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Abstract—The distributed source coding theory teaches that ef- the lower rate bound under a distortion constraint when a
ficient compression can be achieved by exploiting the correlation source is encoded independently but decoded using a corre-
between encoded sources at the decoder only. A critical issue in|ataq signal as side information. In successively refined Wyner-

this coding paradigm is how to accurately estimate the correlation . . ) . .
statistics at the decoder. This paper proposes a novel correlation Ziv (WZ) coding [3], [4], a source is encoded in multiple

channel estimation method designed for generic layered Wyner- Stages and decoded with different distortion and possibly
Ziv coding. Driven by real-life applications, i.e., video coding, different side information at each stage.

the correlation noise is assumed to be memoryless zero-mean Expressing the statistical dependency between the dis-
Laplacian with a block-stationary behavior. Unlike existing meth- tributed sources in the form of a virtual channel, one may

ods, the proposed technique derives a novel maximum likelihood . . . L .
estimate of the noise scaling parameter per stationarity block. design Slepian-Wolf (SW) coding based on binning realized

Adhering to layered coding, the derived estimate is successively by channel codes [5]-[7]. Alternatively, distributed arithmetic

refined as more stages are decoded. The @mer-Rao lower bound codes [8], [9] can also implement SW coding. Practical WZ
(CRLB) for our estimator is derived and the mean squared error  constructions include nested lattice or trellis codes [10] and
performance of the proposed successive refinement algorithm is SW coded nested [11] or non-nested [6] lattice quantization. In

evaluated through simulations. Apart from achieving an accuracy . . .
close to the derived CRLB, the proposed algorithm is shown to [4]; Successively refined WZ coding was constructed by nested

yield a Wyner-Ziv rate-distortion performance approaching the —Scalar quantization followed by SW coding of bit-planes with

ideal but unrealistic scenario where the decoder knows priori  low-density parity-check (LDPC) codes.

the correlation statistics. Moreover, the proposed technique has  DSC finds applications in several domains, including wire-

been integrated into our latest Wyner-Ziv video codec for wireless less sensor networks [12], biometrics, and tampering localiza-

capsule endoscopy. Experimentation reveals that the proposed . L ; . .
method delivers improved compression performance compared 10N [13]. Distributed video coding (DVC) [6], [12], [14], in

to state-of-the-art techniques, while simultaneously reducing the particular, targets lightweight multimedia applications, such as
overall decoding complexity. wireless visual sensors and wireless capsule endoscopy [15]. In

Index Terms—Layered Wyner-Ziv (WZ) coding, correlation ~thiS context, layered WZ coding [4] provides scalability, a key
channel estimation (CCE), maximum likelihood estimate (MLE), trait for transmission over heterogeneous wireless networks
Cramer-Rao lower bound (CRLB), wireless capsule endoscopy. with varying resources and bandwidth.

A common assumption in DSC schemes, e.qg., [4], [10], [11],
[16], is that the joint decoding of the sources is carried out with
] a priori knowledge of the correlation statistics. However, in
D ISTRIBUTED source coding (DSC) refers to the sepgepg|-world signals, for instance, obtained by sensors that mea-
rate encoding and joint decoding of correlated sourcegre temperature, humidity, or capture sound or visual data,
Slepian and Wolf [1] derived the theoretically achievable ratge correlation statistics vary both spatially and temporally.

region for the distributed coding of two discrete sources inhe varying correlation statistics cannot be directly measured
lossless compression scenario. Wyner and Ziv [2] establishgflce the sources are independently encoded. Hence, accurate
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codeword. A CCE approach that can track the varying BSC > Slepran-Wol

crossover parameter in a codeword by incorporating particlelounszaio—s| Ssane decoder L

. . . . M tti X

filters in an LDPC factor graph, was proposed in [21]. Parti- q" | il coure |
Slepian-Wo

Recon-
struction

cle filtering was subsequently substituted by an expectation
propagation algorithm, resulting in comparable accuracy and
reduced computational overhead [22].

Concerning WZ coding, several CCE methods have been
proposed in the context of DVC. The majority of the schemes
assume an additive noise channel, where the correlation nqg'lsge 1. The layered Wyner-Ziv coding scheme.
is an independent memoryless zero-mean Laplacian distributed

random variable [6], [23]. Several stationarity levels of the

correlation noise have been considered. In transform—domgma" noise stationarity blocks are assumed. This opposes

DVC, for instance, the correlation noise can be estimatcaqe methods in [32], [33], where the correlation noise was
for every frequency band per frame or even per tranSfor@&nsidered stationar;/ With’in a codeword.

coefficient [23]. To improve the CCE in the transform domain, Second, at each WZ decoding stage, we derive a novel esti-

tﬂe use of a pixle !-domain C(?E agi thAe s.pa.tlial correlation R{ate of the correlation noise scaling parameter per stationarity
t elnpls(;e .S'gT]a I'?RFXEFI)EOSGI mrE ]'25 S|mr|]ar confc_:ept WaSiock by exploiting the side information and the decoding
exploited in the algorithm [25], where re INeMent ¢ srmation from the previous decoded stages. Conversely to

of the noise variance upon decoding of each DCT ba% r previous work [33], it is proven that the derived estimate

was Carrle_d out, Epr0|t_|ng cross-ba_nd and_ 'nter'b't'plarl%nstitutes the MLE of the correlation noise parameter. We
dependencies [26] for noise frame residue refinement was o derive the Gxmer-Rao lower bound (CRLB) on the

forward in [27]. Alternatively, block-based classification of th(—;11 curacy of our MLE per decoding stage. We show that, as
!_aplace scaling payameter using offline training was perform number of decoded stages increases, the derived C,RLB
in [28]. An adaptive CCE met'hod based on clustering %{ proaches the oracle-based CRLB, that is, the ideal bound
.DCT blocks, updated at the bit-plane Ie_vel, was presentgilained when knowing the correlation noise samples.

in [29]. Nevertheless, these CCE techniques for DVC areThird, unlike methods solely designed for DVC, e.g., [23]

application-specific; many of which are even explicitly tailore - Ll g
i : 5], [27], [28], the proposed approach is application-generic.
to particular codec components; e.g., the methods in [23], [2 h]erE agap[liegl to DR/Cp partichI)ngy the prggosed teghnique

[27}-{29] are designed for motion-compensated mterpolathg neither confined to a specific side information generation

ba/ied S'dle. "lf.orma“on O, CCE for Wz cogindMethod (unlike [23], [24], [27]) nor does it impose a fixed
N appiication-generic approach 1o or codin ecoding order of the DCT bands like the approach in [25].

the method n [30] exploits p_artlcle f|_|ter|ng_based _belle_ Simulations on synthetic data show that, per decoding stage,
propagation, enabling adaptation to fine noise stationar

