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@ Learn some basic information theory (what is it? how is it useful?)
e Understand basic terminology: what is entropy all about?
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About this course

@ Learn some basic information theory (what is it? how is it useful?)
o Understand basic terminology: what is entropy all about?

@ Statistical inference
o Bayesian and Monte Carlo techniques

@ Introduction of probabilistic programming
e Solve inference problems with programming

Q Get better understanding of probability
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What is information theory?

@ Study of “information” using probability
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Lecture 1: Overview and Overview of Information Theory

What is information theo

@ Study of “information” using probability

@ Can be treated as a subfield of applied probability

@ But it has a huge impact to communications and information science
o The theoretical basis of the entire telecom industry is built on top of that
e Study of extreme cases. What is possible and what is not?

Data transmission
limit

Data compression
limit

min /(X; X) max I(X; Y)

FIGURE 1.2. Information theory as the extreme points of communication theory.

(From Cover and Thomas)
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Connection to other fields

Information
Theory

Portfolio Theory
Kelly Gambiing

FIGURE 1.1. Relationship of information theory to other fields.

(From Cover and Thomas)
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Lecture 1: Overview and review of probabilities Overview of Information Theory

Shannon's paper

@ A majority of the ideas are nicely included in Claude Shannon’s seminal paper “A Mathematical
Theory of Communication” in the Bell System Technical Journal in July and October 1948
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Shannon's paper

@ A majority of the ideas are nicely included in Claude Shannon’s seminal paper “A Mathematical
Theory of Communication” in the Bell System Technical Journal in July and October 1948

o There he introduced the idea of an information measure (entropy) to quantify the amount of
“information” in a source

o Introduced the term “bit" (concept of bits dated way back to at least to the 1800 century though) as a
unit for the measure

@ As a consequence, it is impossible to compress a source to a size smaller than its entropy and yet recover
it losslessly

o Argue that there is a (capacity) limit of lossless communication under a noisy channel and
theoretically we can have lossless communications as long as smaller than the capacity

o Give the capacity of Gaussian channel as an example
@ Some similar ideas were explored earlier in Bell Labs by Harry Nyquist and Ralph Hartley. But
those results are limited to events with equal probability
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What is “information” in information theory

o Consider a probabilistic event with uncertain outcomes. Information is the knowledge of the final
outcome
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o Consider a probabilistic event with uncertain outcomes. Information is the knowledge of the final
outcome

@ The amount of information can be considered as the “knowledge” gained you have knowing that
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H(X) =Y p() H(X =x)

info revealed when X =z

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 17, 2024



Lecture 1: Overview and of probabilit Overview of Inft on Theory

What is “information” in information theo

o Consider a probabilistic event with uncertain outcomes. Information is the knowledge of the final
outcome

@ The amount of information can be considered as the “knowledge” gained you have knowing that
piece of information
o More information if the outcomes of the event are less predictable
e Entropy is a measure of uncertainty

@ A Preview:
H(X) =Y p() H(X =uz)
xT
info revealed when X =z

A good guess for H(X = x) : log ﬁ
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Computer scientists’ treatment

e Kolmogorov complexity (algorithm information theory): quantify a piece of information as the size
of smallest program describing it
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Computer scientists’ treatment

e Kolmogorov complexity (algorithm information theory): quantify a piece of information as the size
of smallest program describing it

@ Nice philosophically but doesn't go much anywhere

o We will take the probabilistic view (electrical/communication engineers treatment here) to quantify
information theory who usually study with Bayesian models

October 17, 2024 7
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Overview of Information Theory

Neumann-S

When Shannon discovered this function he was faced with the need to name it, for it occurred quite
often in the theory of communication he was developing. He considered naming it “information” but
felt that this word had unfortunate popular interpretations that would interfere with his intended uses of
it in the new theory. He was inclined towards naming it “uncertainty” and discussed the matter with the
late John Von Neumann. Von Neumann suggested that the function ought to be called “entropy” since
it was already in use in some treatises on statistical thermodynamics (e.g. ref. 12). Von Neumann,
Shannon reports, suggested that there were two good reasons for calling the function “entropy”. "It is
already in use under that name,” he is reported to have said, "and besides, it will give you a great edge
in debates because nobody really knows what entropy is anyway.” Shannon called the function “entropy”
and used it as a measure of “uncertainty,” interchanging the two words in his writings without
discrimination.

—From wikipedia
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Lecture 1: Overview and review of probabilities Overview of Information Theory

Limitations of Information Theory

Based on probability, so it requires knowledge of the entire distribution.

Quantifying information can be subjective depending on the observer.

Limited to what can be described with probability theory.

Does not account for the complexity of a solution.

Example: Information theory is not useful for quantifying the complexity of the value of .
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Summary

Information theory focuses on quantifying and transmitting information effectively.
Entropy is a key measure of information.
Information theory has limitations, particularly in dealing with complexity and subjectivity.

The next chapter will review probability from an applied standpoint, essential for understanding
entropy.
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Probability model

A probability model is used to model uncertain event that can have non-deterministic outcomes
A probability model can have finite or infinite number of outcomes and even continuous outcomes
We call the “undetermine” random variable, short for r.v.

The probability of an outcome is the relative chance of getting that outcome

e For outcome a, we may denote as Pr(X = a) or px(a) or even p(a) when it is understood that we
are considering variable X
e 0<p(a)<1

The set of all outcomes are known as the sample space

A subset of the sample space is known as a probability event

We often denote a r.v. using upper case (such as X) and its realization (what was actually
observed) using lower case (such as x)
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Some probability properties

@ Probability mass function (pmf) for discrete random variable (r.v.) X
o p(z) >0
o p(x) <1

o > plx)=1
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Some probability properties

@ Probability mass function (pmf) for discrete random variable (r.v.) X
o p(z) >0
o p(z) <1
o > plx)=1
@ Probability density function (pdf) for continuous r.v. X
o p(z) >0

o p(x) can be larger than 1
o Pr(a< X <b)= f:p(x) (Area between p(z) and z-axis)
° fz p(z)=1
Marginalization: Y p(z,y) = p(y)
e Conditional probability (Bayes' rule): p(z|y) = pz(f(cg’f)’)

o N.B. > p(zly) =1but 3 p(zly) #1
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Some probability properties

@ Probability mass function (pmf) for discrete random variable (r.v.) X
o p(z) >0
o p(z) <1
o > plx)=1
Probability density function (pdf) for continuous r.v. X
p(z) =20
p(x) can be larger than 1
Pr(a< X <b)= f:p(x) (Area between p(z) and z-axis)
[ p(x) =1
Marginalization: Y p(z,y) = p(y)
e Conditional probability (Bayes' rule): p(z|y) = pz(f(cg’f)’)
o N.B. >°, p(xly) =1 but 3° p(aly) #1

Chain rule: p(z,y,2) = p(z)p(y|z)p(z|z, y)

RHS = p(«)p(yle)p(zle, y) = p(a) KL EEL2) — p(z,y, 2) = LHS
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Probabilities and counting

@ Six students A, B, C, D, E, F randomly lined up in a row, what is the probability that the order is
exactly ABCDEF?

@ Six students randomly assigned into two teams (black and white), what is the probability that
A,B,C assigned to Team Black and the rest assigned to Team White?
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Number of ways to draw 3 students out of 6 students

ABC DEF
3! ¢ ABC
ABC FED
6! < 3!
CBA DEF
3¢ CBA
CBA FED

6! of total number of ordered sequences. But 3! - 3! overcounting for each combination. So the total

number of ways = 55 = (5). In general,
n\ n
r)  rl(n—r)

313!
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Lecture 1: Overview and review of probabilities Review of probabilities

Example: Two jars

@ Both Jars A and B have 4 balls
e Jar A has 1 white and 3 black
e Jar B has 2 white and 2 black
@ Let's draw balls from the jars multiple times. And put the drawn ball back after each draw.
Can you answer the following?

o What is the probability of get a white ball from Jar A?

e What is the probability of getting 3 whites after 6 drawings?

e If someone randomly pick a jar to draw from and get 3 whites after 6 drawing, what is the probability
that he drew from Jar A?
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Lecture 1: Overview and review of probabilities Review of probabilities

Bayes rule

@ Both Jars A and B have 4 balls
e Jar A has 1 white and 3 black
e Jar B has 2 white and 2 black
@ Say probability of picking Jar A, Pr(Jar = A) =0.5
e What is the probability of picking from Jar A and getting a white ball Pr(Jar = A, Ball = white)?
o What is Pr(Ball = white|Jar = A)?
o What is Pr(Jar = A|Ball = white)?
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Expectation

Recall that p(z) as the distribution of a r.v. X
The expected value of X is E[X] £ z-p(x)
In general, the expected value of a function f(-) of X is E[f(X)] £, f(z) - p(x)

Examples

o E[X] is just the mean of X, often denote as X
o The variance of X is E[(X — X)?
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Lecture 1: Overview and review of probabilities Review of probabilities

nce and conditional independence

o Independence: p(z,y) = p(z)p(y), X LY
o By chain rule, p(z,y) = p(z)p(y|z). Therefore the condition implies that p(y|z) = p(y). In other
words, no matter what value X takes, the probability of Y given X is not going to change. So
reasonably, they are independent
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nce and conditional independence

o Independence: p(z,y) = p(z)p(y), X LY
o By chain rule, p(z,y) = p(z)p(y|z). Therefore the condition implies that p(y|z) = p(y). In other
words, no matter what value X takes, the probability of Y given X is not going to change. So
reasonably, they are independent
@ Markov property and conditional independence: p(z,y|z) = p(z|2)p(y|z), X LY|Z, X < Z <Y
e Similar to independence, by chain rule, we have p(z,y|z) = p(z|z)p(y|z, z). Along with the above
condition, p(y|x, z) = p(y|z). Thus given Z, it does not matter what X supposed to be, the
probability of given both variables will not depend on X. Hence, X and Y are conditionally
independent given Z

o Caveat: independence and conditional independence are two “independent concepts”, we can have
both satisfied, none of them satisfied, or one of them satisfied. A common mistake is to think that
independence leads to conditional independence or vice versa. But that is WRONG
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nce but not conditional independence

Consider flipping two coins with outcomes store as X and Y/, say 1 represents a head and O represents a
tail
@ In general the two outcomes should be independent (maybe unless if you are some
professional /magical gambler), so we have X 1LY
o Now, let Z =X @Y, where @ is the exclusive or operation (1®0=0®1=1 and
181=040=0)

e Eventhough X LY, X L Y|Z
o Actually given Z, X “depends” very much on Y since from X =Y & Z, we can find out X precisely

given Y
e We can also check the condition X | Y|Z by comparing the probability p(z|z,y) with p(z|z)

o For example, px|z(0/0) = 0.5 # 1 = px|z,y(0/0,0). Thus X L Y|Z cannot be true
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Lecture 1: Overview and review of probabilities

Review of probabilities

p(zly, z) # p(z|2)

p(x,y,2):
Z=0
X
v 1| o0
1 025 0
0 [025
p(zly, 2):
Z=0
X
v 1{0
1 1
0 01

Z =1

X
v 1 0
1 0 0.25
0 0.25 0

Z =1

X
v 110
1 1
0 110

For px|v,z(z|y, z) = px|y (z|y), we need to have px |y z(z|y,0) = px|y,z(x|y,1). The color rows (red

and blue) should be the same!

S. Cheng (OU-ECE)

Information Theory and Probabilistic Programming
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Conditional independence but not independence

1 with prob ¢
0 with prob1—gq

Let's consider a binary X = {

oY1 =X&Z; and Y5 = X ® Z5 are two noisy observation with Z; and Z5 are independent binary

. . 1 with prob p
noise with )
0 with prob1—p

Since Y7 and Y5 are independent observations of X, we expect Y7 Il Y5|X
On the other hand, Y7 X Y5 (actually, they should be very correlated for small p)
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Lecture 1: Overview and review of probabilities Review of probabilities

1 (1—qp? 1-q—pp| |1 q(1—p)* [ qp(1 —p)
0 1-q¢Q-pp | A-—q@1—-p)? 0 qp(1 —p) qp?
Pyl @) = BB
Y, Y,
V. 1] 0 V. 1 |0
1 p|1l—p 1 1-p|p
0 pl1l-—p 0 1-p|p

Note that both rows in each table are the same. This means that p(yz2|y1, ) = p(y=|z), and thus
V1L Y| X.

