
Information Theory and Probabilistic Programming

Samuel Cheng

School of ECE
University of Oklahoma

October 25, 2023

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 1

Lecture 3a: source coding

Lecture 3a: source coding

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 1

Lecture 3a: source coding Constraint optimization

An optimization example

Simple economy: m prosumers, n different goods1

Each individual: production pi ∈ Rn , consumption ci ∈ Rn

Expense of producing “p” for agent i = ei(p)
Utility (happiness) of consuming “c” units for agent i = ui(c)
Maximize happiness

max
pi ,ci

m∑
i=1

(ui(ci)− ei(pi)) s.t.
m∑

i=1
ci =

m∑
i=1

pi

1Example borrowed from the first lecture of Prof Gordon’s CMU CS 10-725
S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 2

Lecture 3a: source coding Constraint optimization

Walrasian equilibrium

max
pi ,ci

m∑
i=1

(ui(ci)− ei(pi)) s.t.
m∑

i=1
ci =

m∑
i=1

pi

Idea: introduce price λj to each good j. Let the market decide
Price λj ↑ : consumption of good j ↓, production of good j ↑
Price λj ↓ : consumption of good j ↑, production of good j ↓
Can adjust price until consumption = production for each good

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 3

Lecture 3a: source coding Constraint optimization

Algorithm: tâtonnement
Assume that the appropriate prices are found, we can ignore the equality constraint, then the
problem becomes

max
pi ,ci

m∑
i=1

(ui(ci)− ei(pi)) ⇒
m∑

i=1
max
pi ,ci

(ui(ci)− ei(pi))

So we can simply optimize production and consumption of each individual independently

Algorithm 1 tâtonnement

1: procedure FindBestPrices
2: λ← [0, 0, · · · , 0]
3: for k = 1, 2, · · · do
4: Each individual solves for its ci and pi for the given λ
5: λ← λ+ δk

∑
i(ci − pi)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 4

Lecture 3a: source coding Constraint optimization

Lagrange multiplier

Problem

max
x

f (x)

g(x) = 0

Consider L(x, λ) = f (x)− λg(x) and let f̃ (x) = minλ L(x, λ).

Note that

f̃ (x) =
{

f (x) if g(x) = 0
−∞ otherwise

Therefore, the problem is identical to maxx f̃ (x) or

max
x

min
λ

(f (x)− λg(x)),

where λ is known to be the Lagrange multiplier.

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 5

Lecture 3a: source coding Constraint optimization

Lagrange multiplier

Problem

max
x

f (x)

g(x) = 0

Consider L(x, λ) = f (x)− λg(x) and let f̃ (x) = minλ L(x, λ). Note that

f̃ (x) =
{

f (x) if g(x) = 0
−∞ otherwise

Therefore, the problem is identical to maxx f̃ (x) or

max
x

min
λ

(f (x)− λg(x)),

where λ is known to be the Lagrange multiplier.

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 5

Lecture 3a: source coding Constraint optimization

Lagrange multiplier

Problem

max
x

f (x)

g(x) = 0

Consider L(x, λ) = f (x)− λg(x) and let f̃ (x) = minλ L(x, λ). Note that

f̃ (x) =
{

f (x) if g(x) = 0
−∞ otherwise

Therefore, the problem is identical to maxx f̃ (x) or

max
x

min
λ

(f (x)− λg(x)),

where λ is known to be the Lagrange multiplier.
S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 5

Lecture 3a: source coding Constraint optimization

Lagrange multiplier (con’t)

Assume the optimum is a saddle point,

max
x

min
λ

(f (x)− λg(x)) = min
λ

max
x

(f (x)− λg(x)),

the R.H.S. implies

∇f (x) = λ∇g(x)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 6

Lecture 3a: source coding Constraint optimization

Inequality constraint

Problem

max
x

f (x)

g(x) ≤ 0

Consider f̃ (x) = minλ≥0(f (x)− λg(x)),

note that

f̃ (x) =
{

f (x) if g(x) ≤ 0
−∞ otherwise

Therefore, we can rewrite the problem as

max
x

min
λ≥0

(f (x)− λg(x))

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 7

Lecture 3a: source coding Constraint optimization

Inequality constraint

Problem

max
x

f (x)

g(x) ≤ 0

Consider f̃ (x) = minλ≥0(f (x)− λg(x)), note that

f̃ (x) =
{

f (x) if g(x) ≤ 0
−∞ otherwise

Therefore, we can rewrite the problem as

max
x

min
λ≥0

(f (x)− λg(x))

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 7

Lecture 3a: source coding Constraint optimization

Inequality constraint

Problem

max
x

f (x)

g(x) ≤ 0

Consider f̃ (x) = minλ≥0(f (x)− λg(x)), note that

f̃ (x) =
{

f (x) if g(x) ≤ 0
−∞ otherwise

Therefore, we can rewrite the problem as

max
x

min
λ≥0

(f (x)− λg(x))

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 7

Lecture 3a: source coding Constraint optimization

Inequality constraint (con’t)
Assume

max
x

min
λ≥0

(f (x)− λg(x)) = min
λ≥0

max
x

(f (x)− λg(x))

The R.H.S. implies

∇f (x) = λ∇g(x)

Moreover, at the optimum point (x∗, λ∗), we should have the so-called “complementary
slackness” condition

λ∗g(x∗) = 0

since

max
x

f (x)
g(x)≤0

≡ max
x

min
λ≥0

(f (x)− λg(x))

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 8

Lecture 3a: source coding Constraint optimization

Inequality constraint (con’t)
Assume

max
x

min
λ≥0

(f (x)− λg(x)) = min
λ≥0

max
x

(f (x)− λg(x))

The R.H.S. implies

∇f (x) = λ∇g(x)

Moreover, at the optimum point (x∗, λ∗), we should have the so-called “complementary
slackness” condition

λ∗g(x∗) = 0

since

max
x

f (x)
g(x)≤0

≡ max
x

min
λ≥0

(f (x)− λg(x))

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 8

Lecture 3a: source coding Constraint optimization

Karush-Kuhn-Tucker conditions

Problem

max
x

f (x)

g(x) ≤ 0, h(x) = 0

Conditions

∇f (x∗)− µ∗∇g(x∗)− λ∗∇h(x∗) = 0
g(x∗) ≤ 0
h(x∗) = 0

µ∗ ≥ 0
µ∗g(x∗) = 0

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 9

Lecture 3a: source coding Overview of source coding

Overview of source coding

The objective of “source coding” is to compress some source

We can think of compression as “coding”. Meaning that we replace each input by a
corresponding coded sequence. So encoding is just a mapping/function process
Without loss of generality, we can use binary domain for our coded sequence. So for each
input message, it is converted to a sequence of 1s and 0s
Consider encoding (compressing) a sequence x1, x2, · · · one symbol at a time, resulting
c(x1), c(x2), · · ·
Denote the lengths of x1, x2, · · · as l(x1), l(x2), · · · , one of the major goal is to have
E [l(X)] to be as small as possible
However, we want to make sure that we can losslessly decode the message also!

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 10

Lecture 3a: source coding Overview of source coding

Overview of source coding

The objective of “source coding” is to compress some source
We can think of compression as “coding”. Meaning that we replace each input by a
corresponding coded sequence. So encoding is just a mapping/function process

Without loss of generality, we can use binary domain for our coded sequence. So for each
input message, it is converted to a sequence of 1s and 0s
Consider encoding (compressing) a sequence x1, x2, · · · one symbol at a time, resulting
c(x1), c(x2), · · ·
Denote the lengths of x1, x2, · · · as l(x1), l(x2), · · · , one of the major goal is to have
E [l(X)] to be as small as possible
However, we want to make sure that we can losslessly decode the message also!

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 10

Lecture 3a: source coding Overview of source coding

Overview of source coding

The objective of “source coding” is to compress some source
We can think of compression as “coding”. Meaning that we replace each input by a
corresponding coded sequence. So encoding is just a mapping/function process
Without loss of generality, we can use binary domain for our coded sequence. So for each
input message, it is converted to a sequence of 1s and 0s

Consider encoding (compressing) a sequence x1, x2, · · · one symbol at a time, resulting
c(x1), c(x2), · · ·
Denote the lengths of x1, x2, · · · as l(x1), l(x2), · · · , one of the major goal is to have
E [l(X)] to be as small as possible
However, we want to make sure that we can losslessly decode the message also!

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 10

Lecture 3a: source coding Overview of source coding

Overview of source coding

The objective of “source coding” is to compress some source
We can think of compression as “coding”. Meaning that we replace each input by a
corresponding coded sequence. So encoding is just a mapping/function process
Without loss of generality, we can use binary domain for our coded sequence. So for each
input message, it is converted to a sequence of 1s and 0s
Consider encoding (compressing) a sequence x1, x2, · · · one symbol at a time, resulting
c(x1), c(x2), · · ·

Denote the lengths of x1, x2, · · · as l(x1), l(x2), · · · , one of the major goal is to have
E [l(X)] to be as small as possible
However, we want to make sure that we can losslessly decode the message also!

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 10

Lecture 3a: source coding Overview of source coding

Overview of source coding

The objective of “source coding” is to compress some source
We can think of compression as “coding”. Meaning that we replace each input by a
corresponding coded sequence. So encoding is just a mapping/function process
Without loss of generality, we can use binary domain for our coded sequence. So for each
input message, it is converted to a sequence of 1s and 0s
Consider encoding (compressing) a sequence x1, x2, · · · one symbol at a time, resulting
c(x1), c(x2), · · ·
Denote the lengths of x1, x2, · · · as l(x1), l(x2), · · · , one of the major goal is to have
E [l(X)] to be as small as possible

However, we want to make sure that we can losslessly decode the message also!

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 10

Lecture 3a: source coding Overview of source coding

Overview of source coding

The objective of “source coding” is to compress some source
We can think of compression as “coding”. Meaning that we replace each input by a
corresponding coded sequence. So encoding is just a mapping/function process
Without loss of generality, we can use binary domain for our coded sequence. So for each
input message, it is converted to a sequence of 1s and 0s
Consider encoding (compressing) a sequence x1, x2, · · · one symbol at a time, resulting
c(x1), c(x2), · · ·
Denote the lengths of x1, x2, · · · as l(x1), l(x2), · · · , one of the major goal is to have
E [l(X)] to be as small as possible
However, we want to make sure that we can losslessly decode the message also!

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 10

Lecture 3a: source coding Overview of source coding

Uniquely decodable code

To ensure that we can recover message without loss, we must make sure that no message
share the same codeword

We say a code is “singular” (broken) if c(x1) = c(x2) for some different x1 and x2
Even when a code is not “singular”, we still cannot guarantee that we can always recover
the original message losslessly, consider 4 different possible input symbols a, b, c, d and an
encoding map c(·) :

a 7→ 0, b 7→ 1, c 7→ 10, d 7→ 11
What should be the message for 1110?

dba? Or bbba?
So it is not sufficient to just have c(·) to map to different output for each input. Let’s
overload the notation c(·) a little bit and for any message sequence x = x1, x2, · · · , xn,
encode sequence x1, x2, · · · , xn to c(x) = c(x1, x2, · · · , xn) = c(x1)c(x2) · · · c(xn)

We say c(x) is uniquely decodable if all input sequences map to different outputs

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 11

Lecture 3a: source coding Overview of source coding

Uniquely decodable code

To ensure that we can recover message without loss, we must make sure that no message
share the same codeword
We say a code is “singular” (broken) if c(x1) = c(x2) for some different x1 and x2

Even when a code is not “singular”, we still cannot guarantee that we can always recover
the original message losslessly, consider 4 different possible input symbols a, b, c, d and an
encoding map c(·) :

a 7→ 0, b 7→ 1, c 7→ 10, d 7→ 11
What should be the message for 1110?

dba? Or bbba?
So it is not sufficient to just have c(·) to map to different output for each input. Let’s
overload the notation c(·) a little bit and for any message sequence x = x1, x2, · · · , xn,
encode sequence x1, x2, · · · , xn to c(x) = c(x1, x2, · · · , xn) = c(x1)c(x2) · · · c(xn)

We say c(x) is uniquely decodable if all input sequences map to different outputs

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 11

Lecture 3a: source coding Overview of source coding

Uniquely decodable code

To ensure that we can recover message without loss, we must make sure that no message
share the same codeword
We say a code is “singular” (broken) if c(x1) = c(x2) for some different x1 and x2
Even when a code is not “singular”, we still cannot guarantee that we can always recover
the original message losslessly, consider 4 different possible input symbols a, b, c, d and an
encoding map c(·) :

a 7→ 0, b 7→ 1, c 7→ 10, d 7→ 11
What should be the message for 1110?

dba? Or bbba?
So it is not sufficient to just have c(·) to map to different output for each input. Let’s
overload the notation c(·) a little bit and for any message sequence x = x1, x2, · · · , xn,
encode sequence x1, x2, · · · , xn to c(x) = c(x1, x2, · · · , xn) = c(x1)c(x2) · · · c(xn)

We say c(x) is uniquely decodable if all input sequences map to different outputs

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 11

Lecture 3a: source coding Overview of source coding

Uniquely decodable code

To ensure that we can recover message without loss, we must make sure that no message
share the same codeword
We say a code is “singular” (broken) if c(x1) = c(x2) for some different x1 and x2
Even when a code is not “singular”, we still cannot guarantee that we can always recover
the original message losslessly, consider 4 different possible input symbols a, b, c, d and an
encoding map c(·) :

a 7→ 0, b 7→ 1, c 7→ 10, d 7→ 11
What should be the message for 1110?

dba? Or bbba?

So it is not sufficient to just have c(·) to map to different output for each input. Let’s
overload the notation c(·) a little bit and for any message sequence x = x1, x2, · · · , xn,
encode sequence x1, x2, · · · , xn to c(x) = c(x1, x2, · · · , xn) = c(x1)c(x2) · · · c(xn)

We say c(x) is uniquely decodable if all input sequences map to different outputs

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 11

Lecture 3a: source coding Overview of source coding

Uniquely decodable code

To ensure that we can recover message without loss, we must make sure that no message
share the same codeword
We say a code is “singular” (broken) if c(x1) = c(x2) for some different x1 and x2
Even when a code is not “singular”, we still cannot guarantee that we can always recover
the original message losslessly, consider 4 different possible input symbols a, b, c, d and an
encoding map c(·) :

a 7→ 0, b 7→ 1, c 7→ 10, d 7→ 11
What should be the message for 1110?

dba? Or bbba?
So it is not sufficient to just have c(·) to map to different output for each input. Let’s
overload the notation c(·) a little bit and for any message sequence x = x1, x2, · · · , xn,
encode sequence x1, x2, · · · , xn to c(x) = c(x1, x2, · · · , xn) = c(x1)c(x2) · · · c(xn)

We say c(x) is uniquely decodable if all input sequences map to different outputs

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 11

Lecture 3a: source coding Overview of source coding

Uniquely decodable code

To ensure that we can recover message without loss, we must make sure that no message
share the same codeword
We say a code is “singular” (broken) if c(x1) = c(x2) for some different x1 and x2
Even when a code is not “singular”, we still cannot guarantee that we can always recover
the original message losslessly, consider 4 different possible input symbols a, b, c, d and an
encoding map c(·) :

a 7→ 0, b 7→ 1, c 7→ 10, d 7→ 11
What should be the message for 1110?

dba? Or bbba?
So it is not sufficient to just have c(·) to map to different output for each input. Let’s
overload the notation c(·) a little bit and for any message sequence x = x1, x2, · · · , xn,
encode sequence x1, x2, · · · , xn to c(x) = c(x1, x2, · · · , xn) = c(x1)c(x2) · · · c(xn)

We say c(x) is uniquely decodable if all input sequences map to different outputs

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 11

Lecture 3a: source coding Overview of source coding

Prefix-free code

For practical purpose, we would like to be able to decode a symbol “once it is available”.
Consider a code with map

a 7→ 10, b 7→ 00, c 7→ 11, d 7→ 110

One can show that it is uniquely decodable. However, consider an input sequence
cbbb 7→ 11000000
When the decoder read the first 3 bits, it is not able to determine if the first input symbol is
c or d
Actually, it will be until the decoder read the last bit that it will be able to confirm that the
first input symbol is c. It is definitely not something very desirable

Instead, for a mapping a 7→ 1, b 7→ 01, c 7→ 001, d 7→ 0001, I will argue that we can
always decode a symbol “once it is available”

Note that the catch is that there is no codeword being the “prefix” of another codeword
We call such code a prefix-free code or an instantaneous code

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 12

Lecture 3a: source coding Overview of source coding

Prefix-free code

For practical purpose, we would like to be able to decode a symbol “once it is available”.
Consider a code with map

a 7→ 10, b 7→ 00, c 7→ 11, d 7→ 110
One can show that it is uniquely decodable. However, consider an input sequence
cbbb 7→ 11000000

When the decoder read the first 3 bits, it is not able to determine if the first input symbol is
c or d
Actually, it will be until the decoder read the last bit that it will be able to confirm that the
first input symbol is c. It is definitely not something very desirable

Instead, for a mapping a 7→ 1, b 7→ 01, c 7→ 001, d 7→ 0001, I will argue that we can
always decode a symbol “once it is available”

Note that the catch is that there is no codeword being the “prefix” of another codeword
We call such code a prefix-free code or an instantaneous code

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 12

Lecture 3a: source coding Overview of source coding

Prefix-free code

For practical purpose, we would like to be able to decode a symbol “once it is available”.
Consider a code with map

a 7→ 10, b 7→ 00, c 7→ 11, d 7→ 110
One can show that it is uniquely decodable. However, consider an input sequence
cbbb 7→ 11000000
When the decoder read the first 3 bits, it is not able to determine if the first input symbol is
c or d

Actually, it will be until the decoder read the last bit that it will be able to confirm that the
first input symbol is c. It is definitely not something very desirable

Instead, for a mapping a 7→ 1, b 7→ 01, c 7→ 001, d 7→ 0001, I will argue that we can
always decode a symbol “once it is available”

Note that the catch is that there is no codeword being the “prefix” of another codeword
We call such code a prefix-free code or an instantaneous code

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 12

Lecture 3a: source coding Overview of source coding

Prefix-free code

For practical purpose, we would like to be able to decode a symbol “once it is available”.
Consider a code with map

a 7→ 10, b 7→ 00, c 7→ 11, d 7→ 110
One can show that it is uniquely decodable. However, consider an input sequence
cbbb 7→ 11000000
When the decoder read the first 3 bits, it is not able to determine if the first input symbol is
c or d
Actually, it will be until the decoder read the last bit that it will be able to confirm that the
first input symbol is c. It is definitely not something very desirable

Instead, for a mapping a 7→ 1, b 7→ 01, c 7→ 001, d 7→ 0001, I will argue that we can
always decode a symbol “once it is available”

Note that the catch is that there is no codeword being the “prefix” of another codeword
We call such code a prefix-free code or an instantaneous code

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 12

Lecture 3a: source coding Overview of source coding

Prefix-free code

For practical purpose, we would like to be able to decode a symbol “once it is available”.
Consider a code with map

a 7→ 10, b 7→ 00, c 7→ 11, d 7→ 110
One can show that it is uniquely decodable. However, consider an input sequence
cbbb 7→ 11000000
When the decoder read the first 3 bits, it is not able to determine if the first input symbol is
c or d
Actually, it will be until the decoder read the last bit that it will be able to confirm that the
first input symbol is c. It is definitely not something very desirable

Instead, for a mapping a 7→ 1, b 7→ 01, c 7→ 001, d 7→ 0001, I will argue that we can
always decode a symbol “once it is available”

Note that the catch is that there is no codeword being the “prefix” of another codeword
We call such code a prefix-free code or an instantaneous code

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 12

Lecture 3a: source coding Overview of source coding

Prefix-free code

For practical purpose, we would like to be able to decode a symbol “once it is available”.
Consider a code with map

a 7→ 10, b 7→ 00, c 7→ 11, d 7→ 110
One can show that it is uniquely decodable. However, consider an input sequence
cbbb 7→ 11000000
When the decoder read the first 3 bits, it is not able to determine if the first input symbol is
c or d
Actually, it will be until the decoder read the last bit that it will be able to confirm that the
first input symbol is c. It is definitely not something very desirable

Instead, for a mapping a 7→ 1, b 7→ 01, c 7→ 001, d 7→ 0001, I will argue that we can
always decode a symbol “once it is available”

Note that the catch is that there is no codeword being the “prefix” of another codeword
We call such code a prefix-free code or an instantaneous code

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 12

Lecture 3a: source coding Kraft’s Inequality

Kraft’s Inequality

How do we know if a length profile for a code is possible?
Kraft’s inequality: Consider a length profile l1, l2, · · · , lK , there exists a uniquely
decodable code for symbols x1, x2, · · · , xK such that l(x1) = l1, l(x2) = l2, · · · , l(xK) = lK
if and only if

∑K
k=1 2−lk ≤ 1

Intuition
Consider # “descendants” of each codeword at the “lmax”-level, then for prefix-free code, we
have

K∑
k=1

2lmax−l ≤ 2lmax

⇒
K∑

k=1
2−lk ≤ 1 a

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 13

Lecture 3a: source coding Kraft’s Inequality

Kraft’s Inequality

How do we know if a length profile for a code is possible?
Kraft’s inequality: Consider a length profile l1, l2, · · · , lK , there exists a uniquely
decodable code for symbols x1, x2, · · · , xK such that l(x1) = l1, l(x2) = l2, · · · , l(xK) = lK
if and only if

∑K
k=1 2−lk ≤ 1

Intuition
Consider # “descendants” of each codeword at the “lmax”-level, then for prefix-free code, we
have

K∑
k=1

2lmax−l ≤ 2lmax

⇒
K∑

k=1
2−lk ≤ 1 a

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 13

Lecture 3a: source coding Kraft’s Inequality

Kraft’s Inequality

How do we know if a length profile for a code is possible?
Kraft’s inequality: Consider a length profile l1, l2, · · · , lK , there exists a uniquely
decodable code for symbols x1, x2, · · · , xK such that l(x1) = l1, l(x2) = l2, · · · , l(xK) = lK
if and only if

∑K
k=1 2−lk ≤ 1

Intuition
Consider # “descendants” of each codeword at the “lmax”-level, then for prefix-free code, we
have

K∑
k=1

2lmax−l ≤ 2lmax

⇒
K∑

k=1
2−lk ≤ 1 a

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 13

Lecture 3a: source coding Kraft’s Inequality

Forward Proof

Given l1, l2, · · · , lK satisfy
∑K

k=1 2−lk ≤ 1, we can assign nodes on a tree as previous slides.
More precisely,

Assign i-th node as a node at level li , then cross out all its descendants
Repeat the procedure for i from 1 to K
We know that there are sufficient tree nodes to be assigned since the Kraft’s inequaltiy is
satisfied

The corresponding code is apparently prefix-free and thus is uniquely decodable

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 14

Lecture 3a: source coding Kraft’s Inequality

Converse Proof
Consider message from coding k symbols x = x1, x2, · · · , xk(∑

x∈X
2−l(x)

)k

=

(∑
x1∈X

2−l(x1)

)(∑
x2∈X

2−l(x2)

)
· · ·

(∑
xk∈X

2−l(xk)

)
=

∑
x1,x2,··· ,xk∈X k

2−(l(x1)+l(x2)+···+l(xk))

=
∑

x∈X k

2−l(x)

=

klmax∑
m=1

a(m)2−m,

where a(m) is the number of codeword with length m. However, for the code to be uniquely
decodable, a(m) ≤ 2m, where 2m is the number of available codewords with length m.
Therefore, ∑

x∈X
2−l(x) ≤ (klmax)

1/k ≈ 1 as k →∞

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 15

Lecture 3a: source coding Kraft’s Inequality

Converse Proof
Consider message from coding k symbols x = x1, x2, · · · , xk(∑

x∈X
2−l(x)

)k

=

(∑
x1∈X

2−l(x1)

)(∑
x2∈X

2−l(x2)

)
· · ·

(∑
xk∈X

2−l(xk)

)
=

∑
x1,x2,··· ,xk∈X k

2−(l(x1)+l(x2)+···+l(xk))

=
∑

x∈X k

2−l(x) =

klmax∑
m=1

a(m)2−m,

where a(m) is the number of codeword with length m. However, for the code to be uniquely
decodable, a(m) ≤ 2m, where 2m is the number of available codewords with length m.

Therefore, ∑
x∈X

2−l(x) ≤ (klmax)
1/k ≈ 1 as k →∞

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 15

Lecture 3a: source coding Kraft’s Inequality

Converse Proof
Consider message from coding k symbols x = x1, x2, · · · , xk(∑

x∈X
2−l(x)

)k

=

(∑
x1∈X

2−l(x1)

)(∑
x2∈X

2−l(x2)

)
· · ·

(∑
xk∈X

2−l(xk)

)
=

∑
x1,x2,··· ,xk∈X k

2−(l(x1)+l(x2)+···+l(xk))

=
∑

x∈X k

2−l(x) =

klmax∑
m=1

a(m)2−m,

where a(m) is the number of codeword with length m. However, for the code to be uniquely
decodable, a(m) ≤ 2m, where 2m is the number of available codewords with length m.
Therefore, ∑

x∈X
2−l(x) ≤ (klmax)

1/k

≈ 1 as k →∞

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 15

Lecture 3a: source coding Kraft’s Inequality

Converse Proof
Consider message from coding k symbols x = x1, x2, · · · , xk(∑

x∈X
2−l(x)

)k

=

(∑
x1∈X

2−l(x1)

)(∑
x2∈X

2−l(x2)

)
· · ·

(∑
xk∈X

2−l(xk)

)
=

∑
x1,x2,··· ,xk∈X k

2−(l(x1)+l(x2)+···+l(xk))

=
∑

x∈X k

2−l(x) =

klmax∑
m=1

a(m)2−m,

where a(m) is the number of codeword with length m. However, for the code to be uniquely
decodable, a(m) ≤ 2m, where 2m is the number of available codewords with length m.
Therefore, ∑

x∈X
2−l(x) ≤ (klmax)

1/k ≈ 1 as k →∞

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 15

Lecture 3a: source coding Converse proof of Source Coding Theorem

Minimum rate required to compress a source

minl1,l2,··· ,lK

K∑
k=1

pk lk subject to
K∑

k=1
2−lk ≤ 1 and l1, · · · , lK ≥ 0

≡maxl1,l2,··· ,lK −
K∑

k=1
pk lk subject to

K∑
k=1

2−lk − 1 ≤ 0 and − l1, · · · ,−lK ≤ 0

KKT conditions

−∇

(K∑
k=1

pk lk

)
− µ0∇

(K∑
k=1

2−lk − 1
)

+
K∑

k=1

µk∇lk = 0

K∑
k=1

2−lk − 1 ≤ 0, l1, · · · , lK ≥ 0, µ0, µ1, · · · , µK ≥ 0

µ0

(K∑
k=1

2−lk − 1
)

= 0, µk lk = 0

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 16

Lecture 3a: source coding Converse proof of Source Coding Theorem

Minimum rate required to compress a source

minl1,l2,··· ,lK

K∑
k=1

pk lk subject to
K∑

k=1
2−lk ≤ 1 and l1, · · · , lK ≥ 0

≡maxl1,l2,··· ,lK −
K∑

k=1
pk lk subject to

K∑
k=1

2−lk − 1 ≤ 0 and − l1, · · · ,−lK ≤ 0

KKT conditions

−∇

(K∑
k=1

pk lk

)
− µ0∇

(K∑
k=1

2−lk − 1
)

+
K∑

k=1

µk∇lk = 0

K∑
k=1

2−lk − 1 ≤ 0, l1, · · · , lK ≥ 0, µ0, µ1, · · · , µK ≥ 0

µ0

(K∑
k=1

2−lk − 1
)

= 0, µk lk = 0

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 16

Lecture 3a: source coding Converse proof of Source Coding Theorem

Minimum rate required to compress a source

minl1,l2,··· ,lK

K∑
k=1

pk lk subject to
K∑

k=1
2−lk ≤ 1 and l1, · · · , lK ≥ 0

≡maxl1,l2,··· ,lK −
K∑

k=1
pk lk subject to

K∑
k=1

2−lk − 1 ≤ 0 and − l1, · · · ,−lK ≤ 0

KKT conditions

−∇

(K∑
k=1

pk lk

)
− µ0∇

(K∑
k=1

2−lk − 1
)

+
K∑

k=1

µk∇lk = 0

K∑
k=1

2−lk − 1 ≤ 0, l1, · · · , lK ≥ 0, µ0, µ1, · · · , µK ≥ 0

µ0

(K∑
k=1

2−lk − 1
)

= 0, µk lk = 0

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 16

Lecture 3a: source coding Converse proof of Source Coding Theorem

Minimum rate required to compress a source
Since we expect lk > 0, µk = 0.

Expand the first equation, we get

−pj + µ02−lj log 2 = 0⇒ 2−lj =
pj

µ0 log 2

And by
∑K

k=1 2−lk ≤ 1, we have
K∑

k=1

pj
µ0 log 2 =

1
µ0 log 2 ≤ 1⇒ µ0 ≥

1
log 2

Note that as µ0 ↓, pj
µ0 log 2 ↑ and lj ↓. Therefore, if we want to decrease code rate, we should

reduce µ0 as much as possible. Thus, take µ0 = 1
log 2 . Then 2−lj = pj ⇒ lj = − log2 pj . Thus,

the minimum rate becomes
K∑

k=1
pk lk = −

K∑
k=1

pk log2 pk , H(p1, · · · , pK)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 17

Lecture 3a: source coding Converse proof of Source Coding Theorem

Minimum rate required to compress a source
Since we expect lk > 0, µk = 0. Expand the first equation, we get

−pj + µ02−lj log 2 = 0⇒ 2−lj =
pj

µ0 log 2

And by
∑K

k=1 2−lk ≤ 1, we have
K∑

k=1

pj
µ0 log 2 =

1
µ0 log 2 ≤ 1⇒ µ0 ≥

1
log 2

Note that as µ0 ↓, pj
µ0 log 2 ↑ and lj ↓. Therefore, if we want to decrease code rate, we should

reduce µ0 as much as possible. Thus, take µ0 = 1
log 2 . Then 2−lj = pj ⇒ lj = − log2 pj . Thus,

the minimum rate becomes
K∑

k=1
pk lk = −

K∑
k=1

pk log2 pk , H(p1, · · · , pK)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 17

Lecture 3a: source coding Converse proof of Source Coding Theorem

Minimum rate required to compress a source
Since we expect lk > 0, µk = 0. Expand the first equation, we get

−pj + µ02−lj log 2 = 0⇒ 2−lj =
pj

µ0 log 2

And by
∑K

k=1 2−lk ≤ 1, we have
K∑

k=1

pj
µ0 log 2 =

1
µ0 log 2 ≤ 1⇒ µ0 ≥

1
log 2

Note that as µ0 ↓, pj
µ0 log 2 ↑ and lj ↓. Therefore, if we want to decrease code rate, we should

reduce µ0 as much as possible. Thus, take µ0 = 1
log 2 . Then 2−lj = pj ⇒ lj = − log2 pj . Thus,

the minimum rate becomes
K∑

k=1
pk lk = −

K∑
k=1

pk log2 pk , H(p1, · · · , pK)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 17

Lecture 3a: source coding Converse proof of Source Coding Theorem

Minimum rate required to compress a source
Since we expect lk > 0, µk = 0. Expand the first equation, we get

−pj + µ02−lj log 2 = 0⇒ 2−lj =
pj

µ0 log 2

And by
∑K

k=1 2−lk ≤ 1, we have
K∑

k=1

pj
µ0 log 2 =

1
µ0 log 2 ≤ 1⇒ µ0 ≥

1
log 2

Note that as µ0 ↓, pj
µ0 log 2 ↑ and lj ↓.

Therefore, if we want to decrease code rate, we should
reduce µ0 as much as possible. Thus, take µ0 = 1

log 2 . Then 2−lj = pj ⇒ lj = − log2 pj . Thus,
the minimum rate becomes

K∑
k=1

pk lk = −
K∑

k=1
pk log2 pk , H(p1, · · · , pK)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 17

Lecture 3a: source coding Converse proof of Source Coding Theorem

Minimum rate required to compress a source
Since we expect lk > 0, µk = 0. Expand the first equation, we get

−pj + µ02−lj log 2 = 0⇒ 2−lj =
pj

µ0 log 2

And by
∑K

k=1 2−lk ≤ 1, we have
K∑

k=1

pj
µ0 log 2 =

1
µ0 log 2 ≤ 1⇒ µ0 ≥

1
log 2

Note that as µ0 ↓, pj
µ0 log 2 ↑ and lj ↓. Therefore, if we want to decrease code rate, we should

reduce µ0 as much as possible. Thus, take µ0 = 1
log 2 . Then 2−lj = pj ⇒ lj = − log2 pj . Thus,

the minimum rate becomes
K∑

k=1
pk lk = −

K∑
k=1

pk log2 pk , H(p1, · · · , pK)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 17

Lecture 3a: source coding Converse proof of Source Coding Theorem

Summary

Kraft’s inequality:
∑K

k=1 2−lk ≤ 1

We showed that given a code “length-profile”, we can always find a prefix-free code if the
profile satisfies Kraft’s inequality
Conversely, if Kraft’s inequality is not satisfies, any code with that profile is not uniquely
decodable ⇒ trash

A proof of Source Coding Theorem: if we minimize the expected code length subject to
the Kraft’s inequality, the minimum “code rate” is equal to the entropy of the source.

We cannot compress a source losslessly below its entropy
On the other hand, since Kraft’s inequality guarantee existence of code, we should be able to
find code to achieve the theoretical limit

However, the proof we discussed was not constructive. How can we actually design a code
to compress arbitrarily close to the theoretical limit?

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 18

Lecture 3a: source coding Converse proof of Source Coding Theorem

Summary

Kraft’s inequality:
∑K

k=1 2−lk ≤ 1
We showed that given a code “length-profile”, we can always find a prefix-free code if the
profile satisfies Kraft’s inequality

Conversely, if Kraft’s inequality is not satisfies, any code with that profile is not uniquely
decodable ⇒ trash

A proof of Source Coding Theorem: if we minimize the expected code length subject to
the Kraft’s inequality, the minimum “code rate” is equal to the entropy of the source.

We cannot compress a source losslessly below its entropy
On the other hand, since Kraft’s inequality guarantee existence of code, we should be able to
find code to achieve the theoretical limit

However, the proof we discussed was not constructive. How can we actually design a code
to compress arbitrarily close to the theoretical limit?

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 18

Lecture 3a: source coding Converse proof of Source Coding Theorem

Summary

Kraft’s inequality:
∑K

k=1 2−lk ≤ 1
We showed that given a code “length-profile”, we can always find a prefix-free code if the
profile satisfies Kraft’s inequality
Conversely, if Kraft’s inequality is not satisfies, any code with that profile is not uniquely
decodable ⇒ trash

A proof of Source Coding Theorem: if we minimize the expected code length subject to
the Kraft’s inequality, the minimum “code rate” is equal to the entropy of the source.

We cannot compress a source losslessly below its entropy
On the other hand, since Kraft’s inequality guarantee existence of code, we should be able to
find code to achieve the theoretical limit

However, the proof we discussed was not constructive. How can we actually design a code
to compress arbitrarily close to the theoretical limit?

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 18

Lecture 3a: source coding Converse proof of Source Coding Theorem

Summary

Kraft’s inequality:
∑K

k=1 2−lk ≤ 1
We showed that given a code “length-profile”, we can always find a prefix-free code if the
profile satisfies Kraft’s inequality
Conversely, if Kraft’s inequality is not satisfies, any code with that profile is not uniquely
decodable ⇒ trash

A proof of Source Coding Theorem: if we minimize the expected code length subject to
the Kraft’s inequality, the minimum “code rate” is equal to the entropy of the source.

We cannot compress a source losslessly below its entropy
On the other hand, since Kraft’s inequality guarantee existence of code, we should be able to
find code to achieve the theoretical limit

However, the proof we discussed was not constructive. How can we actually design a code
to compress arbitrarily close to the theoretical limit?

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 18

Lecture 3a: source coding Converse proof of Source Coding Theorem

Summary

Kraft’s inequality:
∑K

k=1 2−lk ≤ 1
We showed that given a code “length-profile”, we can always find a prefix-free code if the
profile satisfies Kraft’s inequality
Conversely, if Kraft’s inequality is not satisfies, any code with that profile is not uniquely
decodable ⇒ trash

A proof of Source Coding Theorem: if we minimize the expected code length subject to
the Kraft’s inequality, the minimum “code rate” is equal to the entropy of the source.

We cannot compress a source losslessly below its entropy

On the other hand, since Kraft’s inequality guarantee existence of code, we should be able to
find code to achieve the theoretical limit

However, the proof we discussed was not constructive. How can we actually design a code
to compress arbitrarily close to the theoretical limit?