. . : e mean squared error (MSE) of the proposed MLE is vastly
levels. However, it does not support layered coding since al : .
. S .. decreased compared to our previous state-of-the-art estimator
the bit-planes are decoded on a joint factor graph. In additi

. . N additiqhy [33] and approaches the derived CRLB. Furthermore,
the increased code length and the use of particle filtering RHL W7 rate-distortion (RD) performance obtained by using

ge?c?(;nzovrcggtgfls%nilszzjra}r [gg] tgse thiJ e(e:zigleori.t ‘i]:t'g:_é)il[t_';f;t]lﬁe proposed method is close to the one obtained by assuming
correlation in the WZ decoding and in the CCE refinemenLperfect knowledge of the noise statistics. When implemented

Yet. onlv few CCE soluti dd licati in our state-of-the-art DVC system for wireless capsule en-
et, only few Solutions can address application-geneyy scopy, the proposed method yields systematic compression

!aygroedt wz cotdflngt.hTh_etautg_?rsl of [3d2] extznde_d the meth% ins over the TRACE technique in [25] and our prior SID
in [20] to count for the inter-bit-plane dependencies express E method in [33] (i.e., rate savings up to 7.13% and

using a Laplace correlation noise model. In prior work [33 .22%, respectively). The results also show that the proposed

we proposed an efficient bit-plane-per-bit-plane SucceSSiV%P@orithm causes a reduction of the decoding complexity.
refined CCE for the side-information-dependent (SID) corre- Concerning the remainder of the paper, Section Il elaborates

lation channel. In [32], [33], however, the correlation noise .
was assumed stationary per DCT band of each frame. on layered WZ coding and states the CCE problem. The

proposed CCE algorithm is presented in Section Ill, while
bounds on the estimation accuracy are derived in Section IV.
B. Contributions Section V expands on the application of the proposed CCE
wireless capsule endoscopy, and Section VI reports our
Section VII concludes the work.

encoder

Targeting at efficient generic layered WZ coding, this papél? . .
proposes a novel approach to progressively refined maxim&?ﬁoe”mental results. Finally,
likelihood (ML) estimation of the Laplacian correlation chan-
nel. The proposed technique features key novelties with respect Il. PROBLEM SETTING
to the state-of-the-art.

First, the proposed method considers the correlation nofse
statistics to vary per block (a.k.a. chunk) of consecutive We consider layered WZ coding of a sour&egiven cor-
samples in a codeword and provides accurate CCE even whelated side informatiory” available at the decoder. Contrary

Layered Wyner-Ziv Coding Architecture
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to [4], in the considered code design (see Fig. 1), source clgsticular, if the mean squared error (MSE) distortion metric
tering is realized by scalar quantization without nesting. Thie employed, the optimal reconstruction of a source sample
design is motivated by constructions [34] that employ classica] is obtained as the centroid of the random variaKlgiven
guantization and exclusively assign the binning operation tafee corresponding side information sampjeand the decoded
highly-dimensional channel code. Such code constructions gigantization indexsz). Namely,i; = E |z;]y;, ql(M) . where

commonly used in DVC, e.g., [6], [15], [25], [32]. E[e|e] is the conditional expectation operator. Closed-form
1) Encoder: Consider a quantization functio@»/(X), expressions for the reconstruction function can be found in

Qu X — {1,2,.., 2M}' that is @ mapping from the 4] and [37] for a Gaussian and a Laplacian pdf, respectively.

source to the quan.tlzatlon a_lphabgt. Given the partiton, 3) Rate Control:Early DSC designs [4], [10], [11], assume

theA encoder quantizes the incoming source samplasple e correlation statistics to be stationary and perfectly knawn

X = x1,To,...,Tn, T; € X, 10 @ guannzann index-tuple priori at the encoder and decoder. Under this assumption, the

0N oa (M) (M) (M) (M , d :
g _é @i a2 el G € _{1727 ~-_-72M}- The encoder and decoder agree on an efficient code rate driven by
quantization indexa-tuple ™) is then divided into a number the SW rate. Yet, in practice, the correlation channel exhibits
of M bit-planes of lengthe, i.e.,b™, b®, ..., ™) where a non-stationary behavior, which neither can be known in

p™ 2 pm pim) pU™) denotes them-th bit-plane and advance nor can it be measured in practice. Therefore, a rate-
bz(.m) = {0, 1} represents thé—th bit in them-th bit-plane.  adaptive decoder-driver rate control approach using a feedback

Using a predefined order—e.g., from the most-significaghannel is a good solution for many applications [6], [15], [32].
bit-plane (MSB),m = 1, to the least significant bit-plane

(LSB), m = M,—the source bit-planeb™), b®, ..., b™ 5 The Correlation Channel Estimation Problem

are sequentially passed to a SW encoder that can ideall)(Ne assume that the correlation between the sodfcand

achieve the compression rafé (2 (X)[¥'). In this work, the side informatiort” is expressed by a memoryless channel
structured SW binning is implemented by the rate-adaptiv iae | ! IS EXpres Y a y '
= Y +Z, where the correlation noisé is zero-mean Lapla-

LDPC accumulate (LDPCA) codes of [5]. . i . .
2) Decoder : The decoder exploits the correlation statisticg & e, Z ~ Laplace(0,)), and independent of the side

to sequentially decode the source bit-plan€s, b®, ..., b information, which is arbitrarily distributed. The assumption
with the aid of the side information samp,lezstu}o.l.e.,x In of independent correlation noise opposes our previous work
icular. f bit-plams™ - : [33], where the noise was dependent on the side information.
phartlcu ar,l or every _so.urci it-pla h = {1’2[ '“’M}(’j Our motivation stems from the fact that most existing DVC
the correlation statistics between the sourcéuple x an systems employ the former model to express the correlation

the side informationn-tuple y are converted to soft-input o 6], [14], [23]-[32]. The correlation channel pdf is
estimates, namely, log-likelihood ratios (LLRs). These LLR

) . o X ™ en given by
which providea priori information about the probability of
each bit to beb\™ = 0 or 5™ = 1, are passed to the soft Fxpy (@ly) = éexp(_)\‘x —y)), 1)
channel decoder. Then, an iterative soft-decoding algorithm 2

(e.g., the sum-product algorithm [35]) is executed to decog@ere \ — V2 s the scaling parameter of the distribution
. . " 2
the source bit-planes with an error probability close to zerg ndo% = E {Z2}. We assume that the correlation noi&ds

For optimal layered WZ coding, during the formulation,;q ‘stationary namely, \ varies per noise stationarity block
of the LLRs, information given by the side information a”‘échunk), defined byK consecutive samples in the noige
the already deccgd()ed source bit-planes is taken into aCCOL{UbIe z, wheren mod K = 0. To express this formally, we
Specifically, letd;””, m € {1,2,...M}, i € {1,2,..n}, adhere to the following notation. An-tuplezis written asz 2
be the bit under con5|derat|ogl,- be2the correlspondlng S|de202122mzL_1, wherez, denotes a block of th& succeeding
information sample value ankj )_a b )a---vbz('ini " be the al- poise samplesx x4+, Wherei = {1,2,..., K} counts the
ready decoded bits in the previous — 1 (bl|)t-|?2l)anes(7.n:l'£1en, samples in the block, € {0,1, ..., L — 1} indexes the blocks,
P (0" =0lyi b by andL 2 2. The set{)\,},_, contains the scaling parameters

