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Abstract—The distributed source coding theory teaches that ef-
ficient compression can be achieved by exploiting the correlation
between encoded sources at the decoder only. A critical issue in
this coding paradigm is how to accurately estimate the correlation
statistics at the decoder. This paper proposes a novel correlation
channel estimation method designed for generic layered Wyner-
Ziv coding. Driven by real-life applications, i.e., video coding,
the correlation noise is assumed to be memoryless zero-mean
Laplacian with a block-stationary behavior. Unlike existing meth-
ods, the proposed technique derives a novel maximum likelihood
estimate of the noise scaling parameter per stationarity block.
Adhering to layered coding, the derived estimate is successively
refined as more stages are decoded. The Crámer-Rao lower bound
(CRLB) for our estimator is derived and the mean squared error
performance of the proposed successive refinement algorithm is
evaluated through simulations. Apart from achieving an accuracy
close to the derived CRLB, the proposed algorithm is shown to
yield a Wyner-Ziv rate-distortion performance approaching the
ideal but unrealistic scenario where the decoder knowsa priori
the correlation statistics. Moreover, the proposed technique has
been integrated into our latest Wyner-Ziv video codec for wireless
capsule endoscopy. Experimentation reveals that the proposed
method delivers improved compression performance compared
to state-of-the-art techniques, while simultaneously reducing the
overall decoding complexity.

Index Terms—Layered Wyner-Ziv (WZ) coding, correlation
channel estimation (CCE), maximum likelihood estimate (MLE),
Cr ámer-Rao lower bound (CRLB), wireless capsule endoscopy.

I. I NTRODUCTION

D ISTRIBUTED source coding (DSC) refers to the sepa-
rate encoding and joint decoding of correlated sources.

Slepian and Wolf [1] derived the theoretically achievable rate
region for the distributed coding of two discrete sources in a
lossless compression scenario. Wyner and Ziv [2] established
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the lower rate bound under a distortion constraint when a
source is encoded independently but decoded using a corre-
lated signal as side information. In successively refined Wyner-
Ziv (WZ) coding [3], [4], a source is encoded in multiple
stages and decoded with different distortion and possibly
different side information at each stage.

Expressing the statistical dependency between the dis-
tributed sources in the form of a virtual channel, one may
design Slepian-Wolf (SW) coding based on binning realized
by channel codes [5]–[7]. Alternatively, distributed arithmetic
codes [8], [9] can also implement SW coding. Practical WZ
constructions include nested lattice or trellis codes [10] and
SW coded nested [11] or non-nested [6] lattice quantization. In
[4], successively refined WZ coding was constructed by nested
scalar quantization followed by SW coding of bit-planes with
low-density parity-check (LDPC) codes.

DSC finds applications in several domains, including wire-
less sensor networks [12], biometrics, and tampering localiza-
tion [13]. Distributed video coding (DVC) [6], [12], [14], in
particular, targets lightweight multimedia applications, such as
wireless visual sensors and wireless capsule endoscopy [15]. In
this context, layered WZ coding [4] provides scalability, a key
trait for transmission over heterogeneous wireless networks
with varying resources and bandwidth.

A common assumption in DSC schemes, e.g., [4], [10], [11],
[16], is that the joint decoding of the sources is carried out with
a priori knowledge of the correlation statistics. However, in
real-world signals, for instance, obtained by sensors that mea-
sure temperature, humidity, or capture sound or visual data,
the correlation statistics vary both spatially and temporally.
The varying correlation statistics cannot be directly measured
since the sources are independently encoded. Hence, accurate
correlation channel estimation (CCE) is critical to achieve high
joint decoding performance.

A. Related Work

Various works have addressed CCE for SW coding of binary
sources, where the correlation is modeled as a binary sym-
metric channel (BSC). To estimate the crossover probability
of the BSC, residual redundancies in the log-likelihood ratios
were exploited in [17], while expectation-maximization (EM)
algorithms were proposed in [18], [19]. In [20], a maximum
likelihood estimate (MLE) was obtained using the source
and the side information syndromes, which served as an
initialization for the EM algorithm. Nevertheless, in [17]–[20]
the correlation noise was assumed to be stationary within a
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codeword. A CCE approach that can track the varying BSC
crossover parameter in a codeword by incorporating particle
filters in an LDPC factor graph, was proposed in [21]. Parti-
cle filtering was subsequently substituted by an expectation-
propagation algorithm, resulting in comparable accuracy and
reduced computational overhead [22].

Concerning WZ coding, several CCE methods have been
proposed in the context of DVC. The majority of the schemes
assume an additive noise channel, where the correlation noise
is an independent memoryless zero-mean Laplacian distributed
random variable [6], [23]. Several stationarity levels of the
correlation noise have been considered. In transform-domain
DVC, for instance, the correlation noise can be estimated
for every frequency band per frame or even per transform
coefficient [23]. To improve the CCE in the transform domain,
the use of a pixel-domain CCE and the spatial correlation of
the noise signal is proposed in [24]. A similar concept was
exploited in the TRACE algorithm [25], where refinement
of the noise variance upon decoding of each DCT band
was carried out. Exploiting cross-band and inter-bit-plane
dependencies [26] for noise frame residue refinement was put
forward in [27]. Alternatively, block-based classification of the
Laplace scaling parameter using offline training was performed
in [28]. An adaptive CCE method based on clustering of
DCT blocks, updated at the bit-plane level, was presented
in [29]. Nevertheless, these CCE techniques for DVC are
application-specific; many of which are even explicitly tailored
to particular codec components; e.g., the methods in [23], [24],
[27]–[29] are designed for motion-compensated interpolation
based side information creation.

An application-generic approach to CCE for WZ coding,
the method in [30] exploits particle filtering based belief
propagation, enabling adaptation to fine noise stationarity
levels. However, it does not support layered coding since all
the bit-planes are decoded on a joint factor graph. In addition,
the increased code length and the use of particle filtering put
a high computational strain on the decoder. Joint bit-plane
decoding was also used in [31] as to exploit inter-bit-plane
correlation in the WZ decoding and in the CCE refinement.

Yet, only few CCE solutions can address application-generic
layered WZ coding. The authors of [32] extended the method
in [20] to count for the inter-bit-plane dependencies expressed
using a Laplace correlation noise model. In prior work [33],
we proposed an efficient bit-plane-per-bit-plane successively
refined CCE for the side-information-dependent (SID) corre-
lation channel. In [32], [33], however, the correlation noise
was assumed stationary per DCT band of each frame.

B. Contributions

Targeting at efficient generic layered WZ coding, this paper
proposes a novel approach to progressively refined maximum
likelihood (ML) estimation of the Laplacian correlation chan-
nel. The proposed technique features key novelties with respect
to the state-of-the-art.

First, the proposed method considers the correlation noise
statistics to vary per block (a.k.a. chunk) of consecutive
samples in a codeword and provides accurate CCE even when
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Fig. 1. The layered Wyner-Ziv coding scheme.

small noise stationarity blocks are assumed. This opposes
the methods in [32], [33], where the correlation noise was
considered stationary within a codeword.

