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Abstract

Image registration as a basic task in image processing has been studied widely in the literature. It is an

important preprocessing step in various applications such as medical imaging, super resolution, and remote

sensing. In this paper, we proposed a novel dense registration method based on sparse coding and belief

propagation. We used image blocks as features, and then we employed sparse coding to find a set of candidate

points. To select optimum matches, belief propagation was subsequently applied on these candidate points.

Experimental results show that the proposed approach is able to robustly register scenes and is competitive

as compared to high accuracy optical flow [1], and SIFT flow [2].
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1. Introduction

Image registration is the process of overlaying two or more images of the same scene taken at different

times from different viewpoints or using different capturing modules [3]. Registration is required in many

applications including remote sensing, super resolution, and change detection. For example in medical imag-

ing, registration techniques have been used to align an magnetic resonance image to a computer tomography

image [4]. Another notable application of image registration is large-scale scene reconstruction. The goal is

to reconstruct a realistic landscape from a huge collection of photographs. For example, one might recon-

struct an entire city from an Internet photo collection in less than a day with the help of accurate registration

techniques [5]. Yet another interesting application of image registration is large-scale visual object-retrieval

systems [6] that can handle a corpus of photos taken from public websites.

Image registration may be used for the matching of images taken from a same scene or from different

scenes. If input images are taken from the same scene and at the same time but from different viewpoints,

the registration problem is also known as a stereo matching problem. In terms of the problem setup, a

stereo matching problems may be further categorized into short-baseline stereo matching and wide-baseline
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Figure 1: Work flow of SCoBeP

2



stereo matching problems. A short-baseline stereo matching problem is more restrictive in the sense that

the viewpoints of the two images only differ slightly from each other. Thus, the points corresponding to a

same point in space almost always appear near the same positions in the two images. Consequently, the

matching problem is relatively easy and can be effectively handled by cross-correlation technique alone [7].

Many registration methods have been developed, and they can be divided into two major categories,

namely, direct and feature-based matching. Direct matching methods use all available image data, and they

result in very accurate registration if the initialized disparities at the start of the registration procedure

are already close to the true disparities [8]. On the other hand, feature-based matching methods utilize

invariant features (especially those around Harris corners) to ensure reliable matching. This makes the

feature-based methods less reliant on the quality of initial disparities. [9, 10, 11]. Registration methods

can also be categorized into dense and non-dense matching techniques. A dense matching technique will

try to find the corresponding point in the reference image for every point in the test image. In the last two

decades, stereo matching has been mostly studied in the context of dense short-baseline stereo matching

[12, 13, 14]. And algorithms for dense short-baseline stereo matching can be classified into local and global

methods. A local (window-based) algorithm computes the disparity for a given set of points within a finite

local window only. On the other hand, a global algorithm incorporates extra constraints such as smoothness

assumptions and then reformulates the matching problem as a global cost minimization problem. The latter

can then be handled by various optimization techniques such as Belief Propagation (BP) [15, 16], pair-wise

constraint [17], triplewise constraint [18], probabilistic diffusion [19], dynamic programming [20, 21], scanline

optimization [22], space carving [23], PDE [24, 25], EM [26], label costs [27], or graph cuts [28, 29].

In wide-baseline stereo matching, the input images can be captured from significantly different view-

points. This makes the wide-baseline stereo matching problem much more challenging than its short-baseline

counterpart as occluded areas would expand and image patches in the test image will be more distorted

(with respect to those in the reference image) with the increasing difference of viewpoints. Moreover, the

fact that parameters tend to change rapidly spatially also make large correlation windows techniques un-

suitable for wide-baseline stereo matching. Overall, a good wide-baseline matching method also has to take

the following issues and problems into consideration:

• Inperfect input: During image formation, aberrations and artificacts could be introduced due to noises

and poor setups.

• Uniqueness: Each pixel in an image should uniquely maps into a pixel of another image [28, 30].

• Occlusion: Many pixels in one image may not match with any pixel in another image [11, 30, 31].

In this paper, we propose a novel, dense, wide-baseline, registration technique by aligning local features

of two images using sparse coding and BP (see Fig. 1). First, we build an overcomplete dictionary out of
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all features of a reference image. We then find a set of candidate pixels for each pixel of the test image

using sparse coding out of the constructed dictionary [32]. The match score of each candidate pixel will

be evaluated taking both local and neighboring information into account using BP [33]. The best match

will be selected as the candidate with the highest score. For an occluded pixel or any pixel not covered

by the reference image, the match scores for all candidate pixels will be significantly smaller than a typical

maximum score when a match pixel actually exists. By selecting an appropriate threshold, we show in

our experiment that our method can accurately register a test image to a reference image and also detect

uncovered areas in the test image.