P(o™ =1]y:b) b7 6" V)" that control the noise distribution over the entirduple z.
where the numerator and the denominator are calculated bXJnder the common but unrealistic assumption that the

integrating the conditional probability density function (pdf) of  relation noise samplasare knowna priori to the decoder,

the correlation channel, i.efix|y (z[y), over th(; quantizatlion an offline MLE for the scaling parameter per stationarity block
bin defined by the already decoded bbfé),b,(; ), ...,bgm_ ) z, is given by
and by settingbg"‘) =0 or b§m> = 1, respectively. Because . 1
f this chai h he LLRs, th | “
of this chained approach to construct the s, the total rate St — <Z ZZXKH) U014 L1 (@
1=1

the input LLR is given bylog

conforms to the chain rule of entropies [36]. This means that,

ideally, there is no performance loss between non-layered and

layered WZ coding [4]. We remark thatigff in (2) is a minimum variance unbiased
Once all the source bit-planes are decoded, they are coahVU) estimator [38].

bined to form the decoded quantization indices of the sourceln practical DSC designs, however, the correlation noise

These indices are then used to reconstruct the source with ¢aanot be directly measured as the source and the side infor-

help of the side information and the correlation statistics. imation are located at the encoder and decoder, respectively.
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. . . N L—-1
In the following, we derive a novel online MLE fok, per again so as to obtain the channel parame éM)

stationary block at the decoder, which can be successiVglich are used to perform optimal minimum MSE (ﬁlQ/I’SE)
refined as source bit-planes are decoded. We also evaluate the struction. Since per additional decoded bit-pl&ﬁ@ the

asymptotic efficiency of the proposed MLE using the CRLB,ajlaple approximatiog™ of the source samples at the de-
We remark that a block-stationary noise model with a L-1

constant number of samples per stationarity block is assunf&fler becomes more accurate, the obtained '\{u&m) o
for simplicity. The focus of the paper is on the derivation andre becoming more accurate as well, thereby Ieacfiﬁg to a
the evaluation of the performance of the MLg. Devising progressively improved CCE.

mechanisms to adapt to complex noise variations through

arbitrary shaped blocks is outside the scope of this paper.

B. Maximum Likelih Estimation Formulation
Il. M AXIMUM LIKELIHOOD CORRELATION ESTIMATION aximu elihood Estimation Formulations

A. Introduction to the Basic Concept We now concentrate on the proposed derivation of the MLE

In the layered WZ coding scheme, discussed in Section I-A{™ from the samples in thé-tuplesqy™ andy,. Since
the sourcen-tuplex is quantized with 2/ -stage quantization We focus on the samples in a stationarity block and in order
partition Q,; and successively encoded infd bit-planes. to maintain the simplicity of the notations, without loss of
This progressive coding scheme is equivalent teamedded generality, we hereby drop the subscripthat indexes the
partition Q1Qs...Qum...Qxr, Where them-th stage partition Stationarity block. Consider the following definition.
Q.. has2™ quantization intervals corresponding to indices Definiton 1 (n-th Stage Estimator): Let q(")
g™ € {1,2,...,2m}, formed by the bit$\" 6> .6 We  ¢{™ g™, ¢, g™ e {1,2,..,2m}X be a K-tuple
exploit this progressive coding approach at the decoder db quantization indices of the WZ source samples, formed
design a successively refined MLE of thock-stationary by m SW decoded bit-planes, < m < M . Also, let
correlation channel parametsy. Yy £ yi,ys,...,yx be aK-tuple of side information sam-

The proposed progressive ML CCE scheme is describplits withy € YX. An m-th stage estimatoA(™ of the
as follows: Starting from initial correlation channel parametdraplace correlation channel in (1) is defined as a function

N L-1 . m K K _ H
estimates{ \{"” , the SW decoder decodes the M8f) ¥ : 11,2, 2717 x ¥* — A, whereA = (0, +oc0) is the
£=0 o . . garameter set for(™) and K is the samples’ size.
of the source samples. This initial estimate may for instance ) C o .
be obtained from a previously decoded dattuple, or it can We consider then-th stageconditional likelihood function
be the expected value of the parameter derived from offlifd?) = _p(q( Iy A), w_herep(q( Iy A) is the conditional
observations probability mass function (pmf) of the quantization indices

By decodingb(", the decoder obtains access to a coarsefytuPle given the side information samples™tuple, param-
quantized version of the source samples, denoted bw{heeterlzed by the parameter of the correlation channel pdf.
tuple gV, which corresponds to partitio);. The decoder Since the correlation channel is assumed memoryless, we have

L

can exploit the available quantized sourcéupleq? and the
side informationn-tuple y to perform CCE for the next bit- (m) (m)
plane. Analogous to the decomposition of the noise samples L) =p(@™ly;A) = Hp(q,i i3 A), ®3)
into stationarity blocks, let us wrig() 2 g(VqMq{"...q" =1

andy £ yuy,Ys...y;,_;. Namely, per stationarity block,

the decoder derives an MLE@I) using the samplesél)

K

where p(¢™ |y \), Vi € {1,2,..,K}, is the conditional

and yox x40, i € {1,2,.., K}, in the K-tuplesq!’) and s yc pmf_ for t.:'e q“a”tizatg?” i”qde)‘?z?:) of f.‘ source SaT”;]p'e

respectively. The proposed derivation of the MLE is detaileg 9IVen 'S CO”eS(ES” g side Information s_amglle. €

. ) c Lt conditional pmfp(qi lyi; A) is defined by the mtegra}nor_\ of

in Section 11I-B. The updated paramete{rsz } __arethen the correlation channel pdfy|y (z|y) over the quantization

used to derive the soft-input information to SW decode thein defined byg™, that is

next source bit-pland®. The decoder then combines the v ’

available b and b® to form a more accurate version, )

. 2 . . ’Ui

|.e.,.§'1( ), of the gua_nu;ed source sample; (corre;pondmg to p(qu)lyi;A) :/ Fxiy (@) da

partition )2), which is in turn used to obtain a refined MLE ul™

A?) per stationary block. o™
In a recursive manner, after SW decoding of th&™ =/ Zexp(—Alz —yil)dz,  (4)

bit-plane ¢ < m < M), the proposed algorithm forms a w2

quantized versiorg(™ of the source samples based on the

available bit-planeso®™®..b™. Using /™ andy, the whereu!™ andv(™ are respectively the lower and upper

decoder obtains an MLE@’") for the /—th stationary block. bound of the quantization bin indexed by") in the quanti-