Second, at each WZ decoding stage, we derive a novel esti-
mate of the correlation noise scaling parameter per stationarity
block by exploiting the side information and the decoding
information from the previous decoded stages. Conversely to
our previous work [33], it is proven that the derived estimate
constitutes the MLE of the correlation noise parameter. We
also derive the Cŕamer-Rao lower bound (CRLB) on the
accuracy of our MLE per decoding stage. We show that, as
the number of decoded stages increases, the derived CRLB
approaches the oracle-based CRLB, that is, the ideal bound
attained when knowing the correlation noise samples.

Third, unlike methods solely designed for DVC, e.g., [23]–
[25], [27], [28], the proposed approach is application-generic.
When applied to DVC, particularly, the proposed technique
is neither confined to a specific side information generation
method (unlike [23], [24], [27]) nor does it impose a fixed
decoding order of the DCT bands like the approach in [25].

Simulations on synthetic data show that, per decoding stage,
the mean squared error (MSE) of the proposed MLE is vastly
decreased compared to our previous state-of-the-art estimator
from [33] and approaches the derived CRLB. Furthermore,
the WZ rate-distortion (RD) performance obtained by using
the proposed method is close to the one obtained by assuming
perfect knowledge of the noise statistics. When implemented
in our state-of-the-art DVC system for wireless capsule en-
doscopy, the proposed method yields systematic compression
gains over the TRACE technique in [25] and our prior SID
CCE method in [33] (i.e., rate savings up to 7.13% and
4.22%, respectively). The results also show that the proposed
algorithm causes a reduction of the decoding complexity.

Concerning the remainder of the paper, Section II elaborates
on layered WZ coding and states the CCE problem. The
proposed CCE algorithm is presented in Section III, while
bounds on the estimation accuracy are derived in Section IV.
Section V expands on the application of the proposed CCE
in wireless capsule endoscopy, and Section VI reports our
experimental results. Finally, Section VII concludes the work.

II. PROBLEM SETTING

A. Layered Wyner-Ziv Coding Architecture

We consider layered WZ coding of a sourceX given cor-
related side informationY available at the decoder. Contrary
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to [4], in the considered code design (see Fig. 1), source clus-
tering is realized by scalar quantization without nesting. The
design is motivated by constructions [34] that employ classical
quantization and exclusively assign the binning operation to a
highly-dimensional channel code. Such code constructions are
commonly used in DVC, e.g., [6], [15], [25], [32].

1) Encoder: Consider a quantization functionQM (X),
QM : X → {1, 2, ..., 2M}, that is a mapping from the
source to the quantization alphabet. Given the partitionQM ,
the encoder quantizes the incoming source samplesn-tuple
x
ˉ
, x1, x2, ..., xn, xi ∈ X , to a quantization indexn-tuple

q
ˉ
(M) , q

(M)
1 , q

(M)
2 , ..., q

(M)
n , q

(M)
i ∈

{
1, 2, ..., 2M

}
. The

quantization indexn-tupleq
ˉ
(M) is then divided into a number

of M bit-planes of lengthn, i.e., b
ˉ
(1), b

ˉ
(2), ..., b

ˉ
(M), where

b
ˉ
(m) , b

(m)
1 , b

(m)
2 , ..., b

(m)
n denotes them-th bit-plane and

b
(m)
i = {0, 1} represents thei−th bit in them-th bit-plane.

Using a predefined order—e.g., from the most-significant
bit-plane (MSB),m = 1, to the least significant bit-plane
(LSB), m = M ,—the source bit-planesb

ˉ
(1), b

ˉ
(2), ..., b

ˉ
(M)

are sequentially passed to a SW encoder that can ideally
achieve the compression rateH (QM (X)|Y ). In this work,
structured SW binning is implemented by the rate-adaptive
LDPC accumulate (LDPCA) codes of [5].

2) Decoder :The decoder exploits the correlation statistics
to sequentially decode the source bit-planesb

ˉ
(1), b

ˉ
(2), ...,b

ˉ
(M)

with the aid of the side information samplesn-tuple y
ˉ
. In

particular, for every source bit-planeb
ˉ
(m), m = {1, 2, ...,M},

the correlation statistics between the sourcen-tuple x
ˉ

and
the side informationn-tuple y

ˉ
are converted to soft-input

estimates, namely, log-likelihood ratios (LLRs). These LLRs,
which providea priori information about the probability of
each bit to beb(m)

i = 0 or b
(m)
i = 1, are passed to the soft

channel decoder. Then, an iterative soft-decoding algorithm
(e.g., the sum-product algorithm [35]) is executed to decode
the source bit-planes with an error probability close to zero.

For optimal layered WZ coding, during the formulation
of the LLRs, information given by the side information and
the already decoded source bit-planes is taken into account.
Specifically, let b(m)

i , m ∈ {1, 2, ...,M}, i ∈ {1, 2, ..., n},
be the bit under consideration,yi be the corresponding side
information sample value andb(1)

i , b
(2)
i , ..., b

(m−1)
i be the al-

ready decoded bits in the previousm − 1 bit-planes. Then,

the input LLR is given bylog
P
(

b
(m)
i =0|yi,b

(1)
i ,b

(2)
i ,...,b

(m−1)
i

)

P
(

b
(m)
i =1|yi,b

(1)
i ,b

(2)
i ,...,b

(m−1)
i

) ,

where the numerator and the denominator are calculated by
integrating the conditional probability density function (pdf) of
the correlation channel, i.e.,fX|Y (x|y), over the quantization

bin defined by the already decoded bitsb
(1)
i , b

(2)
i , ..., b

(m−1)
i

and by settingb(m)
i = 0 or b

(m)
i = 1, respectively. Because

of this chained approach to construct the LLRs, the total rate
conforms to the chain rule of entropies [36]. This means that,
ideally, there is no performance loss between non-layered and
layered WZ coding [4].

Once all the source bit-planes are decoded, they are com-
bined to form the decoded quantization indices of the source.
These indices are then used to reconstruct the source with the
help of the side information and the correlation statistics. In

particular, if the mean squared error (MSE) distortion metric
is employed, the optimal reconstruction of a source sample
xi is obtained as the centroid of the random variableX given
the corresponding side information sampleyi and the decoded
quantization indexq(M)

i . Namely,x̂i = E
[
xi|yi, q

(M)
i

]
, where

E[•|•] is the conditional expectation operator. Closed-form
expressions for the reconstruction function can be found in
[4] and [37] for a Gaussian and a Laplacian pdf, respectively.

3) Rate Control:Early DSC designs [4], [10], [11], assume
the correlation statistics to be stationary and perfectly knowna
priori at the encoder and decoder. Under this assumption, the
encoder and decoder agree on an efficient code rate driven by
the SW rate. Yet, in practice, the correlation channel exhibits
a non-stationary behavior, which neither can be known in
advance nor can it be measured in practice. Therefore, a rate-
adaptive decoder-driver rate control approach using a feedback
channel is a good solution for many applications [6], [15], [32].

