷︷ ︸
λ1

log
(

p

1− p

)
︸ ︷︷ ︸

η

− (α+ β − 2)︸ ︷︷ ︸
λ2

n log
(

1

1− p

)
︸ ︷︷ ︸

A(η)

 (D.30)

From the earlier discussion in (D.25), we update the parameters as follows: λ1 ← λ1 + T (x)⇒
α ← α + x and λ2 ← λ2 + 1 ⇒ α + β ← α + β + n. Combining the two, we have α → α + x and
β → β + n− x, as discussed in Section 2.6.2.

Remark 3. Although there are n physical observations in the setup, we can consider that we only
need to report once after the observations with the sufficient statistics k. Therefore λ2 is added by
one above.

172APPENDIX D. EXPONENTIAL FAMILY DISTRIBUTIONS AND THEIR CONJUGATE PRIORS

D.3.2 Conjugate prior of unit variance Gaussian distribution

Considering the unit variance Gaussian with mean η and PDF

p(x|η) = 1√
2π

exp(−(x− η)2/2) (D.31)

=
exp(−x2/2)√

2π︸ ︷︷ ︸
g(x)

exp(η x︸︷︷︸
T (x)

− η2/2︸︷︷︸
A(η)

). (D.32)

Thus, the conjugate prior should have the form

p(η|λ) = p(η|λ) = g̃(η) exp(λ1η − λ2A(η)− Ã(λ1, λ2)) (D.33)
= g̃(η) exp(λ1η − λ2η2/2− Ã(λ1, λ2)), (D.34)

which is just Gaussian distribution if we pick g̃(η) = 1. By inspection, we can write

p(η|λ) = ˜exp(λ1η − λ2η2/2− Ã(λ1, λ2)) (D.35)

= exp

(
−λ2

2

(
η − λ1

λ2

)2

+
λ21
2λ2
− Ã(λ1, λ2)

)
(D.36)

=

√
λ2
2π

exp

(
−λ2

2

(
η − λ1

λ2

)2
)

(D.37)

=
1√
2πσ2

η

exp

(
− (η − µη)2

2σ2
η

)
(D.38)

with µη = λ1

λ2
and σ2

η = 1
λ2

. This gives us λ1 =
µη

σ2
η

and λ2 = 1
σ2
η
.

Now, given n observations x1, x2, · · · , xn, λ1 and λ2 will update to λ1+
∑n
i=1 T (xi) and λ2+n.

This gives us
µη ←

λ1+
∑

i=1 T (xi)

λ2+n
=

µη

σ2
η
+
∑n

i=1 xi

1
σ2
η
+n

σ2
η ← 1

λ2+n
= 1

1
σ2
η
+n

(D.39)

Remark 4. It’s crucial not to confuse σ2
η, the variance of the prior on the mean, with the variance

of the observation, which is set to 1. Although µ of the observation is a random variable with mean
µη = λ1/λ2, the variance σ2

η decreases as more observations are made, as expected.

Remark 5. Considering precision (inverse variance) rather than variance, the update equations
presented in (D.39) become more intuitive. Specifically, the updated precision is the sum of the
prior precision 1/σ2

η and the total precision of the observations, n. The updated mean, then, is
a weighted average of the prior mean and the sample mean, with weights proportional to their
respective precisions.

D.4. EXERCISE 173

D.4 Exercise
1. Verify that ∂2A(η)

∂ηj∂ηi
= Cov[Ti(X), Tj(X)] as shown in (??).

174APPENDIX D. EXPONENTIAL FAMILY DISTRIBUTIONS AND THEIR CONJUGATE PRIORS

Information theory and probabilistic inference Samuel Cheng

Bibliography

[1] I.H. Witten, R.M. Neal, and J.G. Cleary. Arithmetic coding for data compression. Comm ACM,
30(6):520–540, June 1987.

Page 175 of 177

176 BIBLIOGRAPHY

Information theory and probabilistic inference Samuel Cheng

Index

BP belief propagation 103, 108, 110, 112–114, 116–120, 122, 126, 129, 132
Gaussian BP Gaussian belief propagation 103, 127, 128, 130, 132

covariance 124, 125, 127, 130, 131

Gaussian distribution 123–126, 130
multivariate Gaussian 5, 124, 128

canonical form 124–127, 130, 132
moment form 124–127, 130

graphical model 5, 103, 106–108, 110, 112
BN Bayesian network 103–107, 109–112, 114

moralization 110–112
factor graph 108, 110, 112, 114–116, 120, 129
Markov equivalence 104, 105
undirected graph 108–112, 114, 115

Kalman filter 103, 124, 126, 129, 130
KL-diverence Kullback-Leiber divergence 4, 64, 65, 67, 68, 73, 74, 119

Page 177 of 177