We highlight that when all bit-planes have been decodezhtion partition(,,. Depending on the relative position gf

a.k.a.,m = M, the proposed MLE algorithm is carried outwith respect to the bounqaz(""),vfm)) of the bin indexed by
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q§m>, the probabilityp(qgm)|yi;>\) can be computed as Proposition 2 (High Rate Assumptions)Jnder high
rate assumptions, the1 MLE is approximated hy™ =
m - (m)_ . (m)
o (S 16 ) whereg™ = 275
™y, 2™y, m m m m . .
ge M) — fem M), yi < ug™ Proof: Let A" = (™ — (™ denote the quantization
I R G DR N D) yi > ol™ 5) interval at them-th decoding stage. When!™ — 0 the
T 1o @™y ;e—A(vﬁ"”—yi)’ pdf fxy(z|y) is assumed to be constant in the quantization
2 2T (m) interval and thus, the pmf in (4) can be approximated as
u; <y <y (m) A=A gy A (M) ; i
p(g; |yi_; A) > ge M {IA;". Inserting the latter in (8)
We wish to find anm-th stage MLEA(™), such that and solving forA ends the proof. N =
Remark 11n the general case, the conditional log-likelihood
A = argmax £(\). (6) equation-Z InL(\) = 0 is an exponential equation ok
A

and cannot be solved analytically. Hence, we hinge on an

To ease the calculations, we derivé™ by equivalently numerical solution. A grid search for the(™) that attains

maximizing a monotone transformation of (3), that is the maximum in (6) is not computationally feasible, since
the parameter set fak is continuous and not confined to a

K (m) finite interval, i.e.,A = (0,400). To derive the MLE, we
L) =Inp(@™]y:\) = > Inp(q;"yi;N)- () implement a numerical root finding algorithm that combines

=1 bracketing, bisection, secant, and inverse quadratic interpo-
lation methods [39]. After a maximum number of iterations
Jarax, if the algorithm cannot find the root of equation (8),
with a given accuracy,.., then we set\(m) = \(m—1),
Namely, the correlation channel parameter estimate from the
o LS (m) previous decoding level is retained. The same holds for the
oy L) =0= > oy 0p(a Iy A) =0, (8)  case that falls into Collorary 1. It is noteworthy that as more

i=1 bit-planes are decoded the quantization intervals inrthth

where the partial derivativ%% lnp(qi(m)\yy:;k) is derived in stage partition®,,, in the decoder become finer and in turn,

Appendix A for each of the three forms of (5), correspondin%]e probabr|1l!ty C;I ha\_/|n_g a case corresp%ndr:ng to Collo_rarly
to the cases; < W™ s o™ and w™ < g < o™ Qrops. This effect is in accordance with the progressively
! i oY= Ui i =Y @ refined nature of the proposed estimator.

COT”ﬁem'”g ;heESf"f“O” of (g)’uthe following holds. The proposed ML CCE algorithm, as applied for theth
__-neorem (Existence and Uniquenesg)ere 'S a uhique stationarity block, is summarized in Algorithm 1.
finite m-th stage MLEXA(™) of the Laplace correlation channel

pdf fx |y (x|y) for K samples, under the condition that ther
exists at least one side information samplan y that is not

Then, them-th stage MLEA(™) that achieves the maximum in
(6), can be found as the solution of the followingth stage
conditional log-likelihood equation

ilgorithm 1 ML Estimation at Stationary Block Level

between or on the bounds of the quantization bin defined by: function MLE(q/”),yZ)
its correspondingn-th stage quantization inde;{m). 2: if u&”}(ﬂ < Yowk4i < vé;”}{H,Vi €{1,2,...K}
Proof: The proof of Theorem 1 is given in Appendix B 3: then
preceded by a preparatory lemma. m 4 SetA{™ = ;{m~
Corollary 1: If every side information samplg; iny is  5: else
located between or on the bounds of the quantization bif: if Yoxrti & [u?j}pﬂ,vé’j}{ﬂ) A
defined by its correspondingn-th stage quantization index 7:
¢™, namely, ifu{™ < y; < o™ Vie {1,2,.. K}, then 8 AET}(H =AM, vie{1,2,.. K}
the m-th stage MLE is given b\(™) = 4o, 9: then
Proof: Intuitively, Whenul(.m) <y < vz(m) Vy; iny, then 10 )\ém) is analytically found by (18) or (19).
the likelihood is maximized at; = 0 or A = +oco. Formally, 1% else _ _ _
from the proof of Theorem 1, ihfm) <y < Ui(m)aw c 12 I;md Ay by num_erlcal_ly solving the equation
’ 13: Fx In L(A) = 0 defined in (8).

) 0 m -
{1.,2, K} 'then AETOO a—)'\lnp(q( )|'y; A) = 0. Combining . end ¥
this result with Lemma 1 in Appendix B ends the proofm 15: end if
The following two propositions describe the conditionse: end function
under which an analytical derivation of the finite MLE, defined
in Theorem 1, is feasible. _ Remark 2:For simplicity, the above presentation of the ML
Proposition 1 (Analytical Solutions)The MLE can be ggtimation formulations consider identical side information
found analytically if the following sufficient conditions aresamplesy at every refinement leveln € {1,2,..., M}.
satisfied: (i) the quantizer has uniform intervals and (et since the proposed ML CCE algorithm is applied per
(7 Ugm),%(m) Vi={1,2,..,K}. refinement stagen, it can be directly generalized to the case
Proof: The proof is sketched in Appendix C. m where the side information samplg&™ are refined per level.
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Remark 3:The proposed progressively refined ML CCE V. APPLICATION TOWYNER—-ZIV CODING OF
algorithm is applicable irrespective of the side information’s ENDOSCOPICVIDEO

distribution and the quantization function used at the layeredrne practical merit of the proposed MLE is shown using our
WZ encoder. The MLE is derz\&e)d t()sg,ed on the side informandoscopic DVC (EDVC) [15] system. EDVC delivers state-
tion samples and the boundis;™, v;""’) of the quantization of the-art DVC performance, outperforming several relevant

bin corresponding to each quantized source sa . up-to-date codecs, including [14], [33], [40], [41].
We conjecture that the proposed technique can be extended

to estimate the standard deviation of a zero-mean Gausskem

correlation noise as well. The proof and validation of this ) ]
conjecture is left as topic for further research. In EDVC [15], the key frames are intra-coded with JPEG

or H.264/AVC Intra, whereas the WZ frames are encoded in
a hash and a WZ stage. The hash is a reduced resolution
IV. ASYMPTOTIC EFFICIENCY BOUNDS version of each WZ frame coded at a low quality with JPEG
) ) ~or H.264/AVC Intra. Each WZ frame undergoes the discrete
The m-th stage MLE, which results from solving (8), iscosine transform (DCT) and then the coefficients of each band
biased since (8) is a non-linear equation anTo study g are encoded following the codec in Section II-A. Namely,