B. The Correlation Channel Estimation Problem

We assume that the correlation between the sourceX and
the side informationY is expressed by a memoryless channel,
X = Y +Z, where the correlation noiseZ is zero-mean Lapla-
cian, i.e.,Z ∼ Laplace(0, λ), and independent of the side
information, which is arbitrarily distributed. The assumption
of independent correlation noise opposes our previous work
[33], where the noise was dependent on the side information.
Our motivation stems from the fact that most existing DVC
systems employ the former model to express the correlation
channel [6], [14], [23]–[32]. The correlation channel pdf is
then given by

fX|Y (x|y) =
λ

2
exp(−λ|x − y|), (1)

where λ =
√

2
σZ

is the scaling parameter of the distribution
andσ2

Z = E
{
Z2
}

. We assume that the correlation noiseZ is
block-stationary; namely,λ varies per noise stationarity block
(chunk), defined byK consecutive samples in the noisen-
tuple z

ˉ
, wheren mod K = 0. To express this formally, we

adhere to the following notation. Ann-tuplez
ˉ

is written asz
ˉ
,

z0z1z2...zL−1, wherez` denotes a block of theK succeeding
noise samplesz`×K+i, where i = {1, 2, ...,K} counts the
samples in the block,̀ ∈ {0, 1, ..., L − 1} indexes the blocks,
andL , n

K . The set{λ`}
L−1
`=0 contains the scaling parameters

that control the noise distribution over the entiren-tuple z
ˉ
.

Under the common but unrealistic assumption that the
correlation noise samplesz

ˉ
are knowna priori to the decoder,

an offline MLE for the scaling parameter per stationarity block
z` is given by

λ̂off
` = K

(
K∑

i=1

|z`×K+i|

)−1

, ` = 0, 1, .., L − 1. (2)

We remark that̂λoff
` in (2) is a minimum variance unbiased

(MVU) estimator [38].
In practical DSC designs, however, the correlation noise

cannot be directly measured as the source and the side infor-
mation are located at the encoder and decoder, respectively.
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In the following, we derive a novel online MLE forλ` per
stationary block at the decoder, which can be successively
refined as source bit-planes are decoded. We also evaluate the
asymptotic efficiency of the proposed MLE using the CRLB.

We remark that a block-stationary noise model with a
constant number of samples per stationarity block is assumed
for simplicity. The focus of the paper is on the derivation and
the evaluation of the performance of the MLEλ`. Devising
mechanisms to adapt to complex noise variations through
arbitrary shaped blocks is outside the scope of this paper.

III. M AXIMUM LIKELIHOOD CORRELATION ESTIMATION

A. Introduction to the Basic Concept

In the layered WZ coding scheme, discussed in Section II-A,
the sourcen-tuplex

ˉ
is quantized with a2M -stage quantization

partition QM and successively encoded intoM bit-planes.
This progressive coding scheme is equivalent to anembedded
partition Q1Q2...Qm...QM , where them-th stage partition
Qm has 2m quantization intervals corresponding to indices
q
(m)
i ∈ {1, 2, ..., 2m}, formed by the bitsb(1)

i b
(2)
i ...b

(m)
i . We

exploit this progressive coding approach at the decoder to
design a successively refined MLE of theblock-stationary
correlation channel parameterλ`.

The proposed progressive ML CCE scheme is described
as follows: Starting from initial correlation channel parameter

estimates
{

λ̂
(0)
`

}L−1

`=0
, the SW decoder decodes the MSBb

ˉ
(1)

of the source samples. This initial estimate may for instance
be obtained from a previously decoded datan-tuple, or it can
be the expected value of the parameter derived from offline
observations.

By decodingb
ˉ
(1), the decoder obtains access to a coarsely

quantized version of the source samples, denoted by then-
tuple q

ˉ
(1), which corresponds to partitionQ1. The decoder

can exploit the available quantized sourcen-tupleq
ˉ
(1) and the

side informationn-tuple y
ˉ

to perform CCE for the next bit-
plane. Analogous to the decomposition of the noise samples
into stationarity blocks, let us writeq

ˉ
(1) , q(1)

0 q(1)
1 q(1)

2 ...q(1)
L−1

and y
ˉ
, y0y1y2...yL−1. Namely, per stationarity block̀,

the decoder derives an MLÊλ(1)
` using the samplesq(1)

`×K+i

and y`×K+i, i ∈ {1, 2, ...,K}, in the K-tuplesq(1)
` and y`,

respectively. The proposed derivation of the MLE is detailed

in Section III-B. The updated parameters
{

λ̂
(1)
`

}L−1

`=0
are then

used to derive the soft-input information to SW decode the
next source bit-planeb

ˉ
(2). The decoder then combines the

available b
ˉ
(1) and b

ˉ
(2) to form a more accurate version,

i.e., q
ˉ
(2), of the quantized source samples (corresponding to

partition Q2), which is in turn used to obtain a refined MLE
λ̂

(2)
` per stationary block̀.
In a recursive manner, after SW decoding of theb

ˉ
(m)

bit-plane (1 ≤ m ≤ M ), the proposed algorithm forms a
quantized versionq

ˉ
(m) of the source samples based on the

available bit-planesb
ˉ
(1)b

ˉ
(2)...b

ˉ
(m). Using q(m)

` and y` the
decoder obtains an MLÊλ(m)

` for the `−th stationary block.
We highlight that when all bit-planes have been decoded,
a.k.a.,m = M , the proposed MLE algorithm is carried out

again so as to obtain the channel parameters
{

λ̂
(M)
`

}L−1

`=0
,

which are used to perform optimal minimum MSE (MMSE)
reconstruction. Since per additional decoded bit-planeb

ˉ
(m) the

available approximationq
ˉ
(m) of the source samples at the de-

coder becomes more accurate, the obtained MLE
{

λ̂
(m)
`

}L−1

`=0
are becoming more accurate as well, thereby leading to a
progressively improved CCE.

B. Maximum Likelihood Estimation Formulations

We now concentrate on the proposed derivation of the MLE
λ

(m)
` from the samples in theK-tuples q(m)

` and y`. Since
we focus on the samples in a stationarity block and in order
to maintain the simplicity of the notations, without loss of
generality, we hereby drop the subscript` that indexes the
stationarity block. Consider the following definition.

Definition 1 (m-th Stage Estimator): Let q(m) ,
q
(m)
1 , q

(m)
2 , ..., q

(m)
K , q(m) ∈ {1, 2, ..., 2m}K be a K-tuple

of quantization indices of the WZ source samples, formed
by m SW decoded bit-planes,1 ≤ m ≤ M . Also, let
y , y1, y2, ..., yK be a K-tuple of side information sam-
ples with y ∈ YK . An m-th stage estimator̂λ(m) of the
Laplace correlation channel in (1) is defined as a function
ϕ : {1, 2, ..., 2m}K × YK → Λ, whereΛ = (0, +∞) is the
parameter set for̂λ(m) andK is the samples’ size.