Sparse coding has been used quite extensively for image processing in recent years. For example, sparse

coding techniques have been applied to image similarity assessments and its application on copy detection,

retrieval, and recognition [34]. However, limited work has been done to employ the sparse coding techniques

for image registration. To the best of our knowledge, there is no prior work on registration based on sparse

coding, and SCoBeP is among the first to use sparse coding technique to handle dense image registration in

particular.

The rest of this paper is structured as follows. We give a brief description related work in the rest of this

section. Section 2 reviews sparse coding. Section 3 introduces our proposed method: SCoBeP. In Section 4,

we show and discuss our simulation results and compare them with high accuracy optical flow method [1]

and SIFT flow, followed by a brief conclusion in Section 5.

1.1. Related Work

A classic dense registration algorithm is the Lucas-Kanade optical flow method [35]. It is commonly used

to estimate the disparity map between two similar images. In the last three decades, significant advancement

in stereo matching methods has been observed [36, 37, 1, 38] since the inception of the Lucas-Kanade method.

For example, the authors in [1] combined the assumptions of brightness constancy and gradient constancy

on optical flow. However, the success of optical flow-like registration algorithms is mostly restricted to

short-baseline image registration.

Unlike short-baseline approaches that have been largely explored, the difficulties of wide-baselines such

as serious occlusion and large disparity range have motivated researchers to seek for the novel directions. A

good review for wide-baseline stereo matching algorithms can be found in [39]. The more interesting class of

wide-baseline stereo matching is the class of dense stereo algorithms [11, 40] that attempt to find a matched

point for each pixel in the test image. The difficulty of dense image registration apparently depends on the

contents of the input images. For example, in areas with predominantly high frequency components such as

edges and texture, the process of registration will be easier and more accurate than in smooth areas that

do not naturally contain distinctive features. In [41], Glocker et al. used different levels of smoothness in

modeling medical images, and used Markov Random Fields (MRFs) to formulate image deformations. This
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formulation shows good performance in medical imaging but it does not work very well with outdoor images

with the possibility of serious occlusions and large deformation. Furthermore, an EM-based algorithm was

proposed in [11], which computed dense depth and occlusion maps from wide-baseline image pairs. The

authors also proposed a local image descriptor, DAISY, which can be computed at each pixel. Their local

descriptor is inspired by earlier ones such as SIFT and GLOH [42], but it can be computed faster for dense

matching purpose.

As mentioned earlier, many researchers incorporated smoothness (or spatial coherence) conditions by

reformulating matching into an optimization problem [2]. Moreover, they introduced label costs to penalize

a solution based on non-local factors and non-image based characteristics. For example, the simplest case

is to penalize the number of labels in the solution. Delong et al. [27] proposed a way simultaneously to

impose two such regularizers to decrease the number of labels and enhance the spatial smoothness of the

solution. Similarly, combinatorial optimization tools such as graph cut methods can also be used to solve

labeling problems by minimizing the energy function. And to penalize sharp changes in disparity map across

pixels, a smoothness constraint based on the first derivative was used in [43]. A graph cuts method was

then used to solve the labeling problem. Also, in [2], BP was used to optimize cost function incorporated

with smoothness constraints which encourage similar disparities for near-by pixels.

As we will see, the proposed methods can reconstruct the edges with high fidelity and can accurately find

match points in the background as well as in foreground objects. Additionally, we achieve better results than

SIFT flow [2] and high accuracy optical flow method [1], where SCoBeP performed accurate registration at

location that is missed by other methods. Moreover, SCoBeP appears to be robust in handling complex

scenes with both multi objects and wide-baseline views.

2. Background Of Sparse Coding

Consider a signal y ∈ RM and a fat matrix D ∈ RM×N , where we say the matrix is “fat” since M < N .

We are interested in representing y with the column space of D ∈ RM×N , i.e., finding α ∈ RN such that

y = Dα. Since D is fat, the set of bases described by D is overcomplete and thus α is not unique. However,

if we also restrict α to be the sparsest vector to satisfy y = Dα (i.e., α that have fewest number of non-zero

elements), then in theory there is a unique solution. Sparse coding precisely considers the aforementioned

problem of how to find a sparse α such that y = Dα is satisfied.