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 18

Lecture 3a: source coding Converse proof of Source Coding Theorem

Summary

Kraft’s inequality:
∑K

k=1 2−lk ≤ 1
We showed that given a code “length-profile”, we can always find a prefix-free code if the
profile satisfies Kraft’s inequality
Conversely, if Kraft’s inequality is not satisfies, any code with that profile is not uniquely
decodable ⇒ trash

A proof of Source Coding Theorem: if we minimize the expected code length subject to
the Kraft’s inequality, the minimum “code rate” is equal to the entropy of the source.

We cannot compress a source losslessly below its entropy
On the other hand, since Kraft’s inequality guarantee existence of code, we should be able to
find code to achieve the theoretical limit

However, the proof we discussed was not constructive. How can we actually design a code
to compress arbitrarily close to the theoretical limit?

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 18

Lecture 3a: source coding Converse proof of Source Coding Theorem

Summary

Kraft’s inequality:
∑K

k=1 2−lk ≤ 1
We showed that given a code “length-profile”, we can always find a prefix-free code if the
profile satisfies Kraft’s inequality
Conversely, if Kraft’s inequality is not satisfies, any code with that profile is not uniquely
decodable ⇒ trash

A proof of Source Coding Theorem: if we minimize the expected code length subject to
the Kraft’s inequality, the minimum “code rate” is equal to the entropy of the source.

We cannot compress a source losslessly below its entropy
On the other hand, since Kraft’s inequality guarantee existence of code, we should be able to
find code to achieve the theoretical limit

However, the proof we discussed was not constructive. How can we actually design a code
to compress arbitrarily close to the theoretical limit?

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 18

Lecture 4: LLN and AEP

Lecture 4: LLN and AEP

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 1

Lecture 4: LLN and AEP Law of Large Number

Law of Large Number (LLN)

If we randomly sample x1, x2, · · · , xN from an i.i.d. (identical and independently distributed)
source, the average of f (xi) will approach the expected value as N →∞. That is,

1
N

N∑
i=1

f (xi) = E [f (X)] as N →∞

Example
This is precisely how poll supposes to work! Pollster randomly draws sample from a portion of
the population but will expect the prediction matches the outcome

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 2

Lecture 4: LLN and AEP Law of Large Number

Law of Large Number (LLN)

If we randomly sample x1, x2, · · · , xN from an i.i.d. (identical and independently distributed)
source, the average of f (xi) will approach the expected value as N →∞. That is,

1
N

N∑
i=1

f (xi) = E [f (X)] as N →∞

Example
This is precisely how poll supposes to work! Pollster randomly draws sample from a portion of
the population but will expect the prediction matches the outcome

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 2

Lecture 4: LLN and AEP Law of Large Number

Proof of LLN

The LLN is a rather strong result. We will only show a weak version here. For any a > 0,
Pr
(∣∣∣ 1

N
∑N

i=1 f (Xi)− E [f (X)]
∣∣∣ ≥ a

)
→ 0 as N →∞. (i.e., the empirical average converges to

the expectation in probability.) More precisely, we will show

Pr
(∣∣∣∣∣ 1

N

N∑
i=1

f (Xi)− E [f (X)]

∣∣∣∣∣ ≥ a
)
≤ Var(f (X))

Na2 ∝ 1
N

Markov’s Inequality

Pr(X ≥ b) ≤ E [X]

b if X ≥ 0

Proof:
X = I(X ≥ b) · X + I(X < b) · X ≥ I(X ≥ b) · b ⇒ E [X] ≥ Pr(X ≥ b) · b

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 3

Lecture 4: LLN and AEP Law of Large Number

Proof of LLN

The LLN is a rather strong result. We will only show a weak version here. For any a > 0,
Pr
(∣∣∣ 1

N
∑N

i=1 f (Xi)− E [f (X)]
∣∣∣ ≥ a

)
→ 0 as N →∞. (i.e., the empirical average converges to

the expectation in probability.) More precisely, we will show

Pr
(∣∣∣∣∣ 1

N

N∑
i=1

f (Xi)− E [f (X)]

∣∣∣∣∣ ≥ a
)
≤ Var(f (X))

Na2 ∝ 1
N

Markov’s Inequality

Pr(X ≥ b) ≤ E [X]

b if X ≥ 0

Proof:
X = I(X ≥ b) · X + I(X < b) · X ≥ I(X ≥ b) · b ⇒ E [X] ≥ Pr(X ≥ b) · b

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 3

Lecture 4: LLN and AEP Law of Large Number

Proof of LLN

The LLN is a rather strong result. We will only show a weak version here. For any a > 0,
Pr
(∣∣∣ 1

N
∑N

i=1 f (Xi)− E [f (X)]
∣∣∣ ≥ a

)
→ 0 as N →∞. (i.e., the empirical average converges to

the expectation in probability.) More precisely, we will show

Pr
(∣∣∣∣∣ 1

N

N∑
i=1

f (Xi)− E [f (X)]

∣∣∣∣∣ ≥ a
)
≤ Var(f (X))

Na2 ∝ 1
N

Markov’s Inequality

Pr(X ≥ b) ≤ E [X]

b if X ≥ 0

Proof:
X = I(X ≥ b) · X + I(X < b) · X ≥ I(X ≥ b) · b

⇒ E [X] ≥ Pr(X ≥ b) · b

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 3

Lecture 4: LLN and AEP Law of Large Number

Proof of LLN

The LLN is a rather strong result. We will only show a weak version here. For any a > 0,
Pr
(∣∣∣ 1

N
∑N

i=1 f (Xi)− E [f (X)]
∣∣∣ ≥ a

)
→ 0 as N →∞. (i.e., the empirical average converges to

the expectation in probability.) More precisely, we will show

Pr
(∣∣∣∣∣ 1

N

N∑
i=1

f (Xi)− E [f (X)]

∣∣∣∣∣ ≥ a
)
≤ Var(f (X))

Na2 ∝ 1
N

Markov’s Inequality

Pr(X ≥ b) ≤ E [X]

b if X ≥ 0

Proof:
X = I(X ≥ b) · X + I(X < b) · X ≥ I(X ≥ b) · b ⇒ E [X] ≥ Pr(X ≥ b) · b

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 3

Lecture 4: LLN and AEP Law of Large Number

Proof of LLN

Markov’s Inequality

Pr(X ≥ b) ≤ E [X]

b if X ≥ 0

Chebyshev’s Inequality

Pr(|Y − E [Y]| ≥ a) ≤ Var(Y)

a2

Proof: Take X = |Y − E [Y]|2 and b = a2, by Markov’s Inequality
Pr(|Y − E [Y]| ≥ a) = Pr(|Y − E [Y]|2 ≥ a2)

≤E [|Y − E [Y]|2]
a2 =

Var(Y)

a2

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 4

Lecture 4: LLN and AEP Law of Large Number

Proof of LLN

Markov’s Inequality

Pr(X ≥ b) ≤ E [X]

b if X ≥ 0

Chebyshev’s Inequality

Pr(|Y − E [Y]| ≥ a) ≤ Var(Y)

a2

Proof: Take X = |Y − E [Y]|2 and b = a2, by Markov’s Inequality

Pr(|Y − E [Y]| ≥ a) = Pr(|Y − E [Y]|2 ≥ a2)

≤E [|Y − E [Y]|2]
a2 =

Var(Y)

a2

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 4

Lecture 4: LLN and AEP Law of Large Number

Proof of LLN

Markov’s Inequality

Pr(X ≥ b) ≤ E [X]

b if X ≥ 0

Chebyshev’s Inequality

Pr(|Y − E [Y]| ≥ a) ≤ Var(Y)

a2

Proof: Take X = |Y − E [Y]|2 and b = a2, by Markov’s Inequality
Pr(|Y − E [Y]| ≥ a) = Pr(|Y − E [Y]|2 ≥ a2)

≤E [|Y − E [Y]|2]
a2

=
Var(Y)

a2

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 4

Lecture 4: LLN and AEP Law of Large Number

Proof of LLN

Markov’s Inequality

Pr(X ≥ b) ≤ E [X]

b if X ≥ 0

Chebyshev’s Inequality

Pr(|Y − E [Y]| ≥ a) ≤ Var(Y)

a2

Proof: Take X = |Y − E [Y]|2 and b = a2, by Markov’s Inequality
Pr(|Y − E [Y]| ≥ a) = Pr(|Y − E [Y]|2 ≥ a2)

≤E [|Y − E [Y]|2]
a2 =

Var(Y)

a2

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 4

Lecture 4: LLN and AEP Law of Large Number

Proof of LLN

Chebyshev’s Inequality

Pr(|Y − E [Y]| ≥ a) ≤ Var(Y)

a2

Proof of weak LLN
Let ZN = 1

N
∑N

i=1 f (Xi), apparently E [ZN] = E [f (X)] and

Var(ZN) =
1

N2

N∑
i=1

Var(f (X)) =
Var(f (X))

N

By Chebyshev’s Inequality,

Pr
(∣∣∣∣∣ 1

N

N∑
i=1

f (Xi)− E [f (X)]

∣∣∣∣∣ ≥ a
)

= Pr(|ZN − E [ZN]| ≥ a) ≤ Var(ZN)

a2 =
Var(f (X))

Na2

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 5

Lecture 4: LLN and AEP Law of Large Number

Proof of LLN

Chebyshev’s Inequality

Pr(|Y − E [Y]| ≥ a) ≤ Var(Y)

a2

Proof of weak LLN
Let ZN = 1

N
∑N

i=1 f (Xi), apparently E [ZN] = E [f (X)] and

Var(ZN) =
1

N2

N∑
i=1

Var(f (X)) =
Var(f (X))

N

By Chebyshev’s Inequality,

Pr
(∣∣∣∣∣ 1

N

N∑
i=1

f (Xi)− E [f (X)]

∣∣∣∣∣ ≥ a
)

= Pr(|ZN − E [ZN]| ≥ a) ≤ Var(ZN)

a2

=
Var(f (X))

Na2

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 5

Lecture 4: LLN and AEP Law of Large Number

Proof of LLN

Chebyshev’s Inequality

Pr(|Y − E [Y]| ≥ a) ≤ Var(Y)

a2

Proof of weak LLN
Let ZN = 1

N
∑N

i=1 f (Xi), apparently E [ZN] = E [f (X)] and

Var(ZN) =
1

N2

N∑
i=1

Var(f (X)) =
Var(f (X))

N

By Chebyshev’s Inequality,

Pr
(∣∣∣∣∣ 1

N

N∑
i=1

f (Xi)− E [f (X)]

∣∣∣∣∣ ≥ a
)

= Pr(|ZN − E [ZN]| ≥ a) ≤ Var(ZN)

a2 =
Var(f (X))

Na2

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 5

Lecture 4: LLN and AEP Law of Large Number

Example: Kelly’s Criterion

Say in total I have 1 dollar to start with and I bet X fraction of my current net worth
each time for an a-for-1 bet
Say the probability of winning the bet is p, expected wealth after one bet is 1− X + paX .
Apparently if pa < 1, I shouldn’t put in any money at all, but for pa > 1, expected wealth
after one bet is maximized when X = 1. Does it mean that we should always all in?
Say if we can make repeated bets, let’s denote Yi as the fraction of wealth gain after the
ith bet. That is, net wealth WN after N bets is

∏N
i=1 Yi with

Yi =

{
(1− X) + aX with prob p
1− X with prob 1− p

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 6

Lecture 4: LLN and AEP Law of Large Number

Example: Kelly’s Criterion

Let b = a − 1, by LLN, logWN =
∑N

i=1 logYi → NE [logY]

Thus logWN → N[p log(1 + (a − 1)︸ ︷︷ ︸
b

X) + (1− p) log(1− X)]. So, the final wealth is

approximately

WN ≈ (1 + Xb)Np(1− X)N(1−p) = ((1 + Xb)p(1− X)1−p)N .

To maximize this gain, we just need to maximize (1 + Xb)p(1− X)1−p or
f (X) = p log(1 + Xb) + (1− p) log(1− X) w.r.t. X . Setting df

dX = 0, we have
pb

1+Xb −
1−p
1−X = 0⇒ X = bp−(1−p)

b = (a−1)p−(1−p)
a−1 = ap−1

a−1 .

Note that we will never all in as long as p < 1
N.B. 1

N lnWN converges to (1 + Xb)p(1− X)1−p but 1
N WN does not converge

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 7

https://math.stackexchange.com/questions/3544344/bug-in-proof-of-kelly-criterion-and-danger-of-expectation

Lecture 4: LLN and AEP Asymptotic equipartition

Main idea
Consider a sequence of symbols x1, x2, · · · , xN sampled from a DMS and consider the sample
average of the log-probabilities of each sampled symbols

1
N

N∑
i=1

log
1

p(xi)
→ E

[
log

1
p(X)

]

= H(X)

by LLN.

But for the LHS,

1
N

N∑
i=1

log
1

p(xi)
=

1
N log

1∏N
i=1 p(xi)

= − 1
N log p(xN),

where xN = x1, x2, · · · , xN

Rearranging the terms, this implies that for any sequence sampled from the source, the
probability of the sampled sequence p(xN)→ 2−NH(X)!

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 8

Lecture 4: LLN and AEP Asymptotic equipartition

Main idea
Consider a sequence of symbols x1, x2, · · · , xN sampled from a DMS and consider the sample
average of the log-probabilities of each sampled symbols

1
N

N∑
i=1

log
1

p(xi)
→ E

[
log

1
p(X)

]
= H(X)

by LLN.

But for the LHS,

1
N

N∑
i=1

log
1

p(xi)
=

1
N log

1∏N
i=1 p(xi)

= − 1
N log p(xN),

where xN = x1, x2, · · · , xN

Rearranging the terms, this implies that for any sequence sampled from the source, the
probability of the sampled sequence p(xN)→ 2−NH(X)!

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 8

Lecture 4: LLN and AEP Asymptotic equipartition

Main idea
Consider a sequence of symbols x1, x2, · · · , xN sampled from a DMS and consider the sample
average of the log-probabilities of each sampled symbols

1
N

N∑
i=1

log
1

p(xi)
→ E

[
log

1
p(X)

]
= H(X)

by LLN. But for the LHS,

1
N

N∑
i=1

log
1

p(xi)
=

1
N log

1∏N
i=1 p(xi)

= − 1
N log p(xN),

where xN = x1, x2, · · · , xN

Rearranging the terms, this implies that for any sequence sampled from the source, the
probability of the sampled sequence p(xN)→ 2−NH(X)!

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 8

Lecture 4: LLN and AEP Asymptotic equipartition

Main idea
Consider a sequence of symbols x1, x2, · · · , xN sampled from a DMS and consider the sample
average of the log-probabilities of each sampled symbols

1
N

N∑
i=1

log
1

p(xi)
→ E

[
log

1
p(X)

]
= H(X)

by LLN. But for the LHS,

1
N

N∑
i=1

log
1

p(xi)
=

1
N log

1∏N
i=1 p(xi)

= − 1
N log p(xN),

where xN = x1, x2, · · · , xN

Rearranging the terms, this implies that for any sequence sampled from the source, the
probability of the sampled sequence p(xN)→ 2−NH(X)!

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 8

Lecture 4: LLN and AEP Asymptotic equipartition

Set of typical sequences

Let’s name the sequence xN with p(xN) ∼ 2−NH(X) typical and define the set of typical
sequences

AN
ε (X) = {xN |2−N(H(X)+ε) ≤ p(xN) ≤ 2−N(H(X)−ε)}

For any ε > 0, we can find a sufficiently large N such that any sampled sequence from the
source is typical
Since all typical sequences have probability ∼ 2−NH(X) and they fill up the entire
probability space (everything is typical), there should be approximately 1

2−NH(X) = 2NH(X)

typical sequences

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 9

Lecture 4: LLN and AEP Asymptotic equipartition

Set of typical sequences

Let’s name the sequence xN with p(xN) ∼ 2−NH(X) typical and define the set of typical
sequences

AN
ε (X) = {xN |2−N(H(X)+ε) ≤ p(xN) ≤ 2−N(H(X)−ε)}

For any ε > 0, we can find a sufficiently large N such that any sampled sequence from the
source is typical

Since all typical sequences have probability ∼ 2−NH(X) and they fill up the entire
probability space (everything is typical), there should be approximately 1

2−NH(X) = 2NH(X)

typical sequences

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 9

Lecture 4: LLN and AEP Asymptotic equipartition

Set of typical sequences

Let’s name the sequence xN with p(xN) ∼ 2−NH(X) typical and define the set of typical
sequences

AN
ε (X) = {xN |2−N(H(X)+ε) ≤ p(xN) ≤ 2−N(H(X)−ε)}

For any ε > 0, we can find a sufficiently large N such that any sampled sequence from the
source is typical
Since all typical sequences have probability ∼ 2−NH(X) and they fill up the entire
probability space (everything is typical), there should be approximately 1

2−NH(X) = 2NH(X)

typical sequences

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 9

Lecture 4: LLN and AEP Asymptotic equipartition

Precise bounds on the size of typical set

(1− δ)2N(H(X)−ε) ≤ |AN
ε (X)| ≤ 2N(H(X)+ε)

1 ≥ Pr(XN ∈ AN
ε (X))

=
∑

xN∈AN
ε (X)

p(xN) ≥
∑

xN∈AN
ε (X)

2−N(H(X)+ε)

= |AN
ε (X)|2−N(H(X)+ε)

For a sufficiently large N, we have

1− δ ≤ Pr(XN ∈ AN
ε (X)) =

∑
xN∈AN

ε (X)

p(xN) ≤
∑

xN∈AN
ε (X)

2−N(H(X)−ε)

= |AN
ε (X)|2−N(H(X)−ε)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 10

Lecture 4: LLN and AEP Asymptotic equipartition

Precise bounds on the size of typical set

(1− δ)2N(H(X)−ε) ≤ |AN
ε (X)| ≤ 2N(H(X)+ε)

1 ≥ Pr(XN ∈ AN
ε (X)) =

∑
xN∈AN

ε (X)

p(xN)

≥
∑

xN∈AN
ε (X)

2−N(H(X)+ε)

= |AN
ε (X)|2−N(H(X)+ε)

For a sufficiently large N, we have

1− δ ≤ Pr(XN ∈ AN
ε (X)) =

∑
xN∈AN

ε (X)

p(xN) ≤
∑

xN∈AN
ε (X)

2−N(H(X)−ε)

= |AN
ε (X)|2−N(H(X)−ε)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 10

Lecture 4: LLN and AEP Asymptotic equipartition

Precise bounds on the size of typical set

(1− δ)2N(H(X)−ε) ≤ |AN
ε (X)| ≤ 2N(H(X)+ε)

1 ≥ Pr(XN ∈ AN
ε (X)) =

∑
xN∈AN

ε (X)

p(xN) ≥
∑

xN∈AN
ε (X)

2−N(H(X)+ε)

= |AN
ε (X)|2−N(H(X)+ε)

For a sufficiently large N, we have

1− δ ≤ Pr(XN ∈ AN
ε (X)) =

∑
xN∈AN

ε (X)

p(xN) ≤
∑

xN∈AN
ε (X)

2−N(H(X)−ε)

= |AN
ε (X)|2−N(H(X)−ε)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 10

Lecture 4: LLN and AEP Asymptotic equipartition

Precise bounds on the size of typical set

(1− δ)2N(H(X)−ε) ≤ |AN
ε (X)| ≤ 2N(H(X)+ε)

1 ≥ Pr(XN ∈ AN
ε (X)) =

∑
xN∈AN

ε (X)

p(xN) ≥
∑

xN∈AN
ε (X)

2−N(H(X)+ε)

= |AN
ε (X)|2−N(H(X)+ε)

For a sufficiently large N, we have

1− δ ≤ Pr(XN ∈ AN
ε (X)) =

∑
xN∈AN

ε (X)

p(xN) ≤
∑

xN∈AN
ε (X)

2−N(H(X)−ε)

= |AN
ε (X)|2−N(H(X)−ε)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 10

Lecture 4: LLN and AEP Asymptotic equipartition

Precise bounds on the size of typical set

(1− δ)2N(H(X)−ε) ≤ |AN
ε (X)| ≤ 2N(H(X)+ε)

1 ≥ Pr(XN ∈ AN
ε (X)) =

∑
xN∈AN

ε (X)

p(xN) ≥
∑

xN∈AN
ε (X)

2−N(H(X)+ε)

= |AN
ε (X)|2−N(H(X)+ε)

For a sufficiently large N, we have

1− δ ≤ Pr(XN ∈ AN
ε (X))

=
∑

xN∈AN
ε (X)

p(xN) ≤
∑

xN∈AN
ε (X)

2−N(H(X)−ε)

= |AN
ε (X)|2−N(H(X)−ε)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 10

Lecture 4: LLN and AEP Asymptotic equipartition

Precise bounds on the size of typical set

(1− δ)2N(H(X)−ε) ≤ |AN
ε (X)| ≤ 2N(H(X)+ε)

1 ≥ Pr(XN ∈ AN
ε (X)) =

∑
xN∈AN

ε (X)

p(xN) ≥
∑

xN∈AN
ε (X)

2−N(H(X)+ε)

= |AN
ε (X)|2−N(H(X)+ε)

For a sufficiently large N, we have

1− δ ≤ Pr(XN ∈ AN
ε (X)) =

∑
xN∈AN

ε (X)

p(xN) ≤
∑

xN∈AN
ε (X)

2−N(H(X)−ε)

= |AN
ε (X)|2−N(H(X)−ε)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 10

Lecture 4: LLN and AEP Asymptotic equipartition

AEP

Set of typical
Sequences

Sequences
are equally
probable

Sequence
that won't
happen

Asymptotic equipatition refers to the fact that the probability space is equally partitioned by
the typical sequences

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 11

Lecture 4: LLN and AEP Asymptotic equipartition

AEP and compression limit

Consider coin flipping again, let say Pr(Head) = 0.3 and N = 1000

The typical sequences will be those with approximately 300 heads and 700 tails
AEP (LLN) tells us that it is almost impossible to get, say, a sequence of 100 heads and
900 tails
AEP also tells us that the number of typical sequences are approximately 2NH(X)

Therefore, we can simply assign index to all the typical sequences and ignore the rest.
Then we only need log 2NH(X) = NH(X) to store a sequence of N symbols. And on
average, we need H(X) bits per symbol

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 12

Lecture 4: LLN and AEP Asymptotic equipartition

AEP and compression limit

Consider coin flipping again, let say Pr(Head) = 0.3 and N = 1000
The typical sequences will be those with approximately 300 heads and 700 tails

AEP (LLN) tells us that it is almost impossible to get, say, a sequence of 100 heads and
900 tails
AEP also tells us that the number of typical sequences are approximately 2NH(X)

Therefore, we can simply assign index to all the typical sequences and ignore the rest.
Then we only need log 2NH(X) = NH(X) to store a sequence of N symbols. And on
average, we need H(X) bits per symbol

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 12

Lecture 4: LLN and AEP Asymptotic equipartition

AEP and compression limit

Consider coin flipping again, let say Pr(Head) = 0.3 and N = 1000
The typical sequences will be those with approximately 300 heads and 700 tails
AEP (LLN) tells us that it is almost impossible to get, say, a sequence of 100 heads and
900 tails

AEP also tells us that the number of typical sequences are approximately 2NH(X)

Therefore, we can simply assign index to all the typical sequences and ignore the rest.
Then we only need log 2NH(X) = NH(X) to store a sequence of N symbols. And on
average, we need H(X) bits per symbol

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 12

Lecture 4: LLN and AEP Asymptotic equipartition

AEP and compression limit

Consider coin flipping again, let say Pr(Head) = 0.3 and N = 1000
The typical sequences will be those with approximately 300 heads and 700 tails
AEP (LLN) tells us that it is almost impossible to get, say, a sequence of 100 heads and
900 tails
AEP also tells us that the number of typical sequences are approximately 2NH(X)

Therefore, we can simply assign index to all the typical sequences and ignore the rest.
Then we only need log 2NH(X) = NH(X) to store a sequence of N symbols. And on
average, we need H(X) bits per symbol

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 12

Lecture 4: LLN and AEP Asymptotic equipartition

AEP and compression limit

Consider coin flipping again, let say Pr(Head) = 0.3 and N = 1000
The typical sequences will be those with approximately 300 heads and 700 tails
AEP (LLN) tells us that it is almost impossible to get, say, a sequence of 100 heads and
900 tails
AEP also tells us that the number of typical sequences are approximately 2NH(X)

Therefore, we can simply assign index to all the typical sequences and ignore the rest.
Then we only need log 2NH(X) = NH(X) to store a sequence of N symbols. And on
average, we need H(X) bits per symbol

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 12

Lecture 4: LLN and AEP Forward proof of source coding Theorem

Shannon-Fano-Elias code

Key idea
Each codeword corresponds to an intervel of [0, 1]

Example
110 corresponds to [0.110, 0.1101·] = [0.11, 0.111) = [0.75, 0.875)

011 corresponds to [0.011, 0.0111·] = [0.011, 0.1) = [0.375, 0.5)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 13

Lecture 4: LLN and AEP Forward proof of source coding Theorem

Shannon-Fano-Elias code

Key idea
Each codeword corresponds to an intervel of [0, 1]

Example
110 corresponds to [0.110, 0.1101·] = [0.11, 0.111) = [0.75, 0.875)
011 corresponds to [0.011, 0.0111·] = [0.011, 0.1) = [0.375, 0.5)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 13

Lecture 4: LLN and AEP Forward proof of source coding Theorem

Observations

Remark (Observation 1)
Let l(x) = |c(x)| be the length of the SFE codeword, and let u(x) be the corresponding
interval. Then, the length of the interval |u(x)| = 2−l(x)

Remark (Observation 2)
If u(x1) and u(x2) do not overlap, then c(x1) and c(x2) cannot be prefix of one another

Proof of Observation 2.
A⇒ B ≡ ¬B ⇒ ¬A. We will show instead if c(x1) and c(x2) are prefix of one another, then
u(x1) and u(x2) overlap. WLOG, assume c(x1) is a prefix of c(x2), the lower boundary of u(x1)
is below the lower boundary of u(x2) and yet the upper boundary of u(x1) is above the upper
boundary of u(x2). Thus, u(x2) ⊆ u(x1) and hence u(x1) and u(x2) overlap each other

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 14

Lecture 4: LLN and AEP Forward proof of source coding Theorem

Observations

Remark (Observation 1)
Let l(x) = |c(x)| be the length of the SFE codeword, and let u(x) be the corresponding
interval. Then, the length of the interval |u(x)| = 2−l(x)

Remark (Observation 2)
If u(x1) and u(x2) do not overlap, then c(x1) and c(x2) cannot be prefix of one another

Proof of Observation 2.
A⇒ B ≡ ¬B ⇒ ¬A. We will show instead if c(x1) and c(x2) are prefix of one another, then
u(x1) and u(x2) overlap. WLOG, assume c(x1) is a prefix of c(x2), the lower boundary of u(x1)
is below the lower boundary of u(x2) and yet the upper boundary of u(x1) is above the upper
boundary of u(x2). Thus, u(x2) ⊆ u(x1) and hence u(x1) and u(x2) overlap each other

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 14

Lecture 4: LLN and AEP Forward proof of source coding Theorem

Observations

Remark (Observation 1)
Let l(x) = |c(x)| be the length of the SFE codeword, and let u(x) be the corresponding
interval. Then, the length of the interval |u(x)| = 2−l(x)

Remark (Observation 2)
If u(x1) and u(x2) do not overlap, then c(x1) and c(x2) cannot be prefix of one another

Proof of Observation 2.
A⇒ B ≡ ¬B ⇒ ¬A. We will show instead if c(x1) and c(x2) are prefix of one another, then
u(x1) and u(x2) overlap. WLOG, assume c(x1) is a prefix of c(x2), the lower boundary of u(x1)
is below the lower boundary of u(x2) and yet the upper boundary of u(x1) is above the upper
boundary of u(x2). Thus, u(x2) ⊆ u(x1) and hence u(x1) and u(x2) overlap each other

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 14

Lecture 4: LLN and AEP Forward proof of source coding Theorem

Example

Consider a source that p(x1) = 0.25, p(x2) = 0.25, p(x3) = 0.2, p(x4) = 0.15, p(x5) = 0.15

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 15

Lecture 4: LLN and AEP Forward proof of source coding Theorem

Property

The length of the codeword of x is dlog2
1

p(x)e+ 1. This ensures that the “code interval”
of each codeword does not overlap

Recall from observation 1, SFE code is prefix-free → uniquely decodable

If a codeword is prefix of another (say 10 and 1010), the corresponding intervals must
overlap each other (consider [0.10, 0.11) and [0.101, 0.11))
Since no codeword can overlap in SFE, no code word can be prefix of another

Average code rate is upper bounded by H(X) + 2∑
x∈X

p(x)l(x) =
∑
x∈X

p(x)
(⌈

log2
1

p(x)

⌉
+ 1
)

≤
∑
x∈X

p(x)
(
log2

1
p(x) + 2

)
= H(X) + 2

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 16

Lecture 4: LLN and AEP Forward proof of source coding Theorem

Property

The length of the codeword of x is dlog2
1

p(x)e+ 1. This ensures that the “code interval”
of each codeword does not overlap
Recall from observation 1, SFE code is prefix-free → uniquely decodable

If a codeword is prefix of another (say 10 and 1010), the corresponding intervals must
overlap each other (consider [0.10, 0.11) and [0.101, 0.11))
Since no codeword can overlap in SFE, no code word can be prefix of another

Average code rate is upper bounded by H(X) + 2∑
x∈X

p(x)l(x) =
∑
x∈X

p(x)
(⌈

log2
1

p(x)

⌉
+ 1
)

≤
∑
x∈X

p(x)
(
log2

1
p(x) + 2

)
= H(X) + 2

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 16

Lecture 4: LLN and AEP Forward proof of source coding Theorem

Property

The length of the codeword of x is dlog2
1

p(x)e+ 1. This ensures that the “code interval”
of each codeword does not overlap
Recall from observation 1, SFE code is prefix-free → uniquely decodable

If a codeword is prefix of another (say 10 and 1010), the corresponding intervals must
overlap each other (consider [0.10, 0.11) and [0.101, 0.11))

Since no codeword can overlap in SFE, no code word can be prefix of another
Average code rate is upper bounded by H(X) + 2∑

x∈X
p(x)l(x) =

∑
x∈X

p(x)
(⌈

log2
1

p(x)

⌉
+ 1
)

≤
∑
x∈X

p(x)
(
log2

1
p(x) + 2

)
= H(X) + 2

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 16

Lecture 4: LLN and AEP Forward proof of source coding Theorem

Property

The length of the codeword of x is dlog2
1

p(x)e+ 1. This ensures that the “code interval”
of each codeword does not overlap
Recall from observation 1, SFE code is prefix-free → uniquely decodable

If a codeword is prefix of another (say 10 and 1010), the corresponding intervals must
overlap each other (consider [0.10, 0.11) and [0.101, 0.11))
Since no codeword can overlap in SFE, no code word can be prefix of another

Average code rate is upper bounded by H(X) + 2∑
x∈X

p(x)l(x) =
∑
x∈X

p(x)
(⌈

log2
1

p(x)

⌉
+ 1
)

≤
∑
x∈X

p(x)
(
log2

1
p(x) + 2

)
= H(X) + 2

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 16

Lecture 4: LLN and AEP Forward proof of source coding Theorem

Property

The length of the codeword of x is dlog2
1

p(x)e+ 1. This ensures that the “code interval”
of each codeword does not overlap
Recall from observation 1, SFE code is prefix-free → uniquely decodable

If a codeword is prefix of another (say 10 and 1010), the corresponding intervals must
overlap each other (consider [0.10, 0.11) and [0.101, 0.11))
Since no codeword can overlap in SFE, no code word can be prefix of another

Average code rate is upper bounded by H(X) + 2∑
x∈X

p(x)l(x) =
∑
x∈X

p(x)
(⌈

log2
1

p(x)

⌉
+ 1
)

≤
∑
x∈X

p(x)
(
log2

1
p(x) + 2

)
= H(X) + 2

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 16

Lecture 4: LLN and AEP Forward proof of Source Coding Theorem

“Symbol grouping” trick
Let’s consider two symbols as a super-symbol and compress the pair at each time with
SFE code
The code rate is bounded by H(XS) + 2, where

H(XS) = −
∑

x1,x2∈X 2

p(x1, x2) log2 p(x1, x2)

= −
∑

x1,x2∈X 2

p(x1, x2) log2(p(x1)p(x2))

= −
∑

x1,x2∈X 2

p(x1, x2) log2 p(x1)−
∑

x1,x2∈X 2

p(x1, x2) log2 p(x2)

= −
∑

x1∈X
p(x1) log2 p(x1)−

∑
x2∈X

p(x2) log2 p(x2) = 2H(X)

Therefore, the code rate per original symbol is upper bounded by
1
2 (H(XS) + 2) = H(X) + 1

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 17

Lecture 4: LLN and AEP Forward proof of Source Coding Theorem

“Symbol grouping” trick
Let’s consider two symbols as a super-symbol and compress the pair at each time with
SFE code
The code rate is bounded by H(XS) + 2, where

H(XS) = −
∑

x1,x2∈X 2

p(x1, x2) log2 p(x1, x2)

= −
∑

x1,x2∈X 2

p(x1, x2) log2(p(x1)p(x2))

= −
∑

x1,x2∈X 2

p(x1, x2) log2 p(x1)−
∑

x1,x2∈X 2

p(x1, x2) log2 p(x2)

= −
∑

x1∈X
p(x1) log2 p(x1)−

∑
x2∈X

p(x2) log2 p(x2) = 2H(X)

Therefore, the code rate per original symbol is upper bounded by
1
2 (H(XS) + 2) = H(X) + 1

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 17

Lecture 4: LLN and AEP Forward proof of Source Coding Theorem

“Symbol grouping” trick
Let’s consider two symbols as a super-symbol and compress the pair at each time with
SFE code
The code rate is bounded by H(XS) + 2, where

H(XS) = −
∑

x1,x2∈X 2

p(x1, x2) log2 p(x1, x2)

= −
∑

x1,x2∈X 2

p(x1, x2) log2(p(x1)p(x2))

= −
∑

x1,x2∈X 2

p(x1, x2) log2 p(x1)−
∑

x1,x2∈X 2

p(x1, x2) log2 p(x2)

= −
∑

x1∈X
p(x1) log2 p(x1)−

∑
x2∈X

p(x2) log2 p(x2) = 2H(X)

Therefore, the code rate per original symbol is upper bounded by
1
2 (H(XS) + 2) = H(X) + 1

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 17

Lecture 4: LLN and AEP Forward proof of Source Coding Theorem

“Symbol grouping” trick
Let’s consider two symbols as a super-symbol and compress the pair at each time with
SFE code
The code rate is bounded by H(XS) + 2, where

H(XS) = −
∑

x1,x2∈X 2

p(x1, x2) log2 p(x1, x2)

= −
∑

x1,x2∈X 2

p(x1, x2) log2(p(x1)p(x2))

= −
∑

x1,x2∈X 2

p(x1, x2) log2 p(x1)−
∑

x1,x2∈X 2

p(x1, x2) log2 p(x2)

= −
∑

x1∈X
p(x1) log2 p(x1)−

∑
x2∈X

p(x2) log2 p(x2) = 2H(X)

Therefore, the code rate per original symbol is upper bounded by
1
2 (H(XS) + 2) = H(X) + 1

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 17

Lecture 4: LLN and AEP Forward proof of Source Coding Theorem

“Symbol grouping” trick
Let’s consider two symbols as a super-symbol and compress the pair at each time with
SFE code
The code rate is bounded by H(XS) + 2, where

H(XS) = −
∑

x1,x2∈X 2

p(x1, x2) log2 p(x1, x2)

= −
∑

x1,x2∈X 2

p(x1, x2) log2(p(x1)p(x2))

= −
∑

x1,x2∈X 2

p(x1, x2) log2 p(x1)−
∑

x1,x2∈X 2

p(x1, x2) log2 p(x2)

= −
∑

x1∈X
p(x1) log2 p(x1)−

∑
x2∈X

p(x2) log2 p(x2) = 2H(X)

Therefore, the code rate per original symbol is upper bounded by
1
2 (H(XS) + 2) = H(X) + 1

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 17

Lecture 4: LLN and AEP Forward proof of Source Coding Theorem

Forward proof of Source Coding Theorem

In theory, we can group as many symbols as we want (we want do it in practice, why?), say we
group N symbols at a time and compress it using SFE code.