We consider them-th stageconditional likelihood function
L(λ) = p(q(m)|y; λ), wherep(q(m)|y; λ) is the conditional
probability mass function (pmf) of the quantization indices
K-tuple given the side information samples’K-tuple, param-
eterized by the parameterλ of the correlation channel pdf.
Since the correlation channel is assumed memoryless, we have

L(λ) = p(q(m)|y; λ) =
K∏

i=1

p(q(m)
i |yi; λ), (3)

where p(q(m)
i |yi; λ), ∀i ∈ {1, 2, ...,K}, is the conditional

pmf for the quantization indexq(m)
i of a source sample

xi given its corresponding side information sampleyi. The
conditional pmfp(q(m)

i |yi; λ) is defined by the integration of
the correlation channel pdffX|Y (x|y) over the quantization

bin defined byq(m)
i , that is,

p(q(m)
i |yi; λ) =

∫ v
(m)
i

u
(m)
i

fX|Y (x|yi)dx

=
∫ v

(m)
i

u
(m)
i

λ

2
exp(−λ|x − yi|)dx, (4)

where u
(m)
i and v

(m)
i are respectively the lower and upper

bound of the quantization bin indexed byq
(m)
i in the quanti-

zation partitionQm. Depending on the relative position ofyi

with respect to the bounds[u(m)
i , v

(m)
i ) of the bin indexed by
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q
(m)
i , the probabilityp(q(m)

i |yi; λ) can be computed as

p(q(m)
i |yi; λ)

=






1
2e−λ(u

(m)
i −yi) − 1

2e−λ(v
(m)
i −yi), yi < u

(m)
i

1
2eλ(v

(m)
i −yi) − 1

2eλ(u
(m)
i −yi), yi ≥ v

(m)
i

1 − 1
2eλ(u

(m)
i −yi) − 1

2e−λ(v
(m)
i −yi),

u
(m)
i ≤ yi < v

(m)
i

(5)

We wish to find anm-th stage MLEλ̂(m), such that

λ̂(m) = arg max
λ

L(λ). (6)

To ease the calculations, we derivêλ(m) by equivalently
maximizing a monotone transformation of (3), that is

lnL(λ) = ln p(q(m)|y; λ) =
K∑

i=1

ln p(q(m)
i |yi; λ). (7)

Then, them-th stage MLEλ̂(m) that achieves the maximum in
(6), can be found as the solution of the followingm-th stage
conditional log-likelihood equation

∂

∂λ
lnL(λ) = 0 ⇒

K∑

i=1

∂

∂λ
ln p(q(m)

i |yi; λ) = 0, (8)

where the partial derivative∂
∂λ ln p(q(m)

i |yi; λ) is derived in
Appendix A for each of the three forms of (5), corresponding
to the casesyi < u

(m)
i , yi ≥ v

(m)
i and u

(m)
i ≤ yi < v

(m)
i .

Concerning the solution of (8), the following holds.
Theorem 1 (Existence and Uniqueness):There is a unique

finite m-th stage MLEλ̂(m) of the Laplace correlation channel
pdf fX|Y (x|y) for K samples, under the condition that there
exists at least one side information sampleyi in y that is not
between or on the bounds of the quantization bin defined by
its correspondingm-th stage quantization indexq(m)

i .
Proof: The proof of Theorem 1 is given in Appendix B

preceded by a preparatory lemma.
Corollary 1: If every side information sampleyi in y is

located between or on the bounds of the quantization bin
defined by its correspondingm-th stage quantization index
q
(m)
i , namely, if u(m)

i ≤ yi ≤ v
(m)
i , ∀i ∈ {1, 2, ...,K}, then

the m-th stage MLE is given bŷλ(m) = +∞.
Proof: Intuitively, whenu

(m)
i ≤ yi ≤ v

(m)
i ∀yi in y, then

the likelihood is maximized atσZ = 0 or λ = +∞. Formally,
from the proof of Theorem 1, ifu(m)

i ≤ yi ≤ v
(m)
i , ∀i ∈

{1, 2, ...,K} then lim
λ→+∞

∂

∂λ
ln p(q(m)|y; λ) = 0. Combining

this result with Lemma 1 in Appendix B ends the proof.
The following two propositions describe the conditions

under which an analytical derivation of the finite MLE, defined
in Theorem 1, is feasible.

Proposition 1 (Analytical Solutions):The MLE can be
found analytically if the following sufficient conditions are
satisfied: (i) the quantizer has uniform intervals and (ii)
yi /∈

[
u

(m)
i , v

(m)
i

)
, ∀i = {1, 2, ...,K}.

Proof: The proof is sketched in Appendix C.

Proposition 2 (High Rate Assumptions):Under high
rate assumptions, the MLE is approximated byλ̂(m) =

K
(∑K

i=1 |ξ
(m)
i − yi|

)−1

, whereξ
(m)
i = u

(m)
i +v

(m)
i

2 .

Proof: Let Δ(m)
i = v

(m)
i − u

(m)
i denote the quantization

interval at them-th decoding stage. WhenΔ(m)
i → 0 the

pdf fX|Y (x|y) is assumed to be constant in the quantization
interval and thus, the pmf in (4) can be approximated as
p(q(m)

i |yi; λ) ' λ
2 e−λ|ξ(m)

i −yi|Δ(m)
i . Inserting the latter in (8)

and solving forλ ends the proof.
Remark 1:In the general case, the conditional log-likelihood

equation ∂
∂λ lnL(λ) = 0 is an exponential equation onλ

and cannot be solved analytically. Hence, we hinge on an
numerical solution. A grid search for thêλ(m) that attains
the maximum in (6) is not computationally feasible, since
the parameter set forλ is continuous and not confined to a
finite interval, i.e.,Λ = (0, +∞). To derive the MLE, we
implement a numerical root finding algorithm that combines
bracketing, bisection, secant, and inverse quadratic interpo-
lation methods [39]. After a maximum number of iterations
JMAX , if the algorithm cannot find the root of equation (8),
with a given accuracyεacc, then we setλ̂(m) = λ̂(m−1).
Namely, the correlation channel parameter estimate from the
previous decoding level is retained. The same holds for the
case that falls into Collorary 1. It is noteworthy that as more
bit-planes are decoded the quantization intervals in them-th
stage partitionQm in the decoder become finer and in turn,
the probability of having a case corresponding to Collorary
1 drops. This effect is in accordance with the progressively
refined nature of the proposed estimator.

The proposed ML CCE algorithm, as applied for the`−th
stationarity block, is summarized in Algorithm 1.

Algorithm 1 ML Estimation at Stationary Block Level

1: function MLE(q(m)
` , y`)

2: if u
(m)
`×K+i ≤ y`×K+i ≤ v

(m)
`×K+i, ∀i ∈ {1, 2, ...,K}

3: then
4: Set λ̂(m)

` = λ̂
(m−1)
`

5: else
6: if y`×K+i /∈

[
u

(m)
`×K+i, v

(m)
`×K+i

)
∧

7:

8: Δ(m)
`×K+i = Δ(m), ∀i ∈ {1, 2, ...,K}

9: then
10: λ̂

(m)
` is analytically found by (18) or (19).

11: else
12: Find λ̂

(m)
` by numerically solving the equation

13: ∂
∂λ lnL(λ) = 0 defined in (8).

14: end if
15: end if
16: end function

Remark 2:For simplicity, the above presentation of the ML
estimation formulations consider identical side information
samplesy

ˉ
at every refinement levelm ∈ {1, 2, ...,M}.

Yet, since the proposed ML CCE algorithm is applied per
refinement stagem, it can be directly generalized to the case
where the side information samplesy

ˉ
(m) are refined per level.
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Remark 3:The proposed progressively refined ML CCE
algorithm is applicable irrespective of the side information’s
distribution and the quantization function used at the layered
WZ encoder. The MLE is derived based on the side informa-
tion samples and the bounds[u(m)

i , v
(m)
i ) of the quantization

bin corresponding to each quantized source sampleq
(m)
i .

We conjecture that the proposed technique can be extended
to estimate the standard deviation of a zero-mean Gaussian
correlation noise as well. The proof and validation of this
conjecture is left as topic for further research.