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 17, 2024



Lecture 1: Overview and review of probabilities Review of probabilities

On the other hand, let's tabulate the joint probability p(y1,y2) as follows:

Y,
v, 1 0
1 (1—q)p? +q(1 —p)? (1-q)(1—p)p+qp(l —p)
(1-q)@ —p)p+qp(1 —p) 1-90-p*+p’
py; (1) = (1 —q)p+q(1 —p),py,(0) = (1 — q)(1 — p) + gp. Thus, p(y2|y1) is given by
v \& 1 0
1
1 (1—q@)p>+q(1—p)? (1-=¢)(1—p)p+ap(1—p)
(1—q)p+q(1—p) (1—qg)p+q(1—p)
0 (1—¢)(1—p)p+qp(1—p) (1-¢)(1-p)>+qp>
(1-¢)(1—p)+gp (1-q¢)(1—p)+gp

If Y1 L Y2, py, |y, (¥2]1) = pyva|yv; (¥2]0) = py, (y2). But the two rows are not the same in general.
Therefore, Y1 L Y5
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Lecture 1: Overview and review of probabilities Review of probabilities

A digression: Naive Bayes Algorithm

@ Naive Bayes is a simple machine learning algorithm to classify an object with its features
@ Basically, we are simply assuming the features are conditionally independent given the object class

@ Say if O is the object that ¢(O) is the corresponding class (can be ¢1,co,---). And say
f1(0), f2(0), -+, fk(O) are K features of the object
o For simplicity, let's rewrite ¢(O) as C and f;(O) as F;. But it is important to realize that the
“randomness” of ¢(0), f;(O) is originated from O

p(c7f17”' ﬁfK) _ p(C)p(f1,-~- ’fK‘c)

plelfi, -, fx) = 21 ) = 2(frs o fr) Bayes' rule
= p(C)Z((‘;‘il’C)’;I((];K‘C) Assume F; I F;|C

= p(o)p(file) - - p(fxe) If also assume F; 1L F;
p(f1) - p(fx) Y
p(file)  p(fxlo)

p(f1) p(fK)

=p(c)
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Lecture 1: Overview and review of probabilities Review of probabilities

A digression: Naive Bayes Algorithm

@ In most classification problem, we are interested to compute the most likely class. So we really will
go through all possible ¢y, co, -+ for p(c|f1, -, fK)

o Rather than assuming both F; L F;|C and F; 1L Fj, the latter really is not necessary as we can

write
__ pe)p(file) - p(fxlc)
> ple)p(file) - - p(ficlei)
Actually if we only care about which is the most likely class, we can even skip computing the
denominator as it is a constant w.r.t. ¢

p(C|f1,"' 7fK)

@ You can find a numerical example here

o N.B. the author assumes independence of the features in his explanation but the condition is not
necessary as noted above
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https://www.machinelearningplus.com/predictive-modeling/how-naive-bayes-algorithm-works-with-example-and-full-code/

Lecture 1: Overview and review of probabilities Review of probabilities

Example: Monty Hall problem

In a game show, there are three doors, with one prize hidden behind one of them.

A player is asked to choose one of the doors.
The game host, who knows which door has the prize, will open one of the other two doors,
revealing that there is no prize behind it.

The player is then given the option to either switch to the remaining unopened door or stay with
their original choice. Should the player switch to the new door or stick with the original pick?
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Lecture 1: Overview and review of probabilities Review of probabilities

Example: (Another) prisoner dilemma

@ Three prisoners, A, B, and C, all with apparently equally good records, have applied for parole.
The parole board has decided to release two of the three, but the prisoners do not know which two.

@ A warder who is a friend of prisoner A knows which prisoners will be released. Prisoner A realizes
that it would be unethical to ask the warder if he, A, is to be released, but he considers asking for
the name of one prisoner other than himself who is to be released.

@ Prisoner A believes that before he asks, his chances of being released are 2/3. He thinks that if the
warder says “B will be released,” his own chances will drop to 1/2, since either A and B or B and
C will be released. Therefore, A decides not to reduce his chances by asking.

@ Is A’s reasoning correct? Explain.
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Lecture 1: Overview and review of probabilities Review of probabilities

Equivalence of Monty Hall and prisoner dilemma

Let's formulate the prisoner dilemma as a Monty Hall problem

@ Take prisoners as doors, and the prisoner that left behind is the present (so lucky to have a longer
vacation)

@ And Prisoner A is the guest-chosen door
@ One other to-be-released prisoner (no-prize door) other than A is disclosed

@ The probability of the remaining prisoner to stay behind = the probability of the remaining
unopened door to have prize
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Lecture 1: Overview and review of probabilities Review of probabilities

Epilogue: an engineer (dummy) approach to solve probability problems

@ Introduce helper variables if needed
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Epilogue: an engineer (dummy) approach to solve probability problems

@ Introduce helper variables if needed

@ Identify distributions and conditions (independence, conditional independence, variable relationship)
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Lecture 1: Overview and review of probabilities Review of probabilities

Epilogue: an engineer (dummy) approach to solve probability problems

@ Introduce helper variables if needed

@ Identify distributions and conditions (independence, conditional independence, variable relationship)
@ Identify (conditional) probability to address the question
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Lecture 1: Overview and review of probabilities Review of probabilities

Epilogue: an engineer (dummy) approach to solve probability problems

@ Introduce helper variables if needed

@ Identify distributions and conditions (independence, conditional independence, variable relationship)
@ Identify (conditional) probability to address the question

@ Insert dummy variables to probability to leverage conditional independence by marginalization
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Lecture 1: Overview and review of probabilities Review of probabilities

Epilogue: an engineer (dummy) approach to solve probability problems

@ Introduce helper variables if needed

@ Identify distributions and conditions (independence, conditional independence, variable relationship)
@ Identify (conditional) probability to address the question

@ Insert dummy variables to probability to leverage conditional independence by marginalization

© Expand probabilities into (conditional) probabilities and evaluate them
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Lecture 1: Overview and review of probabilities Review of probabilities

Epilogue: an engineer (dummy) approach to solve probability problems

@ Introduce helper variables if needed

@ Identify distributions and conditions (independence, conditional independence, variable relationship)
@ Identify (conditional) probability to address the question

@ Insert dummy variables to probability to leverage conditional independence by marginalization

© Expand probabilities into (conditional) probabilities and evaluate them

@ Compute sum/integral

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 17, 2024

29



Lecture 1: Overview and review of probabiliti Review of probabilities

Example: Monty Hall problem

Below | will use shorthand like P1, G2, H3 to refer to the case of prize at Door 1, guest picking Door 2, and host open
Door 3
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Lecture 1: Overview and review of probabilities Review of probabilities

Example: Monty Hall problem

Below | will use shorthand like P1, G2, H3 to refer to the case of prize at Door 1, guest picking Door 2, and host open
Door 3

@ Introduce helper variables if needed
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Lecture 1: Overview and review of probabilities Review of probabilities

Example: Monty Hall problem

Below | will use shorthand like P1, G2, H3 to refer to the case of prize at Door 1, guest picking Door 2, and host open
Door 3

@ Introduce helper variables if needed

@ Let's denote O as the other door both guest and host did not pick
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Lecture 1: Overview and review of probabilities Review of probabilities

Example: Monty Hall problem

Below | will use shorthand like P1, G2, H3 to refer to the case of prize at Door 1, guest picking Door 2, and host open
Door 3

@ Introduce helper variables if needed
@ Let's denote O as the other door both guest and host did not pick

@ Identify distributions and condition
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Lecture 1: Overview and review of probabilities Review of probabilities

Example: Monty Hall problem

Below | will use shorthand like P1, G2, H3 to refer to the case of prize at Door 1, guest picking Door 2, and host open

Door 3
@ Introduce helper variables if needed
@ Let's denote O as the other door both guest and host did not pick
@ Identify distributions and condition

e P1 G,0={1,2,3}\{G,H},p(G) = p(H) = %, etc.

1
3

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming

October 17, 2024

30


https://en.wikipedia.org/wiki/Monty_Hall_problem

Lecture 1: Overview and review of probabilities Review of probabilities

Example: Monty Hall problem

Below | will use shorthand like P1, G2, H3 to refer to the case of prize at Door 1, guest picking Door 2, and host open

Door 3
@ Introduce helper variables if needed
@ Let's denote O as the other door both guest and host did not pick
@ Identify distributions and condition
o P1LG,0={1,23}\{G, H},p(G) =p(H) = %, etc.
© |Identify (conditional) probability to address the question
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Lecture 1: Overview and review of probabilities Review of probabilities

Example: Monty Hall problem

Below | will use shorthand like P1, G2, H3 to refer to the case of prize at Door 1, guest picking Door 2, and host open
Door 3

@ Introduce helper variables if needed

@ Let's denote O as the other door both guest and host did not pick
@ Identify distributions and condition

o P1LG,0={1,23}\{G, H},p(G) =p(H) = %, etc.
© |Identify (conditional) probability to address the question

o Pr(Win|switch) = Pr(O = P) = 3=, p(Os|P;)p(Fi) = p(O1|P1)
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Lecture 1: Overview and review of probabilities Review of probabilities

Example: Monty Hall problem

Below | will use shorthand like P1, G2, H3 to refer to the case of prize at Door 1, guest picking Door 2, and host open
Door 3

@ Introduce helper variables if needed

@ Let's denote O as the other door both guest and host did not pick
@ Identify distributions and condition

o P1LG,0={1,23}\{G, H},p(G) =p(H) = %, etc.
© |Identify (conditional) probability to address the question

o Pr(Win|switch) = Pr(O = P) = 3=, p(Os|P;)p(Fi) = p(O1|P1)

@ Insert dummy variables to probability by marginalization
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Lecture 1: Overview and review of probabilities Review of probabilities

Example: Monty Hall problem

Below | will use shorthand like P1, G2, H3 to refer to the case of prize at Door 1, guest picking Door 2, and host open
Door 3

@ Introduce helper variables if needed

@ Let's denote O as the other door both guest and host did not pick
@ Identify distributions and condition

o P1LG,0={1,23}\{G, H},p(G) =p(H) = %, etc.
© |Identify (conditional) probability to address the question

o Pr(Win|switch) = Pr(O = P) = 3=, p(Os|P;)p(Fi) = p(O1|P1)
© Insert dummy variables to probability by marginalization

o p(O1|P1) =3, ;p(O1, Gy, Hj| P1)
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Example: Monty Hall problem

Below | will use shorthand like P1, G2, H3 to refer to the case of prize at Door 1, guest picking Door 2, and host open
Door 3

@ Introduce helper variables if needed

@ Let's denote O as the other door both guest and host did not pick
@ Identify distributions and condition

o P1LG,0={1,23}\{G, H},p(G) =p(H) = %, etc.
© |Identify (conditional) probability to address the question

o Pr(Win|switch) = Pr(O = P) = 3=, p(Os|P;)p(Fi) = p(O1|P1)
© Insert dummy variables to probability by marginalization

o p(O1|P1) =3, ;p(O1, Gy, Hj| P1)

© Expand probabilities into (conditional) probabilities and evaluate them
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Lecture 1: Overview and review of probabilities Review of probal

Example: Monty Hall problem

Below | will use shorthand like P1, G2, H3 to refer to the case of prize at Door 1, guest picking Door 2, and host open
Door 3

@ Introduce helper variables if needed

@ Let's denote O as the other door both guest and host did not pick
@ Identify distributions and condition

o P1LG,0={1,23}\{G, H},p(G) =p(H) = %, etc.
© |Identify (conditional) probability to address the question

o Pr(Win|switch) = Pr(O = P) = 3=, p(Os|P;)p(Fi) = p(O1|P1)
© Insert dummy variables to probability by marginalization

o p(O1|P1) =3, ;p(O1, Gy, Hj| P1)

© Expand probabilities into (conditional) probabilities and evaluate them

@ p(O1|P1) =3 j p(G;|P1)p(H ;| Py, G)p(O1|G;, Hyj, P1)
=p(G1)(p(H1|G1 P1)p(O1|1G1 Hy P1) + p(H3 |G P1)p(011G1 Ha Py) + p(H3|Gy P1)p(011G1 H3 P1))
+p(G2)(p(H1|G2P1)p(O1|GoH P1) + p(Ha|GoP1)p(O1|GoHoPy) + p(Hg |G P1)p(O1|GoH3z Py))
+p(G3)(p(H1|G3P1)p(O1|G3H P1) + p(H2|G3P1)p(O1|G3HoPy) + p(Hz|G3P1)p(O1|G3H3Py))
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Lecture 1: Overview and review of probabilities Review of probal

Example: Monty Hall problem

Below | will use shorthand like P1, G2, H3 to refer to the case of prize at Door 1, guest picking Door 2, and host open
Door 3

@ Introduce helper variables if needed

@ Let's denote O as the other door both guest and host did not pick
@ Identify distributions and condition

o P1LG,0={1,23}\{G, H},p(G) =p(H) = %, etc.
© |Identify (conditional) probability to address the question

o Pr(Win|switch) = Pr(O = P) = 3=, p(Os|P;)p(Fi) = p(O1|P1)
© Insert dummy variables to probability by marginalization

o p(O1|P1) =3, ;p(O1, Gy, Hj| P1)

© Expand probabilities into (conditional) probabilities and evaluate them

@ p(O1|P1) =3 j p(G;|P1)p(H ;| Py, G)p(O1|G;, Hyj, P1)
=p(G1)(p(H1|G1 P1)p(O1|1G1 Hy P1) + p(H3 |G P1)p(011G1 Ha Py) + p(H3|Gy P1)p(011G1 H3 P1))
+p(G2)(p(H1|G2P1)p(O1|GoH P1) + p(Ha|GoP1)p(O1|GoHoPy) + p(Hg |G P1)p(O1|GoH3z Py))
+p(G3)(p(H1|G3P1)p(O1|G3H P1) + p(H2|G3P1)p(O1|G3HoPy) + p(Hz|G3P1)p(O1|G3H3Py))

@ Compute sum/integral
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Lecture 1: Overview and review of probabilities Review of probabilities

Example: Monty Hall problem

Below | will use shorthand like P1, G2, H3 to refer to the case of prize at Door 1, guest picking Door 2, and host open
Door 3

@ Introduce helper variables if needed

@ Let's denote O as the other door both guest and host did not pick
@ Identify distributions and condition

o P1LG,0={1,23}\{G, H},p(G) =p(H) = %, etc.
© |Identify (conditional) probability to address the question

o Pr(Win|switch) = Pr(O = P) = 3=, p(Os|P;)p(Fi) = p(O1|P1)
© Insert dummy variables to probability by marginalization

o p(O1|P1) =3, ;p(O1, Gy, Hj| P1)