The code rate per original symbol
is upper bounded by

1
N (H(XS) + 2) = 1

N (NH(X) + 2) = H(X) +
2
N

Therefore as long as a given rate R > H(X), we can always find a large enough N such that
the code rate using the “grouping trick” and SFE code is below R . This concludes the forward
proof

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 18

Lecture 4: LLN and AEP Forward proof of Source Coding Theorem

Forward proof of Source Coding Theorem

In theory, we can group as many symbols as we want (we want do it in practice, why?), say we
group N symbols at a time and compress it using SFE code. The code rate per original symbol
is upper bounded by

1
N (H(XS) + 2) = 1

N (NH(X) + 2) = H(X) +
2
N

Therefore as long as a given rate R > H(X), we can always find a large enough N such that
the code rate using the “grouping trick” and SFE code is below R . This concludes the forward
proof

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 18

Lecture 4: LLN and AEP Forward proof of Source Coding Theorem

Forward proof of Source Coding Theorem

In theory, we can group as many symbols as we want (we want do it in practice, why?), say we
group N symbols at a time and compress it using SFE code. The code rate per original symbol
is upper bounded by

1
N (H(XS) + 2) = 1

N (NH(X) + 2) = H(X) +
2
N

Therefore as long as a given rate R > H(X), we can always find a large enough N such that
the code rate using the “grouping trick” and SFE code is below R . This concludes the forward
proof

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 18

Lecture 5: Entropy and differential entropy

Lecture 5: Entropy and differential entropy

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 1

Lecture 5: Entropy and differential entropy Entropy: another peek

Entropy for discrete random variable

Von Neumman to Shannon
”You should call it entropy for two reasons: first because that is what the formula is in statistical
mechanics but second and more important, as nobody knows what entropy is, whenever you use the
term you will always be at an advantage!” -John von Neumman

H(X) = −
∑
x∈X

p(x) log p(x) = E [− log p(X)]

From the expression, it suggests that there is log 1
p(x) bits of information for the outcome

x
This actually comes with no surprise! Consider a uniform random variable with 4
outcomes, each outcome will have probalility 1/4 = 0.25 of happening it. And to
represent each outcome, we need log 4 = log 1

0.25 bits
A less likely event has “more” information and requires more bits to store. H(X) is just
the average number of bits required

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 2

Lecture 5: Entropy and differential entropy Entropy: another peek

Entropy for discrete random variable

Von Neumman to Shannon
”You should call it entropy for two reasons: first because that is what the formula is in statistical
mechanics but second and more important, as nobody knows what entropy is, whenever you use the
term you will always be at an advantage!” -John von Neumman

H(X) = −
∑
x∈X

p(x) log p(x) = E [− log p(X)]

From the expression, it suggests that there is log 1
p(x) bits of information for the outcome

x

This actually comes with no surprise! Consider a uniform random variable with 4
outcomes, each outcome will have probalility 1/4 = 0.25 of happening it. And to
represent each outcome, we need log 4 = log 1

0.25 bits
A less likely event has “more” information and requires more bits to store. H(X) is just
the average number of bits required

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 2

Lecture 5: Entropy and differential entropy Entropy: another peek

Entropy for discrete random variable

Von Neumman to Shannon
”You should call it entropy for two reasons: first because that is what the formula is in statistical
mechanics but second and more important, as nobody knows what entropy is, whenever you use the
term you will always be at an advantage!” -John von Neumman

H(X) = −
∑
x∈X

p(x) log p(x) = E [− log p(X)]

From the expression, it suggests that there is log 1
p(x) bits of information for the outcome

x
This actually comes with no surprise! Consider a uniform random variable with 4
outcomes, each outcome will have probalility 1/4 = 0.25 of happening it. And to
represent each outcome, we need log 4 = log 1

0.25 bits

A less likely event has “more” information and requires more bits to store. H(X) is just
the average number of bits required

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 2

Lecture 5: Entropy and differential entropy Entropy: another peek

Entropy for discrete random variable

Von Neumman to Shannon
”You should call it entropy for two reasons: first because that is what the formula is in statistical
mechanics but second and more important, as nobody knows what entropy is, whenever you use the
term you will always be at an advantage!” -John von Neumman

H(X) = −
∑
x∈X

p(x) log p(x) = E [− log p(X)]

From the expression, it suggests that there is log 1
p(x) bits of information for the outcome

x
This actually comes with no surprise! Consider a uniform random variable with 4
outcomes, each outcome will have probalility 1/4 = 0.25 of happening it. And to
represent each outcome, we need log 4 = log 1

0.25 bits
A less likely event has “more” information and requires more bits to store. H(X) is just
the average number of bits required

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 2

Lecture 5: Entropy and differential entropy Entropy: another peek

Biased coin with Pr(Head) = p

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 3

H(X) = −Pr(Head) logPr(Head)− Pr(Tail) logPr(Tail)
= −p log p − (1− p) log(1− p)

Entropy is largest (=1)
when p = 0.5
Entropy is 0 when p = 0
or p = 1

Entropy can be
interpreted as the average
uncertainty of the
outcome or the amount of
information “gained” after
the outcome is revealed

0 0.2 0.4 0.6 0.8 1

Pr(Head)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

E
nt

ro
py

Lecture 5: Entropy and differential entropy Entropy: another peek

Biased coin with Pr(Head) = p

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 3

H(X) = −Pr(Head) logPr(Head)− Pr(Tail) logPr(Tail)
= −p log p − (1− p) log(1− p)

Entropy is largest (=1)
when p = 0.5
Entropy is 0 when p = 0
or p = 1
Entropy can be
interpreted as the average
uncertainty of the
outcome or the amount of
information “gained” after
the outcome is revealed

0 0.2 0.4 0.6 0.8 1

Pr(Head)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

E
nt

ro
py

Lecture 5: Entropy and differential entropy Differential entropy

Differential entropy

H(X) = −
∑
x∈X

p(x) log p(x) = E [− log p(X)]

The definition makes little sense for a continuous X . Since the probability of an outcome x is
always 0, we may define instead the differential entropy for X as

h(X) = −
∫

x∈X
p(x) log p(x)dx

= E [− log p(x)],

where p(x) is now the pdf rather than the pmf

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 4

Lecture 5: Entropy and differential entropy Differential entropy

Differential entropy

H(X) = −
∑
x∈X

p(x) log p(x) = E [− log p(X)]

The definition makes little sense for a continuous X . Since the probability of an outcome x is
always 0, we may define instead the differential entropy for X as

h(X) = −
∫

x∈X
p(x) log p(x)dx = E [− log p(x)],

where p(x) is now the pdf rather than the pmf

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 4

Lecture 5: Entropy and differential entropy Differential entropy

Differential entropy of common distributions

Uniform Distribution

If p(X) =

{
1/a 0 ≤ x ≤ a
0 otherwise

h(X) = −
∫ a

x=0

1
a log

1
a dx = log a

Exponential distribution
For exponentially distributed T ∼ Exp(λ),

h(T) = E [− log p(T)]

= E [− log (λ exp(−λT))]

= E [λT − log λ]

= 1− log λ

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 5

Lecture 5: Entropy and differential entropy Differential entropy

Differential entropy of common distributions

Uniform Distribution

If p(X) =

{
1/a 0 ≤ x ≤ a
0 otherwise

h(X) = −
∫ a

x=0

1
a log

1
a dx = log a

Exponential distribution
For exponentially distributed T ∼ Exp(λ),

h(T) = E [− log p(T)] = E [− log (λ exp(−λT))]

= E [λT − log λ]

= 1− log λ

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 5

Lecture 5: Entropy and differential entropy Differential entropy

Differential entropy of common distributions

Uniform Distribution

If p(X) =

{
1/a 0 ≤ x ≤ a
0 otherwise

h(X) = −
∫ a

x=0

1
a log

1
a dx = log a

Exponential distribution
For exponentially distributed T ∼ Exp(λ),

h(T) = E [− log p(T)] = E [− log (λ exp(−λT))]

= E [λT − log λ]

= 1− log λ

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 5

Lecture 5: Entropy and differential entropy Differential entropy

Differential entropy of common distributions

Uniform Distribution

If p(X) =

{
1/a 0 ≤ x ≤ a
0 otherwise

h(X) = −
∫ a

x=0

1
a log

1
a dx = log a

Exponential distribution
For exponentially distributed T ∼ Exp(λ),

h(T) = E [− log p(T)] = E [− log (λ exp(−λT))]

= E [λT − log λ]

= 1− log λ

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 5

Lecture 5: Entropy and differential entropy Differential entropy

Differential entropy of common distributions

Univariate Normal distribution
For univariate normally distributed X ∼ N (µ, σ2),

h(X) = E [− log p(X)]

= E
[
− log

(
1√

2πσ2
exp
−(X − µ)2

2σ2

)]
= E

[
log
√

2πσ2 +
(X − µ)2

2σ2 log e
]

= log
√

2πσ2 +
1
2 log e

= log
√

2πeσ2

N.B. h(X) only depends on σ2 and is independent of µ as one would expect

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 6

Lecture 5: Entropy and differential entropy Differential entropy

Differential entropy of common distributions

Univariate Normal distribution
For univariate normally distributed X ∼ N (µ, σ2),

h(X) = E [− log p(X)] = E
[
− log

(
1√

2πσ2
exp
−(X − µ)2

2σ2

)]

= E
[
log
√

2πσ2 +
(X − µ)2

2σ2 log e
]

= log
√

2πσ2 +
1
2 log e

= log
√

2πeσ2

N.B. h(X) only depends on σ2 and is independent of µ as one would expect

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 6

Lecture 5: Entropy and differential entropy Differential entropy

Differential entropy of common distributions

Univariate Normal distribution
For univariate normally distributed X ∼ N (µ, σ2),

h(X) = E [− log p(X)] = E
[
− log

(
1√

2πσ2
exp
−(X − µ)2

2σ2

)]
= E

[
log
√

2πσ2 +
(X − µ)2

2σ2 log e
]

= log
√

2πσ2 +
1
2 log e

= log
√

2πeσ2

N.B. h(X) only depends on σ2 and is independent of µ as one would expect

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 6

Lecture 5: Entropy and differential entropy Differential entropy

Differential entropy of common distributions

Univariate Normal distribution
For univariate normally distributed X ∼ N (µ, σ2),

h(X) = E [− log p(X)] = E
[
− log

(
1√

2πσ2
exp
−(X − µ)2

2σ2

)]
= E

[
log
√

2πσ2 +
(X − µ)2

2σ2 log e
]

= log
√

2πσ2 +
1
2 log e

= log
√

2πeσ2

N.B. h(X) only depends on σ2 and is independent of µ as one would expect

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 6

Lecture 5: Entropy and differential entropy Differential entropy

Multivariate Normal distribution
For N-dim multivariate normal distributed X ∼ N (µ,Σ),

h(X) = E [− log p(X)]

= −E
[
log

(
1√

det (2πΣ)
exp

(
−1

2 (X − µ)TΣ−1(X − µ)

))]

= log
√
det (2πΣ) + log e

2 E

∑
i,j

(Xi − µi)
[
Σ−1]

i,j (Xj − µj)

= log

√
det (2πΣ) + log e

2
∑
i,j

[
Σ−1]

i,j E [(Xj − µj)(Xi − µi)]

= log
√
det (2πΣ) + log e

2
∑
i,j

[
Σ−1]

i,j Σj,i

= log
√
det (2πΣ) + N log e

2 = log
√

eN det (2πΣ) = log
√
det (2πeΣ)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 7

Lecture 5: Entropy and differential entropy Differential entropy

Multivariate Normal distribution
For N-dim multivariate normal distributed X ∼ N (µ,Σ),

h(X) = E [− log p(X)]

= −E
[
log

(
1√

det (2πΣ)
exp

(
−1

2 (X − µ)TΣ−1(X − µ)

))]

= log
√
det (2πΣ) + log e

2 E

∑
i,j

(Xi − µi)
[
Σ−1]

i,j (Xj − µj)

= log
√
det (2πΣ) + log e

2
∑
i,j

[
Σ−1]

i,j E [(Xj − µj)(Xi − µi)]

= log
√
det (2πΣ) + log e

2
∑
i,j

[
Σ−1]

i,j Σj,i

= log
√
det (2πΣ) + N log e

2 = log
√

eN det (2πΣ) = log
√
det (2πeΣ)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 7

Lecture 5: Entropy and differential entropy Differential entropy

Multivariate Normal distribution
For N-dim multivariate normal distributed X ∼ N (µ,Σ),

h(X) = E [− log p(X)]

= −E
[
log

(
1√

det (2πΣ)
exp

(
−1

2 (X − µ)TΣ−1(X − µ)

))]

= log
√
det (2πΣ) + log e

2 E

∑
i,j

(Xi − µi)
[
Σ−1]

i,j (Xj − µj)

= log

√
det (2πΣ) + log e

2
∑
i,j

[
Σ−1]

i,j E [(Xj − µj)(Xi − µi)]

= log
√
det (2πΣ) + log e

2
∑
i,j

[
Σ−1]

i,j Σj,i

= log
√
det (2πΣ) + N log e

2 = log
√

eN det (2πΣ) = log
√
det (2πeΣ)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 7

Lecture 5: Entropy and differential entropy Differential entropy

Multivariate Normal distribution
For N-dim multivariate normal distributed X ∼ N (µ,Σ),

h(X) = E [− log p(X)]

= −E
[
log

(
1√

det (2πΣ)
exp

(
−1

2 (X − µ)TΣ−1(X − µ)

))]

= log
√
det (2πΣ) + log e

2 E

∑
i,j

(Xi − µi)
[
Σ−1]

i,j (Xj − µj)

= log

√
det (2πΣ) + log e

2
∑
i,j

[
Σ−1]

i,j E [(Xj − µj)(Xi − µi)]

= log
√
det (2πΣ) + log e

2
∑
i,j

[
Σ−1]

i,j Σj,i

= log
√
det (2πΣ) + N log e

2 = log
√

eN det (2πΣ) = log
√
det (2πeΣ)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 7

Lecture 5: Entropy and differential entropy Differential entropy

Multivariate Normal distribution
For N-dim multivariate normal distributed X ∼ N (µ,Σ),

h(X) = E [− log p(X)]

= −E
[
log

(
1√

det (2πΣ)
exp

(
−1

2 (X − µ)TΣ−1(X − µ)

))]

= log
√
det (2πΣ) + log e

2 E

∑
i,j

(Xi − µi)
[
Σ−1]

i,j (Xj − µj)

= log

√
det (2πΣ) + log e

2
∑
i,j

[
Σ−1]

i,j E [(Xj − µj)(Xi − µi)]

= log
√
det (2πΣ) + log e

2
∑
i,j

[
Σ−1]

i,j Σj,i

= log
√
det (2πΣ) + N log e

2 = log
√

eN det (2πΣ)

= log
√
det (2πeΣ)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 7

Lecture 5: Entropy and differential entropy Differential entropy

Multivariate Normal distribution
For N-dim multivariate normal distributed X ∼ N (µ,Σ),

h(X) = E [− log p(X)]

= −E
[
log

(
1√

det (2πΣ)
exp

(
−1

2 (X − µ)TΣ−1(X − µ)

))]

= log
√
det (2πΣ) + log e

2 E

∑
i,j

(Xi − µi)
[
Σ−1]

i,j (Xj − µj)

= log

√
det (2πΣ) + log e

2
∑
i,j

[
Σ−1]

i,j E [(Xj − µj)(Xi − µi)]

= log
√
det (2πΣ) + log e

2
∑
i,j

[
Σ−1]

i,j Σj,i

= log
√
det (2πΣ) + N log e

2 = log
√

eN det (2πΣ) = log
√

det (2πeΣ)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 7

Lecture 5: Entropy and differential entropy Differential entropy

Differential entropy and entropy

How differential entropy is related to its discrete counterpart?
Consider a continuous random variable X
Let X∆ is a “quantized” version of it with quantization stepsize of ∆

H(X∆) =
∑
−pX∆(x∆) log pX∆(x∆)

≈
∑
−pX (x∆)∆ log(pX (x∆)∆)

≈
∫
−pX (x) log(pX (x)∆)dx

=

∫
−pX (x) log pX (x)−

∫
pX (x) log∆dx

= h(X)− log∆

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 8

Lecture 5: Entropy and differential entropy Differential entropy

Differential entropy and entropy

How differential entropy is related to its discrete counterpart?
Consider a continuous random variable X
Let X∆ is a “quantized” version of it with quantization stepsize of ∆

H(X∆) =
∑
−pX∆(x∆) log pX∆(x∆) ≈

∑
−pX (x∆)∆ log(pX (x∆)∆)

≈
∫
−pX (x) log(pX (x)∆)dx

=

∫
−pX (x) log pX (x)−

∫
pX (x) log∆dx

= h(X)− log∆

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 8

Lecture 5: Entropy and differential entropy Differential entropy

Differential entropy and entropy

How differential entropy is related to its discrete counterpart?
Consider a continuous random variable X
Let X∆ is a “quantized” version of it with quantization stepsize of ∆

H(X∆) =
∑
−pX∆(x∆) log pX∆(x∆) ≈

∑
−pX (x∆)∆ log(pX (x∆)∆)

≈
∫
−pX (x) log(pX (x)∆)dx

=

∫
−pX (x) log pX (x)−

∫
pX (x) log∆dx

= h(X)− log∆

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 8

Lecture 5: Entropy and differential entropy Differential entropy

Differential entropy and entropy

How differential entropy is related to its discrete counterpart?
Consider a continuous random variable X
Let X∆ is a “quantized” version of it with quantization stepsize of ∆

H(X∆) =
∑
−pX∆(x∆) log pX∆(x∆) ≈

∑
−pX (x∆)∆ log(pX (x∆)∆)

≈
∫
−pX (x) log(pX (x)∆)dx

=

∫
−pX (x) log pX (x)−

∫
pX (x) log∆dx

= h(X)− log∆

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 8

Lecture 5: Entropy and differential entropy Differential entropy

Example

Consider the processing time of a packet follow an exponential distribution with an average of
1 ms. If we want to store the time with the precision of 0.01 ms, about how many bits are
needed to store the result?

Answer

The processing time T follows an exponential distribution with parameter
λ = 1/1 = 1ms−1

The corresponding differential entropy h(T) = 1− log(λ) = 1
If we want to store with precision of 0.01 ms, we need h(T)− log 0.01 ≈ 7.64bits

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 9

Lecture 5: Entropy and differential entropy Differential entropy

Example

Consider the processing time of a packet follow an exponential distribution with an average of
1 ms. If we want to store the time with the precision of 0.01 ms, about how many bits are
needed to store the result?
Answer

The processing time T follows an exponential distribution with parameter
λ = 1/1 = 1ms−1

The corresponding differential entropy h(T) = 1− log(λ) = 1
If we want to store with precision of 0.01 ms, we need h(T)− log 0.01 ≈ 7.64bits

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 9

Lecture 5: Entropy and differential entropy Differential entropy

Example

Consider the processing time of a packet follow an exponential distribution with an average of
1 ms. If we want to store the time with the precision of 0.01 ms, about how many bits are
needed to store the result?
Answer

The processing time T follows an exponential distribution with parameter
λ = 1/1 = 1ms−1

The corresponding differential entropy h(T) = 1− log(λ) = 1

If we want to store with precision of 0.01 ms, we need h(T)− log 0.01 ≈ 7.64bits

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 9

Lecture 5: Entropy and differential entropy Differential entropy

Example

Consider the processing time of a packet follow an exponential distribution with an average of
1 ms. If we want to store the time with the precision of 0.01 ms, about how many bits are
needed to store the result?
Answer

The processing time T follows an exponential distribution with parameter
λ = 1/1 = 1ms−1

The corresponding differential entropy h(T) = 1− log(λ) = 1
If we want to store with precision of 0.01 ms, we need h(T)− log 0.01 ≈ 7.64bits

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 9

Lecture 5: Entropy and differential entropy Properties of entropy and differential entropy

Lower bound of entropy

H(X) ≥ 0
Since p(X) ≤ 1, − log p(X) ≥ 0, therefore

H(X) = E [− log p(X)] ≥ 0

After all, H(X) represents the required bits to compress the source X

Caveat
It does NOT need to be true for differential entropy. It is possible that

h(X) < 0

For example, for a uniformly distributed X from 0 to 0.5,
h(X) = log 0.5 = −1

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 10

Lecture 5: Entropy and differential entropy Properties of entropy and differential entropy

Lower bound of entropy

H(X) ≥ 0
Since p(X) ≤ 1, − log p(X) ≥ 0, therefore

H(X) = E [− log p(X)] ≥ 0

After all, H(X) represents the required bits to compress the source X

Caveat
It does NOT need to be true for differential entropy. It is possible that

h(X) < 0

For example, for a uniformly distributed X from 0 to 0.5,
h(X) = log 0.5 = −1

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 10

Lecture 5: Entropy and differential entropy Properties of entropy and differential entropy

Jensen’s Inequality

For a convex (bowl-shape) function f

E [f (X)] ≥ f (E [X])

Let us consider X with only two outcomes x1 and x2 with probabilities p and 1− p. Easy to
see that

E [f (X)] = pf (x1) + (1− p)f (x2) ≥ f (px1 + (1− p)x2) = f (E [X])

Result can be extended to discrete variables with more than two outcomes easily using
induction

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 11

Lecture 5: Entropy and differential entropy Properties of entropy and differential entropy

Jensen’s Inequality

For a convex (bowl-shape) function f

E [f (X)] ≥ f (E [X])

Let us consider X with only two outcomes x1 and x2 with probabilities p and 1− p. Easy to
see that

E [f (X)] = pf (x1) + (1− p)f (x2) ≥ f (px1 + (1− p)x2) = f (E [X])

Result can be extended to discrete variables with more than two outcomes easily using
induction

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 11

Lecture 5: Entropy and differential entropy Properties of entropy and differential entropy

Jensen’s Inequality

For a convex (bowl-shape) function f

E [f (X)] ≥ f (E [X])

Let us consider X with only two outcomes x1 and x2 with probabilities p and 1− p. Easy to
see that

E [f (X)] = pf (x1) + (1− p)f (x2) ≥ f (px1 + (1− p)x2) = f (E [X])

Result can be extended to discrete variables with more than two outcomes easily using
induction

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 11

Lecture 5: Entropy and differential entropy Properties of entropy and differential entropy

Upper bound of entropy

H(X) ≤ log |X |

H(X) = E [− log p(X)] = E
[
log

1
p(X)

]

≤ log E
[

1
p(X)

]
(by Jensen’s inequality)

= log
∑
x∈X

p(x) 1
p(x) = log |X |

N.B. The upper bound is attained when the distribution is uniform

Examples
You should know this bound long alone. Think of the maximum number of bits needed:

to store the outcome of flipping a coin: log 2 = 1 bit
to store the outcome of throwing a dice: log 6 ≤ 3 bits

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 12

Lecture 5: Entropy and differential entropy Properties of entropy and differential entropy

Upper bound of entropy

H(X) ≤ log |X |

H(X) = E [− log p(X)] = E
[
log

1
p(X)

]
≤ log E

[
1

p(X)

]
(by Jensen’s inequality)

= log
∑
x∈X

p(x) 1
p(x) = log |X |

N.B. The upper bound is attained when the distribution is uniform

Examples
You should know this bound long alone. Think of the maximum number of bits needed:

to store the outcome of flipping a coin: log 2 = 1 bit
to store the outcome of throwing a dice: log 6 ≤ 3 bits

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 12

Lecture 5: Entropy and differential entropy Properties of entropy and differential entropy

Upper bound of entropy

H(X) ≤ log |X |

H(X) = E [− log p(X)] = E
[
log

1
p(X)

]
≤ log E

[
1

p(X)

]
(by Jensen’s inequality)

= log
∑
x∈X

p(x) 1
p(x) = log |X |

N.B. The upper bound is attained when the distribution is uniform

Examples
You should know this bound long alone. Think of the maximum number of bits needed:

to store the outcome of flipping a coin: log 2 = 1 bit
to store the outcome of throwing a dice: log 6 ≤ 3 bits

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 12

Lecture 5: Entropy and differential entropy Properties of entropy and differential entropy

Upper bound of entropy

H(X) ≤ log |X |

H(X) = E [− log p(X)] = E
[
log

1
p(X)

]
≤ log E

[
1

p(X)

]
(by Jensen’s inequality)

= log
∑
x∈X

p(x) 1
p(x) = log |X |

N.B. The upper bound is attained when the distribution is uniform

Examples
You should know this bound long alone. Think of the maximum number of bits needed:

to store the outcome of flipping a coin: log 2 = 1 bit
to store the outcome of throwing a dice: log 6 ≤ 3 bits

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 12

Lecture 5: Entropy and differential entropy Properties of entropy and differential entropy

Summary

Source coding theorem: For an independent and identically distributed (i.i.d.) discrete
memoryless source (DMS) X , we can always compress it with no less than H(X) bits per
input symbol, where H(X) = −

∑
x∈X p(x) log p(x) = E [− log p(X)]

Jensen’s inequality: For a convex (bowl-shape) function f E [f (X)] ≥ f (E [X]). Similarly
E [g(X)] ≤ g(E [X]) for a concave g
For continuous random variable X , the differential entropy is given by
h(X) = −

∫
x∈X p(x) log p(x)dx= E [− log p(x)]

For a quantized version of continuous X , H(X∆) = h(X)− log∆

For multivariate normal X ∼ N (µ,Σ),

h(X) = log
√

det (2πeΣ)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 13

Lecture 5: Entropy and differential entropy Properties of entropy and differential entropy

Summary

Source coding theorem: For an independent and identically distributed (i.i.d.) discrete
memoryless source (DMS) X , we can always compress it with no less than H(X) bits per
input symbol, where H(X) = −

∑
x∈X p(x) log p(x) = E [− log p(X)]

Jensen’s inequality: For a convex (bowl-shape) function f E [f (X)] ≥ f (E [X]). Similarly
E [g(X)] ≤ g(E [X]) for a concave g

For continuous random variable X , the differential entropy is given by
h(X) = −

∫
x∈X p(x) log p(x)dx= E [− log p(x)]

For a quantized version of continuous X , H(X∆) = h(X)− log∆

For multivariate normal X ∼ N (µ,Σ),

h(X) = log
√

det (2πeΣ)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 13

Lecture 5: Entropy and differential entropy Properties of entropy and differential entropy

Summary

Source coding theorem: For an independent and identically distributed (i.i.d.) discrete
memoryless source (DMS) X , we can always compress it with no less than H(X) bits per
input symbol, where H(X) = −

∑
x∈X p(x) log p(x) = E [− log p(X)]

Jensen’s inequality: For a convex (bowl-shape) function f E [f (X)] ≥ f (E [X]). Similarly
E [g(X)] ≤ g(E [X]) for a concave g
For continuous random variable X , the differential entropy is given by
h(X) = −

∫
x∈X p(x) log p(x)dx= E [− log p(x)]

For a quantized version of continuous X , H(X∆) = h(X)− log∆

For multivariate normal X ∼ N (µ,Σ),

h(X) = log
√

det (2πeΣ)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 13

Lecture 5: Entropy and differential entropy Properties of entropy and differential entropy

Summary

Source coding theorem: For an independent and identically distributed (i.i.d.) discrete
memoryless source (DMS) X , we can always compress it with no less than H(X) bits per
input symbol, where H(X) = −

∑
x∈X p(x) log p(x) = E [− log p(X)]

Jensen’s inequality: For a convex (bowl-shape) function f E [f (X)] ≥ f (E [X]). Similarly
E [g(X)] ≤ g(E [X]) for a concave g
For continuous random variable X , the differential entropy is given by
h(X) = −

∫
x∈X p(x) log p(x)dx= E [− log p(x)]

For a quantized version of continuous X , H(X∆) = h(X)− log∆

For multivariate normal X ∼ N (µ,Σ),

h(X) = log
√

det (2πeΣ)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 13

Lecture 5: Entropy and differential entropy Properties of entropy and differential entropy

Summary

Source coding theorem: For an independent and identically distributed (i.i.d.) discrete
memoryless source (DMS) X , we can always compress it with no less than H(X) bits per
input symbol, where H(X) = −

∑
x∈X p(x) log p(x) = E [− log p(X)]

Jensen’s inequality: For a convex (bowl-shape) function f E [f (X)] ≥ f (E [X]). Similarly
E [g(X)] ≤ g(E [X]) for a concave g
For continuous random variable X , the differential entropy is given by
h(X) = −

∫
x∈X p(x) log p(x)dx= E [− log p(x)]

For a quantized version of continuous X , H(X∆) = h(X)− log∆

For multivariate normal X ∼ N (µ,Σ),

h(X) = log
√

det (2πeΣ)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 13

Lecture 5: Entropy and differential entropy Properties of entropy and differential entropy

Upper bound of differential entropy

h(X) ≤ log E
[

1
p(X)

]
= log

∫
x∈X

p(x) 1
p(x)dx = log |X |

The expression still makes sense but it is not useful usually since the sampling space can
be unbounded |X | =∞ (for example, normally distributed X)

Thus it makes much more sense to consider upper bound of a differential entropy
constrained on the variance of the variable (why not constrained on mean?)
It turns out that for a fixed variance σ2, the variable will have largest differential entropy
if it is normally distributed (will show later). Thus

h(X) ≤ log
√

2πeσ2

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 14

Lecture 5: Entropy and differential entropy Properties of entropy and differential entropy

Upper bound of differential entropy

h(X) ≤ log E
[

1
p(X)

]
= log

∫
x∈X

p(x) 1
p(x)dx = log |X |

The expression still makes sense but it is not useful usually since the sampling space can
be unbounded |X | =∞ (for example, normally distributed X)
Thus it makes much more sense to consider upper bound of a differential entropy
constrained on the variance of the variable (why not constrained on mean?)

It turns out that for a fixed variance σ2, the variable will have largest differential entropy
if it is normally distributed (will show later). Thus

h(X) ≤ log
√

2πeσ2

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 14

Lecture 5: Entropy and differential entropy Properties of entropy and differential entropy

Upper bound of differential entropy

h(X) ≤ log E
[

1
p(X)

]
= log

∫
x∈X

p(x) 1
p(x)dx = log |X |

The expression still makes sense but it is not useful usually since the sampling space can
be unbounded |X | =∞ (for example, normally distributed X)
Thus it makes much more sense to consider upper bound of a differential entropy
constrained on the variance of the variable (why not constrained on mean?)
It turns out that for a fixed variance σ2, the variable will have largest differential entropy
if it is normally distributed (will show later). Thus

h(X) ≤ log
√

2πeσ2

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 14

Lecture 6: Conditional entropy

Lecture 6: Conditional entropy

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 1

Lecture 6: Conditional entropy Joint entropy and conditional entropy

Joint entropy

For multivariate random variable, we can extend the definition of entropy naturally as follows:

Entropy

H(X ,Y) = E [− log p(X ,Y)]

and
H(X1,X2, · · · ,XN) = E [− log p(X1, · · · ,XN)]

Differential entropy

h(X ,Y) = E [− log p(X ,Y)]

and
h(X1,X2, · · · ,XN) = E [− log p(X1, · · · ,XN)]

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 2

Lecture 6: Conditional entropy Joint entropy and conditional entropy

Joint entropy

For multivariate random variable, we can extend the definition of entropy naturally as follows:

Entropy

H(X ,Y) = E [− log p(X ,Y)]

and
H(X1,X2, · · · ,XN) = E [− log p(X1, · · · ,XN)]

Differential entropy

h(X ,Y) = E [− log p(X ,Y)]

and
h(X1,X2, · · · ,XN) = E [− log p(X1, · · · ,XN)]

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 2

Lecture 6: Conditional entropy Joint entropy and conditional entropy

Conditional entropy

H(X ,Y) = E [− log p(X ,Y)] = E [− log p(X)− log p(Y |X)]

= H(X) + E [− log p(Y |X)]︸ ︷︷ ︸
H(Y |X)

Entropy

H(Y |X) , H(X ,Y)− H(X)

Differential entropy

h(Y |X) , h(X ,Y)− h(X)

Interpretation
Total Info. of X and Y = Info. of X + Info. of Y knowing X

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 3

Lecture 6: Conditional entropy Joint entropy and conditional entropy

Conditional entropy

H(X ,Y) = E [− log p(X ,Y)] = E [− log p(X)− log p(Y |X)]

= H(X) + E [− log p(Y |X)]︸ ︷︷ ︸
H(Y |X)

Entropy

H(Y |X) , H(X ,Y)− H(X)

Differential entropy

h(Y |X) , h(X ,Y)− h(X)

Interpretation
Total Info. of X and Y = Info. of X + Info. of Y knowing X

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 3

Lecture 6: Conditional entropy Joint entropy and conditional entropy

Conditional entropy

H(X ,Y) = E [− log p(X ,Y)] = E [− log p(X)− log p(Y |X)]

= H(X) + E [− log p(Y |X)]︸ ︷︷ ︸
H(Y |X)

Entropy

H(Y |X) , H(X ,Y)− H(X)

Differential entropy

h(Y |X) , h(X ,Y)− h(X)

Interpretation
Total Info. of X and Y = Info. of X + Info. of Y knowing X

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 3

Lecture 6: Conditional entropy Joint entropy and conditional entropy

Expanding conditional entropy

H(Y |X) = E [− log p(Y |X)]

=
∑
x ,y
−p(x , y) log p(y |x)

=
∑

x
p(x)

∑
y
−p(y |x) log p(y |x)

=
∑

x
p(x)H(Y |x)

The conditional entropy H(Y |X) is essentially the average of H(Y |x) over all possible value of
x

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 4

Lecture 6: Conditional entropy Joint entropy and conditional entropy

Expanding conditional entropy

H(Y |X) = E [− log p(Y |X)]

=
∑
x ,y
−p(x , y) log p(y |x)

=
∑

x
p(x)

∑
y
−p(y |x) log p(y |x)

=
∑

x
p(x)H(Y |x)

The conditional entropy H(Y |X) is essentially the average of H(Y |x) over all possible value of
x

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 4

Lecture 6: Conditional entropy Joint entropy and conditional entropy

Expanding conditional entropy

H(Y |X) = E [− log p(Y |X)]

=
∑
x ,y
−p(x , y) log p(y |x)

=
∑

x
p(x)

∑
y
−p(y |x) log p(y |x)

=
∑

x
p(x)H(Y |x)

The conditional entropy H(Y |X) is essentially the average of H(Y |x) over all possible value of
x

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 4

Lecture 6: Conditional entropy Joint entropy and conditional entropy

Expanding conditional entropy

H(Y |X) = E [− log p(Y |X)]

=
∑
x ,y
−p(x , y) log p(y |x)

=
∑

x
p(x)

∑
y
−p(y |x) log p(y |x)

=
∑

x
p(x)H(Y |x)

The conditional entropy H(Y |X) is essentially the average of H(Y |x) over all possible value of
x

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 4

Lecture 6: Conditional entropy Joint entropy and conditional entropy

Expanding conditional entropy

H(Y |X) = E [− log p(Y |X)]

=
∑
x ,y
−p(x , y) log p(y |x)

=
∑

x
p(x)

∑
y
−p(y |x) log p(y |x)

=
∑

x
p(x)H(Y |x)

The conditional entropy H(Y |X) is essentially the average of H(Y |x) over all possible value of
x

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 4

Lecture 6: Conditional entropy Joint entropy and conditional entropy

Motivating conditional entropy

We can justify the definition of conditional entropy using the LLN as in the original entropy
case

p(x , y) Enc Dec x̂NxN C

yN yN

By LLN and same argument as the original entropy case, we can group all x that have the
same y together. Then, we can encode all these x at the rate E [− log p(X |y)] , H(X |y)
bits per sample
As for the entire sequence, a fraction p(y) of them will have the same y . So the overall
rate is the weighted sum

∑
y∈Y p(y)H(X |y), which is just equal to H(X |Y)

Therefore, given some helper (side-) information Y , the remaining information of X is indeed
H(X |Y)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 5

Lecture 6: Conditional entropy Joint entropy and conditional entropy

Chain rule

Entropy

H(X1,X2, · · · ,XN) =H(X1) + H(X2|X1) + H(X3|X1,X2) + · · ·
+ H(XN |X1,X2, · · · ,XN−1).

Differential entropy

h(X1,X2, · · · ,XN) =h(X1) + h(X2|X1) + h(X3|X1,X2) + · · ·
+ h(XN |X1,X2, · · · ,XN−1).

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 6

Lecture 6: Conditional entropy Joint entropy and conditional entropy

Chain rule

Entropy

H(X1,X2, · · · ,XN) =H(X1) + H(X2|X1) + H(X3|X1,X2) + · · ·
+ H(XN |X1,X2, · · · ,XN−1).

Differential entropy

h(X1,X2, · · · ,XN) =h(X1) + h(X2|X1) + h(X3|X1,X2) + · · ·
+ h(XN |X1,X2, · · · ,XN−1).