IV. A SYMPTOTIC EFFICIENCY BOUNDS

The m-th stage MLE, which results from solving (8), is
biased since (8) is a non-linear equation onλ. To study
the asymptotic efficiency of the proposed MLE, we derive
the m-th stage CRLB(m) for the problem. We observe that
the domain in which them-th stage conditional likelihood
function in (3) is nonzero does not depend onλ. Hence, the
regularity conditionE

[
∂

∂λ ln p
(
q(m)|y; λ

)
|Y
]

= 0 is satisfied
[38]. As a consequence, the CRLB(m) is given by1

CRLB(m) = −E

[
∂2

∂λ2
ln p(q(m)|y; λ)|Y

]−1

, (9)

whereE[•|Y ] is the conditional expectation with respect to
the conditional pmfp(q(m)|y; λ). The average curvature of
the conditional log-likelihood function can be computed as

E

[
∂2

∂λ2
ln p(q(m)|y; λ)|Y

]

=
∑

q(m)

∂2

∂λ2
ln p(q(m)|y; λ) p(q(m)|y; λ)

=
2m
∑

q
(m)
1 =1

...

2m
∑

q
(m)
K =1

K∑

i=1

∂2

∂λ2
ln p

(
q
(m)
i |yi; λ

) K∏

i=1

p
(
q
(m)
i |yi; λ

)

=
K∑

i=1

2m
∑

q
(m)
i =1

∂2

∂λ2
ln p

(
q
(m)
i |yi; λ

)
p
(
q
(m)
i |yi; λ

)
, (10)

where the forms ofp
(
q
(m)
i |yi; λ

)
and ∂2

∂λ2 ln p
(
q
(m)
i |yi; λ

)

are given by (5) and (12a)-(12c), respectively. Lemma 1 in
Appendix B proves that ∂2

∂λ2 ln p
(
q(m)|y; λ

)
< 0, thereby

verifying that CRLB(m) > 0. For the analytical forms of the
MLE, obtained under the conditions described in Proposition
1, them-th stage CRLB(m)’s are given in Appendix C.

It is worth noticing that, as the number of decoded WZ
stages increases, the CRLB(m) asymptotically (i.e.,Δ(m)

i →
0) approaches the oracle (or offline) CRLB. The latter, which is
defined byλ2

K , refers to the unrealistic case where the decoder
has access to the noise samples. This convergence to the oracle
CRLB can be readily verified by replacing the approximated
high rate pmf (given in the proof of Proposition 2) into (10).

1For the sake of simplicity, we again drop the subscript` that indexes the
stationarity block size.

V. A PPLICATION TO WYNER–ZIV CODING OF

ENDOSCOPICVIDEO

The practical merit of the proposed MLE is shown using our
endoscopic DVC (EDVC) [15] system. EDVC delivers state-
of-the-art DVC performance, outperforming several relevant
up-to-date codecs, including [14], [33], [40], [41].

A. Codec Architecture Overview

In EDVC [15], the key frames are intra-coded with JPEG
or H.264/AVC Intra, whereas the WZ frames are encoded in
a hash and a WZ stage. The hash is a reduced resolution
version of each WZ frame coded at a low quality with JPEG
or H.264/AVC Intra. Each WZ frame undergoes the discrete
cosine transform (DCT) and then the coefficients of each band
β are encoded following the codec in Section II-A. Namely,
the quantized coefficients per bandq

ˉ
(M)(β) are turned into

bit-planesb
ˉ
(M)(β) that are passed to an LDPCA encoder [5].

In the decoder, the decoded key frames are used together
with the decoded and up-scaled hash to produce a motion-
compensated prediction of the WZ frame (see [15] for details).
Transforming the prediction frame yields side information. In
[15], correlation estimation was performed using our SID CCE
algorithm from [33] that assumes band-level noise stationarity
per frame. In this work, however, we implement our novel ML
CCE, which is applied for each stationarity block per band of
each frame. The obtained statistics are used to decode the bit-
planes of the WZ bands and perform reconstruction. Inverse
integer DCT is finally carried out to return to the pixel domain.

B. Proposed ML Correlation Estimation Technique in EDVC

The correlation between the DCT coefficients of a WZ
frame and its side information is considered Laplacian with
a scaling parameter varying per group of neighboring coeffi-
cients in each band per frame. For consistency, following the
notations from Section II, the size of a band of a frame is
denoted byn = V × H, whereV , H represent the number
of DCT blocks in the vertical and horizontal direction of
a transformed frame, respectively. Coefficients of the same
band, sayβ, that belong toK = K1 × K2 neighboring DCT
blocks are clustered into correlation noise stationarity blocks,
whereK1,K2 are divisors ofV,H , respectively. By definition,
there areL = n

K1×K2
stationarity blocks of coefficients per

band β of a frame; namely, for a side information frame
band we can writey

ˉ
(β) , y0(β)y1(β)y2(β)...yL−1(β). The

K = K1×K2 coefficients in each blocky`(β) share the same
correlation noise parameterλ`(β). The set{λ`(β)}L−1

`=0 refers
to the scaling parameters of the noise over the bandβ of a
frame.

The proposed ML CCE technique is executed per bandβ of

each WZ frame. The scaling parameters
{

λ̂
(0)
` (β)

}L−1

`=0
needed

to initiate the algorithm are copied from the corresponding
band of the previously decoded WZ frame2. By decoding each

2For the first WZ frame in the sequence a predefined set of scaling
parameters is used to decode the first bit-plane per band. Specifically, based
on offline measurements, one parameter per band is determined as the average
value from all the frames in several test sequences.
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bit-planeb
ˉ
(m)(β) in the band, the decoder learns a recursively

updated quantized versionq
ˉ
(m)(β) of the WZ coefficients.

Based on theK coefficients in eachq(m)
` (β) and y`(β), an

updated MLEλ̂
(m)
` (β) is derived, as detailed in Section III-B.

The stationarity block sizeK, which is regulated by the
parametersK1 andK2, affects the accuracy of the algorithm.
Low K1 and K2 values (correspondingly, lowK values)
provide adjustment to the regional variation of the channel
statistics but, on the other hand, challenge accurate statistical
inference due to narrow statistical support. In particular, a
low value of K increases the probability of the special case
described in Corollary 1, i.e.,̂λ(m)

` (β) = +∞. For this reason,
the algorithm also estimates a singleλ̂(m)(β) per band of each
frame, using all the band samples iny

ˉ
(β) andq

ˉ
(m)(β). This

estimate is used in case an MLE for a stationarity block could
not be derived.

VI. EXPERIMENTAL RESULTS

A. Evaluation on Synthetic Data

We implement the layered WZ coding system detailed in
Section II-A. By definition (see Section II-B), the source is
formed asX = Y + Z, where the side informationY is
considered either Gaussian or Laplacian with a zero mean and
σY = 50. The correlation noise samples are drawn from an
independent zero-mean Laplacian distribution. Per stationarity
block ` = 0, 1, ..., L − 1 in a codeword, the noise scaling
parameterλ` =

√
2

σZ`
is randomly selected from the interval

λ` ∈ [0.2020, 2.8284] (corresponding toσZ`
∈ [0.5, 6]) with

uniform probability. The source sample (codeword) length is
set ton = 1584 or 6336. Source quantization is realized by
a uniform scalar quantizer with28 levels, corresponding to
M = 8 bit-planes. To SW decode the first bit-plane of the
encoded sourcen-tuple and thus, to initiate the proposed MLE

algorithm, a fixed scaling parameter value, i.e.,
{

λ̂
(0)
`

}L−1

`=0
=

1.5152, is used. This initial value constitutes the mean of the
interval from whichλ` is drawn. Concerning the configuration
of the numerical root-finding algorithm, we set the initial value
to 0.01, the maximum number of iterations toJMAX = 1000,
and the accuracy toεacc = 10−10. Average results over400
independent trials are presented.