© Expand probabilities into (conditional) probabilities and evaluate them
@ p(O1|P1) =3 j p(G;|P1)p(H ;| Py, G)p(O1|G;, Hyj, P1)
=p(G)(p(H1|G1 P)p(O11G1H1 P1) + p(H2 |Gy P1)p(O1|G1HaPy) + p(H3|G1 P1)p(O11G1 Hg P1))
+p(G2)(p(H1|G2P1)p(O1|GoH P1) + p(Ha|GoP1)p(O1|GoHoPy) + p(Hg |G P1)p(O1|GoH3z Py))
+p(G3)(p(H1|G3P1)p(O1|G3H P1) + p(H2|G3P1)p(O1|G3HoPy) + p(Hz|G3P1)p(O1|G3H3Py))

@ Compute sum/integral

@ p(O1|P1) = p(G2)p(Hg|G2P1)p(O1|GoH3 P1) + p(G3)p(H2|G3P1)p(O1|G3HaPy) = % S1-1+ % 1e1= %

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 17, 2024


https://en.wikipedia.org/wiki/Monty_Hall_problem

Lecture 1: Overview and review of probabilities Review of probabilities

Epilogue: an engineer (dummy) approach to solve probability problems

Our dummy approach can solve virtually solve any probability problems, but
o Identify what variables to introduced may need some experience

@ Can solve any problem with only discrete variables, but if there are too many variables, hand
calculation not feasible
= probabilistic programming

@ If continuous variables are involved, the last step may involve intractable integral
= probabilistic programming
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Lecture 1: Overview and review of probabilities Introduction to Monte Carlo

te Carlo approach

@ Our dummy approach involves some understanding of the problem
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@ An even dummier approach is by simulation and counting (require even less understanding)
= Monte Carlo
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Lecture 1: Overview and review of probabilities Introduction to Monte Carlo

Monte Carlo approach

@ Our dummy approach involves some understanding of the problem
@ An even dummier approach is by simulation and counting (require even less understanding)
= Monte Carlo
o Take Monte Hall as example again
o Simulate the game many many times (say 10,000 times)
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Monte Carlo approach

@ Our dummy approach involves some understanding of the problem

@ An even dummier approach is by simulation and counting (require even less understanding)
= Monte Carlo

o Take Monte Hall as example again

o Simulate the game many many times (say 10,000 times)
o Stick to one strategy, always switch or always stay put
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Monte Carlo approach

@ Our dummy approach involves some understanding of the problem

@ An even dummier approach is by simulation and counting (require even less understanding)
= Monte Carlo

o Take Monte Hall as example again

o Simulate the game many many times (say 10,000 times)
o Stick to one strategy, always switch or always stay put
e Count number of winning
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Monte Carlo approach

@ Our dummy approach involves some understanding of the problem

@ An even dummier approach is by simulation and counting (require even less understanding)
= Monte Carlo

o Take Monte Hall as example again

o Simulate the game many many times (say 10,000 times)
o Stick to one strategy, always switch or always stay put
e Count number of winning

o Estimate winning probability = # wins / 10,000
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Lecture 1: Overview and review of probabilities Introduction to Monte Carlo

Monte Carlo approach

@ Our dummy approach involves some understanding of the problem

@ An even dummier approach is by simulation and counting (require even less understanding)
= Monte Carlo

o Take Monte Hall as example again

Simulate the game many many times (say 10,000 times)

Stick to one strategy, always switch or always stay put

Count number of winning

Estimate winning probability = # wins / 10,000

@ Of course the computed probability won't be exact
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Lecture 1: Overview and review of probabilities Introduction to Monte Carlo

Monte Carlo approach

@ Our dummy approach involves some understanding of the problem
@ An even dummier approach is by simulation and counting (require even less understanding)
= Monte Carlo
o Take Monte Hall as example again
o Simulate the game many many times (say 10,000 times)
o Stick to one strategy, always switch or always stay put
e Count number of winning
o Estimate winning probability = # wins / 10,000
@ Of course the computed probability won't be exact
o Probability estimate improves with # simulations
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Lecture 1: Overview and review of probabilities Introduction to Monte Carlo

Monte Carlo approach

@ Our dummy approach involves some understanding of the problem
@ An even dummier approach is by simulation and counting (require even less understanding)
= Monte Carlo
o Take Monte Hall as example again
o Simulate the game many many times (say 10,000 times)
o Stick to one strategy, always switch or always stay put
e Count number of winning
o Estimate winning probability = # wins / 10,000
@ Of course the computed probability won't be exact
o Probability estimate improves with # simulations
e Problem solved as long as we know how to simulate one time (if we don’t need exact probability)
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Lecture 1: Overview and review of probabilities Introduction to Monte Carlo

Monte Carlo approach

@ Our dummy approach involves some understanding of the problem

@ An even dummier approach is by simulation and counting (require even less understanding)
= Monte Carlo
o Take Monte Hall as example again
o Simulate the game many many times (say 10,000 times)
o Stick to one strategy, always switch or always stay put
e Count number of winning
o Estimate winning probability = # wins / 10,000
@ Of course the computed probability won't be exact
o Probability estimate improves with # simulations
e Problem solved as long as we know how to simulate one time (if we don’t need exact probability)
e Even simulation can be hard and computation can be an issue
= Markov Chain Monte Carlo (MCMC)
We will delay this to much later
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Lecture 1: Overview and review of probabilities Introduction to Monte Carlo

Monty Hall simulation

Algorithm 1 Simulate one game instance
1. P = randint(3)

G = randint(3)

H={0,1,2}\ {P,G}

if |[H| =2 then
H = H[randint(2)]

else
H = HJ[0]

end if

O NSO R W
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Lecture 1: Overview and review of probabilities Appendix

More formal treatment: probability space

@ More rigorously, a probability model is defined by the probability space composed of the triple
(2, F.p)
o (2 is the sample space containing all possible outcomes
e Fis a “o-field”, which is a collection of subsets (events) of Q
e p is the (non-negative) probability measure on elements of F
o E.g., probability model of unbiased dice
o O =1{1,2,3,4,5,6}
o F= {{1}7 {2}7 {3}7 {4}7 {5}v {6}7 {17 2}7 {17 3}7 R {17 2,3,4,5, 6}}

o p(S) is the probability of an event

p({1}) =»r({2}) = p({3}) = p({4}) = p({5}) = p({6}) = 1/6

p({17 27 3’ 47 57 6}) = 1

@ N.B. It could be confusing at first. Be careful that events # outcomes. An event is actually a set
of outcomes
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Lecture 1: Overview and review of probabilities Appendix

o-algebra

@ The purpose of o-field (aka o-algebra) is to impose restriction on what we can and cannot query
regarding probability
@ Namely, we can only measure the probability of something inside the o-field F (i.e., an event)
@ Formal definition of o-field:
e o-field has to satisfied the following: 1) containing empty set &, 2) closed under complement,
countable union, and countable intersection of its element
e Eg., let O =1{1,2,3,4}

Q {9,{1,2},{3,4},{1,2,3,4}} is a valid o-field
Q {o,{1},{1,2},{3,4},{1,2,3,4}} is NOT a valid o-field
o N.B., A complement, countable union, or countable intersection of €2 is call a Borel set

o &,{1},{1,2} are example of Borel sets (an event is a Borel set)
o Collection of all Borel sets forms a o-algebra (aka Borel (o-)algebra)
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Lecture 1: Overview and review of probabilities Appendix

Probability measure

@ Probability measure p is a measure. Along with F, the tuple (F,p) forms a measure space. For
P to be a valid probability measure, it has to satisfy the following
o Requirements to be a measure (in the context of measure theory):

Q p(2) =0
@ Countably additive: p(U;enAi) = 3 ;enP(Ai), Vi # §,AiNA; =@

e And since p is a probability measure, it also has to satisfy p(Q) =1

@ The above constraints are sometimes known as the axioms of probability theory
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Lecture 1: Overview and review of probabilities Appendix

Some properties of probability measure

From the axioms described in the last slides, one can show that probability measure has to satisfies the
following:

Q p(A%) =1-p(4)
Q p(A) <p(B)if AC B
@ Union bound: p(U;4;) < >, p(Ai)
e Proof hint: use 2) and induction
@ Inclusion-exclusion formula:
P(URy Ai) = 3000 p(Ai) = 30 p(As A + 37, s P(AT N A NAR) + -+ (=1)"Tp(Mi, Ay)

e Proof hint: show p(AU B) = p(A) + p(B) — p(AN B) and then use induction.
(p(AU B) = p(A) +p(B\ A) and p(B) = p(AN B) +p(B\ A)).
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Lecture 1: Overview and review of probabilities Appendix

Why so complex?

e Consider X a uniform random variable defined between [0, 1]

1 if X is rational

0 otherwise

@ Y is a random variable since X is random. It is reasonable to ask what is the probability that
Y = 1. From undergrad probability class,

PrY=1)= / dx =7
{=l|z€[0,1]nQ}

e The integral above is actually undefined according to undergrad calculus, where the integral is known
as a Riemann integral
o Instead, we have to incorporate the idea of “measure” (Lesbeque integral)

PrY =1)= / dp(z) =0
{z|z€[0,1]NQ}

o The Lesbeque integral above is 0 since the measure of {z|z € [0,1]NQ} =0

@ DefineY = {

October 17, 2024 38
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Lecture 1: Overview and review of probabilities Appendix

Some remarks on notation

@ In general, we can write

p() = [ dp(w)

Q/

- /Q F(X(w))dp()
X (w)dp(w X(w)dp= [ Xdp
X = [ xeipe) = [ X = |

o Note that p is the probability measure (often people use upper case P instead)
o People often omit w as above when context is clear

and

o Eg.,
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Lecture 2: ML, MAP, and Bayesian estimation
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Lecture 2: ML, MAP, and Bayesian estimation Introduction to probabilistic inference

Inference

0: Observed variable, 8: Parameter, x: Latent variable

Maximum Likelihood (ML)

& = arg max, p(x|), 0 = arg maxg p(o|6)

Maximum A Posteriori (MAP)

& = arg max, p(x|f), 8 = arg maxy p(6]0)

Bayesian

#= 5,03 p(al0)p(6lo)
0

p(zlo)

where p(6o) = 292G o p(o]0)p(6)
~—~

prior

S. Cheng (OU-ECE)
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Lecture 2: ML, MAP, and Bayesian estimation

Introduction to probabilistic inference

Coin Flip

C G,
(—..\\ ///""ﬂ{;\\
P(HIC)=0.1 PH|C)=05  P(H|C,) =09

Which coin will | use?

P(C)=1/3 P(C)=1/3 P(C))=1/3
Prior: Probability of a hypothesis
before we make any observations

(Slide credit: University of Washington CSE473)
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Lecture 2: ML, MAP, and Bayesian estimation

Introduction to probabilistic inference

Coin Flip

C G,
/—‘ \\ /’"&\
QW \

P(HIC)=0.1 P(H|C,)=05  P(H|C,) =09

Which coin will | use?

P(C)=1/3 P(C)=1/3 P(C)) =1/3
Uniform Prior:All hypothesis are equally likely
before we make any observations

(Slide credit: University of Washington CSE473)

S. Cheng (OU-ECE)

Information Theory and Probabilistic Programming

October 17, 2024



Lecture 2: ML, MAP, and Bayesian estimation Introduction to probabilistic inference

Experiment |: Heads
Which coin did | use?

PCIM=?  PCIH=2  PCIH)=?
D 3
pesl == HE ) = 3 P pe
C c, =

[

|P(H|C|) =0.1 P(H|C) =05 P(H|C,) = 0.9

|PiC } = 1/3] P(C) =173 P(Cy) =113
(Slide credit: University of Washington CSE473)
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S. Cheng (OU-ECE)

Lecture 2: ML, MAP, and Bayesian estimation Introduction to probabilistic inference

Experiment |: Heads

Which coin did | use?
P(C |H) = 0.066 P(C,JH) = 0333 P(C,H) =06

Posterior: Probability of a hypothesis given data

P(H|C,) = 0.1 P(H|C) =05 P(H|C3_) =0.9
P(C) =113 P(C) = 1/3 P(Cy) =113
(Slide credit: University of Washington CSE473)

Information Theory and Probabilistic Programming

October 17, 2024



S. Cheng (OU-ECE)

Lecture 2: ML, MAP, and Bayesian estimation Introduction to probabilistic inference

Experiment 2:Tails

Which coin did | use?
P(C,|HT) =? P(C,|HT) =? P(C,|HT) =2
P(C1|HT) = aP(HT|C1)P(C1) = aP(H|C1)P(T|C1)P(Ch)
C, o
P(HIC)=0.I  P(H|C)=05  P(H|C,) =09

P(C)=1/3 P(C)=1/3 P(C,) =1/3
(Slide credit: University of Washington CSE473)
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Lecture 2: ML, MAP, and Bayesian estimation Introduction to probabilistic inference

Experiment 2:Tails

Which coin did | use?
P(C,|HT) = 021 P(C,JHT)=0.58 P(C,JHT) =02

P(C1|HT) = aP(HT|C1)P(C1) = aP(H|C1)P(T|C1)P(Ch)

P(H|C)) = 0.1 P(H|C) =05
P(C)=1/3 P(C)=1/3 P(C)) =1/3
(Slide credit: University of Washington CSE473)
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S. Cheng (OU-ECE)

Lecture 2: ML, MAP, and Bayesian estimation Introduction to probabilistic inference

Experiment 2:Tails

Which coin did | use?
P(C,|HT) =021 P(C,JHT) = 0.58 P(C,|HT) = 0.2I

G,

P(H|C,) = 0.5
P(C,) = 1/3

(Slide credit: University of Washington CSE473)

Information Theory and Probabilistic Programming
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Lecture 2: ML, MAP, and Bayesian estimation Introduction to probabilistic inference

Your Estimate?