the asymptotic efficiency of the proposed MLE, we derivge quantized coefficients per bagé)(3) are turned into

the m-th stage CR_LB”") for the problem. We observe thaty; o1anesh(™)(3) that are passed to an LDPCA encoder [5].
the o_Iom_am m_whlch then-th stage conditional likelihood In the decoder, the decoded key frames are used together
function in (3) is nonzero does( n)ot depend kbnHence, the iuh the decoded and up-scaled hash to produce a motion-
regularity conditiont [ 75 Inp (a4 |y; )‘> |Y] = 0 is satisfied ;o nensated prediction of the WZ frame (see [15] for details).
[38]. As a consequence, the CRIB is given by Transforming the prediction frame yields side information. In
) 1 [15], correlation estimation was performed using our SID CCE
CRLB™ — _F {82 1np(q(m)|y; M|y ’ (9) algorithm from [33] that assumes band-level noise stationarity
OA per frame. In this work, however, we implement our novel ML
where E[e|Y] is the conditional expectation with respect toCCE’ which is applleq for each §tat|onar|ty block per band Of.
L (m) I\y. each frame. The obtained statistics are used to decode the bit-
the conditional pmfp(q'™|y; A\). The average curvature of

. SN . planes of the WZ bands and perform reconstruction. Inverse
the conditional log-likelihood function can be computed as : - . ) .
integer DCT is finally carried out to return to the pixel domain.

Codec Architecture Overview

o2 (m)
. {8)@ tp(aly: A)Y} B. Proposed ML Correlation Estimation Technigue in EDVC
_ Z 672111 (@™ y: A) p(q™y: ) The correlation between the DCT coefficients of a WZ
B axz P alys A parEy; frame and its side information is considered Laplacian with

g a scaling parameter varying per group of neighboring coeffi-

> K o2 (m) s (m) cients in each band per frame. For consistency, following the
:Z Z Z Wlnp (qi |yi;/\> Hp (qi |y";/\) notations from Section Il, the size of a band of a frame is
a™=1  q=1"=1 =t denoted byn = V x H, whereV, H represent the number
Ko2" 52 | (m) of DCT blocks in the vertical and horizontal direction of
=3 > e mp (qz(m Iyi;A) p (qim |yi;>\) , (10) a transformed frame, respectively. Coefficients of the same
=1 gm) band, sayg, that belong toK = K; x K, neighboring DCT

blocks are clustered into correlation noise stationarity blocks,
where the forms o (" |y:; Ag and 25 Inp (/™ |y:;A)  WhereKy, K are divisors of, I, respectively. By definition,
are given by (5) and (12a)-(12c), respectively. Lemma 1 fRere areL = "<k, Stationarity bloc.ks qf coefﬂqents per
Appendix B proves thataa—; 1np(q(m)|y; ) < 0, thereby band 5 of a frar_ne; narAner, for a side information frame
verifying that CRLE™ > 0. For the analytical forms of the barﬁjf\éve C;” Wr'?i(.ﬂ) t: .yow)}r/]lt()f)yz(ﬂ)”'yhbl(tﬁh)' The
MLE, obtained under the conditions described in Propositiolﬁ = J1 X foo COETNCIENTS 1 eac ock, (5) s arLeil € same
1, them-th stage CRLE™’s are given in Appendix C. correlation noise parameteg(5). Thelset{Ag(ﬁ)}é:0 refers
It is worth noticing that, as the number of decoded W the scaling parameters of the noise over the baraf a

. R{LnB . . (m) rame.
stages increases, the C agymptotlcally (ie. A, . The proposed ML CCE technique is executed per hzod
0) approach2es the oracle (or offline) CRLB. The latter, which is ] < (0) L-1
defined by, refers to the unrealistic case where the decod&Rch WZ frame. The scaling paramet%ﬂé (5)}13:0 needed
has access to the noise samples. This convergence to the ortgcligitiate the algorithm are copied from the corresponding
CRLB can be readily verified by replacing the approximateand of the previously decoded WZ frafn®y decoding each

high rate pmf (given in the proof of Proposition 2) into (10). , _ _ _ _
For the first WZ frame in the sequence a predefined set of scaling
parameters is used to decode the first bit-plane per band. Specifically, based
1For the sake of simplicity, we again drop the subscfipiat indexes the on offline measurements, one parameter per band is determined as the average
stationarity block size. value from all the frames in several test sequences.
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bit-planeb ™ (8) in the band, the decoder learns a recursivelyomparison. Four experimental setups are considered, corre-
updated quantized versiog” (3) of the WZ coefficients. sponding to a Gaussian or Laplacian side informétamd to a

Based on theX coefficients in eaclfqém’) (/6) and y[(ﬁ), an source Iength ofv = 1584 or 6336. In this experimental Setup,

updated MLEA™ (8) is derived, as detailed in Section 11I-B, W€ S€tn = K (ie., L =1). The results in Fig. 2 indicate that
The stationarity block sizek, which is regulated by the the Proposed MLE systematically yields a significantly lower
parameterss; and K>, affects the accuracy of the aIgorithm.MSE performance in comparison to the' naive |n|t|ql estimator
Low K, and K, values (correspondingly, lows values) &S well as our previous successively refined Sll es_tlmato_r from
provide adjustment to the regional variation of the channEi3l- The vast MSE decrease compared to our prior estimator
statistics but, on the other hand, challenge accurate statistiSaflu€ t© the fact the proposed estimate is the MLE of the

inference due to narrow statistical support. In particular, i€ scaling parameter. In fact, the MSE of our MLE closely

low value of K increases the probability of the special casio!lows the CRLB™ per decoding stages, irrespective of

described in Corollary 1, Le}\ém) (8) = +oc. For this reason, :_P:e distrirllaution of ﬂ:jel\/i(?' informatior} OTI theﬁ.spurce. Iengtrr:.
the algorithm also estimates a single& () per band of each ence, the propose Is asymptotically efficient given the

f  usi Il the band lesvi dam(3). This decoded information at stage. It is important to observe
rame, using all the band samplesy() andg ™ (5). This ihat, asm increases, the CRLB’ and the MSE of the