Mathematically, we can write the problem as

α̂ = arg min||α||0 subject to y = Dα. (1)

However, this l0 optimization problem is NP-complete [44] and thus several alternative methods have

been proposed to solve it [45]. For example, when a sufficiently sparse solution actually exists, substituting

the l1 norm for the l0 pseudo-norm in (1) as below
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α̂ = arg min||α||1 subject to y = Dα (2)

will still result in the same solution [44] . Moreover, solving this modified problem is much easier since it

can be readily transformed into a linear programming problem. Besides linear programming, many other

suboptimal techniques have been proposed to solve (2), including orthogonal matching pursuit [46], gradient

projection [47] and subspace pursuit [48].

3. SCoBeP

As mentioned in Section 1, in some applications we need dense registration that for each point of the

test image a corresponding match point will be found on the reference image. This section describes the

implementation details of our proposed registration method, SCoBeP, which is based on sparse coding and

BP. We divide the registration process into four steps as described in Sections 3.1, 3.2, 3.3 and 3.4.

3.1. Dense Feature Extraction and Dictionary Construction

In the first step of our proposed image registration method, we need to extract the features from the

reference image X and the test image Y. Recently, many descriptors have been studied in the literature such

as Histogram of Oriented Gradient descriptor (HOG) [49, 50, 51] and SIFT descriptor [52]. We investigate

two different approaches for this part. In the first approach, we simply extract each block as a feature and

in the second approach, we use the SIFT descriptor extracted at each pixel location as a feature.

3.1.1. Dense Feature Extraction Using Block

To extract dense features, we consider a patch of size (2k+1)2 containing neighboring pixels around each

pixel on both images, where k is a positive integer. For each pixel pij in the test image Y, we vectorized the

patch of pij to a feature vector Yij ∈ RS×1, where S = (2k + 1)2. A 3-D test feature image Y ∈ RM×N×S

is then constructed from Yij as follows

Y =


Y1,1 Y1,2 · · · Y1,N

Y2,1 Y2,2 · · · Y2,N
...

...
. . .

...

YM,1 YM,2 · · · YM,N

 . (3)

To match the extracted features of the test image to the corresponding extracted features of the refer-

ence image, we create a dictionary which contains feature vectors constructed just as the aforementioned

procedure but with the reference image instead. More precisely, a dictionary D ∈ RS×MN is constructed
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with all possible vector Xij ∈ RS×1 as D’s column vectors, where Xij is created in the same manner as Yij

but from reference image X instead. Thus, we can write D as

D = [X1,1X1,2 · · ·X1,NX2,1 · · ·XM,N ]. (4)

We then normalize dictionary D to guarantee the norm of each feature vector to be 1.

3.1.2. Dense Feature Extraction Using SIFT

Instead of blocks, we may extract the SIFT descriptor at each pixel on both images as features. For each

pixel pij in the test image Y, we vectorized the extracted SIFT descriptors to a feature vector Yij ∈ R128×1.

Then the 3-D test feature image Y ∈ RM×N×128 is constructed from Yij . Also, the dictionary D is created

similarly in the block method, but with SIFT descriptors instead. It means that in both approaches, we

allow a pixel in the test image to match any pixel in the reference image.

3.2. Finding Candidate Points via Sparse Coding

The goal of this step is to identify candidate Xij that looks most similar to an input Yij in the test

image. A näıve approach will be to compute the Normalized Cross Correlation (NCC) of the input Yij

with each possible Xij of the reference image and to select Xij that have the the largest NCCs. However,

the candidates Xij constructed with such approach are likely to generate Yij that are all concentrated in

a small region since a small shift from the most similar Xij generally does not decrease similarities very

sharply except for regions with high spatial frequency. Consequently, this approach may not result in enough

diversity of candidate points. As shown in Fig. 3a, we can see that as the candidate points have low diversity,

it is easy to miss the true corresponding point when an “error” occurs.