What is the probability of heads dfter two experiments?

Most likely coin: Best estimate for P(H)
| P(H|C,) = 0.5
G, -
P(H|C, = 0.5
P(C)=1/3

(Slide credit: University of Washington CSE473)
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Lecture 2: ML, MAP, and Bayesian estimation Introduction to probabilistic inference

Your Estimate?

Maximum Likelihood Estimate: The best hypothesis
that fits observed data assuming uniform prior

S. Cheng (OU-ECE)

Most likely coin: Best estimate for P(H)

P(HIC,)) =0.5

P(H|C,) = 0.5
P(C,) = 1/3

(Slide credit: University of Washington CSE473)

Information Theory and Probabilistic Programming

October 17, 2024



Introduction to probabilistic inference

Lecture 2: ML, MAP, and Bayesian estimation

Using Prior Knowledge

® Should we always use Uniform Prior?

® Background knowledge:
® Heads => you go first in Abalone against TA

® TAs are nice people
® =>TA is more likely to use a coin biased in

your favor

CI

SR

LW ‘

P(H|C)) = 0.1 P(H|C, = 0.5 P(H|C,) = 0.9
(Slide credit: University of Washington CSE473)
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S. Cheng (OU-ECE)

Lecture 2: ML, MAP, and Bayesian estimation Introduction to probabilistic inference

Using Prior Knowledge

We can encode it in the prior:

P(C,) =005  P(C)=025 P(C,) = 0.70
C3

P Y

P(H|C)) = 0.1 P(H|C) =05 P(H|C,) = 0.9
(Slide credit: University of Washington CSE473)

Information Theory and Probabilistic Programming
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S. Cheng (OU-ECE)

Lecture 2: ML, MAP, and Bayesian estimation Introduction to probabilistic inference

Experiment |: Heads

Which coin did | use?
PCH) =2 PCIH)=?  PCJH) =

P(C1|H) = aP(H|C1)P(Ch)

C

2

‘/“\_\ ."/,’- 2

P(HI&J.) =0.l P(H|C,) =05 P(H|C:)(= 0.9

P(C)=005  P(C,) =025 P(C,) =070 |

(Slide credit: University of Washington CSE473)

Information Theory and Probabilistic Programming
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Lecture 2: ML, MAP, and Bayesian estimation Introduction to probabilistic inference

Experiment |: Heads

Which coin did | use?
P(C,|H) = 0.006 P(C,JH)=0.165 P(C,H) = 0.829

ML posterior after Exp I:
P(C,|H) =0.066 P(C,|H) =0.333 P(C,|H) =0.600

_ -
P(HIC)=0.I P(H|C)=05  P(H|C,) =09
P(C)=005  P(C) =025 P(C,) = 0.70

(Slide credit: University of Washington CSE473)
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Lecture 2: ML, MAP, and Bayesian estimation Introduction to probabilistic inference

Experiment 2:Tails

Which coin did | use?
P(C[HT)=?  P(CJHT)=?  P(CJHT)=?

P(C1|HT) = aP(HT|C1)P(C1) = aP(H|C1)P(T|C1)P(Ch)

C, C,

G o

PHIC)=0.1 PH|C,)=05  P(H|C, =09

P(C,) = 0.05 P(C,) = 0.25 P(C,) = 0.70
(Slide credit: University of Washington CSE473)
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S. Cheng (OU-ECE)

Lecture 2: ML, MAP, and Bayesian estimation Introduction to probabilistic inference

Experiment 2:Tails
Which coin did | use?
P(C,|HT) = 0.035 P(C,|HT) = 0.481 P(C,|HT) = 0.485

P(C1|HT) = aP(HT|C1)P(Ch) = aP(H|C1)P(T|C1)P(Ch)

G,

A

X J % ‘u_:f/’
P(HIC)=0.  PH|C,) =05  P(H|C,) =09
P(C)=005  P(C,) =025 P(C,) = 0.70

(Slide credit: University of Washington CSE473)
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S. Cheng (OU-ECE)

Lecture 2: ML, MAP, and Bayesian estimation Introduction to probabilistic inference

Experiment 2:Tails

Which coin did | use?
P(C,|HT) = 0.035 P(C,|HT) = 0.481 P(C,|HT) = 0.485

P(HIC,) = 0.9
P(C,) = 0.70
(Slide credit: University of Washington CSE473)

Information Theory and Probabilistic Programming

October 17, 2024



Lecture 2: ML, MAP, and Bayesian estimation Introduction to probabilistic inference

Your Estimate?

What is the probability of heads after two experiments?

Most likely coin: Best estimate for P(H)
2

RN

P(H|C,) = 0.9

P(HIC,) = 0.9
P(C;) =0.70
(Slide credit: University of Washington CSE473)
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Lecture 2: ML, MAP, and Bayesian estimation Introduction to probabilistic inference

Your Estimate!?

Maximum A Posteriori (MAP) Estimate: The best hypothesis
that fits observed data assuming a non-uniform prior

Most likely coin: Best estimate for P(H)

P(H|C,) = 0.9

P(H|C,) = 0.9
P(C,) =0.70
(Slide credit: University of Washington CSE473)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 17, 2024



S. Cheng (OU-ECE)

Lecture 2: ML, MAP, and Bayesian estimation Introduction to probabilistic inference

Did We Do The Right
Thing!?

P(C,|HT) = 0.035 P(C,|HT) = 0.481 P(C,|HT) = 0.485

PH|C)=0. P(H|C,)=05  PH|C,) =09

(Slide credit: University of Washington CSE473)
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S. Cheng (OU-ECE)

Lecture 2: ML, MAP, and Bayesian estimation Introduction to probabilistic inference

Did We Do The Right
Thing!?
P(C,|HT) = 0.035 P(C,|HT) = 0.48] P(C,|HT) = 0.485

C, and C, are almost
~equally likely #==

Qe

C

C3

P(HIC)=0.  P(H|C)=05  P(H|C,) =09

(Slide credit: University of Washington CSE473)

Information Theory and Probabilistic Programming
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S. Cheng (OU-ECE)

Lecture 2: ML, MAP, and Bayesian estimation Introduction to probabilistic inference

A Better Estimate

Recall: P(H) = ZP(HICi)P(Ci) =0.680

QW
C |

P(HIC)=0. P(H|C)=05  P(H|C) =09

(Slide credit: University of Washington CSE473)
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S. Cheng (OU-ECE)

Lecture 2: ML, MAP, and Bayesian estimation Introduction to probabilistic inference

Bayesian Estimate

Bayesian Estimate: Minimizes prediction error,
given data and (generally) assuming a non-uniform prior

ZP(HlC’ ) = 0.680

P(C,|HT) = 0.035 P(C2|HT) = 0.481 P(C, |HT) = 0.485

C, C,
P(H|C)) =0.1 P(H|C) =05 P(H|C,) = 0.9

(Slide credit: University of Washington CSE473)

Information Theory and Probabilistic Programming
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Lecture 2: ML, MAP, and Bayesian estimation Introduction to probabilistic inference

Comparison

ML e Easy to compute
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Lecture 2: ML, MAP, and Bayesian estimation Introduction to probabilistic inference

Comparison

ML e Easy to compute

MAP e Still relatively easy to compute
@ Incorporate prior information
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Lecture 2: ML, MAP, and Bayesian estimation Introduction to probabilistic inference

Comparison

ML e Easy to compute
MAP e Still relatively easy to compute
@ Incorporate prior information
Bayesian @ Minimizes expected error = especially shines when little data available
@ Potentially much harder to compute

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 17, 2024 25



Lecture 2: ML, MAP, and Bayesian estimation Introduction to probabilistic inference

Bayes' rule (with model type)

o p(0,0) = p(o)p(flo) = p(0)p(ol6)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 17, 2024 26



Lecture 2: ML, MAP, and Bayesian estimation Introduction to probabilistic inference

Bayes' rule (with model type)

o p(6,0) = p(o)p(0lo) = p(0)p(o|0)
@ Let's add model type M,
p(0,0|M) = p(o|M)p(0lo, M) = p(6|M)p(ol|0, M)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 17, 2024 26



Lecture 2: ML, MAP, and Bayesian estimation Introduction to probabilistic inference

Bayes' rule (with model type)

o p(6,0) = p(o)p(0lo) = p(0)p(o|0)
@ Let's add model type M,
p(0,0|M) = p(o|M)p(0lo, M) = p(6|M)p(ol|0, M)

prior likelihood

—_————
_ p(O]|M)p(o]6, M)

p(Blo, M) =
Lol M) =" ey
posterior S——

model evidence
@ M: model type
@ 0: model parameter

@ 0: observation

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming

October 17, 2024



Lecture 3: Common distributions

Lecture 3: Common distributions
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Lecture 3: Common distributions

Gaussian distribution

@ By the Central limit theorem, if we add multiple independent variables together, the sum will
become more and more like Gaussian
o Gaussian distribution (aka Normal distribution) has a bell shape
o It is symmetric w.r.t. mean

o The mean is also the mode

@ The pdf is given by
1 (z—m)?
N(zip,0%) = ——=e 27,

V2ro?

where 1 is the mean and o2 is the variance
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Lecture 3: Common distributions

Introduction to Multivariate Gaussian

The probability density function (pdf) of a multivariate Gaussian random variable X is given by

1
)= ez

We will also use N (x; i, ) to denote this pdf.

5 W - ) )

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 17, 2024 3



Symmetry and Other Handy Equations

Note that x and p are symmetric in
N p,X) =N(p;x,2) =Np—x;0,2) = N0;p —x,%).

These equations are trivial but very handy at times.

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 17, 2024 4



Lecture 3: Common distributions

Covariance matrix

¥ can be written as E[(x — p)(x — p) ]
@ Eigenvalues are the variance along the principal axes (directions where variable changes the most)

e . eigenvalues are real and > 0 in general
o If we don't assume the degenerate case where the vector variables do not vary in some directions, then
all eigenvalues > 0 = L' exists

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 17, 2024 5



Lecture 3: Common distributions

Marginalization of normal distribution

o Consider Z ~ N(pz,¥z) and let say X is a segment of Z. That is, Z = (X

Y) for some Y. Then
how should X behave?

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 17, 2024 6



Lecture 3: Common distributions

Marginalization of normal distribution

o Consider Z ~ N(pz,¥z) and let say X is a segment of Z. That is, Z = (X

Y
how should X behave?
@ We can find the pdf of X by just marginalizing that of Z. That is

) for some Y. Then

p(x) = / p(x,y)dy

_ \/thl(TE)/exp (‘é (;{_Zi)Tzl (;—Zz(()) v

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 17, 2024 6



Lecture 3: Common distributions

Marginalization of normal distribution

@ Denote X! as A (also known as the precision matrix). And partition both 3 and A into

YxXx XXy AXX AXY
(EYX ZYY) an (AYX Ayy

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 17, 2024 7



Lecture 3: Common distributions

Marginalization of normal distribution

@ Denote X! as A (also known as the precision matrix). And partition both 3 and A into

YxXx XXy AXX AXY
(EYX EYY) an (AYX Ayy

@ Then we have

p(x) = \/detl(TE)/exp (_; [(X - HX)TAXX(X — px)

+ (v — y) " Ayx (x — px) + (x — px) " Axy (y — py)
Ty — i) Ay (y — v)] ) dy
=0T Axx (i)

e
V/det(27Y) / Xp(

+(x — px) " Axy(y — py) + (y — py) Ayy (y — py)]) dy

e

(y — my) AYX(X*NX)

l\’)\»—t

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 17, 2024



Lecture 3: Common distributions

Marginalization of normal distribution

To proceed, let's apply the completing square trick on

(v = py) T Ayx (x = px) + (x — px) " Axy (v — py) + (v — py)"Ayy (¥ — py). For the ease of
exposition, let us denote X as x — ux and y as y — py. We have

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 17, 2024 8



Lecture 3: Common distributions

Marginalization of normal distribution

To proceed, let's apply the completing square trick on
(v = py) T Ayx (x = px) + (x — px) " Axy (v — py) + (v — py)"Ayy (¥ — py). For the ease of
exposition, let us denote X as x — pux and y as y — py. We have

Y Ayx%x + X Ay + 5 Ayyy

=7 + Ayy AvxX) T Ayy (7 + Ayy AvxX) — X7 Axy Ay AvxX,

where we use the fact that A = X! is symmetric and so Axy = Ayx

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 17, 2024



Lecture 3: Common distributions

Marginalization of normal distribution

= -1 .
2T (Axx —Axy ATy AYX)R
2

2 dy

/ AV AYx DT Ay y GHAGY Ay x R)
&

det(27Y)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 17, 2024 9



Lecture 3: Common distributions

Marginalization of normal distribution

= -1 .
2T (Axx —Axy ATy AYX)R

v/ det(27X)

det(2mAvy) . ( %7 (Axx — AXYA;;Ayx)i)
= 4 —  __ex —
detzry) P 2

dy

/ AV AYx DT Ay y GHAGY Ay x R)
e 2

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 17, 2024 9



Lecture 3: Common distributions

Marginalization of normal distribution

= -1 .
2T (Axx —Axy ATy AYX)R

. 5 ARy AYx DT Ay y GHATY Ayx ®)
p(x) = / c i >
det(27Y)
A e
det(27Y) 2
w VIR (-X2)
det(27%) 2