We begin by evaluating the MSE performance of the pro-
posed MLE per decoded stage (represented by the numberm
of SW decoded bit-planes) with respect to the derivedm-th
stage CRLB(m) and the oracle CRLB. The MSE performance
obtained with the initial estimator (i.e., using the fixed param-

eter value
{

λ̂
(0)
`

}L−1

`=0
= 1.5152 to decode all the bit-planes)

and our previous SII estimator3 from [33] are also added in the

3The SID estimator in [33] is designed for the SID correlation channel,
where the distribution of the correlation noiseZ = X − Y is zero-
mean Laplacian with a scaling parameterλ(y) that varies depending on the
realizationy of the side information. For practicality [33], a finite number of
scaling parametersλ(ỹi) are estimated by assigning side information samples
to finite indicesỹi via quantization. In this specific experiment, the quantizer
is uniform with 27 levels. According to [33, Lemma 2] one may derive the
scaling parameter estimate for the SII channel from the estimates derived for

the SID channel aŝλSII =
[∑

ỹi
pỸ (ỹi)

1

λ̂2(ỹi)

]−1/2
, wherepỸ (ỹi) is

the pmf of the quantized side information.

comparison. Four experimental setups are considered, corre-
sponding to a Gaussian or Laplacian side information4 and to a
source length ofn = 1584 or 6336. In this experimental setup,
we setn = K (i.e., L = 1). The results in Fig. 2 indicate that
the proposed MLE systematically yields a significantly lower
MSE performance in comparison to the naive initial estimator
as well as our previous successively refined SII estimator from
[33]. The vast MSE decrease compared to our prior estimator
is due to the fact the proposed estimate is the MLE of the
noise scaling parameter. In fact, the MSE of our MLE closely
follows the CRLB(m) per decoding stagem, irrespective of
the distribution of the side information or the source length.
Hence, the proposed MLE is asymptotically efficient given the
decoded information at stagem. It is important to observe
that, as m increases, the CRLB(m) and the MSE of the
proposed MLE progressively converge to the oracle CRLB.
This behavior corroborates the successively refined nature of
the proposed estimator.

Subsequently, we compare the RD performance of layered
WZ coding using the proposed MLE algorithm against the
performance obtained when assuming perfect knowledge of
the noise scaling parameters at the decoder (offline/oracle
estimation). The RD performance when the initial fixed scaling
parameter is used to decode all the bit-planes is also assessed.
In this experimental setup, the source length is set to1584
samples, the side information is Laplacian and various sta-
tionarity block sizes, that is,K = 198, 132, 99, or 44 5 are
considered. Fig. 3 depicts the distortion—expressed in terms
of the signal-to-noise ratio SNR= 10 log(σ2

X/( 1
n

∑
(xi −

x̂i)2))—versus the rate required for the compression of bit-
planes m = 2 to 8. The results show that, in case of
large stationarity block sizes [see Figs. 3(a)-(b)], the proposed
MLE achieves an RD performance almost identical to offline
estimation irrespective of the RD point. In case of smaller
stationarity block sizes [see Fig. 3(c)-(d)], a performance
loss compared to offline estimation is observed due to the
reduced statistical support for accurate derivation of the MLE.
Compared to decoding with the fixed initial parameter, the
proposed MLE systematically yields higher RD performance.
In effect, the obtained improvements are mounting with the
rate because the proposed MLE is successively refined as more
information is decoded.

B. Evaluation on Endoscopic Video Data

To assess the impact of the proposed algorithm on the per-
formance of our state-of-the-art EDVC [15] system, we carry
out experiments on three conventional endoscopic and five
capsule6 endoscopic test video sequences obtained from clini-
cal examinations performed at the Gastroenterology Clinic of
the Universitair Ziekenhuis Brussels. The capsule endoscopic
sequences, which visualize diverse areas of the gastrointestinal
track of 2 patients, contain150 frames each, acquired at a

4As mentioned inRemark 3, the algorithm is applied unaltered irrespective
of the distribution of the side information.

5The scaling parameter of the correlation noise is constant for theK
samples within each stationarity block.

6The capsule endoscopic video data were obtained with the PillCam SB2
[42] from Given Imaging.
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(a) Y Laplace,n = 1584.
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(b) Y Gaussian,n = 1584.
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(c) Y Laplacian,n = 6336.
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Fig. 2. The average MSE of the proposed MLE, our previous SII estimator from [33], and the initial estimatorλ̂ = 1.5152 with respect to them-th stage
CRLB(m) and the oracle CRLB, plotted versus the number of decoded bit-planes.

TABLE I
BJØNTEGAARD RATE DELTAS, ΔR(%), ON THE EDVC PERFORMANCE

WHEN USING VARIOUS STATIONARITY BLOCK SIZES VERSUS THE

PERFORMANCEOBTAINED ASSUMING NOISE STATIONARITY PER BAND

PER FRAME.

K 1024 256 64 16 4
(K1 × K2) (32 × 32) (16 × 16) (8 × 8) (4 × 4) (2 × 2)

Capsule Video 1 -0.18 -0.51 -0.99 -1.25 -0.99
Capsule Video 2 -0.03 -0.32 -0.60 -0.88 -0.76
Capsule Video 3 -0.18 -0.41 -0.64 -0.81 -0.48
Capsule Video 4 -0.11 -0.39 -0.59 -0.68 -0.18
Capsule Video 5 -0.20 -0.44 -0.62 -0.85 -0.39

K 384 64 24 16 4
(K1 × K2) (24 × 16) (8 × 8) (6 × 4) (4 × 4) (2 × 2)

Endoscopy Video 1 -0.43 -0.95 -1.14 -1.21 -0.86
Endoscopy Video 2 -0.45 -0.73 -0.85 -0.94 -0.63
Endoscopy Video 3 -0.35 -0.77 -0.92 -1.13 -1.06

rate of 2Hz with a frame resolution of256 × 256 pixels.
Contrary, each endoscopic sequence contains100 frames with
a resolution of480× 320 pixels at a frame rate of30Hz. The
EDVC system was configured with a GOP of size two and all
three Y, U and V components of the sequences were encoded,
as detailed in [15].

Initially, we study the influence of the stationarity block
size on the CCE accuracy and in turn, on the RD perfor-
mance. The codec’s configuration where a Laplace scaling

parameter̂λ(m)(β) is estimated per band of each frame (i.e.,
n = K = 64 × 64 = 4096 for capsule endoscopic and
n = K = 120 × 80 = 9600 for endoscopic sequences) is
set as benchmark. Table I depicts the Bjøntegaard Deltas [43]
(BD) on the performance of EDVC obtained with different
stationarity block sizes,K1×K2, compared to the benchmark
configuration. The results corroborate the trade-off between
capturing the spatial variations of the noise and maintaining
adequate support for the accurate derivation of the MLE.
Overall, the best performance is achieved when regulating the
stationarity block size toK = K1 × K2 = 16 coefficients.