Instead, we propose to find candidate match points using sparse coding. The assumption is that we

should be able to construct a test Yij out of a good candidate Xij (thus they correspond to a sparse

coding solution) if these candidates Xij are similar enough to the test Yij . Moreover, instead of simply

returning the most similar Xij , sparse coding outputs Xij that can reconstruct the test Yij through linear

combination, the resulting Xij of sparse coding are likely to be complementary to each other and, thus,

provide a better diversity than the näıve solution. This is illustrated in Fig. 3b. The candidate points

generated by sparse coding have much better diversity and are more likely to include the true corresponding

point. Mathematically, we try to solve the following sparse coding problem of finding the most sparse

coefficient vector αij such that

Yij = Dαij . (5)

Thus, the sparse vector αij is the representation of Yij , which has few number of non-zeros coefficients.

Thus, αij describes how to construct Yij as a linear combination of a few columns in D. The locations of

the nonzero coefficients in αij specifically point out which Xij in the dictionary D are used to build Yij and
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Figure 2: Sparse representation of a feature vector Yij with a dictionary D: αij as a sparse vector constructs the

feature vector Yij using a few columns of dictionary D. The columns highlighted with gray markers in D form Yij ,

a sparse linear combination.

the value of a non-zero coefficient in αij indicates how significant the coefficient is used for the construction.

As illustrated in Fig. 2, most of the coefficients in αij vector are zero, and those non-zero coefficients

correspond to the highlighted gray columns in D. And Yij is generated as a sparse linear combination of

those highlighted gray columns.

To solve (5), we employed Orthogonal Matching Pursuit (OMP) [46] and Subspace Pursuit (SP) [48] in

this paper. After finding the sparse representation vector αij , we pick up the n largest coefficients of αij as

our n candidates for the next step.

3.3. Applying BP

As described in Section 3.2, we extracted n candidate points from the reference image for each point of

the test image. Now, we use those candidate points from the reference data as our “prior knowledge” to

find the best match point for the test data. Note that in 3.2, we selected candidate match points based only

on the local characteristic of an input pixel but ignored any geometric characteristics of the matches. For

example, except for a few places near object boundaries, one would expect that nearby pixels in the test

image should also match to pixels that are close to each other in the reference image. To incorporate these

geometric characteristics, we model the problem by factor graph and apply BP to identify the best matches

similar to [53].

BP [33] is an approximate inference method used on graphical models such as factor graphs. It was

performed by passing messages through the factor graph of a given problem. We apply BP on the factor
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graph of the test image with n candidate points as prior knowledge. BP updates the probability of candidate

points based on the probabilities of the point’s neighbors. Define N(i) and N(a) as two sets of neighbors of

a variable node i and a factor node a, respectively, and denote mi→a and ma→i as the forward and backward

messages from node i to node a. A message itself is a vector containing current beliefs of a node mapping to

all candidate pixels in the reference image. For example, ma→i(xi) can be interpreted as the belief of node a

of how probable that the pixel of node i in the test image should map to location xi in the reference image.

Message updates for mi→a and ma→i will be based on the messages received by the incoming messages

towards nodes i and a, respectively. More precisely, they are given by [33]

mi→a(xi) =
∏

b∈N(i)\a

mb→i(xi), (6)

ma→i(xi) =
∑
xa\xi

f(xa)
∏

j∈N(a)\i

mj→a(xj), (7)

where we use N(a)\i to denote the neighbor of node a excluding node i.

According to our factor graph topology, each factor node is exactly connected to two variable nodes.

Messages from the factor node to the variable node can be simplified to

ma→i(xi) =
∑
xj

f(xi, xj)mj→a(xj), (8)

where factor node a is between variable nodes i and j. In our model, the factor function f(xi, xj), which can

be interpreted as the local belief of having xi and xj at nodes i and j, can be used to impose the geometric

constraint described earlier. Intuitively, since xi and xj are the corresponding mapped match points in the

reference image of two neighboring pixels in the test image, we expect the probability of getting xi and xj

decreases as their distance apart increases. Therefore, in this paper, we model the function of factor node

between two particular variable nodes xi and xj as

f(xi, xj) = e−
||xi−xj ||2

σ2 (9)

where σ2 is a parameter to control the relative strength of the geometric constraint imposed by a neighboring

node. If we increase the value of σ2, the belief of each variable node will have less effect on its neighbors.

3.4. Interpreting BP Result

After applying several BP iterations, we obtain the updated probabilities which can be interpreted as

matching scores for the candidate points of each pixel in the test. These probabilities can be used for the

registration of the test image. In SCoBeP, we select the most probable point after the BP step as the best

match point. We assume that our registration method successfully finds a match for an input point if the

most probable candidate has belief larger than a threshold θ. Otherwise, we assume no best match is found.