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 17, 2024 9



Lecture 3: Common distributions

Marginalization of normal distribution

= -1 .
2T (Axx —Axy ATy AYX)R

e 2 _ Ay AYx DT Ay y FHAY Y Avx®)
p(x) = / c i >
det(27Y)
_ Vel (-5 e~ A
det(27Y) 2
w VIR (-X2)
det(27Y) 2
det(2rXxx) 2

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 17, 2024 9



Lecture 3: Common distributions

Marginalization of normal

distribution

= -1 .
2T (Axx —Axy ATy AYX)R
2

e Ay Ay x0T Ayy GHALY Ay x®)
p(x) = / ) i 4
det(27Y)
det(2mAyy) Vaetlrivy) o T(Axx — AxyAYYAYx)i)
= X
det(27Y) 2

V/det(27Y)

det(?ﬂ‘Exx

'\/ det(Qﬂ'Exx

where (a) and (b) will be shown next

S. Cheng (OU-ECE)

\/ det(27rAYY Tz
4 exp 2X )

————exp

X — [,Lx
——————exp

(=
(-
( iTEXXx)
-

Information Theory and Probabilistic Programming
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Lecture 3: Common distributions

Note that <A B> (‘i‘ Ef) _ (é ?) Thus AA+ BC = I and AB + BD = 0. So

A(A—BD'C)=AA— (AB)D"'C = AA+ BDD'C = AA+ BC =1 O

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 17, 2024



Lecture 3: Common distributions

(b) det(aX) = det(aXyy) det(aAxy)

Lemma
e 71: A B ey = det(D)det(A~1)
(6 ) =(¢ 5) wnia(c )
5= DA D=6 H6 D"
= det <C g) det(D)det(A — BD~'C) = det(D)det(A~") O

N.B. A— BD~'C is known as Schur complement
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Lecture 3: Common distributions

Conditioning mulitivariate Gaussian

X

o Consider the same Z ~ N(puz,Xz) and Z = (Y

). What will X be like if Y is observed to be y?
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Lecture 3: Common distributions

Conditioning mulitivariate Gaussian

X
Y

@ Basically, we want to find p(x|y) = p(x,y)/p(¥)

o Consider the same Z ~ N(puz,Xz) and Z = ( ) What will X be like if Y is observed to be y?

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 17, 2024 12



Lecture 3: Common distributions

Conditioning mulitivariate Gaussian

X
Y

). What will X be like if Y is observed to be y?
@ Basically, we want to find p(x|y) = p(x,y)/p(¥)
@ From previous result, we have p(y) = N(y; vy, Xvvy). Therefore,

p(x[y) oc exp <—; l(;:‘)Tz—l (;‘) —¥ Sy )

1. . . . -
X exp (—Q[XTAXXx +xTAxyy + yTAYXxO ,

o Consider the same Z ~ N(puz,Xz) and Z = (

where we use x and y as shorthands of x — ux and y — py as before

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 17, 2024



Lecture 3: Common distributions

Conditioning mulitivariate Gaussian

o Completing the square for x, we have
1 . _ - - _ -
p(x]y) o exp (—2(x + Axéchyy)TAXX(x + Axkl\xyy))

1 _
= exp (—2(x — px + AxxAxy (y — py)) " Axx

(x — px + AxxAxv (y — py)))

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 17, 2024 13



Lecture 3: Common distributions

Conditioning mulitivariate Gaussian

o Completing the square for x, we have
1 . _ - - _ -
p(x]y) o exp (—2(x + Axéchyy)TAXX(x + Axkl\xyy))

1 _
= exp (—2(x — px + AxxAxy (y — py)) " Axx

(x — px + AxxAxv (y — py)))

o Therefore X|y is Gaussian distributed with mean pux — AxkxAxvy(y — py) and covariance Axk

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 17, 2024



Lecture 3: Common distributions

Conditioning mulitivariate Gaussian

o Completing the square for x, we have
1 . _ - - _ -
p(x]y) o exp (—2(x + Axéchyy)TAXX(x + Axkl\xyy))

= exp <—;(X — px + AxxAxy (y — py)) Axx
(x — px + AxxAxv (y — py)))
o Therefore X|y is Gaussian distributed with mean pux — AxkxAxvy(y — py) and covariance Axk
@ Note that since AxxYXxy + AxyXvyy =0 :>A;(§(Axy = fﬁxyﬁ);%{ and from (a), we have
X]y ~ N(px + ExyEyyv (¥ — #y), Oxx — ExyEyyEyx),
where Yxx — EXyEQ%(ZYX e Y|Yyy is a Schur complement
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Lecture 3: Common distributions

Conditioning mulitivariate Gaussian

Xy ~ N(px + ExyEyy (¥ — #y), Exx — SxvEyy Svx)

@ When the observation of Y is exactly the mean, the conditioned mean does not change

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 17, 2024 14



Lecture 3: Common distributions

Conditioning mulitivariate Gaussian

Xy ~ N(px + ExyEyy (¥ — #y), Exx — SxvEyy Svx)

@ When the observation of Y is exactly the mean, the conditioned mean does not change

@ Otherwise, it needs to be modified and the size of the adjustment decreases with Xy, the
variance of Y for the 1-D case.

e The observation is less reliable with the increase of ¥yvy. The adjustment is finally scaled by ¥xv,
which translates the variation of Y to the variation of X
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Lecture 3: Common distributions

Conditioning mulitivariate Gaussian

Xy ~ N(px + ExyEyy (¥ — #y), Exx — SxvEyy Svx)

@ When the observation of Y is exactly the mean, the conditioned mean does not change

@ Otherwise, it needs to be modified and the size of the adjustment decreases with Xy, the
variance of Y for the 1-D case.
e The observation is less reliable with the increase of ¥yvy. The adjustment is finally scaled by ¥xv,
which translates the variation of Y to the variation of X
o In particular, if X and Y are negatively correlated, the sign of the adjustment will be reversed
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Lecture 3: Common distributions

Conditioning mulitivariate Gaussian

Xy ~ N(px + ExyEyy (¥ — #y), Exx — SxvEyy Svx)

@ When the observation of Y is exactly the mean, the conditioned mean does not change

@ Otherwise, it needs to be modified and the size of the adjustment decreases with Xy, the
variance of Y for the 1-D case.

e The observation is less reliable with the increase of ¥yvy. The adjustment is finally scaled by ¥xv,
which translates the variation of Y to the variation of X

o In particular, if X and Y are negatively correlated, the sign of the adjustment will be reversed

@ As for the variance of the conditioned variable, it always decreases and the decrease is larger if
Yvyv is smaller and Xxv is larger (X and Y are more correlated)
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Lecture 3: Common distributions

What is a Gaussian Process?

A Gaussian Process (GP) is a collection of random variables, any finite number of which have a joint
Gaussian distribution.

f(x) ~ GP(m(z), k(x,2"))

e f(x) is the function to be modeled.
e m(x) is the mean function, usually zero.

@ k(x,2') is the covariance function or kernel.
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Lecture 3: Common distributions

Advantages and Disadvantages

Advantages:

o Flexible

@ Probabilistic Nature

@ Non-Parametric
Disadvantages:

o Computational Complexity

o Hyperparameter Sensitivity

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 17, 2024 16



Lecture 3: Common distributions

Applications

@ Regression and function estimation
o Time series forecasting

@ Optimization

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 17, 2024 17



Lecture 3: Common distributions

Uncorrelated implies independence

Xy ~ N(px + ExyESyyv (¥ — #y), Oxx — ExySyyEyx)
If X and Y are uncorrelated, Yxy = 0. Then
Xly ~ N(px, 2xx)

Note that the statistics of X does not change with respect to y and so X is independent of Y

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 17, 2024 18



Lecture 3: Common distributions

X 1 Y‘Z if PxXzZPYZ = PXY

Given multivariate Gaussian variables X,Y and Z, we have X and Y are conditionally independent

given Z if pxzpyz = pxy, where pxz = \/Eﬁ[)({)i;i(:){)?](EZ[ZZE_(?()Z])m is the correlation coefficent

between X and Z. Similarly, py z and pxy are the correlation coefficients between Y and Z, and X
and Y, respectively.

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 17, 2024



Lecture 3: Common distributions

X 1 Y’Z if PXZPYZ = PXY

) ) oX X VOXXOYYPXY JOXXO0ZZPXZ
@ From the definition of correlation coefficient, ¥ = | oxxovvexy oyy oYY O0ZZPY Z
VOXXO0ZZPXZ \OYYOZZPYZ 0zzZ

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 17, 2024



Lecture 3: Common distributions

X 1 Y’Z if PXZPYZ = PXY

) ) oX X VOXXOYYPXY JOXXO0ZZPXZ
@ From the definition of correlation coefficient, ¥ = | oxxovvexy oyy oYY O0ZZPY Z
VOXXO0ZZPXZ \OYYOZZPYZ 0zzZ

@ Then from the conditioning result, we have

5 _ oxXXx VOXXOYY PXY
()55))2 VOIXXOYYPXY oYy
— a a
- (Voxxozzexz Vovvozzevz) oy (VEATZZNXZ)
_ oxx(1—p%5) Voxxoyy (pxy — pxzpyz)
Voxxoyy(pxy — pxzpyz) oyy(1—p%,)
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Lecture 3: Common distributions

X 1 Y’Z if PXZPYZ = PXY

) ) oX X VOXXOYYPXY JOXXO0ZZPXZ
@ From the definition of correlation coefficient, ¥ = | oxxovvexy oyy oYY O0ZZPY Z
VOXXO0ZZPXZ \OYYOZZPYZ 0zzZ

@ Then from the conditioning result, we have

5 _ oxXXx VOXXOYY PXY
()55))2 VOIXXOYYPXY oYy
— a a
- (Voxxozzexz Vovvozzevz) oy (VEATZZNXZ)
_ oxx(1—p%5) Voxxoyy (pxy — pxzpyz)
Voxxoyy(pxy — pxzpyz) oyy(1—p%,)

@ Therefore, X and Y are uncorrelated given Z when the off-diagonal is zero and this gives us
PxXy = pxzpPyz- Since for Gaussian variables, uncorrelatedness implies independence. This
concludes the proof.
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Lecture 3: Common distributions

Gaussian Mixture Model

Maximum likelihood (ML) estimation

Bayesian estimation

Probabilistic model

p(X, Z; i, A)

p(X, Z, p, A)

= p(X|Z; u, N)p(Z; ) = p(X|Z, p, Np(Z, m)p(m, pi, A)

Latent variables Z

Posterior calculation p(Z|X;m, u, A) Posterior calculation p(Z, m, u, A| X

Parameters 7, u, A

™, w*, A = argmax p(X; m, 1, A)

S. Cheng (OU-ECE)

Table: Comparison of ML and Bayesian estimation.
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Lecture 3: Common distributions

Bernoulli distribution

@ Consider someone flips a biased coin. The probability of the outcome is described by the Bernoulli
distribution. Denote X =1 for a head and X = 0 for a tail. Let Pr(X =1) = p.

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 17, 2024 22



Lecture 3: Common distributions

Bernoulli distribution

@ Consider someone flips a biased coin. The probability of the outcome is described by the Bernoulli
distribution. Denote X =1 for a head and X = 0 for a tail. Let Pr(X =1) = p. Then the
Bernoulli distribution is simply

Bern(z|p) = {p,
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Lecture 3: Common distributions

Bernoulli distribution

@ Consider someone flips a biased coin. The probability of the outcome is described by the Bernoulli
distribution. Denote X =1 for a head and X = 0 for a tail. Let Pr(X =1) = p. Then the
Bernoulli distribution is simply

Bern(z|p) = {p,

@ More concisely, we can write it as

Bern(z|p) = p*(1 — p)l_ﬁ’C
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Lecture 3: Common distributions

Bernoulli distribution

@ Consider someone flips a biased coin. The probability of the outcome is described by the Bernoulli
distribution. Denote X =1 for a head and X = 0 for a tail. Let Pr(X =1) = p. Then the
Bernoulli distribution is simply

Bern(z|p) = {p,

@ More concisely, we can write it as

Bern(z|p) = p*(1 — p)l_ﬁ’C

@ The mean and variance are
EX]=p-1+(1-p)-0=p

VarlX]=p-(1-p)*+ (1 —p)-p* =p(l —p)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 17, 2024



Lecture 3: Common distributions

Binomial distribution (IV trials)

@ Repeat the experiment for N times, the probability of the outcome will now be described by the
binomial distribution. Note that z is now the number of obtained heads, we have
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Lecture 3: Common distributions

Binomial distribution (IV trials)

@ Repeat the experiment for N times, the probability of the outcome will now be described by the
binomial distribution. Note that z is now the number of obtained heads, we have

Bin(z|p, N) = (J;f)pm(l -

@ Mean and variances are given by
o E[X]= Zi\;o Bin(z|p)x
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Lecture 3: Common distributions

Binomial distribution (IV trials)

@ Repeat the experiment for N times, the probability of the outcome will now be described by the
binomial distribution. Note that z is now the number of obtained heads, we have

Bin(z|p, N) = (J;f)pm(l -

@ Mean and variances are given by
_ N . _ N N! T N—z
° E[X} = 21:0 Bm(:v|p)x = 21:1 @—DI(N—a)1P (1 7p)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 17, 2024



Lecture 3: Common distributions

Binomial distribution (IV trials)

@ Repeat the experiment for N times, the probability of the outcome will now be described by the
binomial distribution. Note that z is now the number of obtained heads, we have

. N T —x
in(elp. ) = (3 )51 - 9
@ Mean and variances are given by

o E[X] =311, Bin(zlp)z = X0, goiv=aip (1 —p)V 7

N N-1)! o o
= Np ¥, et (=)
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Lecture 3: Common distributions