estimate is used in case an MLE for a stationarity block couproposed MLE progressively converge to the oracle CRLB.
not be derived. . . . .
This behavior corroborates the successively refined nature of
VI. EXPERIMENTAL RESULTS the proposed estimator.
. . Subsequently, we compare the RD performance of layered
A. Evaluation on Synthetic Data WZ coding using the proposed MLE algorithm against the
We implement the layered WZ coding system detailed iferformance obtained when assuming perfect knowledge of
Section II-A. By definition (see Section II-B), the source ishe noise scaling parameters at the decoder (offline/oracle
formed asX = Y + Z, where the side informatioy’ is estimation). The RD performance when the initial fixed scaling
considered either Gaussian or Laplacian with a zero mean gitameter is used to decode all the bit-planes is also assessed.
oy = 50. The correlation noise samples are drawn from gR this experimental setup, the source length is setf®1
independent zero-mean Laplacian distribution. Per stationar§dmples, the side information is Laplacian and various sta-
block £ = 0,1,...,L — 1 in a codeword, the noise scalingtionarity block sizes, that isk” = 198,132,99,0r 44 5 are
parameter\, = XZ is randomly selected from the intervalconsidered. Fig. 3 depicts the distortion—expressed in terms
A¢ € [0.2020,2.8284] (corresponding tarz, € [0.5,6]) with of the signal-to-noise ratio SNR= 10log(c% /(1 Y (2; —
uniform probability. The source sample (codeword) length i&)?))—versus the rate required for the compression of bit-
set ton = 1584 or 6336. Source guantization is realized byplanesm = 2 to 8. The results show that, in case of
a uniform scalar quantizer witB® levels, corresponding to large stationarity block sizes [see Figs. 3(a)-(b)], the proposed
M = 8 bit-planes. To SW decode the first bit-plane of th&ILE achieves an RD performance almost identical to offline
encoded source-tuple and thus, to initiate the proposed MLEestimation irrespective of the RD point. In case of smaller
NO . stationarity block sizes [see Fig. 3(c)-(d)], a performance

algorithm, a fixed scaling parameter value, i), . A

. o . £=0 loss compared to offline estimation is observed due to the
1.5152, is used. This initial value constitutes the mean of the o o
: . . . . .~ reduced statistical support for accurate derivation of the MLE.
interval from which), is drawn. Concerning the configuration

. _— . Y Compared to decoding with the fixed initial parameter, the
of the numerical root-finding algorithm, we set the initial value d icallv vields hiah f
to 0.01, the maximum number of iterations.dg; 4 x = 1000, proposed MLE systematically yields higher RD performance.

10 In effect, the obtained improvements are mounting with the
and the accuracy te,.. = 107'°. Average results ovet00 . . .
) . rate because the proposed MLE is successively refined as more
independent trials are presented.

We begin by evaluating the MSE performance of the pr(|)r_1f0rmat|on 's decoded.

posed MLE per decoded stage (represented by the number ) ]

of SW decoded bit-planes) with respect to the derivedn B- Evaluation on Endoscopic Video Data

stage CRLE™ and the oracle CRLB. The MSE performance To assess the impact of the proposed algorithm on the per-

obtained with the initial estimator (i.e., using the fixed paranfermance of our state-of-the-art EDVC [15] system, we carry

eter vaIue{XéO)} T _ 15152 to decode all the bit-planes)om experiments on threg conventional endospopic and fi\{e
oo Je=0 ) capsulé endoscopic test video sequences obtained from clini-

and our previous SiI estimafofrom [33] are also added in the cal examinations performed at the Gastroenterology Clinic of

3The SID estimator in [33] is designed for the SID correlation channe‘i,he Unlver5|talr_ Zlek_enhL_“S B_russels- The CapSUIe end_oscoplc
where the distribution of the correlation noisé = X — Y is zero- Sequences, which visualize diverse areas of the gastrointestinal

mean Laplacian with a scaling paramefdy) that varies depending on the trgck of 2 patients, contain50 frames each, acquired at a
realizationy of the side information. For practicality [33], a finite number of

sca_lir)g parameter)s_(gi) are‘esti_mated by assigni_ng side ‘information sam_ples 4As mentioned irRemark 3the algorithm is applied unaltered irrespective
to finite indicesy; via quantization. In this specific experiment, the quantizefe . © sictribution of the side information

Is uniform with 27 levels. According to [33, Lemma 2] one may derive the 5The scaling parameter of the correlation noise is constant forKhe

scaling parameter estimate for the Sll channel from the estimates derived for . - .
1 samples within each stationarity block.

a ~ —1/2 _ )
the SID channel assr; = {Zgl P?(yi)%] » Wherepy, (3) is 6The capsule endoscopic video data were obtained with the PillCam SB2
the pmf of the quantized side information. [42] from Given Imaging.
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Fig. 2. The average MSE of the proposed MLE, our previous SlI estimator from [33], and the initial estimatar5152 with respect to then-th stage
CRLB(™) and the oracle CRLB, plotted versus the number of decoded bit-planes.

TABLE |

BJIONTEGAARD RATE DELTAS, AR(%), ON THE EDVC PERFORMANCE
WHEN USING VARIOUS STATIONARITY BLOCK SIZES VERSUS THE
PERFORMANCEOBTAINED ASSUMING NOISE STATIONARITY PER BAND

PER FRAME.

K 1024 256 64 16 4
(K1 x K3) (32 x 32)[(16 x 16)|(8 x 8)[(4 x 4)[(2 x 2)
Capsule Video 1| -0.18 -0.51 | -0.99 | -1.25 | -0.99
Capsule Video 2| -0.03 -0.32 | -0.60 | -0.88 | -0.76
Capsule Video 3| -0.18 -0.41 | -0.64 | -0.81 | -0.48
Capsule Video 4| -0.11 -0.39 | -0.59 | -0.68 | -0.18
Capsule Video 5| -0.20 -0.44 | -0.62 | -0.85 | -0.39

K 384 64 24 16 4
(K1 x Ka3) (24 x 16)| (8 x8) |(6x4)[(4 x4)[(2x2)
Endoscopy Video L -0.43 -0.95 | -1.14 | -1.21 | -0.86
Endoscopy Video P -0.45 -0.73 | -0.85 | -0.94 | -0.63
Endoscopy Video B -0.35 -0.77 | -0.92 | -1.13 | -1.06

rate of 2Hz with a frame resolution df56 x 256 pixels.
Contrary, each endoscopic sequence contiifsframes with
a resolution of480 x 320 pixels at a frame rate &f0Hz. The

parameter\ (™) (B) is estimated per band of each frame (i.e.,
n = K = 64 x 64 = 4096 for capsule endoscopic and
n = K = 120 x 80 = 9600 for endoscopic sequences) is
set as benchmark. Table | depicts the Bjgntegaard Deltas [43]
(BD) on the performance of EDVC obtained with different
stationarity block sizesk’; x K5, compared to the benchmark
configuration. The results corroborate the trade-off between
capturing the spatial variations of the noise and maintaining
adequate support for the accurate derivation of the MLE.
Overall, the best performance is achieved when regulating the
stationarity block size td&{ = K; x K, = 16 coefficients.