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 6

Lecture 6: Conditional entropy Joint entropy and conditional entropy

Example

Pr(Rain,With umbrella) = 0.2 Pr(Rain,No umbrella) = 0.1
Pr(Sunny ,With umbrella) = 0.2 Pr(Sunny ,No umbrella) = 0.5

W ∈ {Rain,Sunny} U ∈ {With umbrella,No umbrella}

Entropies

H(W ,U) = −0.2 log 0.2− 0.1 log 0.1− 0.2 log 0.2− 0.5 log 0.5 = 1.76 bits
H(W) = −0.3 log 0.3− 0.7 log 0.7 = 0.88 bits
H(U) = −0.4 log 0.4− 0.6 log 0.6 = 0.97 bits

H(W |U) = H(W ,U)− H(U) = 0.79 bits
H(U|W) = H(W ,U)− H(W) = 0.88 bits

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 7

Lecture 6: Conditional entropy Joint entropy and conditional entropy

Converse proof of source coding theorem

The AEP argument only shows that compression scheme exists for compression rate above
H(X) bits per sample. Let show that if compression rate < H(X) bits per sample, the
recovered source has to be lossy

We will use a version of Fano’s inequality. Denote C as the compressed input and X̂N as
the recovered sequence, if Pr(XN 6= X̂N)→ 0, 1

N H(XN |C) < ε for any ε > 0 given a
sufficiently large N
Then,

1
N (H(C) + ε) ≥ 1

N [H(C) + H(XN |C)]

=
1
N H(C ,XN) =

1
N [H(XN) +�����:0

H(C |XN)]

= H(X)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 8

Lecture 6: Conditional entropy Joint entropy and conditional entropy

Fano’s inequality for source coding theorem

Let show the statement that 1
N H(XN |C) < ε for any ε > 0 given a sufficiently large N if

Pr(XN 6= X̂N)→ 0. Let’s denote E as the error event so that E = 1 if XN 6= X̂N and 0
otherwise. Then

H(XN |C) = H(E ,XN |C)−�������:0
H(E |C ,XN)

= H(E |C) + H(XN |E ,C)

≤ 1 + Pr(E = 0)
���������:0
H(XN |C ,E = 0) + Pr(E = 1)H(XN |C ,E = 1)

≤ 1 + Pr(E = 1)H(XN)

Thus, as Pr(E = 1)→ 0, 1
N H(XN |C) ≤ 1

N + Pr(E = 1)H(X) < ε for sufficiently large N

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 9

Lecture 6: Conditional entropy Joint entropy and conditional entropy

Converse proof of conditional compression

In motivating the conditional entropy, we argue that we can compress a source X with side
information Y with a rate H(X |Y) by coding the indices of all typical sequences. However,
that actually just upper bound the information content of X given Y by H(X |Y). We didn’t
show that no other scheme can exist to compress X with rate below H(X |Y). We will show
that using a version of Fano’s inequality as before. Basically, 1

N H(X̂N |C ,Y N)→ 0 as error
rate goes to zero. Then, for any ε > 0,

1
N (H(C) + ε) ≥ 1

N (H(C |Y N) + ε) ≥ 1
N [H(C |Y N) + H(XN |C ,Y N)]

=
1
N H(XN ,C |Y N) =

1
N [H(XN |Y N) +�������:0

H(C |XN ,Y N)]

=
1
N

N∑
n=1

H(Xn|Y N ,Xn−1) =
1
N

N∑
n=1

H(Xn|Yn) = H(X |Y)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 10

Lecture 6: Conditional entropy Joint entropy and conditional entropy

Fano’s inequality: 1
N H(XN |C ,Y N)→ 0

For any ε > 0, for sufficiently large N, we have 1
N H(XN |C ,Y N)→ 0

Let’s denote E as the error event with E = 1 if X̂N 6= XN and E = 0 otherwise
Then,

1
N H(XN |C ,Y N) =

1
N [H(XN ,E |C ,Y N)−

��������:0
H(E |XN ,Y N ,C)]

=
1
N H(XN ,E |C ,Y N)

=
1
N [H(E |C ,Y N) + H(XN |E ,Y N ,C)]

≤ 1
N [1 + p(¬E)

��������:0
H(XN |¬E ,Y N ,C) + p(E)H(XN |E ,Y N ,C)

≤ 1
N [1 + p(E)H(XN)] =

1
N + p(E)H(X)

Therefore, if p(E)→ 0, 1
N H(XN |C ,Y N) < ε for sufficiently large N

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 11

Lecture 7: KL-divergence

Lecture 7: KL-divergence

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 1

Lecture 7: KL-divergence

Definition

It is often useful to gauge the difference between two distributions.
KL-divergence is also known to be relative entropy. It is a way to measure the difference
between two distributions. For two distributions of X , p(x) and p(y),

KL(p(x)‖q(x)) ,
∑
x∈X

p(x) log2
p(x)
q(x) .

N.B. If p(x) = q(x) for all x , KL(p(x)‖q(x)) = 0 as desired
N.B. KL(p(x)‖q(x)) 6= KL(q(x)‖p(x)) in general

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 2

Lecture 7: KL-divergence

Definition

It is often useful to gauge the difference between two distributions.
KL-divergence is also known to be relative entropy. It is a way to measure the difference
between two distributions. For two distributions of X , p(x) and p(y),

KL(p(x)‖q(x)) ,
∑
x∈X

p(x) log2
p(x)
q(x) .

N.B. If p(x) = q(x) for all x , KL(p(x)‖q(x)) = 0 as desired

N.B. KL(p(x)‖q(x)) 6= KL(q(x)‖p(x)) in general

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 2

Lecture 7: KL-divergence

Definition

It is often useful to gauge the difference between two distributions.
KL-divergence is also known to be relative entropy. It is a way to measure the difference
between two distributions. For two distributions of X , p(x) and p(y),

KL(p(x)‖q(x)) ,
∑
x∈X

p(x) log2
p(x)
q(x) .

N.B. If p(x) = q(x) for all x , KL(p(x)‖q(x)) = 0 as desired
N.B. KL(p(x)‖q(x)) 6= KL(q(x)‖p(x)) in general

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 2

Lecture 7: KL-divergence

KL-divergence is non-negative

KL(p(x)‖q(x)) =
∑
x∈X

p(x) log2
p(x)
q(x) = −

∑
x∈X

p(x) log2
q(x)
p(x)

= −
∑
x∈X

p(x)
ln 2 ln

q(x)
p(x)

≥ −
∑
x∈X

p(x)
ln 2

(
q(x)
p(x) − 1

)

=
1
ln 2

(∑
x∈X

p(x)−
∑
x∈X

q(x)
)

= 0

Fact
For any real x , ln(x) ≤ x − 1. Moreover, the equality only holds when x = 1

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 3

0 0.5 1 1.5 2
-2

-1

0

1

y = lnx
y = x! 1

Lecture 7: KL-divergence

KL-divergence is non-negative

KL(p(x)‖q(x)) =
∑
x∈X

p(x) log2
p(x)
q(x) = −

∑
x∈X

p(x) log2
q(x)
p(x)

= −
∑
x∈X

p(x)
ln 2 ln

q(x)
p(x)

≥ −
∑
x∈X

p(x)
ln 2

(
q(x)
p(x) − 1

)

=
1
ln 2

(∑
x∈X

p(x)−
∑
x∈X

q(x)
)

= 0

Fact
For any real x , ln(x) ≤ x − 1. Moreover, the equality only holds when x = 1

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 3

0 0.5 1 1.5 2
-2

-1

0

1

y = lnx
y = x! 1

Lecture 7: KL-divergence

KL-divergence is non-negative

KL(p(x)‖q(x)) =
∑
x∈X

p(x) log2
p(x)
q(x) = −

∑
x∈X

p(x) log2
q(x)
p(x)

= −
∑
x∈X

p(x)
ln 2 ln

q(x)
p(x)

≥ −
∑
x∈X

p(x)
ln 2

(
q(x)
p(x) − 1

)

=
1
ln 2

(∑
x∈X

p(x)−
∑
x∈X

q(x)
)

= 0

Fact
For any real x , ln(x) ≤ x − 1. Moreover, the equality only holds when x = 1

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 3

0 0.5 1 1.5 2
-2

-1

0

1

y = lnx
y = x! 1

Lecture 7: KL-divergence

KL-divergence is non-negative

KL(p(x)‖q(x)) =
∑
x∈X

p(x) log2
p(x)
q(x) = −

∑
x∈X

p(x) log2
q(x)
p(x)

= −
∑
x∈X

p(x)
ln 2 ln

q(x)
p(x)

≥ −
∑
x∈X

p(x)
ln 2

(
q(x)
p(x) − 1

)

=
1
ln 2

(∑
x∈X

p(x)−
∑
x∈X

q(x)
)

= 0

Fact
For any real x , ln(x) ≤ x − 1. Moreover, the equality only holds when x = 1

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 3

0 0.5 1 1.5 2
-2

-1

0

1

y = lnx
y = x! 1

Lecture 7: KL-divergence

KL-divergence is non-negative

KL(p(x)‖q(x)) =
∑
x∈X

p(x) log2
p(x)
q(x) = −

∑
x∈X

p(x) log2
q(x)
p(x)

= −
∑
x∈X

p(x)
ln 2 ln

q(x)
p(x)

≥ −
∑
x∈X

p(x)
ln 2

(
q(x)
p(x) − 1

)

=
1
ln 2

(∑
x∈X

p(x)−
∑
x∈X

q(x)
)

= 0

Fact
For any real x , ln(x) ≤ x − 1. Moreover, the equality only holds when x = 1

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 3

0 0.5 1 1.5 2
-2

-1

0

1

y = lnx
y = x! 1

Lecture 7: KL-divergence

Continuous variables

We can define KL-divergence for continuous variables in a similar manner

KL(p(x)‖q(x)) ,
∫

x∈X
p(x) log2

p(x)
q(x)dx

= −
∫

x∈X
p(x) log2

q(x)
p(x)dx

= −
∫

x∈X

p(x)
ln 2 ln

q(x)
p(x)dx

≥ −
∫

x∈X

p(x)
ln 2

(
q(x)
p(x) − 1

)
dx

= − 1
ln 2

(∫
x∈X

q(x)dx −
∫

x∈X
p(x)dx

)
= 0

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 4

Lecture 7: KL-divergence

Continuous variables

We can define KL-divergence for continuous variables in a similar manner

KL(p(x)‖q(x)) ,
∫

x∈X
p(x) log2

p(x)
q(x)dx

= −
∫

x∈X
p(x) log2

q(x)
p(x)dx

= −
∫

x∈X

p(x)
ln 2 ln

q(x)
p(x)dx

≥ −
∫

x∈X

p(x)
ln 2

(
q(x)
p(x) − 1

)
dx

= − 1
ln 2

(∫
x∈X

q(x)dx −
∫

x∈X
p(x)dx

)
= 0

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 4

Lecture 7: KL-divergence

Continuous variables

We can define KL-divergence for continuous variables in a similar manner

KL(p(x)‖q(x)) ,
∫

x∈X
p(x) log2

p(x)
q(x)dx

= −
∫

x∈X
p(x) log2

q(x)
p(x)dx

= −
∫

x∈X

p(x)
ln 2 ln

q(x)
p(x)dx

≥ −
∫

x∈X

p(x)
ln 2

(
q(x)
p(x) − 1

)
dx

= − 1
ln 2

(∫
x∈X

q(x)dx −
∫

x∈X
p(x)dx

)
= 0

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 4

Lecture 7: KL-divergence

Normal distribution has highest entropy

For fixed variance (covariance matrix), normal distribution has highest entropy

Proof
Let’s consider the multivariate case with a fixed covariance matrix Σ, the univariate (scalar)
case is a special case thus automatically taken care of.

Without loss of generality, let’s
consider zero mean. Denote N (x; 0,Σ) = φ(x). For any other distribution f (x) with the
same covariance matrix Σ, first note that

∫
x f (x) log φ(x)dx =

∫
x φ(x) log φ(x)dx (to be show

in the next slide). Then,

0 ≤KL(f ‖φ) =
∫

x
f (x) log f (x)

φ(x)dx = −h(f)−
∫

x
f (x) log φ(x)dx

=− h(f)−
∫

x
φ(x) log φ(x)dx = −h(f) + h(φ)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 5

Lecture 7: KL-divergence

Normal distribution has highest entropy

For fixed variance (covariance matrix), normal distribution has highest entropy

Proof
Let’s consider the multivariate case with a fixed covariance matrix Σ, the univariate (scalar)
case is a special case thus automatically taken care of.

Without loss of generality, let’s
consider zero mean. Denote N (x; 0,Σ) = φ(x). For any other distribution f (x) with the
same covariance matrix Σ, first note that

∫
x f (x) log φ(x)dx =

∫
x φ(x) log φ(x)dx (to be show

in the next slide). Then,

0 ≤KL(f ‖φ) =
∫

x
f (x) log f (x)

φ(x)dx = −h(f)−
∫

x
f (x) log φ(x)dx

=− h(f)−
∫

x
φ(x) log φ(x)dx = −h(f) + h(φ)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 5

Lecture 7: KL-divergence

Normal distribution has highest entropy

For fixed variance (covariance matrix), normal distribution has highest entropy

Proof
Let’s consider the multivariate case with a fixed covariance matrix Σ, the univariate (scalar)
case is a special case thus automatically taken care of. Without loss of generality, let’s
consider zero mean. Denote N (x; 0,Σ) = φ(x).

For any other distribution f (x) with the
same covariance matrix Σ, first note that

∫
x f (x) log φ(x)dx =

∫
x φ(x) log φ(x)dx (to be show

in the next slide). Then,

0 ≤KL(f ‖φ) =
∫

x
f (x) log f (x)

φ(x)dx = −h(f)−
∫

x
f (x) log φ(x)dx

=− h(f)−
∫

x
φ(x) log φ(x)dx = −h(f) + h(φ)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 5

Lecture 7: KL-divergence

Normal distribution has highest entropy

For fixed variance (covariance matrix), normal distribution has highest entropy

Proof
Let’s consider the multivariate case with a fixed covariance matrix Σ, the univariate (scalar)
case is a special case thus automatically taken care of. Without loss of generality, let’s
consider zero mean. Denote N (x; 0,Σ) = φ(x). For any other distribution f (x) with the
same covariance matrix Σ, first note that

∫
x f (x) log φ(x)dx =

∫
x φ(x) log φ(x)dx (to be show

in the next slide).

Then,

0 ≤KL(f ‖φ) =
∫

x
f (x) log f (x)

φ(x)dx = −h(f)−
∫

x
f (x) log φ(x)dx

=− h(f)−
∫

x
φ(x) log φ(x)dx = −h(f) + h(φ)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 5

Lecture 7: KL-divergence

Normal distribution has highest entropy

For fixed variance (covariance matrix), normal distribution has highest entropy

Proof
Let’s consider the multivariate case with a fixed covariance matrix Σ, the univariate (scalar)
case is a special case thus automatically taken care of. Without loss of generality, let’s
consider zero mean. Denote N (x; 0,Σ) = φ(x). For any other distribution f (x) with the
same covariance matrix Σ, first note that

∫
x f (x) log φ(x)dx =

∫
x φ(x) log φ(x)dx (to be show

in the next slide). Then,

0 ≤KL(f ‖φ) =
∫

x
f (x) log f (x)

φ(x)dx

= −h(f)−
∫

x
f (x) log φ(x)dx

=− h(f)−
∫

x
φ(x) log φ(x)dx = −h(f) + h(φ)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 5

Lecture 7: KL-divergence

Normal distribution has highest entropy

For fixed variance (covariance matrix), normal distribution has highest entropy

Proof
Let’s consider the multivariate case with a fixed covariance matrix Σ, the univariate (scalar)
case is a special case thus automatically taken care of. Without loss of generality, let’s
consider zero mean. Denote N (x; 0,Σ) = φ(x). For any other distribution f (x) with the
same covariance matrix Σ, first note that

∫
x f (x) log φ(x)dx =

∫
x φ(x) log φ(x)dx (to be show

in the next slide). Then,

0 ≤KL(f ‖φ) =
∫

x
f (x) log f (x)

φ(x)dx = −h(f)−
∫

x
f (x) log φ(x)dx

=− h(f)−
∫

x
φ(x) log φ(x)dx = −h(f) + h(φ)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 5

Lecture 7: KL-divergence

Normal distribution has highest entropy

For fixed variance (covariance matrix), normal distribution has highest entropy

Proof
Let’s consider the multivariate case with a fixed covariance matrix Σ, the univariate (scalar)
case is a special case thus automatically taken care of. Without loss of generality, let’s
consider zero mean. Denote N (x; 0,Σ) = φ(x). For any other distribution f (x) with the
same covariance matrix Σ, first note that

∫
x f (x) log φ(x)dx =

∫
x φ(x) log φ(x)dx (to be show

in the next slide). Then,

0 ≤KL(f ‖φ) =
∫

x
f (x) log f (x)

φ(x)dx = −h(f)−
∫

x
f (x) log φ(x)dx

=− h(f)−
∫

x
φ(x) log φ(x)dx = −h(f) + h(φ)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 5

Lecture 7: KL-divergence∫
x f (x) log φ(x)dx =

∫
x φ(x) log φ(x)dx

∫
x
φ(x) log φ(x)dx =

∫
x
φ(x)

[
− log

√
det(2πΣ)− 1

2xTΣ−1x
]

dx

=

∫
x
φ(x)

− log
√
det(2πΣ)− 1

2
∑
i,j

xi
[
Σ−1]

i,j xj

 dx

=

∫
x
φ(x)

− log
√
det(2πΣ)− 1

2
∑
i,j

[
Σ−1]

i,j xixj

 dx

=

∫
x

f (x)

− log
√

det(2πΣ)− 1
2
∑
i,j

[
Σ−1]

i,j xixj

 dx

=

∫
x

f (x) log φ(x)dx

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 6

Lecture 7: KL-divergence∫
x f (x) log φ(x)dx =

∫
x φ(x) log φ(x)dx

∫
x
φ(x) log φ(x)dx =

∫
x
φ(x)

[
− log

√
det(2πΣ)− 1

2xTΣ−1x
]

dx

=

∫
x
φ(x)

− log
√
det(2πΣ)− 1

2
∑
i,j

xi
[
Σ−1]

i,j xj

 dx

=

∫
x
φ(x)

− log
√
det(2πΣ)− 1

2
∑
i,j

[
Σ−1]

i,j xixj

 dx

=

∫
x

f (x)

− log
√

det(2πΣ)− 1
2
∑
i,j

[
Σ−1]

i,j xixj

 dx

=

∫
x

f (x) log φ(x)dx

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 6

Lecture 7: KL-divergence∫
x f (x) log φ(x)dx =

∫
x φ(x) log φ(x)dx

∫
x
φ(x) log φ(x)dx =

∫
x
φ(x)

[
− log

√
det(2πΣ)− 1

2xTΣ−1x
]

dx

=

∫
x
φ(x)

− log
√
det(2πΣ)− 1

2
∑
i,j

xi
[
Σ−1]

i,j xj

 dx

=

∫
x
φ(x)

− log
√
det(2πΣ)− 1

2
∑
i,j

[
Σ−1]

i,j xixj

 dx

=

∫
x

f (x)

− log
√

det(2πΣ)− 1
2
∑
i,j

[
Σ−1]

i,j xixj

 dx

=

∫
x

f (x) log φ(x)dx

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 6

Lecture 7: KL-divergence∫
x f (x) log φ(x)dx =

∫
x φ(x) log φ(x)dx

∫
x
φ(x) log φ(x)dx =

∫
x
φ(x)

[
− log

√
det(2πΣ)− 1

2xTΣ−1x
]

dx

=

∫
x
φ(x)

− log
√
det(2πΣ)− 1

2
∑
i,j

xi
[
Σ−1]

i,j xj

 dx

=

∫
x
φ(x)

− log
√
det(2πΣ)− 1

2
∑
i,j

[
Σ−1]

i,j xixj

 dx

=

∫
x

f (x)

− log
√
det(2πΣ)− 1

2
∑
i,j

[
Σ−1]

i,j xixj

 dx

=

∫
x

f (x) log φ(x)dx

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 6

Lecture 7: KL-divergence∫
x f (x) log φ(x)dx =

∫
x φ(x) log φ(x)dx

∫
x
φ(x) log φ(x)dx =

∫
x
φ(x)

[
− log

√
det(2πΣ)− 1

2xTΣ−1x
]

dx

=

∫
x
φ(x)

− log
√
det(2πΣ)− 1

2
∑
i,j

xi
[
Σ−1]

i,j xj

 dx

=

∫
x
φ(x)

− log
√
det(2πΣ)− 1

2
∑
i,j

[
Σ−1]

i,j xixj

 dx

=

∫
x

f (x)

− log
√
det(2πΣ)− 1

2
∑
i,j

[
Σ−1]

i,j xixj

 dx

=

∫
x

f (x) log φ(x)dx

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 6

Lecture 7: KL-divergence

Application: Thiel index

Measure economic inequality among different groups or for a group of individuals
Let pi be the economic wealth proportion of group i , and qi be the population size
proportion of group i
Thiel index is simply KL(p||q)
Let’s apply to a group of N individuals.

If they all have the same wealth, both p and q are uniform (pi = qi = 1/N), thus Thiel index
= KL(p||q) = 0
If one of them own everything, q is uniform but p is a δ-function. Thus Thiel index
= KL(p||q) =

∑
i pi log

pi
qi

= log 1
1/N = logN

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 7

Lecture 7: KL-divergence

Application: Cross-entropy and cross-entropy loss
In machine learning, it is often needed to assess the quality of a trained system. Consider the example
of classifying an the political affliation of an individual

In a first glance, both examples appear to work equally well (or bad). Both have one classification error.
However, a closer look will suggest the prediction of LHS is worse than RHS (why?)

For a better
assessment, we can treat both the computed result and the target result as distribution and compare
them with KL-divergence. Namely

KL(ptarget‖pcomputed) =
∑
group

ptarget(group) log ptarget(group)
pcomputed(group)

=− H(ptarget)−
∑
group

ptarget(group) log pcomputed(group)︸ ︷︷ ︸
cross entropy

(https://jamesmccaffrey.wordpress.com/2013/11/05/why-you-should-use-cross-entropy-error-instead-of-classification-error-or-mean-squared-error-for-neural-
network-classifier-training/)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 8

Lecture 7: KL-divergence

Application: Cross-entropy and cross-entropy loss
In machine learning, it is often needed to assess the quality of a trained system. Consider the example
of classifying an the political affliation of an individual

In a first glance, both examples appear to work equally well (or bad). Both have one classification error.
However, a closer look will suggest the prediction of LHS is worse than RHS (why?) For a better
assessment, we can treat both the computed result and the target result as distribution and compare
them with KL-divergence. Namely

KL(ptarget‖pcomputed) =
∑
group

ptarget(group) log ptarget(group)
pcomputed(group)

=− H(ptarget)−
∑
group

ptarget(group) log pcomputed(group)︸ ︷︷ ︸
cross entropy

(https://jamesmccaffrey.wordpress.com/2013/11/05/why-you-should-use-cross-entropy-error-instead-of-classification-error-or-mean-squared-error-for-neural-
network-classifier-training/)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 8

Lecture 7: KL-divergence

Application: Cross-entropy and cross-entropy loss

Cross entropy(p‖q) ,
∑

x
p(x) log 1

q(x) = Ep[− log q(X)]

= H(p) + KL(p‖q)

To compute KL-divergence, one needs to find H(ptarget), which is independent of the
machine learning system and thus does not reflect the performance of the system
Thus in practice, cross-entropy is commonly used instead of KL-divergence to measure
the performance of a machine learning system

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 9

Lecture 7: KL-divergence

Application: Cross-entropy and cross-entropy loss

Cross entropy(p‖q) ,
∑

x
p(x) log 1

q(x) = Ep[− log q(X)]

= H(p) + KL(p‖q)

To compute KL-divergence, one needs to find H(ptarget), which is independent of the
machine learning system and thus does not reflect the performance of the system

Thus in practice, cross-entropy is commonly used instead of KL-divergence to measure
the performance of a machine learning system

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 9

Lecture 7: KL-divergence

Application: Cross-entropy and cross-entropy loss

Cross entropy(p‖q) ,
∑

x
p(x) log 1

q(x) = Ep[− log q(X)]

= H(p) + KL(p‖q)

To compute KL-divergence, one needs to find H(ptarget), which is independent of the
machine learning system and thus does not reflect the performance of the system
Thus in practice, cross-entropy is commonly used instead of KL-divergence to measure
the performance of a machine learning system

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 9

Lecture 7: KL-divergence

Example: Text processing

In text processing, it is common that one may need to measure the similiarity between
two documents D1 and D2.

How to represent documents? One may use the “bag of words”. That is, to convert
document into a vector of numbers. Each number is the count of a corresponding word
One can then compares two documents using cross entropy

Cross entropy(p1‖p2) =
∑

w
p1(w) log

1
p2(w)

,

where p1 and p2 are the word distributions of documents D1 and D2, respectively

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 10

Lecture 7: KL-divergence

Example: Text processing

In text processing, it is common that one may need to measure the similiarity between
two documents D1 and D2.
How to represent documents? One may use the “bag of words”. That is, to convert
document into a vector of numbers. Each number is the count of a corresponding word

One can then compares two documents using cross entropy

Cross entropy(p1‖p2) =
∑

w
p1(w) log

1
p2(w)

,

where p1 and p2 are the word distributions of documents D1 and D2, respectively

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 10

Lecture 7: KL-divergence

Example: Text processing

In text processing, it is common that one may need to measure the similiarity between
two documents D1 and D2.
How to represent documents? One may use the “bag of words”. That is, to convert
document into a vector of numbers. Each number is the count of a corresponding word
One can then compares two documents using cross entropy

Cross entropy(p1‖p2) =
∑

w
p1(w) log

1
p2(w)

,

where p1 and p2 are the word distributions of documents D1 and D2, respectively

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 10

Lecture 7: KL-divergence

Example: TF-IDF and cross entropy

It may be also interesting of comparing word distribution of a document to the word
distribution across all documents That is, let q be the word distribution across all documents,

Cross entropy(p1‖q) =
∑

w
p1(w) log

1
q(w)

=
∑

w

w in D1
total # words in D1

log
total # docs

doc with w︸ ︷︷ ︸
TF-IDF(w)

,

where TF -IDF (w), short for term frequency-inverse document frequency, can reflect how
important of the word w to the target document and can be used in search engine

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 11

Lecture 7: KL-divergence

Example: Mixture models

Consider a careless teacher measure the height of a class of students without labeling the
data with names. After measuring the data, the teacher wants to estimate average
heights of the male and female students separately. How can he do that without knowing
the gender of each height data point?

Use the notation earlier, let x1, x2, · · · , xN be the observed height and zi ∈ {M,F} be the
latent gender variable for xi . Let the parameter θ = (µM , σM , µF , σF ,wM ,wF) contains
the means and standard derivations of heights of male and female students. And wM and
wF are the fraction of male and female students in class, thus wM + wF = 1. We will
assume both male and female population are Gaussian distributed. So p(x , z; θ) is

wzN (x ; θ) = wzN (x ;µz , σz) (1)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 12

Lecture 7: KL-divergence

Example: Mixture models

Consider a careless teacher measure the height of a class of students without labeling the
data with names. After measuring the data, the teacher wants to estimate average
heights of the male and female students separately. How can he do that without knowing
the gender of each height data point?
Use the notation earlier, let x1, x2, · · · , xN be the observed height and zi ∈ {M,F} be the
latent gender variable for xi . Let the parameter θ = (µM , σM , µF , σF ,wM ,wF) contains
the means and standard derivations of heights of male and female students. And wM and
wF are the fraction of male and female students in class, thus wM + wF = 1. We will
assume both male and female population are Gaussian distributed. So p(x , z; θ) is

wzN (x ; θ) = wzN (x ;µz , σz) (1)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 12

Lecture 7: KL-divergence

Example: Mixture models

Consider a careless teacher measure the height of a class of students without labeling the
data with names. After measuring the data, the teacher wants to estimate average
heights of the male and female students separately. How can he do that without knowing
the gender of each height data point?
Use the notation earlier, let x1, x2, · · · , xN be the observed height and zi ∈ {M,F} be the
latent gender variable for xi . Let the parameter θ = (µM , σM , µF , σF ,wM ,wF) contains
the means and standard derivations of heights of male and female students. And wM and
wF are the fraction of male and female students in class, thus wM + wF = 1. We will
assume both male and female population are Gaussian distributed. So p(x , z; θ) is

wzN (x ; θ) = wzN (x ;µz , σz) (1)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 12

Lecture 7: KL-divergence

Evidence Lower BOund (ELBO)
Given observations x1, · · · , xN , we want to maximize the (log-)evidence log p(x1, · · · , xN ; θ).

We can often assume xi and the respective latent variable zi are independent given θ. Thus

max log p(x1, · · · , xN ; θ) = max log
∑

z1,··· ,zN

N∏
i=1

p(xi |zi ; θ)p(zi ; θ),

which quickly becomes intractable as N increases, as we are summing over a space of |Z|N .
To reduce the computation, introduce a dummy distribution q(zN) and write

log p(x1, · · · , xN ; θ) =
∑
zN

q(zN) log p(x1, · · · , xN ; θ) =
∑
zN

q(zN) log
p(xN , zN ; θ)

p(zN |xN ; θ)

=
∑
zN

q(zN) log
p(xN , zN ; θ)

q(zN)

q(zN)

p(zN |xN ; θ)

=
∑
zN

q(zN) log p(xN , zN ; θ)dzN − H(q(zN))︸ ︷︷ ︸
ELBO

+ KL(q(zN)||p(zN |xN ; θ)),

where ELBO stands for the Evidence Lower BOund.

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 13

Lecture 7: KL-divergence

Evidence Lower BOund (ELBO)
Given observations x1, · · · , xN , we want to maximize the (log-)evidence log p(x1, · · · , xN ; θ).
We can often assume xi and the respective latent variable zi are independent given θ.

Thus

max log p(x1, · · · , xN ; θ) = max log
∑

z1,··· ,zN

N∏
i=1

p(xi |zi ; θ)p(zi ; θ),

which quickly becomes intractable as N increases, as we are summing over a space of |Z|N .
To reduce the computation, introduce a dummy distribution q(zN) and write

log p(x1, · · · , xN ; θ) =
∑
zN

q(zN) log p(x1, · · · , xN ; θ) =
∑
zN

q(zN) log
p(xN , zN ; θ)

p(zN |xN ; θ)

=
∑
zN

q(zN) log
p(xN , zN ; θ)

q(zN)

q(zN)

p(zN |xN ; θ)

=
∑
zN

q(zN) log p(xN , zN ; θ)dzN − H(q(zN))︸ ︷︷ ︸
ELBO

+ KL(q(zN)||p(zN |xN ; θ)),

where ELBO stands for the Evidence Lower BOund.

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 13

Lecture 7: KL-divergence

Evidence Lower BOund (ELBO)
Given observations x1, · · · , xN , we want to maximize the (log-)evidence log p(x1, · · · , xN ; θ).
We can often assume xi and the respective latent variable zi are independent given θ. Thus

max log p(x1, · · · , xN ; θ) = max log
∑

z1,··· ,zN

N∏
i=1

p(xi |zi ; θ)p(zi ; θ),

which quickly becomes intractable as N increases, as we are summing over a space of |Z|N .
To reduce the computation, introduce a dummy distribution q(zN) and write

log p(x1, · · · , xN ; θ) =
∑
zN

q(zN) log p(x1, · · · , xN ; θ) =
∑
zN

q(zN) log
p(xN , zN ; θ)

p(zN |xN ; θ)

=
∑
zN

q(zN) log
p(xN , zN ; θ)

q(zN)

q(zN)

p(zN |xN ; θ)

=
∑
zN

q(zN) log p(xN , zN ; θ)dzN − H(q(zN))︸ ︷︷ ︸
ELBO

+ KL(q(zN)||p(zN |xN ; θ)),

where ELBO stands for the Evidence Lower BOund.

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 13

Lecture 7: KL-divergence

Evidence Lower BOund (ELBO)
Given observations x1, · · · , xN , we want to maximize the (log-)evidence log p(x1, · · · , xN ; θ).
We can often assume xi and the respective latent variable zi are independent given θ. Thus

max log p(x1, · · · , xN ; θ) = max log
∑

z1,··· ,zN

N∏
i=1

p(xi |zi ; θ)p(zi ; θ),

which quickly becomes intractable as N increases, as we are summing over a space of |Z|N .
To reduce the computation, introduce a dummy distribution q(zN) and write

log p(x1, · · · , xN ; θ) =
∑
zN

q(zN) log p(x1, · · · , xN ; θ) =
∑
zN

q(zN) log
p(xN , zN ; θ)

p(zN |xN ; θ)

=
∑
zN

q(zN) log
p(xN , zN ; θ)

q(zN)

q(zN)

p(zN |xN ; θ)

=
∑
zN

q(zN) log p(xN , zN ; θ)dzN − H(q(zN))︸ ︷︷ ︸
ELBO

+ KL(q(zN)||p(zN |xN ; θ)),

where ELBO stands for the Evidence Lower BOund.

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 13

Lecture 7: KL-divergence

Evidence Lower BOund (ELBO)
Given observations x1, · · · , xN , we want to maximize the (log-)evidence log p(x1, · · · , xN ; θ).
We can often assume xi and the respective latent variable zi are independent given θ. Thus

max log p(x1, · · · , xN ; θ) = max log
∑

z1,··· ,zN

N∏
i=1

p(xi |zi ; θ)p(zi ; θ),

which quickly becomes intractable as N increases, as we are summing over a space of |Z|N .
To reduce the computation, introduce a dummy distribution q(zN) and write

log p(x1, · · · , xN ; θ) =
∑
zN

q(zN) log p(x1, · · · , xN ; θ) =
∑
zN

q(zN) log
p(xN , zN ; θ)

p(zN |xN ; θ)

=
∑
zN

q(zN) log
p(xN , zN ; θ)

q(zN)

q(zN)

p(zN |xN ; θ)
=
∑
zN

q(zN) log p(xN , zN ; θ)dzN − H(q(zN))︸ ︷︷ ︸
ELBO

+ KL(q(zN)||p(zN |xN ; θ)),

where ELBO stands for the Evidence Lower BOund.
S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 13

Lecture 7: KL-divergence

Expectation-Maximization (EM) algorithm

log p(x1, · · · , xN ; θ) =
∑
zN

q(zN) log p(xN , zN ; θ)dzN − H(q(zN))︸ ︷︷ ︸
ELBO

+ KL(q(zN)||p(zN |xN ; θ)),

Introducing q(zN) and leveraging ELBO allow us to solve for θ in an iterative manner.