Binomial distribution (IV trials)

@ Repeat the experiment for N times, the probability of the outcome will now be described by the
binomial distribution. Note that z is now the number of obtained heads, we have

. N T —x
in(elp. ) = (3 )51 - 9
@ Mean and variances are given by

o E[X] =311, Bin(zlp)z = X0, goiv=aip (1 —p)V 7

= Np i, =™ (1 =)V "= Np X Bin(alp, N — 1)
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Lecture 3: Common distributions

Binomial distribution (IV trials)

@ Repeat the experiment for N times, the probability of the outcome will now be described by the
binomial distribution. Note that z is now the number of obtained heads, we have

. N T —x
in(elp. ) = (3 )51 - 9
@ Mean and variances are given by

o E[X] =311, Bin(zlp)z = X0, goiv=aip (1 —p)V 7

= Npil, o™ (1 =)V "= Np X\ Bin(alp, N — 1)
= Np
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Lecture 3: Common distributions

Binomial distribution (IV trials)

@ Repeat the experiment for N times, the probability of the outcome will now be described by the
binomial distribution. Note that z is now the number of obtained heads, we have

Bin(z|p, N) = (J;f)pm(l -

@ Mean and variances are given by
_ N . _ N N! T N—z
° E[X} = 21:0 Bm(:v|p)x = 21:1 @—DI(N—a)1P (1 7p)

= Npil, o™ (1 =)V "= Np X\ Bin(alp, N — 1)
= Np

o Similar, E[X(X —1)] =N %pz(l —p)N—=
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Lecture 3: Common distributions

Binomial distribution (IV trials)

@ Repeat the experiment for N times, the probability of the outcome will now be described by the
binomial distribution. Note that z is now the number of obtained heads, we have

Bin(z|p, N) = (J;f)pm(l -

@ Mean and variances are given by
o E[X] =311, Bin(zlp)z = X0, goiv=aip (1 —p)V 7
= ]ftffp Yool v (1 = p)N "= Np 32! Bin(alp, N - 1)
= INp
o Similar, E[X(X —1)] =N %pz(l —p)N—=
= N(N - 1)p* 327 Bin(z|p, N — 2) = N(N — 1)p?
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Lecture 3: Common distributions

Binomial distribution (IV trials)

@ Repeat the experiment for N times, the probability of the outcome will now be described by the
binomial distribution. Note that z is now the number of obtained heads, we have

Bin(z|p, N) = (J;f)pm(l -

@ Mean and variances are given by
_ N . _ N N! T N—z

o E[X] =3, Bin(zlp)r = 3_;_, @—D(N—anP (1-p)
= ]]l]/'p ZJ(I;VZI (z_(ll\)]!?;])iz)gpwil(l - p)NﬂU: Np Zi\’;{)l Bin(ac|p, N — 1)
= INp

o Similar, E[X(X —1)] =N %pz(l —p)N—=
= N(N - 1)p* 057 Bin(z|p, N — 2) = N(N — 1)p*

o Therefore,
Var(X] = E[X?] - E[X]?
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Lecture 3: Common distributions

Binomial distribution (IV trials)

@ Repeat the experiment for N times, the probability of the outcome will now be described by the
binomial distribution. Note that z is now the number of obtained heads, we have

Bin(z|p, N) = (J;f)pm(l -

@ Mean and variances are given by

o E[X] =311, Bin(zlp)z = X0, goiv=aip (1 —p)V 7
= ]ftffp Yool v (1 = p)N "= Np 32! Bin(alp, N - 1)
= Np

o Similar, E[X(X —1)] =N %pz(l —p)N—=
= N(N - 1)p* 327 Bin(z|p, N — 2) = N(N — 1)p?

o Therefore,
Var[X] = E[X?] - E[X]?’= E[X(X -1)]+ E[X] - E[X]?> = N(N —1)p*> + Np— (Np)? = Np(1—p)
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Lecture 3: Common distributions

Binomial distribution

As shown below, the binomial distribution can be model well with a normal distribution
N(Np, Np(1 — p)) for large N

008 Binomial Distribution (»=100,p=0.4)

Probability

The binomial distribution is shown in blue and an approximation by normal distribution is shown in red

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 17, 2024



Lecture 3: Common distributions

Conjugate prior

o Note that both Bernoulli and binomial distributions have the form p“(1 — p)¥
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Lecture 3: Common distributions

Conjugate prior

o Note that both Bernoulli and binomial distributions have the form p“(1 — p)¥

@ To estimate p, recall that the ML estimator will try to compute

p = argmax p(u, v|[p) = argmax p“(1 — p)"
P p

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 17, 2024 25



Lecture 3: Common distributions

Conjugate prior

o Note that both Bernoulli and binomial distributions have the form p“(1 — p)¥
@ To estimate p, recall that the ML estimator will try to compute

p = argmax p(u, v|[p) = argmax p“(1 — p)"
P p

@ Now if we would like to use the MAP estimator instead, we need to introduce a prior p(p) and

solve instead
p=arg mgxp(w v|p)p(p) = arg mgxp“(l —p)'p(p)

October 17, 2024
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Lecture 3: Common distributions

Conjugate prior

Note that both Bernoulli and binomial distributions have the form p*(1 — p)¥
To estimate p, recall that the ML estimator will try to compute

p = argmax p(u, v|[p) = argmax p“(1 — p)"
P p

Now if we would like to use the MAP estimator instead, we need to introduce a prior p(p) and
solve instead

p=arg mgxp(w v|p)p(p) = arg mgxp“(l —p)'p(p)

It is very difficult to determine the prior unanimously. Actually it can be controversial just to
determine the form of it
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Lecture 3: Common distributions

Conjugate prior

o Note that both Bernoulli and binomial distributions have the form p“(1 — p)¥

@ To estimate p, recall that the ML estimator will try to compute

p = argmax p(u, v|[p) = argmax p“(1 — p)"
P p

@ Now if we would like to use the MAP estimator instead, we need to introduce a prior p(p) and
solve instead
p = argmaxp(u, vip)p(p) = arg maxp*(1 — p)"p(p)

o It is very difficult to determine the prior unanimously. Actually it can be controversial just to
determine the form of it

@ However, if we select p(p) of a form p(p) oc p®(1 — p)®, then the resulting posterior distribution
with the same form as before. This choice is often chosen for practical purposes, and a prior with
same “form" as its likelihood (and thus posterior) is known as the conjugate prior
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Lecture 3: Common distributions

Beta distribution

@ The conjugate prior of both Bernoulli and binomial distributions is the beta distribution. Its pdf is

given by
.’L‘a_l(l _ w)b—l
Beta(z|a,b) = ———F—,
B(a,b)
L(a)T'(b)
where X S [0 1] and B(G, b) Tb)
18 IBl—'_‘tEII: :|:2I,I.l:3l 106 IBl—'_'tEII: rlZ].I,I.l:lI 18 IBl—'_"tEII: r|:3:.f.l:2l 15 BE—'.‘tEI: r::o.ll.-f.l: Ol_l
16| 1 16 | 1
104 1 30 |
14| | 14| |
12} {1oz {12} |28
10 . 10+ {20
= = |100 o =
08} 1 08 1 15
06| {oas | {06} 1 10l |
o4t logs D4t 1
02 1 02 f 05 1
0.0 T T R n.94 TR S 0.0 TR S 0.0 TR
00 02 04 06 08 10 00 02 04 06 OB 10 00 02 04 06 08 10 0O 02 04 06 08 10
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Lecture 3: Common distributions

Beta distribution

@ The conjugate prior of both Bernoulli and binomial distributions is the beta distribution. Its pdf is

given by

a—1 1— b—1
Beta(x|a,b) = A k)

B(a,b) ’
L(a)'(b)
where X € [0, 1] and B(G, b) T(atb)
18 IBl—'_‘tEII: :|:2I,I.l:3l 106 IBl—'_'tEII: rlZ].I,I.l:lI 18 IBl—'_"tEII: r|:3:.f.l:2l 15 BE—'.‘tEI: r::o.ll.-f.l: Ol_l
16| 8 16 | 1
loaf ] 30 |
14f | 14| |
12} {102 | 4 12 1 25
10 . 10+ {20
S = |100 = =
08} 1 08 1 15
06| {098 | 4 06 110l i
04l {006 04| |
02 ] 02| 05y 1
pol—e 1 Sdpgal 1 00 R S — ) —

00 02 04 06 08 10 0O 02 04 06 08B 10 00 02 04 06 08 10 00O 02 04 06 08 10

o Note that with a = b =1, Beta(z|1,1) = 1. It is the same as no prior
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Lecture 3: Common distributions

Gamma function

Note that T'(z) = / ¥ e " dx
0

o0
e I'(1) :/0 e Pdr = - =1
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Lecture 3: Common distributions

Gamma function

Note that T'(z) = / ¥ e " dx
0

o0
e I'(1) :/0 e Pdr = - =1

@ For z>1,wehave I'(z) = (z — )I'(z — 1)
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Lecture 3: Common distributions

Gamma function

Note that T'(z) = / ¥ e " dx
0

o0
e I'(1) :/0 e Pdr = - =1

@ For z>1,wehave I'(z) = (z — )I'(z — 1)
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Lecture 3: Common distributions

Gamma function

Note that T'(z) = / ¥ e " dx
0

o0
e I'(1) :/0 e Pdr = - =1

@ For z>1,wehave I'(z) = (z — )I'(z — 1)
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Lecture 3: Common distributions

Gamma function

Note that T'(z) = / ¥ e " dx
0

o0
e I'(1) :/0 e Pdr = - =1

@ For z>1,wehave I'(z) = (z — )I'(z — 1)

(e9) o0 oo
I'(z) = / r* e " do= —/ 2?7 lde ™ = —2" e + (2 — 1)/ r*%e % dx
0 0 0
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Lecture 3: Common distributions

Gamma function

Note that T'(z) = / ¥ e " dx
0

o0
o I'(1) :/0 e Pdr = - =1

@ For z>1,wehave I'(z) = (z — )I'(z — 1)

(e9) o0 oo
I'(z) = / r* e " do= —/ 2?7 lde ™ = —2" e + (2 — 1)/ r*%e % dx
0 0 0

=(z-1) /00 " 2e%dx = (z—1)I'(z - 1) O]
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Lecture 3: Common distributions

Gamma function

Note that T'(z) = / ¥ e " dx
0

o0
o I'(1) :/0 e Pdr = - =1

@ For z>1,wehave I'(z) = (z — )I'(z — 1)

(e9) o0 oo
I'(z) = / r* e " do= —/ 2?7 lde ™ = —2" e + (2 — 1)/ r*%e % dx
0 0 0

=(z-1) /000 " 2e%dx = (z—1)I'(z - 1) O]

@ Therefore, for integer z > 1, T'(z) = (2 — 1)!
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Lecture 3: Common distributions

Mode of beta distribution

29~ (1—g)b~1

Blap - Ot

@ The mode is the peak of a distribution. Recall that Beta(z|a,b) =

dBeta(zla,b) (a—1)z*2(1—2)’ ' = (b—1)2* (1 —2)"2 .
O a B(a,b) -

we have (a — 1)(1 —z) = (b— 1)z = = = 9515 when a,b > 1

@ Note that when a or b is less than or equal to 1, the peak appears at either x =0 or x =1
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Lecture 3: Common distributions

Mean and variance of Beta distribution

Note that lezo p(zla,b) =1= le:o 22711 —2)*~! = B(a,b) = Fr(?iig) This gives us a handy trick
to manipulate beta distribution
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Lecture 3: Common distributions

Mean and variance of Beta distribution

Note that lezo p(zla,b) =1= le:o 22711 —2)*~! = B(a,b) = Fr(?iig) This gives us a handy trick

to manipulate beta distribution

E[X] = / xBeta(x|a, b)dl’ = F((Ci,-i—b)/ xa(l _ :E)b_ldx

=0
T'(a+0b) T'(a+ 1)T'(b) a

T T(@l(b)T(a+b+1) a+b

October 17, 2024
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Lecture 3: Common distributions

Mean and variance of Beta distribution

Note that lezo p(zla,b) =1= le:o 22711 —2)*~! = B(a,b) = Fr(?iig) This gives us a handy trick

to manipulate beta distribution

E[X] = / xBeta(x|a, b)dl’ = F((Ci,-i—b)/ xa(l _ :E)b_ldx

=0
T'(a+0b) T'(a+ 1)T'(b) a

T T(@l(b)T(a+b+1) a+b

S, ELX?] = ) [y 271~ 2"

x

October 17, 2024
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Lecture 3: Common distributions

Mean and variance of Beta distribution

Note that lezo p(zla,b) =1= le:o 22711 —2)*~! = B(a,b) = Fr(?iig) This gives us a handy trick
to manipulate beta distribution
1 1
r b
E[X] = /I:O xBeta(z|a,b)dz = F((Z)—lt(b))/w 2%(1 — z)" ldx
T'(a+0b) T'(a+ 1)T'(b) a

T T(@l(b)T(a+b+1) a+b

L T'(a+b 1 a — _ I(a+b) T'(a+2)I'(b) __ a(a+1
Similarly, E[X?] = F(Sz)r(g) fispx®tt (11— x) "t dr= F(i)r(g) If(a+£+g)) = (a+b§(a+lz+1)'
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Lecture 3: Common distributions

Mean and variance of Beta distribution

Note that lezo p(zla,b) =1= le:o 22711 —2)*~! = B(a,b) = Fr(?iig) This gives us a handy trick
to manipulate beta distribution
1 1
r b
E[X] = /I:O xBeta(z|a,b)dz = F((Z)—lt(b))/w 2%(1 — z)" ldx
T'(a+0b) T'(a+ 1)T'(b) a

T T(@l(b)T(a+b+1) a+b

. T'(a+b 1 a _ _ T'(a+bdb) T(a+2)T'(b) __ a(a+1
Similarly, E[X?] = F(Sz)r(g) Jomou® (1 = 2)" da= ré)m?) F((a+b)+g)) = (a+b§(a+z+1)- Thus,
+1) a?
Var[X] =E[X?] - B[X]? = —2¢ -
arlX] =EIX7) = EIX] = oy v D)~ s 02
_ala+1)(a+d)—a*(a+b+1) ab
N (a+b)2(a+b+1) (a+Db)2(a+b+1)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 17, 2024



Lecture 3: Common distributions

Posterior estimate of probability p

Consider the coin flipping example again. Let say the prior probability? of the coin is beta distributed
with parameters a and b. And we flip the coin once to get outcome z.