The performance of the EDVC system with the proposed
MLE method is thereafter compared with the performances
obtained when using alternative up-to-date CCE techniques.
The results in Fig. 4 and Table Il show that the proposed
MLE (using K = 16) systematically outperforms the TRACE
[25] method and our previous SID CCE [33] technique, with
respective BD rate savings of up to 7.13% and 4.22%. TRACE
has also been used as a benchmark to evaluate other CCE

EDVC system was configured with a GOP of size two and athethods, including [27], [29], [33]. Unlike TRACE and our
three Y, U and V components of the sequences were encodgflh CCE method, the proposed MLE is asymptotically effi-

as detailed in [15].

cient per decoding stage. In addition, contrary to TRACE, the

Initially, we study the influence of the stationarity blockproposed method performs a bit-plane-per-bit-plane refinement
size on the CCE accuracy and in turn, on the RD perfoof the CCE. This is a feature of other existing CCE methods
mance. The codec’s configuration where a Laplace scaliag well, including [26], [27], [30], [31] and our SID CCE
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Fig. 3. RD performance of layered WZ coding with the proposed MLE. The side information is Laplacian, while various noise stationarity levels are teste
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@ (b)
Compression performance of EDVC using different online CCE methods versus Motion JPEG or H.264/AVC Intra: (a) Capsule Video 1

(b) Endoscopy Video 1. The rate is expressed in kilo-bits-per-second (kbps), while the distortion is quantified using the peak-signal-to-noise-ra
4xPSNR,+PSNR,+PSNR,
PSNRwyy = G

Fig. 4.

. The key and the hash frames of EDVC are encoded with (a) JPEG, or (b) H.264/AVC Intra.

technique. Compared with our SID CCE, however, the pr@&. Complexity Assessment
posed MLE can adapt better to small noise stationarity levels,The complexity of the proposed MLE technique is compar-

thereby improving the accuracy of the correlation estimatiogtjvely evaluated using execution time measurements obtained
The results in Fig. 4(a) show that EDVC, equipped with theith the software implementation of our EDVC systemfihis
proposed MLE technique, yields comparable performance complexity examination methodology is commonly followed
Motion JPEG despite the highly-complex motion conditionis the literature [25], [30], [33]. Table Il depicts the execution
encountered in capsule endoscopic video content. These dime per WZ frame for the proposed MLE (configured with
ditions are due to the erratic motion of the capsule in th§ = 4096 or K = 16) and our previous SID CCE [33]
gastrointestinal tract and the low acquisition frame rates. Yétethod. The total decoding time and the number of feedback
when temporally fluent endoscopic video content is enCOdequperiments were executed on an IffelCore™ i7 CPU running at
[see Fig. 4(b)], EDVC introduces a notable BD rate gain gf,

g ‘ . 0GHz with 16GB of RAM. Our EDVC was written in C++, compiled
8.80% over H.264/AVC Intra (Main Profile with CABAC).  with Visual Studio 2008 and running in release mode under Windows 7.
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TABLE Il . .
BJONTEGAARD DELTAS ON THE PERFORMANCE OFEDVC WHEN Using  decoding stages. It is also shown that the proposed MLE

THE PROPOSEDMLE METHOD VERSUSUP-TO-DATE CCE TecHniQuEs  delivers an RD performance close to offline estimation. When
incorporated into our EDVC system, the proposed method

A‘F’QS((-)/T)RAASSEN[F?Z}B AVRS-( ;;Zggﬁé?jé) systematically yields superior RD performance over state-
0 0 - e . .
Capsule Video T| -4.36 025 182 011 of—the—art techniques. Specifically, when gndoscoplc y|deo
Capsule Video 2| -5.15 033 | -1.48 0.10 content is encoded, the proposed method brings respective BD
gapsu:e V!geo 3 -5-(7)0 8-2; -é-gg 8-1é [43] rate savings of up to 7.13% and 4.22% over TRACE [25]
apsule Video 4| -5.04 . -2. 1 ; ; : e
Capsule Video 5| -7.13 040 | -a.22 023 and our previous SID CCE [33] technlq_ue. F_mally, as vgrlfled
Endoscopy Video L -4.67 024 | 311 0.17 by experimentation, the proposed algorithm is computationally
Endoscopy Video 2-6.16 031 | -350 0.21 efficient. In fact, on account of the improved accuracy in
Endoscopy Video 3-5.05 025 | -387 023 CCE, the LDPCA decoder converges faster, leading to reduced
TABLE I decoding delays that benefit applications like wireless capsule
DECODING EXECUTION TIME (SEC) AND NUM. OF FEEDBACK REQUESTS endoscopy.
PER WZ-FRAME OF THEEDVC SYSTEM CONFIGURED WITHDIFFERENT
CCE TECHNIQUES (A) CAPSULE VIDEO 4, (B) CAPSULE VIDEO 5.
APPEN DIXA( :
B m), .
SID CCE [33] |MLE (K = 4096)] MLE (K = 16) CALCULATION OF 73 Inp(g; |yi; A) AND
CCE| Dec.| #FB [CCE| Dec.| #FB |CCE| Dec.| #B 2 np(g™ Jyi; \)
time| time | regs. [time| time | regs. |time| time | regs. ) ]
(@)|RD pt-1/0.03[27.40 66.5 |0.09|25.8¢ 54.60|0.11|25.29 54.37 Applying the natural logarithm to the three cases of the pmf
RD pt-20.23)132.03 96.62| 0.46/30.29 86.83)0.59)129.39 85.03 in (5) and then taking the first partial derivative with respect to

RD pt-30.42/50.43148.170.64|46.74139.52 0.90,44.03136.06 . )y .
RD pt-40.76(62.24193.150.87|57.43185.001.1952.74180.75 A Yields the three forms of5 Inp(g; |y;; A) shown in (11a),
(b)|RD pt-10.03[28.53 68.62|0.08|26.89 58.09(0.10|26.5§ 56.25 (11b) and (11c), wherAEm is the quantization interval of the
RD pt-20.18/33.74 98.52|0.22|31.4q 93.37|0.37/30.77 91.38 . T o (m) m my
RD pt-3 0.34|52.36158.080.38|48.58147.710.63/46.27145.50  ‘—th quantization cellg;™" = y;—u; ", andn; "~ = v; " —y;.