The performance of the EDVC system with the proposed
MLE method is thereafter compared with the performances
obtained when using alternative up-to-date CCE techniques.
The results in Fig. 4 and Table II show that the proposed
MLE (using K = 16) systematically outperforms the TRACE
[25] method and our previous SID CCE [33] technique, with
respective BD rate savings of up to 7.13% and 4.22%. TRACE
has also been used as a benchmark to evaluate other CCE
methods, including [27], [29], [33]. Unlike TRACE and our
SID CCE method, the proposed MLE is asymptotically effi-
cient per decoding stage. In addition, contrary to TRACE, the
proposed method performs a bit-plane-per-bit-plane refinement
of the CCE. This is a feature of other existing CCE methods
as well, including [26], [27], [30], [31] and our SID CCE
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Fig. 3. RD performance of layered WZ coding with the proposed MLE. The side information is Laplacian, while various noise stationarity levels are tested.
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Fig. 4. Compression performance of EDVC using different online CCE methods versus Motion JPEG or H.264/AVC Intra: (a) Capsule Video 1;
(b) Endoscopy Video 1. The rate is expressed in kilo-bits-per-second (kbps), while the distortion is quantified using the peak-signal-to-noise-ratio(

PSNRYUV =
4×PSNRY+PSNRU+PSNRV

6

)
. The key and the hash frames of EDVC are encoded with (a) JPEG, or (b) H.264/AVC Intra.

technique. Compared with our SID CCE, however, the pro-
posed MLE can adapt better to small noise stationarity levels,
thereby improving the accuracy of the correlation estimation.

The results in Fig. 4(a) show that EDVC, equipped with the
proposed MLE technique, yields comparable performance to
Motion JPEG despite the highly-complex motion conditions
encountered in capsule endoscopic video content. These con-
ditions are due to the erratic motion of the capsule in the
gastrointestinal tract and the low acquisition frame rates. Yet,
when temporally fluent endoscopic video content is encoded
[see Fig. 4(b)], EDVC introduces a notable BD rate gain of
8.80% over H.264/AVC Intra (Main Profile with CABAC).

C. Complexity Assessment

The complexity of the proposed MLE technique is compar-
atively evaluated using execution time measurements obtained
with the software implementation of our EDVC system7. This
complexity examination methodology is commonly followed
in the literature [25], [30], [33]. Table III depicts the execution
time per WZ frame for the proposed MLE (configured with
K = 4096 or K = 16) and our previous SID CCE [33]
method. The total decoding time and the number of feedback

7Experiments were executed on an IntelR© CoreTM i7 CPU running at
2.20GHz with 16GB of RAM. Our EDVC was written in C++, compiled
with Visual Studio 2008 and running in release mode under Windows 7.
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TABLE II
BJØNTEGAARDDELTAS ON THE PERFORMANCE OFEDVC WHEN USING

THE PROPOSEDMLE M ETHOD VERSUSUP-TO-DATE CCE TECHNIQUES.

vs. TRACE [25] vs. SID CCE [33]
ΔR(%) ΔPSNR(dB)ΔR(%) ΔPSNR(dB)

Capsule Video 1 -4.36 0.25 -1.82 0.11
Capsule Video 2 -5.15 0.33 -1.48 0.10
Capsule Video 3 -5.70 0.32 -1.89 0.11
Capsule Video 4 -5.04 0.29 -2.96 0.18
Capsule Video 5 -7.13 0.40 -4.22 0.23

Endoscopy Video 1 -4.67 0.24 -3.11 0.17
Endoscopy Video 2 -6.16 0.31 -3.50 0.21
Endoscopy Video 3 -5.05 0.25 -3.87 0.23

TABLE III
DECODING EXECUTION TIME (SEC) AND NUM . OF FEEDBACK REQUESTS

PER WZ-FRAME OF THE EDVC SYSTEM CONFIGURED WITH DIFFERENT

CCE TECHNIQUES; (A) CAPSULE VIDEO 4, (B) CAPSULE VIDEO 5.

SID CCE [33] MLE (K = 4096) MLE (K = 16)
CCE Dec. #FB CCE Dec. #FB CCE Dec. #FB
time time reqs. time time reqs. time time reqs.

(a) RD pt-1 0.03 27.40 66.5 0.09 25.86 54.60 0.11 25.29 54.37
RD pt-2 0.23 32.05 96.62 0.46 30.25 86.83 0.59 29.39 85.03
RD pt-3 0.42 50.43148.17 0.64 46.72139.52 0.90 44.03136.06
RD pt-4 0.76 62.23193.15 0.87 57.43185.00 1.19 52.78180.75

(b) RD pt-1 0.03 28.53 68.62 0.08 26.89 58.09 0.10 26.56 56.25
RD pt-2 0.18 33.74 98.52 0.22 31.40 93.37 0.37 30.77 91.38
RD pt-3 0.34 52.36158.08 0.38 48.58147.71 0.63 46.27145.50
RD pt-4 0.72 63.80204.08 0.79 58.93196.15 1.10 55.02193.25

requests per WZ frame of EDVC, configured with each of the
assessed CCE techniques, is also provided.

The results indicate that the correlation estimation generally
has a minor impact on the total decoding computational
demands compared to other components of the decoder, par-
ticularly, the side information generation and the LDPCA
decoding. Contrasting the complexities of the different CCE
methods, it can be observed that, when the noise scaling
parameter is estimated at a DCT band level (i.e.,K = 4096),
the proposed MLE induces a complexity comparable to that
of our previous SID technique in [33]. Lowering the value of
K increases the complexity of the proposed method, as the
MLE algorithm is run per stationarity block of each band.

Nevertheless, incorporating the proposed MLE (especially
using K = 16) reduces significantly the overall decoding
complexity of EDVC compared to employing our prior SID
CCE method. In effect, as shown in Table III, by improving
the CCE accuracy over our prior SID technique, the proposed
MLE method induces fewer feedback channel requests and
LDPCA decoding iterations. Hence, the feedback channel rate
and the associated latency are also reduced.

VII. C ONCLUSION

A novel CCE technique tailored to generic layered WZ cod-
ing has been proposed in this paper. Unlike existing methods,
e.g., [30], [32], [33], the proposed approach derives a novel
MLE of the scaling parameter of the Laplacian correlation
noise. Adhering to quality scalable WZ coding, the derived es-
timator is progressively refined per decoding stage. The MSE
of the proposed estimator is proven to approximate the derived
m-th stage CRLB(m), converging to the oracle CRLB at high

decoding stages. It is also shown that the proposed MLE
delivers an RD performance close to offline estimation. When
incorporated into our EDVC system, the proposed method
systematically yields superior RD performance over state-
of-the-art techniques. Specifically, when endoscopic video
content is encoded, the proposed method brings respective BD
[43] rate savings of up to 7.13% and 4.22% over TRACE [25]
and our previous SID CCE [33] technique. Finally, as verified
by experimentation, the proposed algorithm is computationally
efficient. In fact, on account of the improved accuracy in
CCE, the LDPCA decoder converges faster, leading to reduced
decoding delays that benefit applications like wireless capsule
endoscopy.