INote that this can be very confusing at the beginning. Beware that we are talking about the distribution of the
probability of some outcome
S. Cheng (OU-ECE) Iy —— October 17, 2024



Lecture 3: Common distributions

Posterior estimate of probability p

Consider the coin flipping example again. Let say the prior probability? of the coin is beta distributed
with parameters a and b. And we flip the coin once to get outcome x. Upon observing x, we can
estimate p by

p(plz,a,b)

INote that this can be very confusing at the beginning. Beware that we are talking about the distribution of the
probability of some outcome
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Lecture 3: Common

Posterior estimate of probability p

Consider the coin flipping example again. Let say the prior probability? of the coin is beta distributed
with parameters a and b. And we flip the coin once to get outcome x. Upon observing x, we can
estimate p by

p(plz, a,b) =Constl - Beta(p|a, b) Bern(z|p)
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Lecture 3: Common distributions

Posterior estimate of probability p

Consider the coin flipping example again. Let say the prior probability? of the coin is beta distributed
with parameters a and b. And we flip the coin once to get outcome x. Upon observing x, we can
estimate p by
p(plz, a,b) =Constl - Beta(p|a, b) Bern(z|p)
=Const2 - p?~11%(1 — p)b-1Hl-=
=Beta(p|a, b)

So the posterior probability distribution is also beta distributed and the parameters just changed to
a<a+zxzandb+<b+1—=

INote that this can be very confusing at the beginning. Beware that we are talking about the distribution of the
probability of some outcome
S. Cheng (OU-ECE) - ———" October 17, 2024



Lecture 3: Common distributions

Posterior estimate of probability p

Let say we continue our example and we flip the coin by N times and obtain x head. So instead of the
Bernoulli likelihood, we have a binomial likelihood. Like the last slide, we have the same beta prior with
parameters a and b.
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Posterior estimate of probability p

Let say we continue our example and we flip the coin by N times and obtain x head. So instead of the
Bernoulli likelihood, we have a binomial likelihood. Like the last slide, we have the same beta prior with
parameters a and b. After the experiment x, we can update the distribution of our estimated p by

p(plz, a,b) =Constl - Beta(p|a, b) Bin(z|p, N)
=Const2 - p?~1H¥(1 — p)b-1HN-2
=Beta(p|a, b)
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Lecture 3: Common distributions

Posterior estimate of probability p

Let say we continue our example and we flip the coin by N times and obtain x head. So instead of the
Bernoulli likelihood, we have a binomial likelihood. Like the last slide, we have the same beta prior with
parameters a and b. After the experiment x, we can update the distribution of our estimated p by
p(plz, a,b) =Constl - Beta(p|a, b) Bin(z|p, N)
=Const2 - p?~1H¥(1 — p)b-1HN-2
=Beta(p|a, b)

Again, the posterior distribution is still beta but with parameters updated to @ < a + = and
b«—b+N-—x
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Lecture 3: Common distributions

Prior and regularization

@ One major reason of introducing prior is for the sake of “regularizing” the answer
@ Another coin example

o Fall back to high school, assume that we flip a coin for 10 times and got 3 heads. We want to
estimate the chance of getting heads
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Prior and ularization

@ One major reason of introducing prior is for the sake of “regularizing” the answer

@ Another coin example
o Fall back to high school, assume that we flip a coin for 10 times and got 3 heads. We want to
estimate the chance of getting heads
e 3/10, right?
e And if | asked you chance of getting another head in the future, you will say the chance of getting
another head is 3/10

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 17, 2024



Lecture 3: Common distributions

Prior and ularization

@ One major reason of introducing prior is for the sake of “regularizing” the answer

@ Another coin example

o Fall back to high school, assume that we flip a coin for 10 times and got 3 heads. We want to
estimate the chance of getting heads

e 3/10, right?

e And if | asked you chance of getting another head in the future, you will say the chance of getting
another head is 3/10

e Now, if | actually flip the coin for 10 times and got no head, what do you expect the chance of getting
a head next time?
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Prior and ularization

@ One major reason of introducing prior is for the sake of “regularizing” the answer
@ Another coin example

o Fall back to high school, assume that we flip a coin for 10 times and got 3 heads. We want to
estimate the chance of getting heads
3/10, right?
And if | asked you chance of getting another head in the future, you will say the chance of getting
another head is 3/10
e Now, if | actually flip the coin for 10 times and got no head, what do you expect the chance of getting
a head next time?
07 Okay, the estimate is a bit extreme. We know that it is very difficult to make a coin that always
gives a tail
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Lecture 3: Common distributions

Prior and ularization

@ One major reason of introducing prior is for the sake of “regularizing” the answer
@ Another coin example
o Fall back to high school, assume that we flip a coin for 10 times and got 3 heads. We want to

estimate the chance of getting heads
3/10, right?
And if | asked you chance of getting another head in the future, you will say the chance of getting
another head is 3/10
e Now, if | actually flip the coin for 10 times and got no head, what do you expect the chance of getting
a head next time?
07 Okay, the estimate is a bit extreme. We know that it is very difficult to make a coin that always
gives a tail
e How about we first assumed that we actually flipped two times and got 1 head before we did

experiment? We will estimate 1/12 instead of 0/10

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 17, 2024



Lecture 3: Common distributions

Prior and regularization

@ We can verify that this is exactly what we got for a Beta prior with a = 2 and b = 2.
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Prior and regularization

@ We can verify that this is exactly what we got for a Beta prior with a = 2 and b = 2. Note that the
posterior distribution is

Beta(p|2,2)Bin(z = 0|p, N = 10) ~ Beta(0 + a,10 + b) = Beta(2,12)

Now, what is the MAP estimate?
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Prior and regularization

@ We can verify that this is exactly what we got for a Beta prior with a = 2 and b = 2. Note that the
posterior distribution is

Beta(p|2,2)Bin(z = 0|p, N = 10) ~ Beta(0 + a,10 + b) = Beta(2,12)

Now, what is the MAP estimate? It should be the p that maximize the posterior probability. That
is the mode of Beta(2,12).
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Prior and regularization

@ We can verify that this is exactly what we got for a Beta prior with a = 2 and b = 2. Note that the
posterior distribution is

Beta(p|2,2)Bin(z = 0|p, N = 10) ~ Beta(0 + a,10 + b) = Beta(2,12)

Now, what is the MAP estimate? It should be the p that maximize the posterior probability. That
is the mode of Beta(2,12). Thus,

(mMapy _ _a—1 1
Pricad "= 779 T 12
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Lecture 3: Common distributions

Prior and regularization

@ We can verify that this is exactly what we got for a Beta prior with a = 2 and b = 2. Note that the
posterior distribution is

Beta(p|2,2)Bin(z = 0|p, N = 10) ~ Beta(0 + a,10 + b) = Beta(2,12)

Now, what is the MAP estimate? It should be the p that maximize the posterior probability. That
is the mode of Beta(2,12). Thus,

(mMapy _ _a—1 1
Pricad "= 779 T 12

@ Recall that Beta(1,1) =1 and so likelihood function is equivalent to
Beta(p|1,1)Bin(0|p, 10) ~ Beta(1,11).
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Lecture 3: Common distributions

Prior and regularization

@ We can verify that this is exactly what we got for a Beta prior with a = 2 and b = 2. Note that the
posterior distribution is

Beta(p|2,2)Bin(z = 0|p, N = 10) ~ Beta(0 + a,10 + b) = Beta(2,12)

Now, what is the MAP estimate? It should be the p that maximize the posterior probability. That
is the mode of Beta(2,12). Thus,

(mMapy _ _a—1 1
Pricad "= 779 T 12

@ Recall that Beta(1,1) =1 and so likelihood function is equivalent to

Beta(p|1,1)Bin(0|p, 10) ~ Beta(1,11). Thus the ML estimate is the mode of
ML _
Beta(1,11) = p(Head) = 1-:111—2 =15=0

e This indeed is the same as our high school naive estimate
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Lecture 3: Common distributions

Bayesian estimation and regularization

o Now let's consider the Bayesian estimate. Even for the case with no prior (equivalently an uniform
prior or Beta prior with a = 1 and b = 1), recall that the “posterior distribution” is Beta(1,11)
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Bayesian estimation and regularization

o Now let's consider the Bayesian estimate. Even for the case with no prior (equivalently an uniform
prior or Beta prior with a = 1 and b = 1), recall that the “posterior distribution” is Beta(1,11)

@ The Bayesian estimate should be the average p summing all possibility of p,
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Lecture 3: Common distributions

Bayesian estimation and regularization

o Now let's consider the Bayesian estimate. Even for the case with no prior (equivalently an uniform
prior or Beta prior with a = 1 and b = 1), recall that the “posterior distribution” is Beta(1,11)

@ The Bayesian estimate should be the average p summing all possibility of p, which is essentially
just, [ pBeta(p|l,11)dp = E|[p|, i.e., the mean.
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Lecture 3: Common distributions

Bayesian estimation and regularization

o Now let's consider the Bayesian estimate. Even for the case with no prior (equivalently an uniform
prior or Beta prior with a = 1 and b = 1), recall that the “posterior distribution” is Beta(1,11)

@ The Bayesian estimate should be the average p summing all possibility of p, which is essentially
just, [ pBeta(p|1,11)dp = E[p], i.e., the mean. Thus

p(Bayesian) _ a _ 1
Head a4 b 11
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Lecture 3: Common distributions

Bayesian estimation and regularization

o Now let's consider the Bayesian estimate. Even for the case with no prior (equivalently an uniform
prior or Beta prior with a = 1 and b = 1), recall that the “posterior distribution” is Beta(1,11)

@ The Bayesian estimate should be the average p summing all possibility of p, which is essentially
just, [ pBeta(p|1,11)dp = E[p], i.e., the mean. Thus

(Bayesian) @ 1

pHead _a+b:11

@ Note that Bayesian estimation is “self-regularized” (i.e., giving less extreme results) since it
inherently averages out all possible cases

Note that we used the non-informative prior above just to illustrate the self-regularization property of
Bayesian estimation. When you are given a prior, you should always use the given prior instead for an
actual problem

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 17, 2024



Lecture 3: Common distributions

Multinomial distribution

@ Binomial distribution models the probability of a binary outcome. For a random event with discrete
but non-binary (more than two) outcomes, we can model the event with a multinomial distribution
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Lecture 3: Common distributions

Multinomial distribution

@ Binomial distribution models the probability of a binary outcome. For a random event with discrete
but non-binary (more than two) outcomes, we can model the event with a multinomial distribution

@ Let say the probability of each possible outcome i is p;. And we have conducted N different
experiments, let say x; is the number of times we obtain outcome 7. Then the probability of such

even is given by
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Lecture 3: Common distributions

Multinomial distribution

@ Binomial distribution models the probability of a binary outcome. For a random event with discrete
but non-binary (more than two) outcomes, we can model the event with a multinomial distribution

@ Let say the probability of each possible outcome i is p;. And we have conducted N different
experiments, let say x; is the number of times we obtain outcome 7. Then the probability of such

even is given by

N
Mult(x1,~~- ,In|p1,'~- ’pn) = <x1x2-~-xn>pgflp§2'”pin’
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Lecture 3: Common distributions

Multinomial distribution

@ Binomial distribution models the probability of a binary outcome. For a random event with discrete
but non-binary (more than two) outcomes, we can model the event with a multinomial distribution

@ Let say the probability of each possible outcome i is p;. And we have conducted N different
experiments, let say x; is the number of times we obtain outcome 7. Then the probability of such
even is given by

N
Mult(x1,~~- ,In|p1,'~- ’pn) = <x1x2-~-xn>pgflp§2'”pin’

@ Just make sure we are in the same pace. Note that p; +ps+---+p, =1 and
r1+z2o+ -z, =N
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Lecture 3: Common distributions

Dirichlet distribution

@ Note that the conjugate prior of multinomial distribution should take the form

a;1—1_as—1 oy —1
xl $2 ...xnn
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Lecture 3: Common distributions

Dirichlet distribution

@ Note that the conjugate prior of multinomial distribution should take the form

a;1—1_as—1 oy —1
xl $2 ...xnn

@ It turns out that the distribution is the so-called Dirichlet distribution. Its pdf is given by

Di’r(xlv"' 7xn‘a17"' 7an)

F(al ++Oén) a;—1,_as—1 ap—1
:L'2 oa.xn

“T(a)(az)--T(an) !
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Lecture 3: Common distributions

Dirichlet distribution

@ Note that the conjugate prior of multinomial distribution should take the form
(11—1 (Xg—l
xl :E2 PRI 1’