K2

RD pt-40.72/63.8(0204.080.79/58.93196.15 1.10|55.04193.25 Next, applying the partial derivative with respect)t@n (11a),
(11b) and (11c) gives the three forms §f7 lnp(q§m)|yi; A)
expressed by (12a), (12b) and (12c).

requests per WZ frame of EDVC, configured with each of the
assessed CCE techniques, is also provided. APPENDIX B

The results indicate that the correlation estimation generally EXISTENCE AND UNIQUENESS OF THEMLE
has a minor impact on the total decoding computational Th h gitional loa-likelihood f
demands compared to other components of the decoder, p_aJ:emma 1:The m-th stage con itional log-likelihood func-
ticularly, the side information generation and the LDPCAON In £(X) for a Laplace correlation channel is concave at
decoding. Contrasting the complexities of the different CCEe (©, +°.°)' , , o
methods, it can be observed that, when the noise scaling Proof: Tak'”g the second pgmal derivative of £(}),
parameter is estimated at a DCT band level (6.~ 4096), d€fined by (7), with respect t, yields

the proposed MLE induces a complexity comparable to that o2 o2 K
of our previous SID technique in [33]. Lowering the value of v InL(\) = e 1an<q§m>|yi; A)
K increases the complexity of the proposed method, as the i=1

MLE algorithm is run per stationarity block of each band. K 92 (m)
Nevertheless, incorporating the proposed MLE (especially = Z Whlp(qi iz A), (13)
using K = 16) reduces significantly the overall decoding i=1
complexity of EDVC compared to employing our prior SIDWhere each term?™ 1 ( (m)‘ +\) is given by (11a), (11b)
CCE method. In effect, as shown in Table lll, by improving % PG 1Y g(m) y (7’,1)
the CCE accuracy over our prior SID technique, the propos8 m()11<c) depen((jl?)g on Wh?hfl%fi ; U;\ ; 9202 Uz’) 0;
<y < v, ’, respectively. Sincex € (0,+oc0) an

MLE method induces fewer feedback channel requests % | _
LDPCA decoding iterations. Hence, the feedback channel r > 0, the summation terms in (13) that may take the

and the associated latency are also reduced. form of (12a) or (12b2 are evidently strictly negative. These
terms correspond t()qim),yi) pairs for whichy; < u§m> or
VII. CONCLUSION yi > vf’"). We now turn to the terms that may follow the

i (m) , (m)
A novel CCE technique tailored to generic layered WZ cocf(-)rm of (12c). Since for these terms;™ < y; < v ",

ing has been proposed in this paper. Unlike existing method3€n by gme;flnmonegm) >0 ar:ﬂ)nl(m) > 0, meaning that
e.g., [30], [32], [33], the proposed approach derives a novel< e * " < 1 and0 < e *: "~ < 1. As a consequence,
MLE of the scaling parameter of the Laplacian correlatiofor the denominator of the first fraction in (12c) it holds that
noise. Adhering to quality scalable WZ coding, the derived e8-— e =™ S . Namely, the terms in (13) that
timator is progressively refined per decoding stage. The M3y follow (12c) are also strictly negative. As a consequence,
of the proposed estimator is proven to approximate the del’iV§§5 Inp(q™y; \) < 0. Therefore, according to the second
m-th stage CRLB™, converging to the oracle CRLB at highderivative testln p(q(™|y; \) is concave at\ € (0, +o0c). H
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Proof of Theorem 1: From Lemma 1, the function APPENDIXC
% Inp(q("™|y; \) is strictly monotonically decreasing ate ANALYTICAL SOLUTIONS OF THEMLE
(0, +-00). Furthermore, the one-sided limit of the function at  proof of Proposition 1: Provided thaty; ¢

zero is [Ugm)’%(m)) o= {1,

2,...,K}, one can divide the pairs
5 (qgm%yi), i € {1,2,..,K}, in two disjoint setsS, and
lim 5Inp(q(m)\y; A) Sg, corresponding to the cases < v!™ andy; > o™,
respectively. Under this condition, (8) can be developed as

fz tim, (g™ by A) = oo, (14) NG

(m)
5 [y R

1€S 4

(m)

since hmAﬂw % hap(qz \yl, A) = +oo for all possible l i
+ Z —Yi+ (m)
A

forms of -2 x lnp(qf lyi; A), given by (11a), (11b) or (11c). o

. o o ) (m) ) ) )
Concerning the I|m|t at infinity, we have: if; < u;"", Gijven that the quantize,, has uniform intervals, namely,

thenlimy 4 o0 25 Inp(q." \yz, A) = 9 ) < 0. AIternatlver Al™ = Am) i e {1,2,.., K}, then equation (16) becomes

if y; > vl( m) , thenlimy_, o, 2 % lnp( |yl, ) 77( ™ <0,

] =0, (16)
1

If ugm) <y < vz(m), then hm>\_,+oo lnp( )|y1, A) =0. |SA|A(m) |SB|A(m)

Hence, if there exists at least one S|de mformatlon samgple 1- e AR AN

in y for which y; < u{™ or y; > o™, then => [ (m) _ yli| 3 [yi - yg’”)} . (17)
i€Sa i€Sp

where|S4|, |Sp| denote the cardinalities of the sefs and

i 0 | )y Sp. It holds that:|S4| + |Sp| = K. Next, solving (17) forA
k_l}fooa np(q-"™ly; A) gives
K 1
Z [Ui(m) —?/z} + [yi —Ugm)} +|SplAatm
Combining (14) and (15) with the fact thak In p(q™|y; \) x In 1S54 o i<5s o =
is continuous and strictly monotonically decreasing proves that Z [Ui - yz} + Z [yi - ] |SalA
the equationZ Inp(q™|y; \) = 0 has a unique and finite i€Sa i€Sp
solution at\ € (0, +00). n (18)
. Al m
Yi — ( )‘*‘Wa yi<uz(' ), (11a)
0 . m Al m
i np(gl™ |y A) = { ol )_yi+(w371)—1’ yi > o™, (11b)
(m) ,—xo{™ (m) ,—an{™
;" e (Tj)- n; e - ngm) < yl(m) < Ugm). (11c)
2 —e M e
[ M’ﬂ ? omaam
- 2 Yi < Ugm), (12a)
{1 - e‘AAgm)}
|:A('7n)i| 2 e)‘AS,m)
2 v (m)
—_— >0, (12b
a)\z lnp( ‘yz, = |:e/\A§m) B 1:|2 ) Yi = ’UZ ( )
] a0 [ em)]? 2
[91. } e [m— } el G A0y )
_ 9 _ e*>\0§m) _ e*Am(m) - 9 _ ef/\gz(m) _ ei}\ngm) )
W <™ <ol 129
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(m)

Alternatively, if|Sg| = 0 or |S4| = 0, namely, ify; < u
ory; > o™ Vi€ {1,2,.., K} then

%

(14]

F1 [15]

KA(m)
ln 1 + 9

Eim [yl B Ui(m)} [16]

where the— and+ on the exponent corresponds to the first
and second case, respectively. B 17
CRLB™ for the Analytical Forms: Provided that the
conditions listed in Proposition 1 hold, then replacing thﬁs]
second derivative forms of (12a) and (12b) in (10) gives

§0m) —

1
NC) (29)

‘SB |A(m) e)\A(m)

(emw) _ 1>2

|SA|A(77L)€—)\A('”)

(1 _ 6_m<m>)2

[19]
CRLB(™) =

(20)
Setting|S4| = K and|Sp| =0 or |[Sp| = K and|S4| =0 in
(20) yields the respective CRLB) for the casey; < u!™ or
yi > o™ Vie{1,2,..,K}. n

%

(20]
(21]

[22]
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