Maximizing p(x1, · · · , xN ; θ) can be done by
E-step: Min KL(q(zN)||p(zN |xN ; θ)) over q for fixed θ

q(zN)← p(zN |xN ; θ)) =
∏

p(zi |xi ; θ) =
∏

qi(zi), where qi(zi) = p(zi |xi ; θ)

M-step: Max ELBO for fixed q. For p(x , z; θ) = wzN (x ; θ) = wzN (x ;µz , σz), max ELBO
'
∑N

i=1
∑

z qi(z) log p(xi , z; θ) =
∑N

i=1
∑

z qi(z)
(
logwz − log

√
2πσ2

z −
(xi−µz)2

2σ2
z

)
µz ←

∑N
i qi (z)xi∑N

i qi (z)
, σ2

z ←
∑N

i qi (z)(xi−µz)
2∑N

i qi (z)
, wz ←

∑N
i qi (z)∑N

i qi (M)+qi (F)
= 1

N
∑N

i qi(z)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 14

Lecture 7: KL-divergence

Expectation-Maximization (EM) algorithm

log p(x1, · · · , xN ; θ) =
∑
zN

q(zN) log p(xN , zN ; θ)dzN − H(q(zN))︸ ︷︷ ︸
ELBO

+ KL(q(zN)||p(zN |xN ; θ)),

Introducing q(zN) and leveraging ELBO allow us to solve for θ in an iterative manner.
Maximizing p(x1, · · · , xN ; θ) can be done by

E-step: Min KL(q(zN)||p(zN |xN ; θ)) over q for fixed θ

q(zN)← p(zN |xN ; θ)) =
∏

p(zi |xi ; θ) =
∏

qi(zi), where qi(zi) = p(zi |xi ; θ)

M-step: Max ELBO for fixed q. For p(x , z; θ) = wzN (x ; θ) = wzN (x ;µz , σz), max ELBO
'
∑N

i=1
∑

z qi(z) log p(xi , z; θ) =
∑N

i=1
∑

z qi(z)
(
logwz − log

√
2πσ2

z −
(xi−µz)2

2σ2
z

)
µz ←

∑N
i qi (z)xi∑N

i qi (z)
, σ2

z ←
∑N

i qi (z)(xi−µz)
2∑N

i qi (z)
, wz ←

∑N
i qi (z)∑N

i qi (M)+qi (F)
= 1

N
∑N

i qi(z)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 14

Lecture 7: KL-divergence

Expectation-Maximization (EM) algorithm

log p(x1, · · · , xN ; θ) =
∑
zN

q(zN) log p(xN , zN ; θ)dzN − H(q(zN))︸ ︷︷ ︸
ELBO

+ KL(q(zN)||p(zN |xN ; θ)),

Introducing q(zN) and leveraging ELBO allow us to solve for θ in an iterative manner.
Maximizing p(x1, · · · , xN ; θ) can be done by

E-step: Min KL(q(zN)||p(zN |xN ; θ)) over q for fixed θ

q(zN)← p(zN |xN ; θ))

=
∏

p(zi |xi ; θ) =
∏

qi(zi), where qi(zi) = p(zi |xi ; θ)

M-step: Max ELBO for fixed q. For p(x , z; θ) = wzN (x ; θ) = wzN (x ;µz , σz), max ELBO
'
∑N

i=1
∑

z qi(z) log p(xi , z; θ) =
∑N

i=1
∑

z qi(z)
(
logwz − log

√
2πσ2

z −
(xi−µz)2

2σ2
z

)
µz ←

∑N
i qi (z)xi∑N

i qi (z)
, σ2

z ←
∑N

i qi (z)(xi−µz)
2∑N

i qi (z)
, wz ←

∑N
i qi (z)∑N

i qi (M)+qi (F)
= 1

N
∑N

i qi(z)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 14

Lecture 7: KL-divergence

Expectation-Maximization (EM) algorithm

log p(x1, · · · , xN ; θ) =
∑
zN

q(zN) log p(xN , zN ; θ)dzN − H(q(zN))︸ ︷︷ ︸
ELBO

+ KL(q(zN)||p(zN |xN ; θ)),

Introducing q(zN) and leveraging ELBO allow us to solve for θ in an iterative manner.
Maximizing p(x1, · · · , xN ; θ) can be done by

E-step: Min KL(q(zN)||p(zN |xN ; θ)) over q for fixed θ

q(zN)← p(zN |xN ; θ)) =
∏

p(zi |xi ; θ) =
∏

qi(zi), where qi(zi) = p(zi |xi ; θ)

M-step: Max ELBO for fixed q. For p(x , z; θ) = wzN (x ; θ) = wzN (x ;µz , σz), max ELBO
'
∑N

i=1
∑

z qi(z) log p(xi , z; θ) =
∑N

i=1
∑

z qi(z)
(
logwz − log

√
2πσ2

z −
(xi−µz)2

2σ2
z

)
µz ←

∑N
i qi (z)xi∑N

i qi (z)
, σ2

z ←
∑N

i qi (z)(xi−µz)
2∑N

i qi (z)
, wz ←

∑N
i qi (z)∑N

i qi (M)+qi (F)
= 1

N
∑N

i qi(z)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 14

Lecture 7: KL-divergence

Expectation-Maximization (EM) algorithm

log p(x1, · · · , xN ; θ) =
∑
zN

q(zN) log p(xN , zN ; θ)dzN − H(q(zN))︸ ︷︷ ︸
ELBO

+ KL(q(zN)||p(zN |xN ; θ)),

Introducing q(zN) and leveraging ELBO allow us to solve for θ in an iterative manner.
Maximizing p(x1, · · · , xN ; θ) can be done by

E-step: Min KL(q(zN)||p(zN |xN ; θ)) over q for fixed θ

q(zN)← p(zN |xN ; θ)) =
∏

p(zi |xi ; θ) =
∏

qi(zi), where qi(zi) = p(zi |xi ; θ)

M-step: Max ELBO for fixed q. For p(x , z; θ) = wzN (x ; θ) = wzN (x ;µz , σz),

max ELBO
'
∑N

i=1
∑

z qi(z) log p(xi , z; θ) =
∑N

i=1
∑

z qi(z)
(
logwz − log

√
2πσ2

z −
(xi−µz)2

2σ2
z

)
µz ←

∑N
i qi (z)xi∑N

i qi (z)
, σ2

z ←
∑N

i qi (z)(xi−µz)
2∑N

i qi (z)
, wz ←

∑N
i qi (z)∑N

i qi (M)+qi (F)
= 1

N
∑N

i qi(z)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 14

Lecture 7: KL-divergence

Expectation-Maximization (EM) algorithm

log p(x1, · · · , xN ; θ) =
∑
zN

q(zN) log p(xN , zN ; θ)dzN − H(q(zN))︸ ︷︷ ︸
ELBO

+ KL(q(zN)||p(zN |xN ; θ)),

Introducing q(zN) and leveraging ELBO allow us to solve for θ in an iterative manner.
Maximizing p(x1, · · · , xN ; θ) can be done by

E-step: Min KL(q(zN)||p(zN |xN ; θ)) over q for fixed θ

q(zN)← p(zN |xN ; θ)) =
∏

p(zi |xi ; θ) =
∏

qi(zi), where qi(zi) = p(zi |xi ; θ)

M-step: Max ELBO for fixed q. For p(x , z; θ) = wzN (x ; θ) = wzN (x ;µz , σz), max ELBO
'
∑N

i=1
∑

z qi(z) log p(xi , z; θ)

=
∑N

i=1
∑

z qi(z)
(
logwz − log

√
2πσ2

z −
(xi−µz)2

2σ2
z

)
µz ←

∑N
i qi (z)xi∑N

i qi (z)
, σ2

z ←
∑N

i qi (z)(xi−µz)
2∑N

i qi (z)
, wz ←

∑N
i qi (z)∑N

i qi (M)+qi (F)
= 1

N
∑N

i qi(z)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 14

Lecture 7: KL-divergence

Expectation-Maximization (EM) algorithm

log p(x1, · · · , xN ; θ) =
∑
zN

q(zN) log p(xN , zN ; θ)dzN − H(q(zN))︸ ︷︷ ︸
ELBO

+ KL(q(zN)||p(zN |xN ; θ)),

Introducing q(zN) and leveraging ELBO allow us to solve for θ in an iterative manner.
Maximizing p(x1, · · · , xN ; θ) can be done by

E-step: Min KL(q(zN)||p(zN |xN ; θ)) over q for fixed θ

q(zN)← p(zN |xN ; θ)) =
∏

p(zi |xi ; θ) =
∏

qi(zi), where qi(zi) = p(zi |xi ; θ)

M-step: Max ELBO for fixed q. For p(x , z; θ) = wzN (x ; θ) = wzN (x ;µz , σz), max ELBO
'
∑N

i=1
∑

z qi(z) log p(xi , z; θ) =
∑N

i=1
∑

z qi(z)
(
logwz − log

√
2πσ2

z −
(xi−µz)2

2σ2
z

)

µz ←
∑N

i qi (z)xi∑N
i qi (z)

, σ2
z ←

∑N
i qi (z)(xi−µz)

2∑N
i qi (z)

, wz ←
∑N

i qi (z)∑N
i qi (M)+qi (F)

= 1
N
∑N

i qi(z)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 14

Lecture 7: KL-divergence

Expectation-Maximization (EM) algorithm

log p(x1, · · · , xN ; θ) =
∑
zN

q(zN) log p(xN , zN ; θ)dzN − H(q(zN))︸ ︷︷ ︸
ELBO

+ KL(q(zN)||p(zN |xN ; θ)),

Introducing q(zN) and leveraging ELBO allow us to solve for θ in an iterative manner.
Maximizing p(x1, · · · , xN ; θ) can be done by

E-step: Min KL(q(zN)||p(zN |xN ; θ)) over q for fixed θ

q(zN)← p(zN |xN ; θ)) =
∏

p(zi |xi ; θ) =
∏

qi(zi), where qi(zi) = p(zi |xi ; θ)

M-step: Max ELBO for fixed q. For p(x , z; θ) = wzN (x ; θ) = wzN (x ;µz , σz), max ELBO
'
∑N

i=1
∑

z qi(z) log p(xi , z; θ) =
∑N

i=1
∑

z qi(z)
(
logwz − log

√
2πσ2

z −
(xi−µz)2

2σ2
z

)
µz ←

∑N
i qi (z)xi∑N

i qi (z)
,

σ2
z ←

∑N
i qi (z)(xi−µz)

2∑N
i qi (z)

, wz ←
∑N

i qi (z)∑N
i qi (M)+qi (F)

= 1
N
∑N

i qi(z)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 14

Lecture 7: KL-divergence

Expectation-Maximization (EM) algorithm

log p(x1, · · · , xN ; θ) =
∑
zN

q(zN) log p(xN , zN ; θ)dzN − H(q(zN))︸ ︷︷ ︸
ELBO

+ KL(q(zN)||p(zN |xN ; θ)),

Introducing q(zN) and leveraging ELBO allow us to solve for θ in an iterative manner.
Maximizing p(x1, · · · , xN ; θ) can be done by

E-step: Min KL(q(zN)||p(zN |xN ; θ)) over q for fixed θ

q(zN)← p(zN |xN ; θ)) =
∏

p(zi |xi ; θ) =
∏

qi(zi), where qi(zi) = p(zi |xi ; θ)

M-step: Max ELBO for fixed q. For p(x , z; θ) = wzN (x ; θ) = wzN (x ;µz , σz), max ELBO
'
∑N

i=1
∑

z qi(z) log p(xi , z; θ) =
∑N

i=1
∑

z qi(z)
(
logwz − log

√
2πσ2

z −
(xi−µz)2

2σ2
z

)
µz ←

∑N
i qi (z)xi∑N

i qi (z)
, σ2

z ←
∑N

i qi (z)(xi−µz)
2∑N

i qi (z)
,

wz ←
∑N

i qi (z)∑N
i qi (M)+qi (F)

= 1
N
∑N

i qi(z)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 14

Lecture 7: KL-divergence

Expectation-Maximization (EM) algorithm

log p(x1, · · · , xN ; θ) =
∑
zN

q(zN) log p(xN , zN ; θ)dzN − H(q(zN))︸ ︷︷ ︸
ELBO

+ KL(q(zN)||p(zN |xN ; θ)),

Introducing q(zN) and leveraging ELBO allow us to solve for θ in an iterative manner.
Maximizing p(x1, · · · , xN ; θ) can be done by

E-step: Min KL(q(zN)||p(zN |xN ; θ)) over q for fixed θ

q(zN)← p(zN |xN ; θ)) =
∏

p(zi |xi ; θ) =
∏

qi(zi), where qi(zi) = p(zi |xi ; θ)

M-step: Max ELBO for fixed q. For p(x , z; θ) = wzN (x ; θ) = wzN (x ;µz , σz), max ELBO
'
∑N

i=1
∑

z qi(z) log p(xi , z; θ) =
∑N

i=1
∑

z qi(z)
(
logwz − log

√
2πσ2

z −
(xi−µz)2

2σ2
z

)
µz ←

∑N
i qi (z)xi∑N

i qi (z)
, σ2

z ←
∑N

i qi (z)(xi−µz)
2∑N

i qi (z)
, wz ←

∑N
i qi (z)∑N

i qi (M)+qi (F)
= 1

N
∑N

i qi(z)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 14

Lecture 8: Mutual information

Lecture 8: Mutual information

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 1

Lecture 8: Mutual information

Definition

As H(X) is equivalent to the information revealed by X and H(X |Y) the remaining
information of X knowing Y , we expect that H(X)− H(X |Y) is the information of X shared
by Y ⇒ “mutual information”

I(X ;Y) , H(X)− H(X |Y)

Similarly, we can define the “conditional mutual information” shared between X and Y given
Z as

I(X ;Y |Z) , H(X |Z)− H(X |Y ,Z)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 2

Lecture 8: Mutual information

Definition

As H(X) is equivalent to the information revealed by X and H(X |Y) the remaining
information of X knowing Y , we expect that H(X)− H(X |Y) is the information of X shared
by Y ⇒ “mutual information”

I(X ;Y) , H(X)− H(X |Y)

Similarly, we can define the “conditional mutual information” shared between X and Y given
Z as

I(X ;Y |Z) , H(X |Z)− H(X |Y ,Z)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 2

Lecture 8: Mutual information

Property of mutual information

I(X ;Y) = I(Y ;X) ≥ 0
The definition is symmetric and non-negative as desired.

I(X ;Y) =H(X)− H(X |Y) = E [− log p(X)]− E [− log p(X |Y)]

=−
∑

x
p(x) log p(x) +

∑
x,y

p(x , y) log p(x |y)

=−
∑
x,y

p(x , y) log p(x) +
∑
x,y

p(x , y) log p(x |y) =
∑
x,y

p(x , y) log p(x |y)
p(x)

=
∑
x,y

p(x , y) log p(x , y)
p(x)p(y) = KL(p(x , y)‖p(x)p(y)) ≥ 0

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 3

Lecture 8: Mutual information

Property of mutual information

I(X ;Y) = I(Y ;X) ≥ 0
The definition is symmetric and non-negative as desired.

I(X ;Y) =H(X)− H(X |Y) = E [− log p(X)]− E [− log p(X |Y)]

=−
∑

x
p(x) log p(x) +

∑
x,y

p(x , y) log p(x |y)

=−
∑
x,y

p(x , y) log p(x) +
∑
x,y

p(x , y) log p(x |y) =
∑
x,y

p(x , y) log p(x |y)
p(x)

=
∑
x,y

p(x , y) log p(x , y)
p(x)p(y) = KL(p(x , y)‖p(x)p(y)) ≥ 0

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 3

Lecture 8: Mutual information

Property of mutual information

I(X ;Y) = I(Y ;X) ≥ 0
The definition is symmetric and non-negative as desired.

I(X ;Y) =H(X)− H(X |Y) = E [− log p(X)]− E [− log p(X |Y)]

=−
∑

x
p(x) log p(x) +

∑
x,y

p(x , y) log p(x |y)

=−
∑
x,y

p(x , y) log p(x) +
∑
x,y

p(x , y) log p(x |y) =
∑
x,y

p(x , y) log p(x |y)
p(x)

=
∑
x,y

p(x , y) log p(x , y)
p(x)p(y) = KL(p(x , y)‖p(x)p(y)) ≥ 0

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 3

Lecture 8: Mutual information

Property of mutual information

I(X ;Y) = I(Y ;X) ≥ 0
The definition is symmetric and non-negative as desired.

I(X ;Y) =H(X)− H(X |Y) = E [− log p(X)]− E [− log p(X |Y)]

=−
∑

x
p(x) log p(x) +

∑
x,y

p(x , y) log p(x |y)

=−
∑
x,y

p(x , y) log p(x) +
∑
x,y

p(x , y) log p(x |y) =
∑
x,y

p(x , y) log p(x |y)
p(x)

=
∑
x,y

p(x , y) log p(x , y)
p(x)p(y)

= KL(p(x , y)‖p(x)p(y)) ≥ 0

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 3

Lecture 8: Mutual information

Property of mutual information

I(X ;Y) = I(Y ;X) ≥ 0
The definition is symmetric and non-negative as desired.

I(X ;Y) =H(X)− H(X |Y) = E [− log p(X)]− E [− log p(X |Y)]

=−
∑

x
p(x) log p(x) +

∑
x,y

p(x , y) log p(x |y)

=−
∑
x,y

p(x , y) log p(x) +
∑
x,y

p(x , y) log p(x |y) =
∑
x,y

p(x , y) log p(x |y)
p(x)

=
∑
x,y

p(x , y) log p(x , y)
p(x)p(y) = KL(p(x , y)‖p(x)p(y)) ≥ 0

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 3

Lecture 8: Mutual information

Property of conditional mutual information

I(X ;Y |Z) = I(Y ;X |Z) ≥ 0
The definition is symmetric and non-negative as desired.

I(X ;Y |Z) =H(X |Z)− H(X |Y ,Z) = E [− log p(X |Z)]− E [− log p(X |Y ,Z)]

=−
∑
x,z

p(x , z) log p(x |z) +
∑
x,y,z

p(x , y , z) log p(x |y , z)

=−
∑
x,y,z

p(x , y , z) log p(x |z) +
∑
x,y,z

p(x , y , z) log p(x |y , z)

=
∑
x,y,z

p(x , y , z) log p(x |y , z)
p(x |z)

=
∑

z
p(z)

∑
x,y

p(x , y |z) log p(x , y |z)
p(x |z)p(y |z)

=
∑

z
p(z)KL(p(x , y |z)‖p(x |z)p(y |z)) ≥ 0

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 4

Lecture 8: Mutual information

Property of conditional mutual information

I(X ;Y |Z) = I(Y ;X |Z) ≥ 0
The definition is symmetric and non-negative as desired.

I(X ;Y |Z) =H(X |Z)− H(X |Y ,Z) = E [− log p(X |Z)]− E [− log p(X |Y ,Z)]

=−
∑
x,z

p(x , z) log p(x |z) +
∑
x,y,z

p(x , y , z) log p(x |y , z)

=−
∑
x,y,z

p(x , y , z) log p(x |z) +
∑
x,y,z

p(x , y , z) log p(x |y , z)

=
∑
x,y,z

p(x , y , z) log p(x |y , z)
p(x |z)

=
∑

z
p(z)

∑
x,y

p(x , y |z) log p(x , y |z)
p(x |z)p(y |z)

=
∑

z
p(z)KL(p(x , y |z)‖p(x |z)p(y |z)) ≥ 0

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 4

Lecture 8: Mutual information

Property of conditional mutual information

I(X ;Y |Z) = I(Y ;X |Z) ≥ 0
The definition is symmetric and non-negative as desired.

I(X ;Y |Z) =H(X |Z)− H(X |Y ,Z) = E [− log p(X |Z)]− E [− log p(X |Y ,Z)]

=−
∑
x,z

p(x , z) log p(x |z) +
∑
x,y,z

p(x , y , z) log p(x |y , z)

=−
∑
x,y,z

p(x , y , z) log p(x |z) +
∑
x,y,z

p(x , y , z) log p(x |y , z)

=
∑
x,y,z

p(x , y , z) log p(x |y , z)
p(x |z)

=
∑

z
p(z)

∑
x,y

p(x , y |z) log p(x , y |z)
p(x |z)p(y |z)

=
∑

z
p(z)KL(p(x , y |z)‖p(x |z)p(y |z)) ≥ 0

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 4

Lecture 8: Mutual information

Property of conditional mutual information

I(X ;Y |Z) = I(Y ;X |Z) ≥ 0
The definition is symmetric and non-negative as desired.

I(X ;Y |Z) =H(X |Z)− H(X |Y ,Z) = E [− log p(X |Z)]− E [− log p(X |Y ,Z)]

=−
∑
x,z

p(x , z) log p(x |z) +
∑
x,y,z

p(x , y , z) log p(x |y , z)

=−
∑
x,y,z

p(x , y , z) log p(x |z) +
∑
x,y,z

p(x , y , z) log p(x |y , z)

=
∑
x,y,z

p(x , y , z) log p(x |y , z)
p(x |z)

=
∑

z
p(z)

∑
x,y

p(x , y |z) log p(x , y |z)
p(x |z)p(y |z)

=
∑

z
p(z)KL(p(x , y |z)‖p(x |z)p(y |z)) ≥ 0

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 4

Lecture 8: Mutual information

Independence and mutual information

I(X ;Y) = 0⇔ X⊥Y

I(X ;Y) = KL(p(x , y)‖p(x)p(y)) = 0

implies p(x , y) = p(x)p(y). Therefore X⊥Y

I(X ;Y |Z) = 0⇔ X⊥Y |Z

I(X ;Y |Z) =
∑

z
p(z)KL(p(x , y |z)‖p(x |z)p(y |z)) = 0

implies p(x , y |z) = p(x |z)p(y |z) for all z s.t. p(z) > 0. Therefore X⊥Y |Z

Remark
This is just as what we expect. If there is no share information between X and Y , they should
be independent!

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 5

Lecture 8: Mutual information

Independence and mutual information

I(X ;Y) = 0⇔ X⊥Y

I(X ;Y) = KL(p(x , y)‖p(x)p(y)) = 0

implies p(x , y) = p(x)p(y). Therefore X⊥Y

I(X ;Y |Z) = 0⇔ X⊥Y |Z

I(X ;Y |Z) =
∑

z
p(z)KL(p(x , y |z)‖p(x |z)p(y |z)) = 0

implies p(x , y |z) = p(x |z)p(y |z) for all z s.t. p(z) > 0. Therefore X⊥Y |Z

Remark
This is just as what we expect. If there is no share information between X and Y , they should
be independent!

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 5

Lecture 8: Mutual information

Chain rule for mutual information

I(X1,X2, · · · ,XN |Y)

=H(X1,X2, · · · ,XN)− H(X1,X2, · · · ,XN |Y)

=
N∑

i=1
H(Xi |X i−1)− H(Xi |X i−1,Y)

=
N∑

i=1
I(Xi ;Y |X i−1)

N.B. XN = X1,X2, · · · ,XN

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 6

Lecture 8: Mutual information

Chain rule for mutual information

I(X1,X2, · · · ,XN |Y)

=H(X1,X2, · · · ,XN)− H(X1,X2, · · · ,XN |Y)

=
N∑

i=1
H(Xi |X i−1)− H(Xi |X i−1,Y)

=
N∑

i=1
I(Xi ;Y |X i−1)

N.B. XN = X1,X2, · · · ,XN

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 6

Lecture 8: Mutual information

Chain rule for mutual information

I(X1,X2, · · · ,XN |Y)

=H(X1,X2, · · · ,XN)− H(X1,X2, · · · ,XN |Y)

=
N∑

i=1
H(Xi |X i−1)− H(Xi |X i−1,Y)

=
N∑

i=1
I(Xi ;Y |X i−1)

N.B. XN = X1,X2, · · · ,XN

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 6

Lecture 8: Mutual information

Chain rule for mutual information

I(X1,X2, · · · ,XN |Y)

=H(X1,X2, · · · ,XN)− H(X1,X2, · · · ,XN |Y)

=
N∑

i=1
H(Xi |X i−1)− H(Xi |X i−1,Y)

=
N∑

i=1
I(Xi ;Y |X i−1)

N.B. XN = X1,X2, · · · ,XN

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 6

Lecture 8: Mutual information

Mutual information for continuous variables

For continuous X ,Y ,Z , we can define I(X ;Y) = h(X)− h(X |Y) and
I(X ;Y |Z) = h(X |Z)− h(X |Y ,Z)
Then, the followings still hold true

I(X ;Y) = KL(p(x , y)‖p(x)p(y)) = I(Y ;X) ≥ 0
I(X ;Y |Z) =

∫
z p(z)KL(p(x , y |z)‖p(x |z)p(y |z))dz = I(Y ;X |Z) ≥ 0

I(X ;Y) = 0⇔ X⊥Y
I(X ;Y |Z) = 0⇔ X⊥Y |Z
I(X1,X2, · · · ,XN |Y) =

∑N
i=1 I(Xi ;Y |X i−1)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 7

Lecture 8: Mutual information

Mutual information for continuous variables

For continuous X ,Y ,Z , we can define I(X ;Y) = h(X)− h(X |Y) and
I(X ;Y |Z) = h(X |Z)− h(X |Y ,Z)
Then, the followings still hold true

I(X ;Y) = KL(p(x , y)‖p(x)p(y)) = I(Y ;X) ≥ 0

I(X ;Y |Z) =
∫

z p(z)KL(p(x , y |z)‖p(x |z)p(y |z))dz = I(Y ;X |Z) ≥ 0
I(X ;Y) = 0⇔ X⊥Y
I(X ;Y |Z) = 0⇔ X⊥Y |Z
I(X1,X2, · · · ,XN |Y) =

∑N
i=1 I(Xi ;Y |X i−1)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 7

Lecture 8: Mutual information

Mutual information for continuous variables

For continuous X ,Y ,Z , we can define I(X ;Y) = h(X)− h(X |Y) and
I(X ;Y |Z) = h(X |Z)− h(X |Y ,Z)
Then, the followings still hold true

I(X ;Y) = KL(p(x , y)‖p(x)p(y)) = I(Y ;X) ≥ 0
I(X ;Y |Z) =

∫
z p(z)KL(p(x , y |z)‖p(x |z)p(y |z))dz = I(Y ;X |Z) ≥ 0

I(X ;Y) = 0⇔ X⊥Y
I(X ;Y |Z) = 0⇔ X⊥Y |Z
I(X1,X2, · · · ,XN |Y) =

∑N
i=1 I(Xi ;Y |X i−1)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 7

Lecture 8: Mutual information

Mutual information for continuous variables

For continuous X ,Y ,Z , we can define I(X ;Y) = h(X)− h(X |Y) and
I(X ;Y |Z) = h(X |Z)− h(X |Y ,Z)
Then, the followings still hold true

I(X ;Y) = KL(p(x , y)‖p(x)p(y)) = I(Y ;X) ≥ 0
I(X ;Y |Z) =

∫
z p(z)KL(p(x , y |z)‖p(x |z)p(y |z))dz = I(Y ;X |Z) ≥ 0

I(X ;Y) = 0⇔ X⊥Y

I(X ;Y |Z) = 0⇔ X⊥Y |Z
I(X1,X2, · · · ,XN |Y) =

∑N
i=1 I(Xi ;Y |X i−1)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 7

Lecture 8: Mutual information

Mutual information for continuous variables

For continuous X ,Y ,Z , we can define I(X ;Y) = h(X)− h(X |Y) and
I(X ;Y |Z) = h(X |Z)− h(X |Y ,Z)
Then, the followings still hold true

I(X ;Y) = KL(p(x , y)‖p(x)p(y)) = I(Y ;X) ≥ 0
I(X ;Y |Z) =

∫
z p(z)KL(p(x , y |z)‖p(x |z)p(y |z))dz = I(Y ;X |Z) ≥ 0

I(X ;Y) = 0⇔ X⊥Y
I(X ;Y |Z) = 0⇔ X⊥Y |Z

I(X1,X2, · · · ,XN |Y) =
∑N

i=1 I(Xi ;Y |X i−1)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 7

Lecture 8: Mutual information

Mutual information for continuous variables

For continuous X ,Y ,Z , we can define I(X ;Y) = h(X)− h(X |Y) and
I(X ;Y |Z) = h(X |Z)− h(X |Y ,Z)
Then, the followings still hold true

I(X ;Y) = KL(p(x , y)‖p(x)p(y)) = I(Y ;X) ≥ 0
I(X ;Y |Z) =

∫
z p(z)KL(p(x , y |z)‖p(x |z)p(y |z))dz = I(Y ;X |Z) ≥ 0

I(X ;Y) = 0⇔ X⊥Y
I(X ;Y |Z) = 0⇔ X⊥Y |Z
I(X1,X2, · · · ,XN |Y) =

∑N
i=1 I(Xi ;Y |X i−1)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 7

Lecture 8: Mutual information More inequalities

Conditioning reduces entropy

Given more information, the residual information (uncertainty) should decrease.

More
precisely,

H(X) ≥ H(X |Y) H(X |Y) ≥ H(X |Y ,Z)

This is obvious from our previous discussion since H(X)− H(X |Y) = I(X ;Y) ≥ 0 and
H(X |Y)− H(X |Y ,Z) = I(X ;Z |Y) ≥ 0

Of course, we also have

h(X) ≥ h(X |Y) h(X |Y) ≥ h(X |Y ,Z)

since h(X)− h(X |Y) = I(X ;Y) ≥ 0 and h(X |Y)− h(X |Y) = I(X ;Z |Y) ≥ 0

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 8

Lecture 8: Mutual information More inequalities

Conditioning reduces entropy

Given more information, the residual information (uncertainty) should decrease. More
precisely,

H(X) ≥ H(X |Y) H(X |Y) ≥ H(X |Y ,Z)

This is obvious from our previous discussion since H(X)− H(X |Y) = I(X ;Y) ≥ 0 and
H(X |Y)− H(X |Y ,Z) = I(X ;Z |Y) ≥ 0

Of course, we also have

h(X) ≥ h(X |Y) h(X |Y) ≥ h(X |Y ,Z)

since h(X)− h(X |Y) = I(X ;Y) ≥ 0 and h(X |Y)− h(X |Y) = I(X ;Z |Y) ≥ 0

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 8

Lecture 8: Mutual information More inequalities

Conditioning reduces entropy

Given more information, the residual information (uncertainty) should decrease. More
precisely,

H(X) ≥ H(X |Y) H(X |Y) ≥ H(X |Y ,Z)

This is obvious from our previous discussion since H(X)− H(X |Y) = I(X ;Y) ≥ 0 and
H(X |Y)− H(X |Y ,Z) = I(X ;Z |Y) ≥ 0

Of course, we also have

h(X) ≥ h(X |Y) h(X |Y) ≥ h(X |Y ,Z)

since h(X)− h(X |Y) = I(X ;Y) ≥ 0 and h(X |Y)− h(X |Y) = I(X ;Z |Y) ≥ 0

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 8

Lecture 8: Mutual information More inequalities

Data processing inequality (DPI)

If random variables X ,Y ,Z satisfy X ↔ Y ↔ Z , then

I(X ;Y) ≥ I(X ;Z).

Proof

I(X ;Y) = I(X ;Y ,Z)− I(X ;Z |Y)

= I(X ;Y ,Z) (since X ↔ Y ↔ Z)

= I(X ;Z) + I(X ;Y |Z)

≥ I(X ;Z)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 9

Lecture 8: Mutual information More inequalities

Data processing inequality (DPI)

If random variables X ,Y ,Z satisfy X ↔ Y ↔ Z , then

I(X ;Y) ≥ I(X ;Z).

Proof

I(X ;Y) = I(X ;Y ,Z)− I(X ;Z |Y)

= I(X ;Y ,Z) (since X ↔ Y ↔ Z)

= I(X ;Z) + I(X ;Y |Z)

≥ I(X ;Z)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 9

Lecture 8: Mutual information More inequalities

Data processing inequality (DPI)

If random variables X ,Y ,Z satisfy X ↔ Y ↔ Z , then

I(X ;Y) ≥ I(X ;Z).

Proof

I(X ;Y) = I(X ;Y ,Z)− I(X ;Z |Y)

= I(X ;Y ,Z) (since X ↔ Y ↔ Z)

= I(X ;Z) + I(X ;Y |Z)

≥ I(X ;Z)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 9

Lecture 8: Mutual information More inequalities

Implications of data processing inequality

Loss of Information: Any data processing (like filtering, compressing, etc.) can only
reduce or, at best, preserve the amount of relevant information in data. It can’t increase
it.
Optimality of Direct Observations: If you have the choice to observe a source variable
directly or through some noisy/processed version, observing the source directly will often
be more informative.
Feature Engineering: In machine learning, creating new features from original data will
not inherently provide more information about the target variable than the original
features. However, the transformation might make it easier for specific algorithms to
capture the existing information.

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 10

Lecture 8: Mutual information More inequalities

Summary

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 11

Lecture 8: Mutual information More inequalities

Summary

Conditioning reduces entropy

Chain rules:
H(X ,Y ,Z) = H(Z) + H(Y |X) + H(Z |X ,Y)
H(X ,Y ,U|V)= H(X |V) + H(Y |X ,V) + H(U|Y ,X ,V)
I(X ,Y ,Z ;U)= I(X ;U) + I(Y ;U|X) + I(Z ;U|X ,Y)
I(X ,Y ,Z ;U|V)= I(X ;U|V) + I(Y ;U|V ,X) + I(Z ;U|V ,X ,Y)

Data processing inequality: if X⊥Y |Z , I(X ;Y) ≥ I(X ;Z)

Independence and mutual information:
X⊥Y ⇔ I(X ;Y) = 0
X⊥Y |Z ⇔ I(X ;Y |Z) = 0

KL-divergence: KL(p||q) ,
∑

x p(x) log p(x)
q(x) ≥ 0

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 12

Lecture 8: Mutual information More inequalities

Summary

Conditioning reduces entropy
Chain rules:

H(X ,Y ,Z)

= H(Z) + H(Y |X) + H(Z |X ,Y)
H(X ,Y ,U|V)= H(X |V) + H(Y |X ,V) + H(U|Y ,X ,V)
I(X ,Y ,Z ;U)= I(X ;U) + I(Y ;U|X) + I(Z ;U|X ,Y)
I(X ,Y ,Z ;U|V)= I(X ;U|V) + I(Y ;U|V ,X) + I(Z ;U|V ,X ,Y)

Data processing inequality: if X⊥Y |Z , I(X ;Y) ≥ I(X ;Z)

Independence and mutual information:
X⊥Y ⇔ I(X ;Y) = 0
X⊥Y |Z ⇔ I(X ;Y |Z) = 0

KL-divergence: KL(p||q) ,
∑

x p(x) log p(x)
q(x) ≥ 0

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 12

Lecture 8: Mutual information More inequalities

Summary

Conditioning reduces entropy
Chain rules:

H(X ,Y ,Z) = H(Z) + H(Y |X) + H(Z |X ,Y)
H(X ,Y ,U|V)

= H(X |V) + H(Y |X ,V) + H(U|Y ,X ,V)
I(X ,Y ,Z ;U)= I(X ;U) + I(Y ;U|X) + I(Z ;U|X ,Y)
I(X ,Y ,Z ;U|V)= I(X ;U|V) + I(Y ;U|V ,X) + I(Z ;U|V ,X ,Y)

Data processing inequality: if X⊥Y |Z , I(X ;Y) ≥ I(X ;Z)

Independence and mutual information:
X⊥Y ⇔ I(X ;Y) = 0
X⊥Y |Z ⇔ I(X ;Y |Z) = 0

KL-divergence: KL(p||q) ,
∑

x p(x) log p(x)
q(x) ≥ 0

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 12

Lecture 8: Mutual information More inequalities

Summary

Conditioning reduces entropy
Chain rules:

H(X ,Y ,Z) = H(Z) + H(Y |X) + H(Z |X ,Y)
H(X ,Y ,U|V)= H(X |V) + H(Y |X ,V) + H(U|Y ,X ,V)
I(X ,Y ,Z ;U)

= I(X ;U) + I(Y ;U|X) + I(Z ;U|X ,Y)
I(X ,Y ,Z ;U|V)= I(X ;U|V) + I(Y ;U|V ,X) + I(Z ;U|V ,X ,Y)

Data processing inequality: if X⊥Y |Z , I(X ;Y) ≥ I(X ;Z)

Independence and mutual information:
X⊥Y ⇔ I(X ;Y) = 0
X⊥Y |Z ⇔ I(X ;Y |Z) = 0

KL-divergence: KL(p||q) ,
∑

x p(x) log p(x)
q(x) ≥ 0

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 12

Lecture 8: Mutual information More inequalities

Summary

Conditioning reduces entropy
Chain rules:

H(X ,Y ,Z) = H(Z) + H(Y |X) + H(Z |X ,Y)
H(X ,Y ,U|V)= H(X |V) + H(Y |X ,V) + H(U|Y ,X ,V)
I(X ,Y ,Z ;U)= I(X ;U) + I(Y ;U|X) + I(Z ;U|X ,Y)
I(X ,Y ,Z ;U|V)

= I(X ;U|V) + I(Y ;U|V ,X) + I(Z ;U|V ,X ,Y)

Data processing inequality: if X⊥Y |Z , I(X ;Y) ≥ I(X ;Z)

Independence and mutual information:
X⊥Y ⇔ I(X ;Y) = 0
X⊥Y |Z ⇔ I(X ;Y |Z) = 0

KL-divergence: KL(p||q) ,
∑

x p(x) log p(x)
q(x) ≥ 0

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 12

Lecture 8: Mutual information More inequalities

Summary

Conditioning reduces entropy
Chain rules:

H(X ,Y ,Z) = H(Z) + H(Y |X) + H(Z |X ,Y)
H(X ,Y ,U|V)= H(X |V) + H(Y |X ,V) + H(U|Y ,X ,V)
I(X ,Y ,Z ;U)= I(X ;U) + I(Y ;U|X) + I(Z ;U|X ,Y)
I(X ,Y ,Z ;U|V)= I(X ;U|V) + I(Y ;U|V ,X) + I(Z ;U|V ,X ,Y)

Data processing inequality: if X⊥Y |Z ,

I(X ;Y) ≥ I(X ;Z)

Independence and mutual information:
X⊥Y ⇔ I(X ;Y) = 0
X⊥Y |Z ⇔ I(X ;Y |Z) = 0

KL-divergence: KL(p||q) ,
∑

x p(x) log p(x)
q(x) ≥ 0

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 12

Lecture 8: Mutual information More inequalities

Summary

Conditioning reduces entropy
Chain rules:

H(X ,Y ,Z) = H(Z) + H(Y |X) + H(Z |X ,Y)
H(X ,Y ,U|V)= H(X |V) + H(Y |X ,V) + H(U|Y ,X ,V)
I(X ,Y ,Z ;U)= I(X ;U) + I(Y ;U|X) + I(Z ;U|X ,Y)
I(X ,Y ,Z ;U|V)= I(X ;U|V) + I(Y ;U|V ,X) + I(Z ;U|V ,X ,Y)

Data processing inequality: if X⊥Y |Z , I(X ;Y) ≥ I(X ;Z)

Independence and mutual information:
X⊥Y ⇔

I(X ;Y) = 0
X⊥Y |Z ⇔ I(X ;Y |Z) = 0

KL-divergence: KL(p||q) ,
∑

x p(x) log p(x)
q(x) ≥ 0

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 12

Lecture 8: Mutual information More inequalities

Summary

Conditioning reduces entropy
Chain rules:

H(X ,Y ,Z) = H(Z) + H(Y |X) + H(Z |X ,Y)
H(X ,Y ,U|V)= H(X |V) + H(Y |X ,V) + H(U|Y ,X ,V)
I(X ,Y ,Z ;U)= I(X ;U) + I(Y ;U|X) + I(Z ;U|X ,Y)
I(X ,Y ,Z ;U|V)= I(X ;U|V) + I(Y ;U|V ,X) + I(Z ;U|V ,X ,Y)

Data processing inequality: if X⊥Y |Z , I(X ;Y) ≥ I(X ;Z)

Independence and mutual information:
X⊥Y ⇔ I(X ;Y) = 0
X⊥Y |Z ⇔

I(X ;Y |Z) = 0

KL-divergence: KL(p||q) ,
∑

x p(x) log p(x)
q(x) ≥ 0

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 12

Lecture 8: Mutual information More inequalities

Summary

Conditioning reduces entropy
Chain rules:

H(X ,Y ,Z) = H(Z) + H(Y |X) + H(Z |X ,Y)
H(X ,Y ,U|V)= H(X |V) + H(Y |X ,V) + H(U|Y ,X ,V)
I(X ,Y ,Z ;U)= I(X ;U) + I(Y ;U|X) + I(Z ;U|X ,Y)
I(X ,Y ,Z ;U|V)= I(X ;U|V) + I(Y ;U|V ,X) + I(Z ;U|V ,X ,Y)

Data processing inequality: if X⊥Y |Z , I(X ;Y) ≥ I(X ;Z)

Independence and mutual information:
X⊥Y ⇔ I(X ;Y) = 0
X⊥Y |Z ⇔ I(X ;Y |Z) = 0

KL-divergence: KL(p||q) ,

∑
x p(x) log p(x)

q(x) ≥ 0

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 12

Lecture 8: Mutual information More inequalities

Summary

Conditioning reduces entropy
Chain rules:

H(X ,Y ,Z) = H(Z) + H(Y |X) + H(Z |X ,Y)
H(X ,Y ,U|V)= H(X |V) + H(Y |X ,V) + H(U|Y ,X ,V)
I(X ,Y ,Z ;U)= I(X ;U) + I(Y ;U|X) + I(Z ;U|X ,Y)
I(X ,Y ,Z ;U|V)= I(X ;U|V) + I(Y ;U|V ,X) + I(Z ;U|V ,X ,Y)

Data processing inequality: if X⊥Y |Z , I(X ;Y) ≥ I(X ;Z)

Independence and mutual information:
X⊥Y ⇔ I(X ;Y) = 0
X⊥Y |Z ⇔ I(X ;Y |Z) = 0

KL-divergence: KL(p||q) ,
∑

x p(x) log p(x)
q(x) ≥ 0

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 12

Lecture 8: Mutual information Shannon’s perfect secrecy

Application: perfect secrecy

Example (A simple cryptography example)
Say you have a very personal letter that you don’t want to let anyone else except some
special someone to read

You will first encrypt the letter to some code. To decrypt the message, you will need
some key and you will also pass it to your special someone. Translate to the cryptography
language/symbols

Letter: plaintext message M
Code: ciphertext C
Key: key K

Remark
Shannon’s result: to ensure perfect secrecy, we can show that H(M) ≤ H(K)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 13

Lecture 8: Mutual information Shannon’s perfect secrecy

Application: perfect secrecy

Example (A simple cryptography example)
Say you have a very personal letter that you don’t want to let anyone else except some
special someone to read
You will first encrypt the letter to some code. To decrypt the message, you will need
some key and you will also pass it to your special someone.