@ It turns out that the distribution is the so-called Dirichlet distribution. Its pdf is given by

ap—1
n

Di’r(xlv"' 7xn‘a17"' 7an)

_ F(Oél ++Oén) .Tal_l:L'gZ_l"'x

T(a1)T () - - T(am) ™

Qp—1
n

@ As usual since pdf should be normalized to 1, we have

[aprtugent g - Tolos) - T
ot % o)
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Lecture 3: Common distributions

Mean, mode, variance of Dirichlet distribution

@ Mean:

P(011+"'+04n)/ o a1 1
EIX:] = 1.02—1 _ap
[ 1] F(Oq)F(Oén) Ty Tg T

Plag+--+an) T(ag+1)---T(ap) a1

M) - T(ay) Tlar+-+an+1) a1+ +a,
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Lecture 3: Common distributions

Mean, mode, variance of Dirichlet distribution

@ Mean:
F(a1+"'+an)/ o a1 1
FlX ] = F AR P I e
[ 1] F(Oq)F(Oén) 1 +2 n
Tlag 44 ay) Tlag+1)---T(a,) oy
M) - T(ay) Tlar+-+an+1) a1+ +a,
o Similarly, E[X?) = FEan) [afrHlags - one ! = Hatdon fau B Aol

(a1+1)a1
(a1t +an+1) (a1t +an)’
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Lecture 3: Common distributions

Mean, mode, variance of Dirichlet distribution

@ Mean:

_F(al +...+an) / «y as—1 Ocn—l
B =T T, ) T n
Plag+--+an) T(ag+1)---T(ap) _ o

CT(o) - T(ap) T(ar+--+ap,+1)  ar+-+a,

o Similarly, E[X?] = Tloat--tan) cartlpoa=l . gan—1_ D(ai++an) D(a1+42)--T(a,) _

(a1+1) ~ Ten-T@n) /51 n 7 T(ar)-T(an) Tlaat+tont+2) —
(a1+~~~+an1+1)(ai+~-.+o¢n)' Thus,
Var(X,) = E[X?] — E[X?] = (a1+)en _ a? _ as(ao—an) b
1 1 1 (14 Fan+1) (a1t +ay) (a1t +an)? aZ(aotl)

ag=0a1 + -+ a,
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Lecture 3: Common distributions

Mean, mode, variance of Dirichlet distribution

@ Mean:

F(a1+"'+an)/ o a1 1
EIX:] = 1.02—1 _ap
[ 1] F(Oq)F(Oén) Ty Tg T

Plag+--+an) T(ag+1)---T(ap) a1

CT(o) - T(ap) T(ar+--+ap,+1)  ar+-+a,

o Similarly, E[X?] = Tloat--tan) cartlpoa=l . gan—1_ D(ai++an) Dlai+2)--T(a,) _

( ) T T(a1)-T(an) o n = Tlan) T(an) TortFont2)
a1+1)a

(a1+"'+an1+1)(ai+'~+ocn)' Thus, )

Var(X,) = E[X?] — E[X?] = (a1t+1)ay B a? _ aifao=a) b

(a1t Fap+D)(ar+Fa,)  (ar++a,)? ag(ao+1)
ag=0a1 + -+ a,

@ Mode: one can show that the mode of Dir(aq, -+ ,ay) for aq, -+ ,a, > 1is

Olifl
ap+tap—n’

We will not show it now but will leave as an exercise
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Lecture 3: Common distributions

Summary of Dirichlet distribution

o Pdf: I )
. O[1++Oln a1—1 _as—1 an—1
Dir(x|a) = R R e
) = FaTan) - Tam ™ 2

@ Mean: o

ay+ -t ap
@ Variance:

Oéi(ao az)

ad(ap+1)
e Mode: 1

oy —
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Lecture 3: Common distributions

Posterior probability given Multinomial likelihood and Dirichlet prior

Upon observing z1,--- ,x,, the posterior distribution of py,--- , p, becomes

p(p17"' apn‘xla"’ y Ty QL5 ,O[n)
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Lecture 3: Common distributions

Posterior probability given Multinomial likelihood and Dirichlet prior

Upon observing z1,--- ,x,, the posterior distribution of py,--- , p, becomes

p(p17"' apn‘xla"’ y Ty QL5 ,O[n)
=Constl DZ’/‘(pl, 7pn|O[1,"' aan)MUZt(xla"' 7xn|p17"‘ apn)
r1+a1 Tntan

=Const2 - pj ©DPp
:Dlr(p]_7 . ’pn|d17 - ’dn)

So the posterior distribution is Dirichlet with parameters updated to &y < 1 + ay, -+ ,Qn  Tn + Qp
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Lecture 3: Common distributions

Poisson distribution

Poisson distribution describes the number of arrival K within some period. For example, one can use
Poisson distribution to model the arrival process (Poisson process) of customers into a store.
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Lecture 3: Common distributions

Poisson distribution

Poisson distribution describes the number of arrival K within some period. For example, one can use
Poisson distribution to model the arrival process (Poisson process) of customers into a store. lts pdf is

given by
e AMT(AT)F
k! ’
where k is a non-negative integer, A is rate of arrival and T is the length of the observed period.

Poisson(k|\T) =
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Lecture 3: Common distributions

Poisson distribution

Poisson distribution describes the number of arrival K within some period. For example, one can use
Poisson distribution to model the arrival process (Poisson process) of customers into a store. lts pdf is
given by

e AT (\T)F
k! ’

where k is a non-negative integer, A is rate of arrival and T is the length of the observed period. It is
easy to check that (please verify)

Poisson(k|\T) =

Mean = \T
Variance = \T

N.B. the parameters AT comes as a group and so we can consider it as a single parameter
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Lecture 3: Common distributions

Poisson process

Poisson process is probably the simplest random process to model event arrivals. It is based on two
simple assumptions
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Poisson process

Poisson process is probably the simplest random process to model event arrivals. It is based on two
simple assumptions

© Arrival rate is invariant over time
e That is, X is a constant that does not change with time
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Poisson process

Poisson process is probably the simplest random process to model event arrivals. It is based on two
simple assumptions

© Arrival rate is invariant over time
e That is, X is a constant that does not change with time

@ Each arrival is independent of the other
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Lecture 3: Common distributions

Poisson process

Poisson process is probably the simplest random process to model event arrivals. It is based on two
simple assumptions
@ Arrival rate is invariant over time
e That is, X is a constant that does not change with time
@ Each arrival is independent of the other

o For example, even though we just have one customer coming in, the probability that the next
customer to come in immediately should not decrease
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Poisson process

Poisson process is probably the simplest random process to model event arrivals. It is based on two
simple assumptions
@ Arrival rate is invariant over time
e That is, X is a constant that does not change with time
@ Each arrival is independent of the other

o For example, even though we just have one customer coming in, the probability that the next
customer to come in immediately should not decrease
o It makes sense to model say customers to a department store
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Lecture 3: Common distributions

Poisson process

Poisson process is probably the simplest random process to model event arrivals. It is based on two
simple assumptions

© Arrival rate is invariant over time
e That is, A is a constant that does not change with time
@ Each arrival is independent of the other

o For example, even though we just have one customer coming in, the probability that the next
customer to come in immediately should not decrease

o It makes sense to model say customers to a department store

o It can be less perfect to model the times my car broke down. The events are likely to be related
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Lecture 3: Common distributions

Poisson process and Poisson distribution

o Consider a period T and let’s the arrival rate be A as before. Let's partition 1" into N different very
short intervals of length A.
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Lecture 3: Common distributions

Poisson process and Poisson distribution

o Consider a period T and let’s the arrival rate be A as before. Let's partition 1" into N different very
short intervals of length A. Hence, T = NA. We will also assume N — oo and thus A — 0.

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 17, 2024 42



Lecture 3: Common distributions

Poisson process and Poisson distribution

o Consider a period T and let’s the arrival rate be A as before. Let's partition 1" into N different very
short intervals of length A. Hence, T = NA. We will also assume N — oo and thus A — 0. The
probability of getting an arrival in any interval A is thus AA.
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Poisson process and Poisson distribution

o Consider a period T and let’s the arrival rate be A as before. Let's partition 1" into N different very
short intervals of length A. Hence, T = NA. We will also assume N — oo and thus A — 0. The
probability of getting an arrival in any interval A is thus AA. Moreover, since A — 0, the
probability of getting two arrivals oc A% and is negligible compared to AA
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Lecture 3: Common distributions

Poisson process and Poisson distribution

o Consider a period T and let’s the arrival rate be A as before. Let's partition 1" into N different very
short intervals of length A. Hence, T = NA. We will also assume N — oo and thus A — 0. The
probability of getting an arrival in any interval A is thus AA. Moreover, since A — 0, the
probability of getting two arrivals oc A% and is negligible compared to AA

@ Then, the probability of & arrivals
Pr(k arrivals in T')
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Lecture 3: Common distributions

Poisson process and Poisson distribution

o Consider a period T and let’s the arrival rate be A as before. Let's partition 1" into N different very
short intervals of length A. Hence, T = NA. We will also assume N — oo and thus A — 0. The
probability of getting an arrival in any interval A is thus AA. Moreover, since A — 0, the
probability of getting two arrivals oc A% and is negligible compared to AA

@ Then, the probability of & arrivals
Pr(k arrivals in T') = (27) (AAF (1 — AA)N—F
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Lecture 3: Common distributions

Poisson process and Poisson distribution

o Consider a period T and let’s the arrival rate be A as before. Let's partition 1" into N different very
short intervals of length A. Hence, T = NA. We will also assume N — oo and thus A — 0. The
probability of getting an arrival in any interval A is thus AA. Moreover, since A — 0, the
probability of getting two arrivals oc A% and is negligible compared to AA

@ Then, the probability of & arrivals
Pr(k arrivals in T) = (Y)(AA)F(1 = AA)N—F = NOVZDNZRED (AA k(1 — AA)N K
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o Consider a period T and let’s the arrival rate be A as before. Let's partition 1" into N different very
short intervals of length A. Hence, T = NA. We will also assume N — oo and thus A — 0. The
probability of getting an arrival in any interval A is thus AA. Moreover, since A — 0, the
probability of getting two arrivals oc A% and is negligible compared to AA

@ Then, the probability of & arrivals
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Poisson process and Poisson distribution

o Consider a period T and let’s the arrival rate be A as before. Let's partition 1" into N different very
short intervals of length A. Hence, T = NA. We will also assume N — oo and thus A — 0. The
probability of getting an arrival in any interval A is thus AA. Moreover, since A — 0, the
probability of getting two arrivals oc A% and is negligible compared to AA

@ Then, the probability of & arrivals
Pr(k arrivals in T) = (Y)(AA)F(1 = AA)N—F = NOVZDNZRED (AA k(1 — AA)N K
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Poisson process and Poisson distribution

o Consider a period T and let’s the arrival rate be A as before. Let's partition 1" into N different very
short intervals of length A. Hence, T = NA. We will also assume N — oo and thus A — 0. The
probability of getting an arrival in any interval A is thus AA. Moreover, since A — 0, the
probability of getting two arrivals oc A% and is negligible compared to AA

@ Then, the probability of & arrivals
Pr(k arrivals in T) = (Y)(AA)F(1 = AA)N—F = NOVZDNZRED (AA k(1 — AA)N K

k k k k k
~ NENRTL (1 - AA)N—F = QD7 AT Nk QT (1 ATYN— AT oy (—AT),
where we use (14 a/N)N = exp(a) for the last equality

Note that indeed Pr(k arrivals in T') = Poisson(k|\T)
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Interarrival time of Poisson process

Using the similar analysis, we can also easily evaluate the distribution of interarrival time, the time that
the next event will happen given that an event just happened. Let t = nA and use the same notation as
before
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Using the similar analysis, we can also easily evaluate the distribution of interarrival time, the time that
the next event will happen given that an event just happened. Let t = nA and use the same notation as
before
@ Note that ¢ > 0 and A — 0 and so n — co. Now, Pr(next event happened within in time [t,¢ + A])
= Pr(next event happened within in time [nA, (n 4+ 1)A])
= Pr(no event in first n intervals) Pr(event happened in n + 1 interval) = (1 — AA)"(AA)
@ Let fr(¢) be the pdf of the interval time. Then, fr(t) = %: AL = AE)"™ = Xexp(—At), where
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Interarrival time of Poisson process

Using the similar analysis, we can also easily evaluate the distribution of interarrival time, the time that
the next event will happen given that an event just happened. Let t = nA and use the same notation as
before
@ Note that ¢ > 0 and A — 0 and so n — co. Now, Pr(next event happened within in time [t,¢ + A])
= Pr(next event happened within in time [nA, (n 4+ 1)A])
= Pr(no event in first n intervals) Pr(event happened in n + 1 interval) = (1 — AA)"(AA)
@ Let fr(¢) be the pdf of the interval time. Then, fr(t) = %: AL = AE)"™ = Xexp(—At), where
we use (1 +a/n)" = exp(a) again for n — co

Exponential distribution

fr(t) = Xexp(—At) £ Exp(t|\) is the pdf of the exponential distribution with parameter ). It is easy
to verify that (as exercise)

o E[T] =1/A
e Var(T) =1/)\2
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~ N(%k-1, Qi)

(1): ~ N (Fim1 + Brug, FiPr_1F)

(2): ~ N(FiXi—1 + Brug, FxPr 1 FJ + Qi)
X F e Sk T R

k-1 Prik—1

(3): ~ N(HT R Hy) ~ HI Ry, 'z, (HTRG T H) ™)

~ N(z.,Ry)
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