APPENDIX A
CALCULATION OF ∂

∂λ ln p(q(m)
i |yi; λ) AND

∂2

∂λ2 ln p(q(m)
i |yi; λ)

Applying the natural logarithm to the three cases of the pmf
in (5) and then taking the first partial derivative with respect to
λ yields the three forms of∂∂λ ln p(q(m)

i |yi; λ) shown in (11a),
(11b) and (11c), whereΔ(m)

i is the quantization interval of the
i−th quantization cell,θ(m)

i = yi−u
(m)
i , andη

(m)
i = v

(m)
i −yi.

Next, applying the partial derivative with respect toλ on (11a),
(11b) and (11c) gives the three forms of∂2

∂λ2 ln p(q(m)
i |yi; λ)

expressed by (12a), (12b) and (12c).

APPENDIX B
EXISTENCE AND UNIQUENESS OF THEMLE

Lemma 1:The m-th stage conditional log-likelihood func-
tion lnL(λ) for a Laplace correlation channel is concave at
λ ∈ (0, +∞).

Proof: Taking the second partial derivative oflnL(λ),
defined by (7), with respect toλ, yields

∂2

∂λ2
lnL(λ) =

∂2

∂λ2
ln

K∏

i=1

p(q(m)
i |yi; λ)

=
K∑

i=1

∂2

∂λ2
ln p(q(m)

i |yi; λ), (13)

where each term∂2

∂λ2 ln p(q(m)
i |yi; λ) is given by (11a), (11b)

or (11c) depending on whetheryi < u
(m)
i , yi ≥ v

(m)
i or

u
(m)
i ≤ yi < v

(m)
i , respectively. Sinceλ ∈ (0, +∞) and

Δ(m)
i > 0, the summation terms in (13) that may take the

form of (12a) or (12b) are evidently strictly negative. These
terms correspond to(q(m)

i , yi) pairs for whichyi < u
(m)
i or

yi ≥ v
(m)
i . We now turn to the terms that may follow the

form of (12c). Since for these termsu(m)
i ≤ yi < v

(m)
i ,

then by definitionθ
(m)
i ≥ 0 and η

(m)
i > 0, meaning that

0 ≤ e−λθ
(m)
i ≤ 1 and 0 ≤ e−λη

(m)
i < 1. As a consequence,

for the denominator of the first fraction in (12c) it holds that
2 − e−λθ

(m)
i − e−λη

(m)
i > 0. Namely, the terms in (13) that

may follow (12c) are also strictly negative. As a consequence,
∂2

∂λ2 ln p(q(m)|y; λ) < 0. Therefore, according to the second
derivative test,ln p(q(m)|y; λ) is concave atλ ∈ (0, +∞).
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Proof of Theorem 1: From Lemma 1, the function
∂

∂λ ln p(q(m)|y; λ) is strictly monotonically decreasing atλ ∈
(0, +∞). Furthermore, the one-sided limit of the function at
zero is

lim
λ→0+

∂

∂λ
ln p(q(m)|y; λ)

=
K∑

i=1

lim
λ→0+

∂

∂λ
ln p(q(m)

i |yi; λ) = +∞, (14)

since limλ→0+
∂

∂λ ln p(q(m)
i |yi; λ) = +∞ for all possible

forms of ∂
∂λ ln p(q(m)

i |yi; λ), given by (11a), (11b) or (11c).

Concerning the limit at infinity, we have: Ifyi < u
(m)
i ,

then limλ→+∞
∂

∂λ ln p(q(m)
i |yi; λ) = θ

(m)
i < 0. Alternatively,

if yi > v
(m)
i , then limλ→+∞

∂
∂λ ln p(q(m)

i |yi; λ) = η
(m)
i < 0.

If u
(m)
i ≤ yi ≤ v

(m)
i , then limλ→+∞

∂
∂λ ln p(q(m)

i |yi; λ) = 0.
Hence, if there exists at least one side information sampleyi

in y for which yi < u
(m)
i or yi > v

(m)
i , then

lim
λ→+∞

∂

∂λ
ln p(q(m)|y; λ)

=
K∑

i=1

lim
λ→+∞

∂

∂λ
ln p(q(m)

i |yi; λ) < 0, (15)

Combining (14) and (15) with the fact that∂∂λ ln p(q(m)|y; λ)
is continuous and strictly monotonically decreasing proves that
the equation ∂

∂λ ln p(q(m)|y; λ) = 0 has a unique and finite
solution atλ ∈ (0, +∞).

APPENDIX C
ANALYTICAL SOLUTIONS OF THEMLE

Proof of Proposition 1: Provided that yi /∈[
u

(m)
i , v

(m)
i

)
, ∀i = {1, 2, ...,K}, one can divide the pairs

(q(m)
i , yi), i ∈ {1, 2, ...,K}, in two disjoint setsSA and

SB , corresponding to the casesyi < u
(m)
i and yi ≥ v

(m)
i ,

respectively. Under this condition, (8) can be developed as

∑

i∈SA

[

yi − v
(m)
i +

Δ(m)
i

1 − e−λΔ
(m)
i

]

+
∑

i∈SB

[

v
(m)
i − yi +

Δ(m)
i

eλΔ
(m)
i − 1

]

= 0, (16)

Given that the quantizerQm has uniform intervals, namely,
Δ(m)

i = Δ(m), ∀i ∈ {1, 2, ..,K}, then equation (16) becomes

|SA|Δ(m)

1 − e−λΔ(m) +
|SB |Δ(m)

eλΔ(m) − 1

=
∑

i∈SA

[
v
(m)
i − yi

]
+
∑

i∈SB

[
yi − v

(m)
i

]
, (17)

where |SA|, |SB | denote the cardinalities of the setsSA and
SB . It holds that:|SA| + |SB | = K. Next, solving (17) forλ
gives

λ̂(m) =
1

Δ(m)

× ln

∑

i∈SA

[
v
(m)
i − yi

]
+
∑

i∈SB

[
yi − v

(m)
i

]
+ |SB |Δ(m)
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[
v
(m)
i − yi

]
+
∑

i∈SB

[
yi − v

(m)
i

]
− |SA|Δ

(m)
.

(18)

∂

∂λ
ln p(q(m)

i |yi; λ) =


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yi − v
(m)
i +

Δ(m)
i

1 − e−λΔ
(m)
i

, yi < u
(m)
i , (11a)

v
(m)
i − yi +

Δ(m)
i

eλΔ
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, yi ≥ v
(m)
i , (11b)
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(m)
i e−λθ
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i . (11c)

∂2
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−
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Alternatively, if |SB | = 0 or |SA| = 0, namely, ifyi < u
(m)
i

or yi ≥ v
(m)
i , ∀i ∈ {1, 2, ...,K} then

λ̂(m) =
1

Δ(m)
ln



1 +
KΔ(m)

∑K
i=1

[
yi − v

(m)
i

]





∓1

, (19)

where the− and+ on the exponent corresponds to the first
and second case, respectively.

CRLB(m) for the Analytical Forms: Provided that the
conditions listed in Proposition 1 hold, then replacing the
second derivative forms of (12a) and (12b) in (10) gives

CRLB(m) =

[
|SA|Δ(m)e−λΔ(m)

(
1 − e−λΔ(m)

)2 +
|SB |Δ(m)eλΔ(m)

(
eλΔ(m) − 1

)2

]−1

.

(20)
Setting|SA| = K and|SB | = 0 or |SB | = K and|SA| = 0 in
(20) yields the respective CRLB(m) for the caseyi < u

(m)
i or

yi ≥ v
(m)
i , ∀i ∈ {1, 2, ...,K}.
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