Translate to the cryptography
language/symbols

Letter: plaintext message M
Code: ciphertext C
Key: key K

Remark
Shannon’s result: to ensure perfect secrecy, we can show that H(M) ≤ H(K)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 13

Lecture 8: Mutual information Shannon’s perfect secrecy

Application: perfect secrecy

Example (A simple cryptography example)
Say you have a very personal letter that you don’t want to let anyone else except some
special someone to read
You will first encrypt the letter to some code. To decrypt the message, you will need
some key and you will also pass it to your special someone. Translate to the cryptography
language/symbols

Letter: plaintext message M
Code: ciphertext C
Key: key K

Remark
Shannon’s result: to ensure perfect secrecy, we can show that H(M) ≤ H(K)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 13

Lecture 8: Mutual information Shannon’s perfect secrecy

Application: perfect secrecy

Example (A simple cryptography example)
Say you have a very personal letter that you don’t want to let anyone else except some
special someone to read
You will first encrypt the letter to some code. To decrypt the message, you will need
some key and you will also pass it to your special someone. Translate to the cryptography
language/symbols

Letter: plaintext message M
Code: ciphertext C
Key: key K

Remark
Shannon’s result: to ensure perfect secrecy, we can show that H(M) ≤ H(K)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 13

Lecture 8: Mutual information Shannon’s perfect secrecy

Application: perfect secrecy

Recall that M,C ,K be plaintext message, ciphertext, and key, respectively

Assumption
We will assume here that we have a non-probabilistic encryption scheme. In other words,
each plaintext message maps to a unique ciphertext given a fixed key. So there is no ambiguity
during decoding. Therefore, H(M|C ,K) = 0

Remark (Independence)
For perfect secrecy, one should not be able to deduce anything regarding the message from the
ciphertext. Therefore, C and M should be independent. Thus,
I(C ;M) = 0⇒ H(M) = H(M|C) + I(C ;M) = H(M|C)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 14

Lecture 8: Mutual information Shannon’s perfect secrecy

Application: perfect secrecy

Recall that M,C ,K be plaintext message, ciphertext, and key, respectively

Assumption
We will assume here that we have a non-probabilistic encryption scheme. In other words,
each plaintext message maps to a unique ciphertext given a fixed key. So there is no ambiguity
during decoding. Therefore, H(M|C ,K) = 0

Remark (Independence)
For perfect secrecy, one should not be able to deduce anything regarding the message from the
ciphertext. Therefore, C and M should be independent.

Thus,
I(C ;M) = 0⇒ H(M) = H(M|C) + I(C ;M) = H(M|C)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 14

Lecture 8: Mutual information Shannon’s perfect secrecy

Application: perfect secrecy

Recall that M,C ,K be plaintext message, ciphertext, and key, respectively

Assumption
We will assume here that we have a non-probabilistic encryption scheme. In other words,
each plaintext message maps to a unique ciphertext given a fixed key. So there is no ambiguity
during decoding. Therefore, H(M|C ,K) = 0

Remark (Independence)
For perfect secrecy, one should not be able to deduce anything regarding the message from the
ciphertext. Therefore, C and M should be independent. Thus,
I(C ;M) = 0⇒ H(M) = H(M|C) + I(C ;M) = H(M|C)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 14

Lecture 8: Mutual information Shannon’s perfect secrecy

Application: perfect secrecy
Lemma (Entropy bound)
For any non-probabilistic encryption scheme, H(M|C) ≤ H(K |C)

Proof.
Recall that for non-probabilistic encryption scheme,
H(M|K ,C) = 0⇒ H(M|C) ≤ H(M,K |C)= H(K |C) + H(M|K ,C) = H(K |C)

Corollary (Entropy bound)
For any non-probabilistic encryption scheme, H(M|C) ≤ H(K)

Theorem (Perfect secrecy)
We have perfect secrecy if H(M) ≤ H(K)

Proof.
Combine Corollary (Entropy bound) and Remark (Independence)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 15

Lecture 8: Mutual information Shannon’s perfect secrecy

Application: perfect secrecy
Lemma (Entropy bound)
For any non-probabilistic encryption scheme, H(M|C) ≤ H(K |C)

Proof.
Recall that for non-probabilistic encryption scheme,
H(M|K ,C) = 0⇒ H(M|C) ≤ H(M,K |C)

= H(K |C) + H(M|K ,C) = H(K |C)

Corollary (Entropy bound)
For any non-probabilistic encryption scheme, H(M|C) ≤ H(K)

Theorem (Perfect secrecy)
We have perfect secrecy if H(M) ≤ H(K)

Proof.
Combine Corollary (Entropy bound) and Remark (Independence)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 15

Lecture 8: Mutual information Shannon’s perfect secrecy

Application: perfect secrecy
Lemma (Entropy bound)
For any non-probabilistic encryption scheme, H(M|C) ≤ H(K |C)

Proof.
Recall that for non-probabilistic encryption scheme,
H(M|K ,C) = 0⇒ H(M|C) ≤ H(M,K |C)= H(K |C) + H(M|K ,C) = H(K |C)

Corollary (Entropy bound)
For any non-probabilistic encryption scheme, H(M|C) ≤ H(K)

Theorem (Perfect secrecy)
We have perfect secrecy if H(M) ≤ H(K)

Proof.
Combine Corollary (Entropy bound) and Remark (Independence)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 15

Lecture 8: Mutual information Shannon’s perfect secrecy

Application: perfect secrecy
Lemma (Entropy bound)
For any non-probabilistic encryption scheme, H(M|C) ≤ H(K |C)

Proof.
Recall that for non-probabilistic encryption scheme,
H(M|K ,C) = 0⇒ H(M|C) ≤ H(M,K |C)= H(K |C) + H(M|K ,C) = H(K |C)

Corollary (Entropy bound)
For any non-probabilistic encryption scheme, H(M|C) ≤ H(K)

Theorem (Perfect secrecy)
We have perfect secrecy if H(M) ≤ H(K)

Proof.
Combine Corollary (Entropy bound) and Remark (Independence)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 15

Lecture 8: Mutual information Shannon’s perfect secrecy

Application: perfect secrecy
Lemma (Entropy bound)
For any non-probabilistic encryption scheme, H(M|C) ≤ H(K |C)

Proof.
Recall that for non-probabilistic encryption scheme,
H(M|K ,C) = 0⇒ H(M|C) ≤ H(M,K |C)= H(K |C) + H(M|K ,C) = H(K |C)

Corollary (Entropy bound)
For any non-probabilistic encryption scheme, H(M|C) ≤ H(K)

Theorem (Perfect secrecy)
We have perfect secrecy if H(M) ≤ H(K)

Proof.
Combine Corollary (Entropy bound) and Remark (Independence)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 15

Lecture 8: Mutual information Shannon’s perfect secrecy

Application: perfect secrecy
Lemma (Entropy bound)
For any non-probabilistic encryption scheme, H(M|C) ≤ H(K |C)

Proof.
Recall that for non-probabilistic encryption scheme,
H(M|K ,C) = 0⇒ H(M|C) ≤ H(M,K |C)= H(K |C) + H(M|K ,C) = H(K |C)

Corollary (Entropy bound)
For any non-probabilistic encryption scheme, H(M|C) ≤ H(K)

Theorem (Perfect secrecy)
We have perfect secrecy if H(M) ≤ H(K)

Proof.
Combine Corollary (Entropy bound) and Remark (Independence)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 15

Lecture 9: Identification/Decision tree

Lecture 9: Identification/Decision tree

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 1

Lecture 9: Identification/Decision tree

Vampire database

(https://www.youtube.com/watch?v=SXBG3RGr_Rc)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 2

Lecture 9: Identification/Decision tree

Identifying vampire

Goal: Design a set of tests to identify vampires

Potential difficulties
Non-numerical data
Some information may not matter
Some may matter only sometimes
Tests may be costly ⇒ conduct as few as possible

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 3

Lecture 9: Identification/Decision tree

Test trees

Shadow

++
--

?

Y

+

N

Garlic

Y

+++
--

N

Complexion

++
-

A

--

P

--
+

R

Accent

--
+

N

-
++

H

-+

O

+ : Vampire − : Not vampire

How to pick a good test?

Pick test that identifies most vampires (and non-vampires)!

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 4

Lecture 9: Identification/Decision tree

Test trees

Shadow

++
--

?

Y

+

N

Garlic

Y

+++
--

N

Complexion

++
-

A

--

P

--
+

R

Accent

--
+

N

-
++

H

-+

O

+ : Vampire − : Not vampire

How to pick a good test?

Pick test that identifies most vampires (and non-vampires)!

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 4

Lecture 9: Identification/Decision tree

Test trees

Shadow

++
--

?

Y

+

N

Garlic

Y

+++
--

N

Complexion

++
-

A

--

P

--
+

R

Accent

--
+

N

-
++

H

-+

O

+ : Vampire − : Not vampire

How to pick a good test? Pick test that identifies most vampires (and non-vampires)!

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 4

Lecture 9: Identification/Decision tree

Sizes of homogeneous sets

Shadow

++
--

?

Y

+

N

Garlic

Y

+++
--

N

Complexion

++
-

A

--

P

--
+

R

Accent

--
+

N

-
++

H

-+

O

+ : Vampire − : Not vampire

Shadow: 4 Garlic: 3 Complexion: 2 Accent: 0

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 5

Lecture 9: Identification/Decision tree

Sizes of homogeneous sets

Shadow

++
--

?

Y

+

N

Garlic

Y

+++
--

N

Complexion

++
-

A

--

P

--
+

R

Accent

--
+

N

-
++

H

-+

O

+ : Vampire − : Not vampire

Shadow: 4 Garlic: 3 Complexion: 2 Accent: 0

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 5

Lecture 9: Identification/Decision tree

Picking second test

Let say we pick “shadow” as the first test after all. Then, for the remaining unclassified
individuals,

Garlic

--

Y

++

N

Complexion

+
A

-

P

+-

R

Accent

+-

N

+-

H

-+

O

Garlic: 4 Complexion: 2 Accent: 0

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 6

Lecture 9: Identification/Decision tree

Combined tests

Shadow

Garlic

Not
vampire
Y

Vampire

N

?

Not
vampire

Y

Vampire

N

Problem
When our database size increases, none of the test likely to completely separate vampire from
non-vampire. All tests will score 0 then.

Entropy comes to the rescue!

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 7

Lecture 9: Identification/Decision tree

Combined tests

Shadow

Garlic

Not
vampire
Y

Vampire

N

?

Not
vampire

Y

Vampire

N

Problem
When our database size increases, none of the test likely to completely separate vampire from
non-vampire. All tests will score 0 then.

Entropy comes to the rescue!

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 7

Lecture 9: Identification/Decision tree

Combined tests

Shadow

Garlic

Not
vampire
Y

Vampire

N

?

Not
vampire

Y

Vampire

N

Problem
When our database size increases, none of the test likely to completely separate vampire from
non-vampire. All tests will score 0 then.
Entropy comes to the rescue!

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 7

Lecture 9: Identification/Decision tree

Conditional entropy as a measure of test efficiency
Consider the database is randomly sampled from a distribution. A set is

Very homogeneous ≈ high certainty
Not so homogenous ≈ high randomness

These can be measured with its entropy

Shadow

++--

?

Y

+

N

H(V |S =?) = 1 H(V |S = Y) = 0 H(V |S = N) = 0

Remaining uncertainty given the test:

4
8H(V |S =?)

+
3
8H(V |S = Y) +

1
8H(V |S = N) = 0.5

=Pr(S =?)H(V |S =?) + Pr(S = Y)H(V |S = Y) + Pr(S = N)H(V |S = N) = H(V |S)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 8

0 0.2 0.4 0.6 0.8 1

Pr(Head)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

E
nt

ro
py

Lecture 9: Identification/Decision tree

Conditional entropy as a measure of test efficiency
Consider the database is randomly sampled from a distribution. A set is

Very homogeneous ≈ high certainty
Not so homogenous ≈ high randomness

These can be measured with its entropy

Shadow

++--

?

Y

+

N

H(V |S =?) = 1 H(V |S = Y) = 0 H(V |S = N) = 0

Remaining uncertainty given the test:

4
8H(V |S =?)

+
3
8H(V |S = Y) +

1
8H(V |S = N) = 0.5

=Pr(S =?)H(V |S =?) + Pr(S = Y)H(V |S = Y) + Pr(S = N)H(V |S = N) = H(V |S)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 8

0 0.2 0.4 0.6 0.8 1

Pr(Head)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

E
nt

ro
py

Lecture 9: Identification/Decision tree

Conditional entropy as a measure of test efficiency
Consider the database is randomly sampled from a distribution. A set is

Very homogeneous ≈ high certainty
Not so homogenous ≈ high randomness

These can be measured with its entropy

Shadow

++--

?

Y

+

N

H(V |S =?) = 1 H(V |S = Y) = 0 H(V |S = N) = 0

Remaining uncertainty given the test:

4
8H(V |S =?) +

3
8H(V |S = Y)

+
1
8H(V |S = N) = 0.5

=Pr(S =?)H(V |S =?) + Pr(S = Y)H(V |S = Y) + Pr(S = N)H(V |S = N) = H(V |S)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 8

0 0.2 0.4 0.6 0.8 1

Pr(Head)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

E
nt

ro
py

Lecture 9: Identification/Decision tree

Conditional entropy as a measure of test efficiency
Consider the database is randomly sampled from a distribution. A set is

Very homogeneous ≈ high certainty
Not so homogenous ≈ high randomness

These can be measured with its entropy

Shadow

++--

?

Y

+

N

H(V |S =?) = 1 H(V |S = Y) = 0 H(V |S = N) = 0

Remaining uncertainty given the test:

4
8H(V |S =?) +

3
8H(V |S = Y) +

1
8H(V |S = N) = 0.5

=Pr(S =?)H(V |S =?) + Pr(S = Y)H(V |S = Y) + Pr(S = N)H(V |S = N) = H(V |S)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 8

0 0.2 0.4 0.6 0.8 1

Pr(Head)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

E
nt

ro
py

Lecture 9: Identification/Decision tree

Conditional entropy as a measure of test efficiency
Consider the database is randomly sampled from a distribution. A set is

Very homogeneous ≈ high certainty
Not so homogenous ≈ high randomness

These can be measured with its entropy

Shadow

++--

?

Y

+

N

H(V |S =?) = 1 H(V |S = Y) = 0 H(V |S = N) = 0

Remaining uncertainty given the test:

4
8H(V |S =?) +

3
8H(V |S = Y) +

1
8H(V |S = N) = 0.5

=Pr(S =?)H(V |S =?) + Pr(S = Y)H(V |S = Y) + Pr(S = N)H(V |S = N)

= H(V |S)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 8

0 0.2 0.4 0.6 0.8 1

Pr(Head)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

E
nt

ro
py

Lecture 9: Identification/Decision tree

Conditional entropy as a measure of test efficiency
Consider the database is randomly sampled from a distribution. A set is

Very homogeneous ≈ high certainty
Not so homogenous ≈ high randomness

These can be measured with its entropy

Shadow

++--

?

Y

+

N

H(V |S =?) = 1 H(V |S = Y) = 0 H(V |S = N) = 0

Remaining uncertainty given the test:

4
8H(V |S =?) +

3
8H(V |S = Y) +

1
8H(V |S = N) = 0.5

=Pr(S =?)H(V |S =?) + Pr(S = Y)H(V |S = Y) + Pr(S = N)H(V |S = N) = H(V |S)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 8

0 0.2 0.4 0.6 0.8 1

Pr(Head)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

E
nt

ro
py

Lecture 9: Identification/Decision tree

Remaining uncertainty

Garlic

Y

+++
--

N

H(V |G = Y)
= 0 0.97

Complexion

++
-

A

--

P

--
+

R

0.92 0 0.92

Accent

--
+

N

-
++

H

-+

O

0.92 0.92 1

H(V |S) =0.5

H(V |G) =
3
8 · 0 +

5
8 · 0.97 = 0.61

H(V |C) =
3
8 · 0.92 +

2
8 · 0 +

3
8 · 0.92 = 0.69 H(V |A) =3

8 · 0.92 +
3
8 · 0.92 +

2
8 · 1 = 0.94

H(V |S) is maximum. Thus should pick test S first

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 9

Lecture 9: Identification/Decision tree

Remaining uncertainty

Garlic

Y

+++
--

N

H(V |G = Y)
= 0 0.97

Complexion

++
-

A

--

P

--
+

R

0.92 0 0.92

Accent

--
+

N

-
++

H

-+

O

0.92 0.92 1

H(V |S) =0.5 H(V |G) =
3
8 · 0 +

5
8 · 0.97 = 0.61

H(V |C) =
3
8 · 0.92 +

2
8 · 0 +

3
8 · 0.92 = 0.69 H(V |A) =3

8 · 0.92 +
3
8 · 0.92 +

2
8 · 1 = 0.94

H(V |S) is maximum. Thus should pick test S first

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 9

Lecture 9: Identification/Decision tree

Remaining uncertainty

Garlic

Y

+++
--

N

H(V |G = Y)
= 0 0.97

Complexion

++
-

A

--

P

--
+

R

0.92 0 0.92

Accent

--
+

N

-
++

H

-+

O

0.92 0.92 1

H(V |S) =0.5 H(V |G) =
3
8 · 0 +

5
8 · 0.97 = 0.61

H(V |C) =
3
8 · 0.92 +

2
8 · 0 +

3
8 · 0.92 = 0.69

H(V |A) =3
8 · 0.92 +

3
8 · 0.92 +

2
8 · 1 = 0.94

H(V |S) is maximum. Thus should pick test S first

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 9

Lecture 9: Identification/Decision tree

Remaining uncertainty

Garlic

Y

+++
--

N

H(V |G = Y)
= 0 0.97

Complexion

++
-

A

--

P

--
+

R

0.92 0 0.92

Accent

--
+

N

-
++

H

-+

O

0.92 0.92 1

H(V |S) =0.5 H(V |G) =
3
8 · 0 +

5
8 · 0.97 = 0.61

H(V |C) =
3
8 · 0.92 +

2
8 · 0 +

3
8 · 0.92 = 0.69 H(V |A) =3

8 · 0.92 +
3
8 · 0.92 +

2
8 · 1 = 0.94

H(V |S) is maximum. Thus should pick test S first

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 9

Lecture 9: Identification/Decision tree

Remaining uncertainty

Garlic

Y

+++
--

N

H(V |G = Y)
= 0 0.97

Complexion

++
-

A

--

P

--
+

R

0.92 0 0.92

Accent

--
+

N

-
++

H

-+

O

0.92 0.92 1

H(V |S) =0.5 H(V |G) =
3
8 · 0 +

5
8 · 0.97 = 0.61

H(V |C) =
3
8 · 0.92 +

2
8 · 0 +

3
8 · 0.92 = 0.69 H(V |A) =3

8 · 0.92 +
3
8 · 0.92 +

2
8 · 1 = 0.94

H(V |S) is maximum. Thus should pick test S first

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 9

Lecture 9: Identification/Decision tree

Potential extensions

The test does not need to return discrete result. Let X be the test outcome. It can be
continuous as well

We should just pick i such that H(V |Xi) to be as small as possible
It is equivalent of saying I(V ;Xi) = H(V)− H(V |Xi) is as large as possible. This is intuitive
because we want to pick the information that is most relevant (sharing most information
with) to V

Build a number of trees instead of a single tree ⇒ random forests

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 10

Lecture 9: Identification/Decision tree

Potential extensions

The test does not need to return discrete result. Let X be the test outcome. It can be
continuous as well

We should just pick i such that H(V |Xi) to be as small as possible

It is equivalent of saying I(V ;Xi) = H(V)− H(V |Xi) is as large as possible. This is intuitive
because we want to pick the information that is most relevant (sharing most information
with) to V

Build a number of trees instead of a single tree ⇒ random forests

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 10

Lecture 9: Identification/Decision tree

Potential extensions

The test does not need to return discrete result. Let X be the test outcome. It can be
continuous as well

We should just pick i such that H(V |Xi) to be as small as possible
It is equivalent of saying I(V ;Xi) = H(V)− H(V |Xi) is as large as possible. This is intuitive
because we want to pick the information that is most relevant (sharing most information
with) to V

Build a number of trees instead of a single tree ⇒ random forests

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 10

Lecture 9: Identification/Decision tree

Potential extensions

The test does not need to return discrete result. Let X be the test outcome. It can be
continuous as well

We should just pick i such that H(V |Xi) to be as small as possible
It is equivalent of saying I(V ;Xi) = H(V)− H(V |Xi) is as large as possible. This is intuitive
because we want to pick the information that is most relevant (sharing most information
with) to V

Build a number of trees instead of a single tree ⇒ random forests

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 10

Lecture 9: Identification/Decision tree

Random forests

Pick random subset of training samples
Train on each random subset but limited to a subset of features/attributes
Given a test sample

Classify sample using each of the trees
Make final decision based on majority vote

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 11

Lecture 10: Channel coding

Lecture 10: Channel coding

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 1

Lecture 10: Channel coding Channel coding setup

Channel coding setup

p(m) Encoder p(y |x) Decoder m̂
m xN yN

As the name suggests, the output of a discrete memoryless channel (DMS) only depends
on the current input (thus no memoryless). And both its input X and output Y are
characterized by the conditional probability p(y |x)

Given an input sequence xN = x1, · · · , xN , the probability of getting an output sequence
yN = y1, · · · , yN is p(yN |xN) =

∏N
i=1 p(yi |xi)

Given a message m (say generated from a distribution p(m))

We will have an encoder decoder pair
The encoder will convert m to xN suitable for transmission
Decoder will try to extracted the message from the channel output yN

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 2

Lecture 10: Channel coding Channel coding setup

Channel coding setup

p(m) Encoder p(y |x) Decoder m̂
m xN yN

As the name suggests, the output of a discrete memoryless channel (DMS) only depends
on the current input (thus no memoryless). And both its input X and output Y are
characterized by the conditional probability p(y |x)
Given an input sequence xN = x1, · · · , xN , the probability of getting an output sequence
yN = y1, · · · , yN is p(yN |xN) =

∏N
i=1 p(yi |xi)

Given a message m (say generated from a distribution p(m))

We will have an encoder decoder pair
The encoder will convert m to xN suitable for transmission
Decoder will try to extracted the message from the channel output yN

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 2

Lecture 10: Channel coding Channel coding setup

Channel coding setup

p(m) Encoder p(y |x) Decoder m̂
m xN yN

As the name suggests, the output of a discrete memoryless channel (DMS) only depends
on the current input (thus no memoryless). And both its input X and output Y are
characterized by the conditional probability p(y |x)
Given an input sequence xN = x1, · · · , xN , the probability of getting an output sequence
yN = y1, · · · , yN is p(yN |xN) =

∏N
i=1 p(yi |xi)

Given a message m (say generated from a distribution p(m))

We will have an encoder decoder pair
The encoder will convert m to xN suitable for transmission
Decoder will try to extracted the message from the channel output yN

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 2

Lecture 10: Channel coding Channel coding setup

Channel coding setup

p(m) Encoder p(y |x) Decoder m̂
m xN yN

As the name suggests, the output of a discrete memoryless channel (DMS) only depends
on the current input (thus no memoryless). And both its input X and output Y are
characterized by the conditional probability p(y |x)
Given an input sequence xN = x1, · · · , xN , the probability of getting an output sequence
yN = y1, · · · , yN is p(yN |xN) =

∏N
i=1 p(yi |xi)

Given a message m (say generated from a distribution p(m))
We will have an encoder decoder pair

The encoder will convert m to xN suitable for transmission
Decoder will try to extracted the message from the channel output yN

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 2

Lecture 10: Channel coding Channel coding setup

Channel coding setup

p(m) Encoder p(y |x) Decoder m̂
m xN yN

As the name suggests, the output of a discrete memoryless channel (DMS) only depends
on the current input (thus no memoryless). And both its input X and output Y are
characterized by the conditional probability p(y |x)
Given an input sequence xN = x1, · · · , xN , the probability of getting an output sequence
yN = y1, · · · , yN is p(yN |xN) =

∏N
i=1 p(yi |xi)

Given a message m (say generated from a distribution p(m))
We will have an encoder decoder pair
The encoder will convert m to xN suitable for transmission

Decoder will try to extracted the message from the channel output yN

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 2

Lecture 10: Channel coding Channel coding setup

Channel coding setup

p(m) Encoder p(y |x) Decoder m̂
m xN yN

As the name suggests, the output of a discrete memoryless channel (DMS) only depends
on the current input (thus no memoryless). And both its input X and output Y are
characterized by the conditional probability p(y |x)
Given an input sequence xN = x1, · · · , xN , the probability of getting an output sequence
yN = y1, · · · , yN is p(yN |xN) =

∏N
i=1 p(yi |xi)

Given a message m (say generated from a distribution p(m))
We will have an encoder decoder pair
The encoder will convert m to xN suitable for transmission
Decoder will try to extracted the message from the channel output yN

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 2

Lecture 10: Channel coding Channel coding setup

Channel coding rate

p(m) Encoder p(y |x) Decoder m̂
m xN yN

The channel coding rate is defined as number of bits of message can be sent per channel use

Since there is H(M) bits of information for each message M sent
R = H(M)

N

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 3

Lecture 10: Channel coding Channel coding setup

Channel coding rate

p(m) Encoder p(y |x) Decoder m̂
m xN yN

The channel coding rate is defined as number of bits of message can be sent per channel use
Since there is H(M) bits of information for each message M sent

R = H(M)
N

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 3

Lecture 10: Channel coding Channel coding setup

Channel coding rate

p(m) Encoder p(y |x) Decoder m̂
m xN yN

The channel coding rate is defined as number of bits of message can be sent per channel use
Since there is H(M) bits of information for each message M sent
R = H(M)

N

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 3

Lecture 10: Channel coding Channel capacity

Channel capacity

By Shannon’s channel coding theorem, the capacity of the channel (will be shown later)
is given by

C = max
p(x)

I(X ;Y)

This means that as long as the rate R is less than the capacity C , we can find
encoder-decoder pair such that the decoding error (Pr(M̂ 6= M)) can be made arbitrarily
small
On the other hand, if R is larger than the capacity C , no matter how we try, it is
impossible to recontruct m error free
An intuitive interpretation is that the amount of information can be passed through a
channel is just mutual information between the input and output. And since we can pick
the statistics of our input, we may make our choice wisely and maximize the mutual
information. And the maximum that we can attain is the capacity

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 4

Lecture 10: Channel coding Channel capacity

Channel capacity

By Shannon’s channel coding theorem, the capacity of the channel (will be shown later)
is given by

C = max
p(x)

I(X ;Y)

This means that as long as the rate R is less than the capacity C , we can find
encoder-decoder pair such that the decoding error (Pr(M̂ 6= M)) can be made arbitrarily
small

On the other hand, if R is larger than the capacity C , no matter how we try, it is
impossible to recontruct m error free
An intuitive interpretation is that the amount of information can be passed through a
channel is just mutual information between the input and output. And since we can pick
the statistics of our input, we may make our choice wisely and maximize the mutual
information. And the maximum that we can attain is the capacity

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 4

Lecture 10: Channel coding Channel capacity

Channel capacity

By Shannon’s channel coding theorem, the capacity of the channel (will be shown later)
is given by

C = max
p(x)

I(X ;Y)

This means that as long as the rate R is less than the capacity C , we can find
encoder-decoder pair such that the decoding error (Pr(M̂ 6= M)) can be made arbitrarily
small
On the other hand, if R is larger than the capacity C , no matter how we try, it is
impossible to recontruct m error free

An intuitive interpretation is that the amount of information can be passed through a
channel is just mutual information between the input and output. And since we can pick
the statistics of our input, we may make our choice wisely and maximize the mutual
information. And the maximum that we can attain is the capacity

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 4

Lecture 10: Channel coding Channel capacity

Channel capacity

By Shannon’s channel coding theorem, the capacity of the channel (will be shown later)
is given by

C = max
p(x)

I(X ;Y)

This means that as long as the rate R is less than the capacity C , we can find
encoder-decoder pair such that the decoding error (Pr(M̂ 6= M)) can be made arbitrarily
small
On the other hand, if R is larger than the capacity C , no matter how we try, it is
impossible to recontruct m error free
An intuitive interpretation is that the amount of information can be passed through a
channel is just mutual information between the input and output. And since we can pick
the statistics of our input, we may make our choice wisely and maximize the mutual
information. And the maximum that we can attain is the capacity

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 4

Lecture 10: Channel coding Channel capacity

Continuous channel

p(m) Encoder? p(y |x) Decoder? m̂
m xN yN

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 5

Lecture 10: Channel coding Channel capacity

Continuous channel

p(m) Encoder D/A p(y |x) A/D Decoder m̂
m xN

∆ xN yN yN
∆

For continuous channel, we can create a “pseudo” discrete channel using A/D and D/A
converters

The maximum information that can pass through the channel will then be

C∆ = max
p(x)

I(X∆;Y∆) = max
p(x)

H(Y∆)− H(Y∆|X∆)

≈ max
p(x)

h(Y)− log∆− h(Y |X∆) + log∆

≈ max
p(x)

h(Y)− h(Y |X) = max
p(x)

I(X ;Y)

As ∆→ 0, C = maxp(x) I(X ;Y). So expression is completely the same as the discrete
case

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 6

Lecture 10: Channel coding Channel capacity

Continuous channel

p(m) Encoder D/A p(y |x) A/D Decoder m̂
m xN

∆ xN yN yN
∆

For continuous channel, we can create a “pseudo” discrete channel using A/D and D/A
converters
The maximum information that can pass through the channel will then be

C∆ = max
p(x)

I(X∆;Y∆) = max
p(x)

H(Y∆)− H(Y∆|X∆)

≈ max
p(x)

h(Y)− log∆− h(Y |X∆) + log∆

≈ max
p(x)

h(Y)− h(Y |X) = max
p(x)

I(X ;Y)

As ∆→ 0, C = maxp(x) I(X ;Y). So expression is completely the same as the discrete
case

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 6

Lecture 10: Channel coding Channel capacity

Continuous channel

p(m) Encoder D/A p(y |x) A/D Decoder m̂
m xN

∆ xN yN yN
∆

For continuous channel, we can create a “pseudo” discrete channel using A/D and D/A
converters
The maximum information that can pass through the channel will then be

C∆ = max
p(x)

I(X∆;Y∆) = max
p(x)

H(Y∆)− H(Y∆|X∆)

≈ max
p(x)

h(Y)− log∆− h(Y |X∆) + log∆

≈ max
p(x)

h(Y)− h(Y |X) = max
p(x)

I(X ;Y)

As ∆→ 0, C = maxp(x) I(X ;Y). So expression is completely the same as the discrete
case

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 6

Lecture 10: Channel coding Channel capacity

Example: Binary symmetric channel
Both input and output are binary (say take value 0 or 1)

The channel is symmetric in the sense that

pY |X (1|0) = pY |X (0|1) = p

and
pY |X (0|0) = pY |X (1|1) = 1− p,

where p is known to be the cross-over probability
Capacity is given by

C = max
p(x)

I(X ;Y)

= max
p(x)

H(Y)− H(Y |X)

= max
p(x)

H(Y)− H(p) = 1− H(p)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 7

Lecture 10: Channel coding Channel capacity

Example: Binary symmetric channel
Both input and output are binary (say take value 0 or 1)
The channel is symmetric in the sense that

pY |X (1|0) = pY |X (0|1) = p

and
pY |X (0|0) = pY |X (1|1) = 1− p,

where p is known to be the cross-over probability

Capacity is given by

C = max
p(x)

I(X ;Y)

= max
p(x)

H(Y)− H(Y |X)

= max
p(x)

H(Y)− H(p) = 1− H(p)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 7

Lecture 10: Channel coding Channel capacity

Example: Binary symmetric channel
Both input and output are binary (say take value 0 or 1)
The channel is symmetric in the sense that

pY |X (1|0) = pY |X (0|1) = p

and
pY |X (0|0) = pY |X (1|1) = 1− p,

where p is known to be the cross-over probability
Capacity is given by

C = max
p(x)

I(X ;Y)

= max
p(x)

H(Y)− H(Y |X)

= max
p(x)

H(Y)− H(p) = 1− H(p)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 7

Lecture 10: Channel coding Channel capacity

Example: Binary symmetric channel
Both input and output are binary (say take value 0 or 1)
The channel is symmetric in the sense that

pY |X (1|0) = pY |X (0|1) = p

and
pY |X (0|0) = pY |X (1|1) = 1− p,

where p is known to be the cross-over probability
Capacity is given by

C = max
p(x)

I(X ;Y)

= max
p(x)

H(Y)− H(Y |X)

= max
p(x)

H(Y)− H(p) = 1− H(p)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 7

Lecture 10: Channel coding Channel capacity

Example: Binary symmetric channel
Both input and output are binary (say take value 0 or 1)
The channel is symmetric in the sense that

pY |X (1|0) = pY |X (0|1) = p

and
pY |X (0|0) = pY |X (1|1) = 1− p,

where p is known to be the cross-over probability
Capacity is given by

C = max
p(x)

I(X ;Y)

= max
p(x)

H(Y)− H(Y |X)

= max
p(x)

H(Y)− H(p)

= 1− H(p)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 7

Lecture 10: Channel coding Channel capacity

Example: Binary symmetric channel
Both input and output are binary (say take value 0 or 1)
The channel is symmetric in the sense that

pY |X (1|0) = pY |X (0|1) = p

and
pY |X (0|0) = pY |X (1|1) = 1− p,

where p is known to be the cross-over probability
Capacity is given by

C = max
p(x)

I(X ;Y)

= max
p(x)

H(Y)− H(Y |X)

= max
p(x)

H(Y)− H(p) = 1− H(p)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 7

Lecture 10: Channel coding Channel capacity

Example: Gaussian channel

The channel output Y = X + Z , where Z is a zero-mean Gaussian noise (independent of the
input X)

C = max
p(x)

I(X ;Y)

= max
p(x)

h(Y)− h(Y |X) = max
p(x)

h(Y)− h(X + Z |X)

= max
p(x)

h(Y)− h(Z |X) = max
p(x)

h(Y)− h(Z)

= max
p(x)

h(Y)− 1
2 log 2πeσ2

Z =
1
2 log 2πeσ2

Y −
1
2 log 2πeσ2

Z

=
1
2 log

σ2
X + σ2

Z
σ2

Z
=

1
2 log

(
1 +

σ2
X

σ2
Z

)
=

1
2 log(1 + SNR),

where SNR is the signal to noise ratio

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 8

Lecture 10: Channel coding Channel capacity

Example: Gaussian channel

The channel output Y = X + Z , where Z is a zero-mean Gaussian noise (independent of the
input X)

C = max
p(x)

I(X ;Y)

= max
p(x)

h(Y)− h(Y |X)

= max
p(x)

h(Y)− h(X + Z |X)

= max
p(x)

h(Y)− h(Z |X) = max
p(x)

h(Y)− h(Z)

= max
p(x)

h(Y)− 1
2 log 2πeσ2

Z =
1
2 log 2πeσ2

Y −
1
2 log 2πeσ2

Z

=
1
2 log

σ2
X + σ2

Z
σ2

Z
=

1
2 log

(
1 +

σ2
X

σ2
Z

)
=

1
2 log(1 + SNR),

where SNR is the signal to noise ratio

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 8

Lecture 10: Channel coding Channel capacity

Example: Gaussian channel

The channel output Y = X + Z , where Z is a zero-mean Gaussian noise (independent of the
input X)

C = max
p(x)

I(X ;Y)

= max
p(x)

h(Y)− h(Y |X) = max
p(x)

h(Y)− h(X + Z |X)

= max
p(x)

h(Y)− h(Z |X) = max
p(x)

h(Y)− h(Z)

= max
p(x)

h(Y)− 1
2 log 2πeσ2

Z =
1
2 log 2πeσ2

Y −
1
2 log 2πeσ2

Z

=
1
2 log

σ2
X + σ2

Z
σ2

Z
=

1
2 log

(
1 +

σ2
X

σ2
Z

)
=

1
2 log(1 + SNR),

where SNR is the signal to noise ratio

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 8

Lecture 10: Channel coding Channel capacity

Example: Gaussian channel

The channel output Y = X + Z , where Z is a zero-mean Gaussian noise (independent of the
input X)

C = max
p(x)

I(X ;Y)

= max
p(x)

h(Y)− h(Y |X) = max
p(x)

h(Y)− h(X + Z |X)

= max
p(x)

h(Y)− h(Z |X)

= max
p(x)

h(Y)− h(Z)

= max
p(x)

h(Y)− 1
2 log 2πeσ2

Z =
1
2 log 2πeσ2

Y −
1
2 log 2πeσ2

Z

=
1
2 log

σ2
X + σ2

Z
σ2

Z
=

1
2 log

(
1 +

σ2
X

σ2
Z

)
=

1
2 log(1 + SNR),

where SNR is the signal to noise ratio

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 8

Lecture 10: Channel coding Channel capacity

Example: Gaussian channel

The channel output Y = X + Z , where Z is a zero-mean Gaussian noise (independent of the
input X)

C = max
p(x)

I(X ;Y)

= max
p(x)

h(Y)− h(Y |X) = max
p(x)

h(Y)− h(X + Z |X)

= max
p(x)

h(Y)− h(Z |X) = max
p(x)

h(Y)− h(Z)

= max
p(x)

h(Y)− 1
2 log 2πeσ2

Z =
1
2 log 2πeσ2

Y −
1
2 log 2πeσ2

Z

=
1
2 log

σ2
X + σ2

Z
σ2

Z
=

1
2 log

(
1 +

σ2
X

σ2
Z

)
=

1
2 log(1 + SNR),

where SNR is the signal to noise ratio

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 8

Lecture 10: Channel coding Channel capacity

Example: Gaussian channel

The channel output Y = X + Z , where Z is a zero-mean Gaussian noise (independent of the
input X)

C = max
p(x)

I(X ;Y)

= max
p(x)

h(Y)− h(Y |X) = max
p(x)

h(Y)− h(X + Z |X)

= max
p(x)

h(Y)− h(Z |X) = max
p(x)

h(Y)− h(Z)

= max
p(x)

h(Y)− 1
2 log 2πeσ2

Z

=
1
2 log 2πeσ2

Y −
1
2 log 2πeσ2

Z

=
1
2 log

σ2
X + σ2

Z
σ2

Z
=

1
2 log

(
1 +

σ2
X

σ2
Z

)
=

1
2 log(1 + SNR),

where SNR is the signal to noise ratio

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 8

Lecture 10: Channel coding Channel capacity

Example: Gaussian channel

The channel output Y = X + Z , where Z is a zero-mean Gaussian noise (independent of the
input X)

C = max
p(x)

I(X ;Y)

= max
p(x)

h(Y)− h(Y |X) = max
p(x)

h(Y)− h(X + Z |X)

= max
p(x)

h(Y)− h(Z |X) = max
p(x)

h(Y)− h(Z)

= max
p(x)

h(Y)− 1
2 log 2πeσ2

Z =
1
2 log 2πeσ2

Y −
1
2 log 2πeσ2

Z

=
1
2 log

σ2
X + σ2

Z
σ2

Z
=

1
2 log

(
1 +

σ2
X

σ2
Z

)
=

1
2 log(1 + SNR),

where SNR is the signal to noise ratio

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 8

Lecture 10: Channel coding Channel capacity

Example: Gaussian channel

The channel output Y = X + Z , where Z is a zero-mean Gaussian noise (independent of the
input X)

C = max
p(x)

I(X ;Y)

= max
p(x)

h(Y)− h(Y |X) = max
p(x)

h(Y)− h(X + Z |X)

= max
p(x)

h(Y)− h(Z |X) = max
p(x)

h(Y)− h(Z)

= max
p(x)

h(Y)− 1
2 log 2πeσ2

Z =
1
2 log 2πeσ2

Y −
1
2 log 2πeσ2

Z

=
1
2 log

σ2
X + σ2

Z
σ2

Z
=

1
2 log

(
1 +

σ2
X

σ2
Z

)

=
1
2 log(1 + SNR),

where SNR is the signal to noise ratio

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 8

Lecture 10: Channel coding Channel capacity

Example: Gaussian channel

The channel output Y = X + Z , where Z is a zero-mean Gaussian noise (independent of the
input X)

C = max
p(x)

I(X ;Y)

= max
p(x)

h(Y)− h(Y |X) = max
p(x)

h(Y)− h(X + Z |X)

= max
p(x)

h(Y)− h(Z |X) = max
p(x)

h(Y)− h(Z)

= max
p(x)

h(Y)− 1
2 log 2πeσ2

Z =
1
2 log 2πeσ2

Y −
1
2 log 2πeσ2

Z

=
1
2 log

σ2
X + σ2

Z
σ2

Z
=

1
2 log

(
1 +

σ2
X

σ2
Z

)
=

1
2 log(1 + SNR),

where SNR is the signal to noise ratio

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 8

Lecture 10: Channel coding Channel capacity

Example: Bandlimited channel

Consider an bandlimited channel with bandwidth W and two-sided power spectrum density of
N0/2

From the result of Nyquist and Shannon, a signal of bandwidth W will need to at least
2W samples per second to be fully reconstructed
Per each second, 2W samples needed to recover the signal
Per each second, 2W degrees of freedom exists ⇒ 2W parallel Gaussian channel per
second
Given N0, SNR =

σ2
X

2W (N0/2) =
P

WN0

C = 2W 1
2 log(1 + SNR) = W log

(
1 +

P
WN0

)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 9

Lecture 10: Channel coding Channel capacity

Example: Bandlimited channel

Consider an bandlimited channel with bandwidth W and two-sided power spectrum density of
N0/2

From the result of Nyquist and Shannon, a signal of bandwidth W will need to at least
2W samples per second to be fully reconstructed

Per each second, 2W samples needed to recover the signal
Per each second, 2W degrees of freedom exists ⇒ 2W parallel Gaussian channel per
second
Given N0, SNR =

σ2
X

2W (N0/2) =
P

WN0

C = 2W 1
2 log(1 + SNR) = W log

(
1 +

P
WN0

)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 9

Lecture 10: Channel coding Channel capacity

Example: Bandlimited channel

Consider an bandlimited channel with bandwidth W and two-sided power spectrum density of
N0/2

From the result of Nyquist and Shannon, a signal of bandwidth W will need to at least
2W samples per second to be fully reconstructed
Per each second, 2W samples needed to recover the signal

Per each second, 2W degrees of freedom exists ⇒ 2W parallel Gaussian channel per
second
Given N0, SNR =

σ2
X

2W (N0/2) =
P

WN0

C = 2W 1
2 log(1 + SNR) = W log

(
1 +

P
WN0

)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 9

Lecture 10: Channel coding Channel capacity

Example: Bandlimited channel

Consider an bandlimited channel with bandwidth W and two-sided power spectrum density of
N0/2

From the result of Nyquist and Shannon, a signal of bandwidth W will need to at least
2W samples per second to be fully reconstructed
Per each second, 2W samples needed to recover the signal
Per each second, 2W degrees of freedom exists ⇒ 2W parallel Gaussian channel per
second

Given N0, SNR =
σ2

X
2W (N0/2) =

P
WN0

C = 2W 1
2 log(1 + SNR) = W log

(
1 +

P
WN0

)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 9

Lecture 10: Channel coding Channel capacity

Example: Bandlimited channel

Consider an bandlimited channel with bandwidth W and two-sided power spectrum density of
N0/2

From the result of Nyquist and Shannon, a signal of bandwidth W will need to at least
2W samples per second to be fully reconstructed
Per each second, 2W samples needed to recover the signal
Per each second, 2W degrees of freedom exists ⇒ 2W parallel Gaussian channel per
second
Given N0, SNR =

σ2
X

2W (N0/2) =
P

WN0

C = 2W 1
2 log(1 + SNR) = W log

(
1 +

P
WN0

)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 9

Lecture 10: Channel coding Channel capacity

Example: Bandlimited channel

Consider an bandlimited channel with bandwidth W and two-sided power spectrum density of
N0/2

From the result of Nyquist and Shannon, a signal of bandwidth W will need to at least
2W samples per second to be fully reconstructed
Per each second, 2W samples needed to recover the signal
Per each second, 2W degrees of freedom exists ⇒ 2W parallel Gaussian channel per
second
Given N0, SNR =

σ2
X

2W (N0/2) =
P

WN0

C = 2W 1
2 log(1 + SNR) = W log

(
1 +

P
WN0

)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 9

Lecture 10: Channel coding Channel capacity

Color channels

We look into capacity of white Gaussian channel last time

But sometimes noise power can be different for different band, consequently, “color”
channels
Intuitively, we should assign different amount of power to different band. Hence, we have
an allocation problem
Without loss of generality, let’s consider the discrete approximation, parallel Gaussian
channel

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 10

Lecture 10: Channel coding Channel capacity

Color channels

We look into capacity of white Gaussian channel last time
But sometimes noise power can be different for different band, consequently, “color”
channels

Intuitively, we should assign different amount of power to different band. Hence, we have
an allocation problem
Without loss of generality, let’s consider the discrete approximation, parallel Gaussian
channel

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 10

Lecture 10: Channel coding Channel capacity

Color channels

We look into capacity of white Gaussian channel last time
But sometimes noise power can be different for different band, consequently, “color”
channels
Intuitively, we should assign different amount of power to different band. Hence, we have
an allocation problem

Without loss of generality, let’s consider the discrete approximation, parallel Gaussian
channel

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 10

Lecture 10: Channel coding Channel capacity

Color channels

We look into capacity of white Gaussian channel last time
But sometimes noise power can be different for different band, consequently, “color”
channels
Intuitively, we should assign different amount of power to different band. Hence, we have
an allocation problem
Without loss of generality, let’s consider the discrete approximation, parallel Gaussian
channel

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 10

Lecture 10: Channel coding Channel capacity

Parallel Gaussian channels

Consider that we have K parallel channels (K bands) and the corresponding noise powers
are σ2

1, σ
2
2, · · · , σ2

K

And say, we can allocate a total of P power to all channels. The powers assigned to the
channels are P1,P2, · · · ,PK . So we need

∑K
i=1 Pi ≤ P

Therefore, for the k-th channel, we can transmit 1
2 log

(
1 + Pk

σ2
k

)
bits per channel use

So our goal is to assign P1,P2, · · · ,PK ≥ 0 (
∑K

k=1 Pk ≤ P) such that the total capacity

K∑
k=1

1
2 log

(
1 +

Pk
σ2

k

)
is maximize

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 11

Lecture 10: Channel coding Channel capacity

Parallel Gaussian channels

Consider that we have K parallel channels (K bands) and the corresponding noise powers
are σ2

1, σ
2
2, · · · , σ2

K
And say, we can allocate a total of P power to all channels. The powers assigned to the
channels are P1,P2, · · · ,PK . So we need

∑K
i=1 Pi ≤ P

Therefore, for the k-th channel, we can transmit 1
2 log

(
1 + Pk

σ2
k

)
bits per channel use

So our goal is to assign P1,P2, · · · ,PK ≥ 0 (
∑K

k=1 Pk ≤ P) such that the total capacity

K∑
k=1

1
2 log

(
1 +

Pk
σ2

k

)
is maximize

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 11

Lecture 10: Channel coding Channel capacity

Parallel Gaussian channels

Consider that we have K parallel channels (K bands) and the corresponding noise powers
are σ2

1, σ
2
2, · · · , σ2

K
And say, we can allocate a total of P power to all channels. The powers assigned to the
channels are P1,P2, · · · ,PK . So we need

∑K
i=1 Pi ≤ P

Therefore, for the k-th channel, we can transmit 1
2 log

(
1 + Pk

σ2
k

)
bits per channel use

So our goal is to assign P1,P2, · · · ,PK ≥ 0 (
∑K

k=1 Pk ≤ P) such that the total capacity

K∑
k=1

1
2 log

(
1 +

Pk
σ2

k

)
is maximize

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 11

Lecture 10: Channel coding Channel capacity

Parallel Gaussian channels

Consider that we have K parallel channels (K bands) and the corresponding noise powers
are σ2

1, σ
2
2, · · · , σ2

K
And say, we can allocate a total of P power to all channels. The powers assigned to the
channels are P1,P2, · · · ,PK . So we need

∑K
i=1 Pi ≤ P

Therefore, for the k-th channel, we can transmit 1
2 log

(
1 + Pk

σ2
k

)
bits per channel use

So our goal is to assign P1,P2, · · · ,PK ≥ 0 (
∑K

k=1 Pk ≤ P) such that the total capacity

K∑
k=1

1
2 log

(
1 +

Pk
σ2

k

)
is maximize

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 11

Lecture 10: Channel coding Channel capacity

KKT conditions
Let’s list all the KKT conditions for the optimization problem

max
K∑

k=1

1
2 log

(
1 +

Pk

σ2
k

)
such that

P1, · · · ,PK ≥ 0,
K∑

k=1
Pk ≤ P

∂

∂Pi

[K∑
k=1

1
2 log

(
1 +

Pk

σ2
k

)
+

K∑
k=1

λkPk − µ

(K∑
k=1

Pk − P
)]

= 0

µ, λ1, · · · , λK ≥ 0,P1, · · · ,PK ≥ 0,
K∑

k=1

Pk ≤ P

µ

(K∑
k=1

Pk − P
)

= 0, λkPk = 0,∀k

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 12

Lecture 10: Channel coding Channel capacity

KKT conditions
Let’s list all the KKT conditions for the optimization problem

max
K∑

k=1

1
2 log

(
1 +

Pk

σ2
k

)
such that

P1, · · · ,PK ≥ 0,
K∑

k=1
Pk ≤ P

∂

∂Pi

[K∑
k=1

1
2 log

(
1 +

Pk

σ2
k

)
+

K∑
k=1

λkPk − µ

(K∑
k=1

Pk − P
)]

= 0

µ, λ1, · · · , λK ≥ 0

,P1, · · · ,PK ≥ 0,
K∑

k=1

Pk ≤ P

µ

(K∑
k=1

Pk − P
)

= 0, λkPk = 0,∀k

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 12

Lecture 10: Channel coding Channel capacity

KKT conditions
Let’s list all the KKT conditions for the optimization problem

max
K∑

k=1

1
2 log

(
1 +

Pk

σ2
k

)
such that

P1, · · · ,PK ≥ 0,
K∑

k=1
Pk ≤ P

∂

∂Pi

[K∑
k=1

1
2 log

(
1 +

Pk

σ2
k

)
+

K∑
k=1

λkPk − µ

(K∑
k=1

Pk − P
)]

= 0

µ, λ1, · · · , λK ≥ 0,P1, · · · ,PK ≥ 0,
K∑

k=1

Pk ≤ P

µ

(K∑
k=1

Pk − P
)

= 0, λkPk = 0,∀k

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 12

Lecture 10: Channel coding Channel capacity

KKT conditions
Let’s list all the KKT conditions for the optimization problem

max
K∑

k=1

1
2 log

(
1 +

Pk

σ2
k

)
such that

P1, · · · ,PK ≥ 0,
K∑

k=1
Pk ≤ P

∂

∂Pi

[K∑
k=1

1
2 log

(
1 +

Pk

σ2
k

)
+

K∑
k=1

λkPk − µ

(K∑
k=1

Pk − P
)]

= 0

µ, λ1, · · · , λK ≥ 0,P1, · · · ,PK ≥ 0,
K∑

k=1

Pk ≤ P

µ

(K∑
k=1

Pk − P
)

= 0, λkPk = 0,∀k

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 12

Lecture 10: Channel coding Channel capacity

Capacity of parallel channels

∂

∂Pi

[K∑
k=1

1
2 log

(
1 +

Pk
σ2

k

)
+

K∑
k=1

λkPk − µ

(K∑
k=1

Pk − P
)]

= 0

⇒1
2

1
Pi + σ2

i
= µ− λi ⇒ Pi + σ2

i =
1

2(µ− λi)

Since λiPi = 0, for Pi > 0, we have λi = 0 and thus

Pi + σ2
i =

1
2µ = constant

This suggests that µ > 0 and thus
∑K

k=1 Pk = P

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 13

Lecture 10: Channel coding Channel capacity

Capacity of parallel channels

∂

∂Pi

[K∑
k=1

1
2 log

(
1 +

Pk
σ2

k

)
+

K∑
k=1

λkPk − µ

(K∑
k=1

Pk − P
)]

= 0

⇒1
2

1
Pi + σ2

i
= µ− λi

⇒ Pi + σ2
i =

1
2(µ− λi)

Since λiPi = 0, for Pi > 0, we have λi = 0 and thus

Pi + σ2
i =

1
2µ = constant

This suggests that µ > 0 and thus
∑K

k=1 Pk = P

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 13

Lecture 10: Channel coding Channel capacity

Capacity of parallel channels

∂

∂Pi

[K∑
k=1

1
2 log

(
1 +

Pk
σ2

k

)
+

K∑
k=1

λkPk − µ

(K∑
k=1

Pk − P
)]

= 0

⇒1
2

1
Pi + σ2

i
= µ− λi ⇒ Pi + σ2

i =
1

2(µ− λi)

Since λiPi = 0, for Pi > 0, we have λi = 0 and thus

Pi + σ2
i =

1
2µ = constant

This suggests that µ > 0 and thus
∑K

k=1 Pk = P

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 13

Lecture 10: Channel coding Channel capacity

Capacity of parallel channels

∂

∂Pi

[K∑
k=1

1
2 log

(
1 +

Pk
σ2

k

)
+

K∑
k=1

λkPk − µ

(K∑
k=1

Pk − P
)]

= 0

⇒1
2

1
Pi + σ2

i
= µ− λi ⇒ Pi + σ2

i =
1

2(µ− λi)

Since λiPi = 0, for Pi > 0, we have λi = 0 and thus

Pi + σ2
i =

1
2µ

= constant

This suggests that µ > 0 and thus
∑K

k=1 Pk = P

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 13

Lecture 10: Channel coding Channel capacity

Capacity of parallel channels

∂

∂Pi

[K∑
k=1

1
2 log

(
1 +

Pk
σ2

k

)
+

K∑
k=1

λkPk − µ

(K∑
k=1

Pk − P
)]

= 0

⇒1
2

1
Pi + σ2

i
= µ− λi ⇒ Pi + σ2

i =
1

2(µ− λi)

Since λiPi = 0, for Pi > 0, we have λi = 0 and thus

Pi + σ2
i =

1
2µ

= constant

This suggests that µ > 0 and thus
∑K

k=1 Pk = P

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 13

Lecture 10: Channel coding Channel capacity

Capacity of parallel channels

∂

∂Pi

[K∑
k=1

1
2 log

(
1 +

Pk
σ2

k

)
+

K∑
k=1

λkPk − µ

(K∑
k=1

Pk − P
)]

= 0

⇒1
2

1
Pi + σ2

i
= µ− λi ⇒ Pi + σ2

i =
1

2(µ− λi)

Since λiPi = 0, for Pi > 0, we have λi = 0 and thus

Pi + σ2
i =

1
2µ = constant

This suggests that µ > 0 and thus
∑K

k=1 Pk = P

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 13

Lecture 10: Channel coding Channel capacity

Water-filling interpretation

From Pi + σ2
i = const, power can be allocated intuitively as filling water to a pond (hence

“water-filling”)

Example

P1 = 0,P2 = 0.3,P3 = 0.6,P4 = 0,P5 = 0
P1 = 0,P2 = 0.8,P3 = 1.1,P4 = 0.3,P5 = 0
P1 = 0.5,P2 = 1.5,P3 = 1.8,P4 = 1,P5 = 0

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 14

Lecture 10: Channel coding Channel capacity

Water-filling interpretation

From Pi + σ2
i = const, power can be allocated intuitively as filling water to a pond (hence

“water-filling”)

Example
P1 = 0,P2 = 0.3,P3 = 0.6,P4 = 0,P5 = 0

P1 = 0,P2 = 0.8,P3 = 1.1,P4 = 0.3,P5 = 0
P1 = 0.5,P2 = 1.5,P3 = 1.8,P4 = 1,P5 = 0

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 14

Lecture 10: Channel coding Channel capacity

Water-filling interpretation

From Pi + σ2
i = const, power can be allocated intuitively as filling water to a pond (hence

“water-filling”)

Example
P1 = 0,P2 = 0.3,P3 = 0.6,P4 = 0,P5 = 0
P1 = 0,P2 = 0.8,P3 = 1.1,P4 = 0.3,P5 = 0

P1 = 0.5,P2 = 1.5,P3 = 1.8,P4 = 1,P5 = 0

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 14

Lecture 10: Channel coding Channel capacity

Water-filling interpretation

From Pi + σ2
i = const, power can be allocated intuitively as filling water to a pond (hence

“water-filling”)

Example
P1 = 0,P2 = 0.3,P3 = 0.6,P4 = 0,P5 = 0
P1 = 0,P2 = 0.8,P3 = 1.1,P4 = 0.3,P5 = 0
P1 = 0.5,P2 = 1.5,P3 = 1.8,P4 = 1,P5 = 0

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 14

Lecture 10: Channel coding Channel capacity

Water-filling interpretation

From Pi + σ2
i = const, power can be allocated intuitively as filling water to a pond (hence

“water-filling”)

Example
P1 = 0,P2 = 0.3,P3 = 0.6,P4 = 0,P5 = 0
P1 = 0,P2 = 0.8,P3 = 1.1,P4 = 0.3,P5 = 0
P1 = 0.5,P2 = 1.5,P3 = 1.8,P4 = 1,P5 = 0

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 14

Lecture 11: Proof of channel coding theorem

Lecture 11: Proof of channel coding theorem

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 1

Lecture 11: Proof of channel coding theorem Forward proof of Channel Coding Theorem

Jointly typical sequences
For a pair of sequences xN and yN , we say that they are jointly typical if

2−N(H(X ,Y)+ε) ≤ p(xN , yN) ≤ 2−N(H(X ,Y)−ε)

and xN and yN themselves are typical

As in the single sequence case,
Any sequence pair drawing from a joint source p(x , y) is essentially jointly typical
There are ∼ 2NH(X ,Y) jointly typical sequences

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 2

p(x , y)
xN

yN

Lecture 11: Proof of channel coding theorem Forward proof of Channel Coding Theorem

Joint typicality of independent seqences

Given sequences XN and Y N independently drawn from discrete memoryless sources p(x)
and p(y)

What is the probability that XN and Y N are jointly typical?

Pr((XN ,Y N) ∈ A(N)
ε)

=
∑

{(xN ,yN)|(xN ,yN)∈A(N)
ε }

p(xN , yN)

=
∑

{(xN ,yN)|(xN ,yN)∈A(N)
ε }

p(xN)p(yN)

≤
∑

{(xN ,yN)|(xN ,yN)∈A(N)
ε }

2−N(H(X)−ε)2−N(H(Y)−ε)

≤2−N(I(X ;Y)−3ε)

p(x)

p(y)

Jointly
typical?

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 3

Lecture 11: Proof of channel coding theorem Forward proof of Channel Coding Theorem

Joint typicality of independent seqences

Given sequences XN and Y N independently drawn from discrete memoryless sources p(x)
and p(y)
What is the probability that XN and Y N are jointly typical?

Pr((XN ,Y N) ∈ A(N)
ε)

=
∑

{(xN ,yN)|(xN ,yN)∈A(N)
ε }

p(xN , yN)

=
∑

{(xN ,yN)|(xN ,yN)∈A(N)
ε }

p(xN)p(yN)

≤
∑

{(xN ,yN)|(xN ,yN)∈A(N)
ε }

2−N(H(X)−ε)2−N(H(Y)−ε)

≤2−N(I(X ;Y)−3ε)

p(x)

p(y)

Jointly
typical?

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 3

Lecture 11: Proof of channel coding theorem Forward proof of Channel Coding Theorem

Joint typicality of independent seqences

Given sequences XN and Y N independently drawn from discrete memoryless sources p(x)
and p(y)
What is the probability that XN and Y N are jointly typical?

Pr((XN ,Y N) ∈ A(N)
ε)

=
∑

{(xN ,yN)|(xN ,yN)∈A(N)
ε }

p(xN , yN)

=
∑

{(xN ,yN)|(xN ,yN)∈A(N)
ε }

p(xN)p(yN)

≤
∑

{(xN ,yN)|(xN ,yN)∈A(N)
ε }

2−N(H(X)−ε)2−N(H(Y)−ε)

≤2−N(I(X ;Y)−3ε)

p(x)

p(y)

Jointly
typical?

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 3

Lecture 11: Proof of channel coding theorem Forward proof of Channel Coding Theorem

Joint typicality of independent seqences

Given sequences XN and Y N independently drawn from discrete memoryless sources p(x)
and p(y)
What is the probability that XN and Y N are jointly typical?

Pr((XN ,Y N) ∈ A(N)
ε)

=
∑

{(xN ,yN)|(xN ,yN)∈A(N)
ε }

p(xN , yN)

=
∑

{(xN ,yN)|(xN ,yN)∈A(N)
ε }

p(xN)p(yN)

≤
∑

{(xN ,yN)|(xN ,yN)∈A(N)
ε }

2−N(H(X)−ε)2−N(H(Y)−ε)

≤2−N(I(X ;Y)−3ε)

p(x)

p(y)

Jointly
typical?

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 3

Lecture 11: Proof of channel coding theorem Forward proof of Channel Coding Theorem

Joint typicality of independent seqences

Given sequences XN and Y N independently drawn from discrete memoryless sources p(x)
and p(y)
What is the probability that XN and Y N are jointly typical?

Pr((XN ,Y N) ∈ A(N)
ε)

=
∑

{(xN ,yN)|(xN ,yN)∈A(N)
ε }

p(xN , yN)

=
∑

{(xN ,yN)|(xN ,yN)∈A(N)
ε }

p(xN)p(yN)

≤
∑

{(xN ,yN)|(xN ,yN)∈A(N)
ε }

2−N(H(X)−ε)2−N(H(Y)−ε)

≤2−N(I(X ;Y)−3ε)

p(x)

p(y)

Jointly
typical?

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 3

Lecture 11: Proof of channel coding theorem Forward proof of Channel Coding Theorem

Joint typicality of independent seqences

Given sequences XN and Y N independently drawn from discrete memoryless sources p(x)
and p(y)
What is the probability that XN and Y N are jointly typical?

Pr((XN ,Y N) ∈ A(N)
ε)

=
∑

{(xN ,yN)|(xN ,yN)∈A(N)
ε }

p(xN , yN)

=
∑

{(xN ,yN)|(xN ,yN)∈A(N)
ε }

p(xN)p(yN)

≤
∑

{(xN ,yN)|(xN ,yN)∈A(N)
ε }

2−N(H(X)−ε)2−N(H(Y)−ε)

≤2−N(I(X ;Y)−3ε)

p(x)

p(y)

Jointly
typical?

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 3

Lecture 11: Proof of channel coding theorem Forward proof of Channel Coding Theorem

Joint typicality of independent seqences

Given sequences XN and Y N independently drawn from discrete memoryless sources p(x)
and p(y)
What is the probability that XN and Y N are jointly typical?

Pr((XN ,Y N) ∈ A(N)
ε)

=
∑

{(xN ,yN)|(xN ,yN)∈A(N)
ε }

p(xN , yN)

=
∑

{(xN ,yN)|(xN ,yN)∈A(N)
ε }

p(xN)p(yN)

≥
∑

{(xN ,yN)|(xN ,yN)∈A(N)
ε }

2−N(H(X)+ε)2−N(H(Y)+ε)

≥(1− δ)2−N(I(X ;Y)+3ε)

p(x)

p(y)

Jointly
typical?

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 4

Lecture 11: Proof of channel coding theorem Forward proof of Channel Coding Theorem

Joint typicality of independent seqences

Given sequences XN and Y N independently drawn from discrete memoryless sources p(x)
and p(y)
What is the probability that XN and Y N are jointly typical?

Pr((XN ,Y N) ∈ A(N)
ε)

=
∑

{(xN ,yN)|(xN ,yN)∈A(N)
ε }

p(xN , yN)

=
∑

{(xN ,yN)|(xN ,yN)∈A(N)
ε }

p(xN)p(yN)

≥
∑

{(xN ,yN)|(xN ,yN)∈A(N)
ε }

2−N(H(X)+ε)2−N(H(Y)+ε)

≥(1− δ)2−N(I(X ;Y)+3ε)

p(x)

p(y)

Jointly
typical?

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 4

Lecture 11: Proof of channel coding theorem Forward proof of Channel Coding Theorem

Joint typicality of independent seqences

Given sequences XN and Y N independently drawn from discrete memoryless sources p(x)
and p(y)
What is the probability that XN and Y N are jointly typical?

Pr((XN ,Y N) ∈ A(N)
ε)

=
∑

{(xN ,yN)|(xN ,yN)∈A(N)
ε }

p(xN , yN)

=
∑

{(xN ,yN)|(xN ,yN)∈A(N)
ε }

p(xN)p(yN)

≥
∑

{(xN ,yN)|(xN ,yN)∈A(N)
ε }

2−N(H(X)+ε)2−N(H(Y)+ε)

≥(1− δ)2−N(I(X ;Y)+3ε)

p(x)

p(y)

Jointly
typical?

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 4

Lecture 11: Proof of channel coding theorem Forward proof of Channel Coding Theorem

Packing lemma
How many independent Y N sequences can pack with some XN without becoming jointly
typical with XN?

Say, M Y N sequences were drawn

The probability of any of Y N to be jointly typical with XN is bounded by
Pr(Any one of M Y N jointly typical with XN)

≤MPr((XN ,Y N) ∈ AN
ε (X ,Y))

≤M2−N(I(X ;Y)−3ε)

≤2−N(I(X ;Y)−R−3ε) → 0 as N →∞ and I(X ;Y)− 3ε > R ,

where 2NR = M

Since ε can be made arbitrarily small as N increases, as long as I(X ;Y) > R , we can find a
sufficiently large N so that we can “pack” the M Y N with XN and none of the Y N will be
jointly typical with XN

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 5

Lecture 11: Proof of channel coding theorem Forward proof of Channel Coding Theorem

Packing lemma
How many independent Y N sequences can pack with some XN without becoming jointly
typical with XN?

Say, M Y N sequences were drawn
The probability of any of Y N to be jointly typical with XN is bounded by

Pr(Any one of M Y N jointly typical with XN)

≤MPr((XN ,Y N) ∈ AN
ε (X ,Y))

≤M2−N(I(X ;Y)−3ε)

≤2−N(I(X ;Y)−R−3ε) → 0 as N →∞ and I(X ;Y)− 3ε > R ,

where 2NR = M

Since ε can be made arbitrarily small as N increases, as long as I(X ;Y) > R , we can find a
sufficiently large N so that we can “pack” the M Y N with XN and none of the Y N will be
jointly typical with XN

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 5

Lecture 11: Proof of channel coding theorem Forward proof of Channel Coding Theorem

Packing lemma
How many independent Y N sequences can pack with some XN without becoming jointly
typical with XN?

Say, M Y N sequences were drawn
The probability of any of Y N to be jointly typical with XN is bounded by

Pr(Any one of M Y N jointly typical with XN)

≤MPr((XN ,Y N) ∈ AN
ε (X ,Y))

≤M2−N(I(X ;Y)−3ε)

≤2−N(I(X ;Y)−R−3ε) → 0 as N →∞ and I(X ;Y)− 3ε > R ,

where 2NR = M

Since ε can be made arbitrarily small as N increases, as long as I(X ;Y) > R , we can find a
sufficiently large N so that we can “pack” the M Y N with XN and none of the Y N will be
jointly typical with XN

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 5

Lecture 11: Proof of channel coding theorem Forward proof of Channel Coding Theorem

Packing lemma
How many independent Y N sequences can pack with some XN without becoming jointly
typical with XN?

Say, M Y N sequences were drawn
The probability of any of Y N to be jointly typical with XN is bounded by

Pr(Any one of M Y N jointly typical with XN)

≤MPr((XN ,Y N) ∈ AN
ε (X ,Y))

≤M2−N(I(X ;Y)−3ε)

≤2−N(I(X ;Y)−R−3ε)

→ 0 as N →∞ and I(X ;Y)− 3ε > R ,

where 2NR = M

Since ε can be made arbitrarily small as N increases, as long as I(X ;Y) > R , we can find a
sufficiently large N so that we can “pack” the M Y N with XN and none of the Y N will be
jointly typical with XN

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 5

Lecture 11: Proof of channel coding theorem Forward proof of Channel Coding Theorem

Packing lemma
How many independent Y N sequences can pack with some XN without becoming jointly
typical with XN?

Say, M Y N sequences were drawn
The probability of any of Y N to be jointly typical with XN is bounded by

Pr(Any one of M Y N jointly typical with XN)

≤MPr((XN ,Y N) ∈ AN
ε (X ,Y))

≤M2−N(I(X ;Y)−3ε)

≤2−N(I(X ;Y)−R−3ε) → 0 as N →∞ and I(X ;Y)− 3ε > R ,

where 2NR = M

Since ε can be made arbitrarily small as N increases, as long as I(X ;Y) > R , we can find a
sufficiently large N so that we can “pack” the M Y N with XN and none of the Y N will be
jointly typical with XN

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 5

Lecture 11: Proof of channel coding theorem Forward proof of Channel Coding Theorem

Packing lemma
How many independent Y N sequences can pack with some XN without becoming jointly
typical with XN?

Say, M Y N sequences were drawn
The probability of any of Y N to be jointly typical with XN is bounded by

Pr(Any one of M Y N jointly typical with XN)

≤MPr((XN ,Y N) ∈ AN
ε (X ,Y))

≤M2−N(I(X ;Y)−3ε)

≤2−N(I(X ;Y)−R−3ε) → 0 as N →∞ and I(X ;Y)− 3ε > R ,

where 2NR = M

Since ε can be made arbitrarily small as N increases, as long as I(X ;Y) > R , we can find a
sufficiently large N so that we can “pack” the M Y N with XN and none of the Y N will be
jointly typical with XN

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 5

Lecture 11: Proof of channel coding theorem Forward proof of Channel Coding Theorem

Covering lemma
How many independent Y N are needed until it is jointly typical with XN?

Again, draw M(= 2NR) Y N sequences
Under what condition that at least one Y N jointly typical with XN?

Pr((XN(m),Y N) /∈ A(N)
ε (X ,Y) for all m)

=
M∏

m=1
Pr((XN(m),Y N) /∈ A(N)

ε (Y ,X))

=
M∏

m=1

[
1− Pr((XN(m),Y N) ∈ A(N)

ε (Y ,X))
]

≤(1− (1− δ)2−N(I(Y ;X)+3ε))M

≤ exp(−M(1− δ)2−N(I(Y ;X)+3ε))

≤ exp(−(1− δ)2N(R−I(Y ;X)−3ε))→ 0 as N →∞ and R > I(X ;Y) + 3ε

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 6

0 2 4
−4

−2

0

1 − x
e−x

Lecture 11: Proof of channel coding theorem Forward proof of Channel Coding Theorem

Covering lemma
How many independent Y N are needed until it is jointly typical with XN?

Again, draw M(= 2NR) Y N sequences
Under what condition that at least one Y N jointly typical with XN?

Pr((XN(m),Y N) /∈ A(N)
ε (X ,Y) for all m)

=
M∏

m=1
Pr((XN(m),Y N) /∈ A(N)

ε (Y ,X))

=
M∏

m=1

[
1− Pr((XN(m),Y N) ∈ A(N)

ε (Y ,X))
]

≤(1− (1− δ)2−N(I(Y ;X)+3ε))M

≤ exp(−M(1− δ)2−N(I(Y ;X)+3ε))

≤ exp(−(1− δ)2N(R−I(Y ;X)−3ε))→ 0 as N →∞ and R > I(X ;Y) + 3ε

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 6

0 2 4
−4

−2

0

1 − x
e−x

Lecture 11: Proof of channel coding theorem Forward proof of Channel Coding Theorem

Covering lemma
How many independent Y N are needed until it is jointly typical with XN?

Again, draw M(= 2NR) Y N sequences
Under what condition that at least one Y N jointly typical with XN?

Pr((XN(m),Y N) /∈ A(N)
ε (X ,Y) for all m)

=
M∏

m=1
Pr((XN(m),Y N) /∈ A(N)

ε (Y ,X))

=
M∏

m=1

[
1− Pr((XN(m),Y N) ∈ A(N)

ε (Y ,X))
]

≤(1− (1− δ)2−N(I(Y ;X)+3ε))M

≤ exp(−M(1− δ)2−N(I(Y ;X)+3ε))

≤ exp(−(1− δ)2N(R−I(Y ;X)−3ε))→ 0 as N →∞ and R > I(X ;Y) + 3ε

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 6

0 2 4
−4

−2

0

1 − x
e−x

Lecture 11: Proof of channel coding theorem Forward proof of Channel Coding Theorem

Covering lemma
How many independent Y N are needed until it is jointly typical with XN?

Again, draw M(= 2NR) Y N sequences
Under what condition that at least one Y N jointly typical with XN?

Pr((XN(m),Y N) /∈ A(N)
ε (X ,Y) for all m)

=
M∏

m=1
Pr((XN(m),Y N) /∈ A(N)

ε (Y ,X))

=
M∏

m=1

[
1− Pr((XN(m),Y N) ∈ A(N)

ε (Y ,X))
]

≤(1− (1− δ)2−N(I(Y ;X)+3ε))M

≤ exp(−M(1− δ)2−N(I(Y ;X)+3ε))

≤ exp(−(1− δ)2N(R−I(Y ;X)−3ε))→ 0 as N →∞ and R > I(X ;Y) + 3ε

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 6

0 2 4
−4

−2

0

1 − x
e−x

Lecture 11: Proof of channel coding theorem Forward proof of Channel Coding Theorem

Covering lemma
How many independent Y N are needed until it is jointly typical with XN?

Again, draw M(= 2NR) Y N sequences
Under what condition that at least one Y N jointly typical with XN?

Pr((XN(m),Y N) /∈ A(N)
ε (X ,Y) for all m)

=
M∏

m=1
Pr((XN(m),Y N) /∈ A(N)

ε (Y ,X))

=
M∏

m=1

[
1− Pr((XN(m),Y N) ∈ A(N)

ε (Y ,X))
]

≤(1− (1− δ)2−N(I(Y ;X)+3ε))M

≤ exp(−M(1− δ)2−N(I(Y ;X)+3ε))

≤ exp(−(1− δ)2N(R−I(Y ;X)−3ε))→ 0 as N →∞ and R > I(X ;Y) + 3ε

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 6

0 2 4
−4

−2

0

1 − x
e−x

Lecture 11: Proof of channel coding theorem Forward proof of Channel Coding Theorem

Covering lemma
How many independent Y N are needed until it is jointly typical with XN?

Again, draw M(= 2NR) Y N sequences
Under what condition that at least one Y N jointly typical with XN?

Pr((XN(m),Y N) /∈ A(N)
ε (X ,Y) for all m)

=
M∏

m=1
Pr((XN(m),Y N) /∈ A(N)

ε (Y ,X))

=
M∏

m=1

[
1− Pr((XN(m),Y N) ∈ A(N)

ε (Y ,X))
]

≤(1− (1− δ)2−N(I(Y ;X)+3ε))M

≤ exp(−M(1− δ)2−N(I(Y ;X)+3ε))

≤ exp(−(1− δ)2N(R−I(Y ;X)−3ε))→ 0 as N →∞ and R > I(X ;Y) + 3ε

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 6

0 2 4
−4

−2

0

1 − x
e−x

Lecture 11: Proof of channel coding theorem Forward proof of Channel Coding Theorem

Covering lemma
How many independent Y N are needed until it is jointly typical with XN?

Again, draw M(= 2NR) Y N sequences
Under what condition that at least one Y N jointly typical with XN?

Pr((XN(m),Y N) /∈ A(N)
ε (X ,Y) for all m)

=
M∏

m=1
Pr((XN(m),Y N) /∈ A(N)

ε (Y ,X))

=
M∏

m=1

[
1− Pr((XN(m),Y N) ∈ A(N)

ε (Y ,X))
]

≤(1− (1− δ)2−N(I(Y ;X)+3ε))M

≤ exp(−M(1− δ)2−N(I(Y ;X)+3ε))

≤ exp(−(1− δ)2N(R−I(Y ;X)−3ε))→ 0 as N →∞ and R > I(X ;Y) + 3ε

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 6

0 2 4
−4

−2

0

1 − x
e−x

Lecture 11: Proof of channel coding theorem Forward proof of Channel Coding Theorem

Summary of packing lemma and covering lemma

Packing Lemma
We can “pack” M = 2NR (with R < I(X ;Y)) xN together without being jointly typical with
yN

Covering Lemma
We can “cover” with M = 2NR (with R > I(X ;Y)) xN such that at least one xN being jointly
typical with yN

Remark
Packing lemma is useful in the proof of channel coding theorem
Covering lemma is useful in the proof of rate-distortion theorem

We will look into the above applications later in this course

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 7

Lecture 11: Proof of channel coding theorem Forward proof of Channel Coding Theorem

Codebook construction

Forward statement
If the code rate R < C = maxp(x) I(X ;Y), according to the Channel Coding Theorem, we
should be able to find a code with encoding mapping c : m ∈ {1, 2, · · · , 2NR} → {0, 1}N and
the error probability of transmitting any message m ∈ {1, 2, · · · , 2NR}, pe(m), is arbitrarily
small

The main tool of the proof is random coding
Let p∗(x) = argmaxp(x) I(X ;Y). Generate codewords from the DMS p∗(x) by sampling
2n length-n sequences from the source:

c(1) =(x1(1), x2(1), · · · , xN(1))
c(2) =(x1(2), x2(2), · · · , xN(2))

· · ·
c(2NR) =(x1(2NR), x2(2NR), · · · , xN(2NR))

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 8

Lecture 11: Proof of channel coding theorem Forward proof of Channel Coding Theorem

Codebook construction

Forward statement
If the code rate R < C = maxp(x) I(X ;Y), according to the Channel Coding Theorem, we
should be able to find a code with encoding mapping c : m ∈ {1, 2, · · · , 2NR} → {0, 1}N and
the error probability of transmitting any message m ∈ {1, 2, · · · , 2NR}, pe(m), is arbitrarily
small

The main tool of the proof is random coding

Let p∗(x) = argmaxp(x) I(X ;Y). Generate codewords from the DMS p∗(x) by sampling
2n length-n sequences from the source:

c(1) =(x1(1), x2(1), · · · , xN(1))
c(2) =(x1(2), x2(2), · · · , xN(2))

· · ·
c(2NR) =(x1(2NR), x2(2NR), · · · , xN(2NR))

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 8

Lecture 11: Proof of channel coding theorem Forward proof of Channel Coding Theorem

Codebook construction

Forward statement
If the code rate R < C = maxp(x) I(X ;Y), according to the Channel Coding Theorem, we
should be able to find a code with encoding mapping c : m ∈ {1, 2, · · · , 2NR} → {0, 1}N and
the error probability of transmitting any message m ∈ {1, 2, · · · , 2NR}, pe(m), is arbitrarily
small

The main tool of the proof is random coding
Let p∗(x) = argmaxp(x) I(X ;Y). Generate codewords from the DMS p∗(x) by sampling
2n length-n sequences from the source:

c(1) =(x1(1), x2(1), · · · , xN(1))
c(2) =(x1(2), x2(2), · · · , xN(2))

· · ·
c(2NR) =(x1(2NR), x2(2NR), · · · , xN(2NR))

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 8

Lecture 11: Proof of channel coding theorem Forward proof of Channel Coding Theorem

Encoding and decoding

The encoding and decoding procedures will be as follows.

Encoding
For input message m, output c(m) = (x1(m), x2(m), · · · , xN(m))

Decoding
Upon receiving sequence y = (y1, y2, · · · , yN), pick the sequence c(m) from
{c(1), · · · , c(2NR)} such that (c(m), y) are jointly typical. That is
pXN ,Y N (c(m), y) ∼ 2−nH(X ,Y). If no such c(m) exists or more than one such sequence exist,
announce error. Otherwise output the decoded message as m

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 9

Lecture 11: Proof of channel coding theorem Forward proof of Channel Coding Theorem

Encoding and decoding

The encoding and decoding procedures will be as follows.

Encoding
For input message m, output c(m) = (x1(m), x2(m), · · · , xN(m))

Decoding
Upon receiving sequence y = (y1, y2, · · · , yN), pick the sequence c(m) from
{c(1), · · · , c(2NR)} such that (c(m), y) are jointly typical. That is
pXN ,Y N (c(m), y) ∼ 2−nH(X ,Y). If no such c(m) exists or more than one such sequence exist,
announce error. Otherwise output the decoded message as m

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 9

Lecture 11: Proof of channel coding theorem Forward proof of Channel Coding Theorem

Encoding and decoding

The encoding and decoding procedures will be as follows.

Encoding
For input message m, output c(m) = (x1(m), x2(m), · · · , xN(m))

Decoding
Upon receiving sequence y = (y1, y2, · · · , yN), pick the sequence c(m) from
{c(1), · · · , c(2NR)} such that (c(m), y) are jointly typical. That is
pXN ,Y N (c(m), y) ∼ 2−nH(X ,Y). If no such c(m) exists or more than one such sequence exist,
announce error. Otherwise output the decoded message as m

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 9

Lecture 11: Proof of channel coding theorem Forward proof of Channel Coding Theorem

Average performance

Let us assume M = m, decoding error occurs when:

1 P1 = Pr(C(m),Y) /∈ AN
ε (X ,Y))

2 P2 : ∃M ′ 6= m and (c(M ′),Y) ∈ AN
ε (X ,Y)

Thus p(error) = P(error |M = m) ≤ P1 + P2
1 Since (C(m),Y) is coming out of the joint source X ,Y , P1 → 0 as n→∞
2 Note that C(M ′) and Y are independent and thus by Packing lemma,

P2 ≤ 2−N(I(X ;Y)−R−3ε) (2)

Since ε can be made arbitrarily small as N increase, as long as I(X ;Y)− 3ε > R , we can
make P2 arbitrarily small also given a sufficiently large N

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 10

Lecture 11: Proof of channel coding theorem Forward proof of Channel Coding Theorem

Average performance

Let us assume M = m, decoding error occurs when:
1 P1 = Pr(C(m),Y) /∈ AN

ε (X ,Y))

2 P2 : ∃M ′ 6= m and (c(M ′),Y) ∈ AN
ε (X ,Y)

Thus p(error) = P(error |M = m) ≤ P1 + P2
1 Since (C(m),Y) is coming out of the joint source X ,Y , P1 → 0 as n→∞
2 Note that C(M ′) and Y are independent and thus by Packing lemma,

P2 ≤ 2−N(I(X ;Y)−R−3ε) (2)

Since ε can be made arbitrarily small as N increase, as long as I(X ;Y)− 3ε > R , we can
make P2 arbitrarily small also given a sufficiently large N

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 10

Lecture 11: Proof of channel coding theorem Forward proof of Channel Coding Theorem

Average performance

Let us assume M = m, decoding error occurs when:
1 P1 = Pr(C(m),Y) /∈ AN

ε (X ,Y))

2 P2 : ∃M ′ 6= m and (c(M ′),Y) ∈ AN
ε (X ,Y)

Thus p(error) = P(error |M = m) ≤ P1 + P2

1 Since (C(m),Y) is coming out of the joint source X ,Y , P1 → 0 as n→∞
2 Note that C(M ′) and Y are independent and thus by Packing lemma,

P2 ≤ 2−N(I(X ;Y)−R−3ε) (2)

Since ε can be made arbitrarily small as N increase, as long as I(X ;Y)− 3ε > R , we can
make P2 arbitrarily small also given a sufficiently large N

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 10

Lecture 11: Proof of channel coding theorem Forward proof of Channel Coding Theorem

Average performance

Let us assume M = m, decoding error occurs when:
1 P1 = Pr(C(m),Y) /∈ AN

ε (X ,Y))

2 P2 : ∃M ′ 6= m and (c(M ′),Y) ∈ AN
ε (X ,Y)

Thus p(error) = P(error |M = m) ≤ P1 + P2
1 Since (C(m),Y) is coming out of the joint source X ,Y , P1 → 0 as n→∞

2 Note that C(M ′) and Y are independent and thus by Packing lemma,

P2 ≤ 2−N(I(X ;Y)−R−3ε) (2)

Since ε can be made arbitrarily small as N increase, as long as I(X ;Y)− 3ε > R , we can
make P2 arbitrarily small also given a sufficiently large N

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 10

Lecture 11: Proof of channel coding theorem Forward proof of Channel Coding Theorem

Average performance

Let us assume M = m, decoding error occurs when:
1 P1 = Pr(C(m),Y) /∈ AN

ε (X ,Y))

2 P2 : ∃M ′ 6= m and (c(M ′),Y) ∈ AN
ε (X ,Y)

Thus p(error) = P(error |M = m) ≤ P1 + P2
1 Since (C(m),Y) is coming out of the joint source X ,Y , P1 → 0 as n→∞
2 Note that C(M ′) and Y are independent and thus by Packing lemma,

P2 ≤ 2−N(I(X ;Y)−R−3ε) (2)

Since ε can be made arbitrarily small as N increase, as long as I(X ;Y)− 3ε > R , we can
make P2 arbitrarily small also given a sufficiently large N

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 10

Lecture 11: Proof of channel coding theorem Forward proof of Channel Coding Theorem

Average performance

Let us assume M = m, decoding error occurs when:
1 P1 = Pr(C(m),Y) /∈ AN

ε (X ,Y))

2 P2 : ∃M ′ 6= m and (c(M ′),Y) ∈ AN
ε (X ,Y)

Thus p(error) = P(error |M = m) ≤ P1 + P2
1 Since (C(m),Y) is coming out of the joint source X ,Y , P1 → 0 as n→∞
2 Note that C(M ′) and Y are independent and thus by Packing lemma,

P2 ≤ 2−N(I(X ;Y)−R−3ε) (2)

Since ε can be made arbitrarily small as N increase, as long as I(X ;Y)− 3ε > R , we can
make P2 arbitrarily small also given a sufficiently large N

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 10

Lecture 11: Proof of channel coding theorem Forward proof of Channel Coding Theorem

A bit more caveat

We want to show that there exists a code c∗(·) such that Pr(error |c∗,m)→ 0 no matter
what message m is sent

But we actually show that the average error over all random codes can be made
arbitrarily small for any message m. That is,

∑
c p(c)Pr(error |c,m)→ 0

Consequently, the error average over all code and messages,∑
m p(m)

∑
c p(c)Pr(error |c,m) have to go to zero as well. Thus, the best code (in

terms of lowest error average error) should also have
∑

m p(m)Pr(error |c∗,m) , δ → 0
Without loss of generality and for simplicity, assume that all messages are equally likely

1
2NR
∑

m Pr(error |c∗,m) = δ

If we discard worse half of the codewords, for remaining m, we have
Pr(error |c∗,m) ≤ 2δ → 0 as N →∞
Even though the rate reduces from R to R − 1

N (number of messages from
2NR → 2NR−1). But we can still make the final rate arbitrarily close to the capacity as
N →∞

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 11

Lecture 11: Proof of channel coding theorem Forward proof of Channel Coding Theorem

A bit more caveat

We want to show that there exists a code c∗(·) such that Pr(error |c∗,m)→ 0 no matter
what message m is sent
But we actually show that the average error over all random codes can be made
arbitrarily small for any message m. That is,

∑
c p(c)Pr(error |c,m)→ 0

Consequently, the error average over all code and messages,∑
m p(m)

∑
c p(c)Pr(error |c,m) have to go to zero as well. Thus, the best code (in

terms of lowest error average error) should also have
∑

m p(m)Pr(error |c∗,m) , δ → 0
Without loss of generality and for simplicity, assume that all messages are equally likely

1
2NR
∑

m Pr(error |c∗,m) = δ

If we discard worse half of the codewords, for remaining m, we have
Pr(error |c∗,m) ≤ 2δ → 0 as N →∞
Even though the rate reduces from R to R − 1

N (number of messages from
2NR → 2NR−1). But we can still make the final rate arbitrarily close to the capacity as
N →∞

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 11

Lecture 11: Proof of channel coding theorem Forward proof of Channel Coding Theorem

A bit more caveat

We want to show that there exists a code c∗(·) such that Pr(error |c∗,m)→ 0 no matter
what message m is sent
But we actually show that the average error over all random codes can be made
arbitrarily small for any message m. That is,

∑
c p(c)Pr(error |c,m)→ 0

Consequently, the error average over all code and messages,∑
m p(m)

∑
c p(c)Pr(error |c,m) have to go to zero as well. Thus, the best code (in

terms of lowest error average error) should also have
∑

m p(m)Pr(error |c∗,m) , δ → 0

Without loss of generality and for simplicity, assume that all messages are equally likely
1

2NR
∑

m Pr(error |c∗,m) = δ

If we discard worse half of the codewords, for remaining m, we have
Pr(error |c∗,m) ≤ 2δ → 0 as N →∞
Even though the rate reduces from R to R − 1

N (number of messages from
2NR → 2NR−1). But we can still make the final rate arbitrarily close to the capacity as
N →∞

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 11

Lecture 11: Proof of channel coding theorem Forward proof of Channel Coding Theorem

A bit more caveat

We want to show that there exists a code c∗(·) such that Pr(error |c∗,m)→ 0 no matter
what message m is sent
But we actually show that the average error over all random codes can be made
arbitrarily small for any message m. That is,

∑
c p(c)Pr(error |c,m)→ 0

Consequently, the error average over all code and messages,∑
m p(m)

∑
c p(c)Pr(error |c,m) have to go to zero as well. Thus, the best code (in

terms of lowest error average error) should also have
∑

m p(m)Pr(error |c∗,m) , δ → 0
Without loss of generality and for simplicity, assume that all messages are equally likely

1
2NR
∑

m Pr(error |c∗,m) = δ

If we discard worse half of the codewords, for remaining m, we have
Pr(error |c∗,m) ≤ 2δ → 0 as N →∞
Even though the rate reduces from R to R − 1

N (number of messages from
2NR → 2NR−1). But we can still make the final rate arbitrarily close to the capacity as
N →∞

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 11

Lecture 11: Proof of channel coding theorem Forward proof of Channel Coding Theorem

A bit more caveat

We want to show that there exists a code c∗(·) such that Pr(error |c∗,m)→ 0 no matter
what message m is sent
But we actually show that the average error over all random codes can be made
arbitrarily small for any message m. That is,

∑
c p(c)Pr(error |c,m)→ 0

Consequently, the error average over all code and messages,∑
m p(m)

∑
c p(c)Pr(error |c,m) have to go to zero as well. Thus, the best code (in

terms of lowest error average error) should also have
∑

m p(m)Pr(error |c∗,m) , δ → 0
Without loss of generality and for simplicity, assume that all messages are equally likely

1
2NR
∑

m Pr(error |c∗,m) = δ

If we discard worse half of the codewords, for remaining m, we have
Pr(error |c∗,m) ≤ 2δ → 0 as N →∞

Even though the rate reduces from R to R − 1
N (number of messages from

2NR → 2NR−1). But we can still make the final rate arbitrarily close to the capacity as
N →∞

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 11

Lecture 11: Proof of channel coding theorem Forward proof of Channel Coding Theorem

A bit more caveat

We want to show that there exists a code c∗(·) such that Pr(error |c∗,m)→ 0 no matter
what message m is sent
But we actually show that the average error over all random codes can be made
arbitrarily small for any message m. That is,

∑
c p(c)Pr(error |c,m)→ 0

Consequently, the error average over all code and messages,∑
m p(m)

∑
c p(c)Pr(error |c,m) have to go to zero as well. Thus, the best code (in

terms of lowest error average error) should also have
∑

m p(m)Pr(error |c∗,m) , δ → 0
Without loss of generality and for simplicity, assume that all messages are equally likely

1
2NR
∑

m Pr(error |c∗,m) = δ

If we discard worse half of the codewords, for remaining m, we have
Pr(error |c∗,m) ≤ 2δ → 0 as N →∞
Even though the rate reduces from R to R − 1

N (number of messages from
2NR → 2NR−1). But we can still make the final rate arbitrarily close to the capacity as
N →∞

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 11

Lecture 11: Proof of channel coding theorem Converse proof of Channel Coding Theorem

Converse proof

We want to say that whenever the code rate is larger than the capacity, the probability of error
will be non-zero

Equivalently...
As long as the probability of error is 0, the rate of the code R has to be larger than the capacity

To continue the converse proof, we will need to introduce a simple result from Fano

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 12

Lecture 11: Proof of channel coding theorem Converse proof of Channel Coding Theorem

Converse proof

We want to say that whenever the code rate is larger than the capacity, the probability of error
will be non-zero

Equivalently...
As long as the probability of error is 0, the rate of the code R has to be larger than the capacity

To continue the converse proof, we will need to introduce a simple result from Fano

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 12

Lecture 11: Proof of channel coding theorem Converse proof of Channel Coding Theorem

Converse proof

We want to say that whenever the code rate is larger than the capacity, the probability of error
will be non-zero

Equivalently...
As long as the probability of error is 0, the rate of the code R has to be larger than the capacity

To continue the converse proof, we will need to introduce a simple result from Fano

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 12

Lecture 11: Proof of channel coding theorem Converse proof of Channel Coding Theorem

Fano’s inequality

Fano’s inequality

Denote Pr(error) = Pe = Pr(M 6= M̂), then H(M|Y N) ≤ 1 + PeH(M) Intuitively, if Pe → 0,
on average we will know M for certain given y and thus 1

N H(M|Y N)→ 0

Proof: Let E = I(M 6= M̂), then

H(M|Y N) = H(M,E |Y N)− H(E |Y N ,M)

= H(M,E |Y N) = H(E |Y N) + H(M|Y N ,E)

≤ H(E) + H(M|Y N ,E)

≤ 1 + P(E = 0)H(M|Y N ,E = 0) + P(E = 1)H(M|Y N ,E = 1)

≤ 1 + 0 + PeH(M|Y N ,E = 1)
(d)
≤ 1 + PeH(M)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 13

Lecture 11: Proof of channel coding theorem Converse proof of Channel Coding Theorem

Fano’s inequality

Fano’s inequality

Denote Pr(error) = Pe = Pr(M 6= M̂), then H(M|Y N) ≤ 1 + PeH(M) Intuitively, if Pe → 0,
on average we will know M for certain given y and thus 1

N H(M|Y N)→ 0

Proof: Let E = I(M 6= M̂), then

H(M|Y N) = H(M,E |Y N)− H(E |Y N ,M)

= H(M,E |Y N) = H(E |Y N) + H(M|Y N ,E)

≤ H(E) + H(M|Y N ,E)

≤ 1 + P(E = 0)H(M|Y N ,E = 0) + P(E = 1)H(M|Y N ,E = 1)

≤ 1 + 0 + PeH(M|Y N ,E = 1)
(d)
≤ 1 + PeH(M)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 13

Lecture 11: Proof of channel coding theorem Converse proof of Channel Coding Theorem

Fano’s inequality

Fano’s inequality

Denote Pr(error) = Pe = Pr(M 6= M̂), then H(M|Y N) ≤ 1 + PeH(M) Intuitively, if Pe → 0,
on average we will know M for certain given y and thus 1

N H(M|Y N)→ 0

Proof: Let E = I(M 6= M̂), then

H(M|Y N) = H(M,E |Y N)− H(E |Y N ,M)

= H(M,E |Y N) = H(E |Y N) + H(M|Y N ,E)

≤ H(E) + H(M|Y N ,E)

≤ 1 + P(E = 0)H(M|Y N ,E = 0) + P(E = 1)H(M|Y N ,E = 1)

≤ 1 + 0 + PeH(M|Y N ,E = 1)
(d)
≤ 1 + PeH(M)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 13

Lecture 11: Proof of channel coding theorem Converse proof of Channel Coding Theorem

Fano’s inequality

Fano’s inequality

Denote Pr(error) = Pe = Pr(M 6= M̂), then H(M|Y N) ≤ 1 + PeH(M) Intuitively, if Pe → 0,
on average we will know M for certain given y and thus 1

N H(M|Y N)→ 0

Proof: Let E = I(M 6= M̂), then

H(M|Y N) = H(M,E |Y N)− H(E |Y N ,M)

= H(M,E |Y N) = H(E |Y N) + H(M|Y N ,E)

≤ H(E) + H(M|Y N ,E)

≤ 1 + P(E = 0)H(M|Y N ,E = 0) + P(E = 1)H(M|Y N ,E = 1)

≤ 1 + 0 + PeH(M|Y N ,E = 1)
(d)
≤ 1 + PeH(M)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 13

Lecture 11: Proof of channel coding theorem Converse proof of Channel Coding Theorem

Fano’s inequality

Fano’s inequality

Denote Pr(error) = Pe = Pr(M 6= M̂), then H(M|Y N) ≤ 1 + PeH(M) Intuitively, if Pe → 0,
on average we will know M for certain given y and thus 1

N H(M|Y N)→ 0

Proof: Let E = I(M 6= M̂), then

H(M|Y N) = H(M,E |Y N)− H(E |Y N ,M)

= H(M,E |Y N) = H(E |Y N) + H(M|Y N ,E)

≤ H(E) + H(M|Y N ,E)

≤ 1 + P(E = 0)H(M|Y N ,E = 0) + P(E = 1)H(M|Y N ,E = 1)

≤ 1 + 0 + PeH(M|Y N ,E = 1)
(d)
≤ 1 + PeH(M)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 13

Lecture 11: Proof of channel coding theorem Converse proof of Channel Coding Theorem

Fano’s inequality

Fano’s inequality

Denote Pr(error) = Pe = Pr(M 6= M̂), then H(M|Y N) ≤ 1 + PeH(M) Intuitively, if Pe → 0,
on average we will know M for certain given y and thus 1

N H(M|Y N)→ 0

Proof: Let E = I(M 6= M̂), then

H(M|Y N) = H(M,E |Y N)− H(E |Y N ,M)

= H(M,E |Y N) = H(E |Y N) + H(M|Y N ,E)

≤ H(E) + H(M|Y N ,E)

≤ 1 + P(E = 0)H(M|Y N ,E = 0) + P(E = 1)H(M|Y N ,E = 1)

≤ 1 + 0 + PeH(M|Y N ,E = 1)
(d)
≤ 1 + PeH(M)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 13

Lecture 11: Proof of channel coding theorem Converse proof of Channel Coding Theorem

Fano’s inequality

Fano’s inequality

Denote Pr(error) = Pe = Pr(M 6= M̂), then H(M|Y N) ≤ 1 + PeH(M) Intuitively, if Pe → 0,
on average we will know M for certain given y and thus 1

N H(M|Y N)→ 0

Proof: Let E = I(M 6= M̂), then

H(M|Y N) = H(M,E |Y N)− H(E |Y N ,M)

= H(M,E |Y N) = H(E |Y N) + H(M|Y N ,E)

≤ H(E) + H(M|Y N ,E)

≤ 1 + P(E = 0)H(M|Y N ,E = 0) + P(E = 1)H(M|Y N ,E = 1)

≤ 1 + 0 + PeH(M|Y N ,E = 1)
(d)
≤ 1 + PeH(M)

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 13

Lecture 11: Proof of channel coding theorem Converse proof of Channel Coding Theorem

Converse proof

R =
H(M)

N =
1
N

[
I(M;Y N) + H(M|Y N)

]

≤ 1
N

[
I(XN ;Y N) + H(M|Y N)

]
=

1
N

[
H(Y N)− H(Y N |XN) + H(M|Y N)

]
=

1
N

[
H(Y N)−

∑
i

H(Yi |XN ,Y i−1) + H(M|Y N)

]

=
1
N

[
H(Y N)−

∑
i

H(Yi |Xi) + H(M|Y N)

]

≤ 1
N

[∑
i

H(Yi)−
∑

i

H(Yi |Xi) + H(M|Y N)

]

=
1
N

[∑
i

I(Xi ;Yi) + H(M|Y N)

]
= I(X ;Y) +

H(M|Y N)

N → I(X ;Y)

as N → ∞ by Fano’s inequality

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 14

Lecture 11: Proof of channel coding theorem Converse proof of Channel Coding Theorem

Converse proof

R =
H(M)

N =
1
N

[
I(M;Y N) + H(M|Y N)

]
≤ 1

N

[
I(XN ;Y N) + H(M|Y N)

]

=
1
N

[
H(Y N)− H(Y N |XN) + H(M|Y N)

]
=

1
N

[
H(Y N)−

∑
i

H(Yi |XN ,Y i−1) + H(M|Y N)

]

=
1
N

[
H(Y N)−

∑
i

H(Yi |Xi) + H(M|Y N)

]

≤ 1
N

[∑
i

H(Yi)−
∑

i

H(Yi |Xi) + H(M|Y N)

]

=
1
N

[∑
i

I(Xi ;Yi) + H(M|Y N)

]
= I(X ;Y) +

H(M|Y N)

N → I(X ;Y)

as N → ∞ by Fano’s inequality

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 14

Lecture 11: Proof of channel coding theorem Converse proof of Channel Coding Theorem

Converse proof

R =
H(M)

N =
1
N

[
I(M;Y N) + H(M|Y N)

]
≤ 1

N

[
I(XN ;Y N) + H(M|Y N)

]
=

1
N

[
H(Y N)− H(Y N |XN) + H(M|Y N)

]

=
1
N

[
H(Y N)−

∑
i

H(Yi |XN ,Y i−1) + H(M|Y N)

]

=
1
N

[
H(Y N)−

∑
i

H(Yi |Xi) + H(M|Y N)

]

≤ 1
N

[∑
i

H(Yi)−
∑

i

H(Yi |Xi) + H(M|Y N)

]

=
1
N

[∑
i

I(Xi ;Yi) + H(M|Y N)

]
= I(X ;Y) +

H(M|Y N)

N → I(X ;Y)

as N → ∞ by Fano’s inequality

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 14

Lecture 11: Proof of channel coding theorem Converse proof of Channel Coding Theorem

Converse proof

R =
H(M)

N =
1
N

[
I(M;Y N) + H(M|Y N)

]
≤ 1

N

[
I(XN ;Y N) + H(M|Y N)

]
=

1
N

[
H(Y N)− H(Y N |XN) + H(M|Y N)

]
=

1
N

[
H(Y N)−

∑
i

H(Yi |XN ,Y i−1) + H(M|Y N)

]

=
1
N

[
H(Y N)−

∑
i

H(Yi |Xi) + H(M|Y N)

]

≤ 1
N

[∑
i

H(Yi)−
∑

i

H(Yi |Xi) + H(M|Y N)

]

=
1
N

[∑
i

I(Xi ;Yi) + H(M|Y N)

]
= I(X ;Y) +

H(M|Y N)

N → I(X ;Y)

as N → ∞ by Fano’s inequality

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 14

Lecture 11: Proof of channel coding theorem Converse proof of Channel Coding Theorem

Converse proof

R =
H(M)

N =
1
N

[
I(M;Y N) + H(M|Y N)

]
≤ 1

N

[
I(XN ;Y N) + H(M|Y N)

]
=

1
N

[
H(Y N)− H(Y N |XN) + H(M|Y N)

]
=

1
N

[
H(Y N)−

∑
i

H(Yi |XN ,Y i−1) + H(M|Y N)

]

=
1
N

[
H(Y N)−

∑
i

H(Yi |Xi) + H(M|Y N)

]

≤ 1
N

[∑
i

H(Yi)−
∑

i

H(Yi |Xi) + H(M|Y N)

]

=
1
N

[∑
i

I(Xi ;Yi) + H(M|Y N)

]
= I(X ;Y) +

H(M|Y N)

N → I(X ;Y)

as N → ∞ by Fano’s inequality

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 14

Lecture 11: Proof of channel coding theorem Converse proof of Channel Coding Theorem

Converse proof

R =
H(M)

N =
1
N

[
I(M;Y N) + H(M|Y N)

]
≤ 1

N

[
I(XN ;Y N) + H(M|Y N)

]
=

1
N

[
H(Y N)− H(Y N |XN) + H(M|Y N)

]
=

1
N

[
H(Y N)−

∑
i

H(Yi |XN ,Y i−1) + H(M|Y N)

]

=
1
N

[
H(Y N)−

∑
i

H(Yi |Xi) + H(M|Y N)

]

≤ 1
N

[∑
i

H(Yi)−
∑

i

H(Yi |Xi) + H(M|Y N)

]

=
1
N

[∑
i

I(Xi ;Yi) + H(M|Y N)

]
= I(X ;Y) +

H(M|Y N)

N → I(X ;Y)

as N → ∞ by Fano’s inequality

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 14

Lecture 11: Proof of channel coding theorem Converse proof of Channel Coding Theorem

Converse proof

R =
H(M)

N =
1
N

[
I(M;Y N) + H(M|Y N)

]
≤ 1

N

[
I(XN ;Y N) + H(M|Y N)

]
=

1
N

[
H(Y N)− H(Y N |XN) + H(M|Y N)

]
=

1
N

[
H(Y N)−

∑
i

H(Yi |XN ,Y i−1) + H(M|Y N)

]

=
1
N

[
H(Y N)−

∑
i

H(Yi |Xi) + H(M|Y N)

]

≤ 1
N

[∑
i

H(Yi)−
∑

i

H(Yi |Xi) + H(M|Y N)

]

=
1
N

[∑
i

I(Xi ;Yi) + H(M|Y N)

]
= I(X ;Y) +

H(M|Y N)

N

→ I(X ;Y)

as N → ∞ by Fano’s inequality

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 14

Lecture 11: Proof of channel coding theorem Converse proof of Channel Coding Theorem

Converse proof

R =
H(M)

N =
1
N

[
I(M;Y N) + H(M|Y N)

]
≤ 1

N

[
I(XN ;Y N) + H(M|Y N)

]
=

1
N

[
H(Y N)− H(Y N |XN) + H(M|Y N)

]
=

1
N

[
H(Y N)−

∑
i

H(Yi |XN ,Y i−1) + H(M|Y N)

]

=
1
N

[
H(Y N)−

∑
i

H(Yi |Xi) + H(M|Y N)

]

≤ 1
N

[∑
i

H(Yi)−
∑

i

H(Yi |Xi) + H(M|Y N)

]

=
1
N

[∑
i

I(Xi ;Yi) + H(M|Y N)

]
= I(X ;Y) +

H(M|Y N)

N → I(X ;Y)

as N → ∞ by Fano’s inequality

S. Cheng (OU-ECE) Information Theory and Probabilistic Programming October 25, 2023 14

	Lecture 3a: source coding
	Constraint optimization
	Overview of source coding
	Kraft's Inequality
	Converse proof of Source Coding Theorem

	Lecture 4: LLN and AEP
	Law of Large Number
	Asymptotic equipartition
	Forward proof of source coding Theorem
	Forward proof of Source Coding Theorem

	Lecture 5: Entropy and differential entropy
	Entropy: another peek
	Differential entropy
	Properties of entropy and differential entropy

	Lecture 6: Conditional entropy
	Joint entropy and conditional entropy

	Lecture 7: KL-divergence
	Lecture 8: Mutual information
	More inequalities
	Shannon's perfect secrecy

	Lecture 9: Identification/Decision tree
	Lecture 10: Channel coding
	Packing lemma and covering lemma
	Channel coding setup
	Channel capacity

	Lecture 11: Proof of channel coding theorem
	Forward proof of Channel Coding Theorem
	Converse proof of Channel Coding Theorem