The latter may happen when a match does not exist due to occlusion or boundary issues.
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4. Experimental Results

In this section, we present various experiments to evaluate SCoBeP2. We considered the problem of

registering two images of a scene taken from two different viewpoints. To evaluate the performance of our

approach, we conducted tests on the data sets that contain wide-baseline images with different scales, rotated

scenes, and deformed objects. The tested images were taken with normal indoor or outdoor settings and a

resolution of 200 × 200 pixels. Experimental results indicate that our methods are robust against changes

in contrast, scaling, rotation and deformation. Throughout the experiments, the following parameters were

used: the number of candidate points n is set to be 5, k = 3, and θ = 0.2.

The computational complexity of SCoBeP can be determined by considering the following three steps:

1) extracting dense features and constructing dictionary, 2) finding candidate points via sparse coding, and

3) applying BP. Assume the size of the test and reference images are the same and both have m2 pixels.

The required time of feature extraction will be O(hm2), where h is the size of the extracted features for each

pixel. As for dictionary construction, the only time needed is for the normalization of each column, which

requires O(hm2) amount of time. Thus the total time complexity of the first step is O(hm2). In the second

step of the SCoBeP, the time complexity of OMP and SP are O(fhm2) and O
(

log(f)hm2
)
, respectively

[54], where f is the number of iteration for finding the sparse vector. Since we have to repeat the process of

finding candidate points for all m2 feature vectors, the time complexity of finding candidate points by OMP

and SP are O(fhm4) and O
(

log(f)hm4
)
, respectively. In the third step, the time complexity of BP in our

factor graph is O(vn2m2), where v is the number iterations before converging. Consequently, if the SCoBeP

uses OMP or SP, its time complexity will be O
(
hm2 + fhm4 + vn2m2

)
or O

(
hm2 + log(f)hm4 + vn2m2

)
,

respectively. The complexity associated with the second step takes 90% of the overall complexity of

SCoBeP. Just to put things into perspective, note that the current implementation requires approximately

40 s per image pair for the most demanding case when running with pure Matlab on a Pentium 3 GHz

(11-GB RAM) machine.

As shown in Fig. 1, we used two methods for extracting features and three techniques for finding the

sparse representation vector. In the first method for the feature extraction part, we used image blocks as

features. In the second method, SIFT features were extracted from all pixels of both the reference and test

images. After extracting the features, sparse coding was employed to find a set of candidate points from

the reference image for each pixel in the test image. As described earlier, we created a dictionary that

contained the feature vectors. We then used one of the following two algorithms for finding the bases of a

sparse representation as candidate points: Orthogonal Matching Pursuit (OMP) [46] and Subspace Pursuit

(SP) [48]. For comparison, we also use NCC to find candidate points as those with highest NCC values with

2The test code of SCoBeP is available at http://students.ou.edu/B/Nafise.Barzigar-1/software/SCoBeP Registration.html.
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(a) Matching candidates obtained by NCC. (b) Matching candidates obtained by sparse coding.

Figure 3: Candidate points obtained by NCC and sparse coding. The images in (a) shows that NCC tends to

result in candidate points with poor diversity. And thus it can easily miss including the true corresponding

point as one of its candidate points. In contrast, the images in (b) show that the candidate points of sparse

coding tend to diversify and thus is more likely to include the true corresponding point.

respect to the current target point. We will refer to this approach as NCC-BP in this paper (see Fig. 6 for

comparison of NCC-BP and SCoBeP).

After selecting n candidate points using OMP or SP or NCC, these candidates were fed to a lattice

factor graph as shown in Fig. 4. The size of the factor graph is the same as the test image. Matching scores

for sparse coding methods were used as prior of the variable nodes and then BP approximation inference

method was applied with σ2 = 50 to select the best candidate point.

To synthesize the test image, we replaced each pixel of the test image with the selected candidate pixel

from the reference image. However, if the final maximum belief of the selected point was less than a threshold

θ, the algorithm declared that a match does not exist and we used the pixel of the test image on that position

For fair comparison, we apply the same procedure to SIFT flow and high accuracy optical flow [1] when

those methods were unable to find a match point. These types of points appeared when occlusion occurred.

We also show the probability map of the synthesized image (Fig. 5) for one sample. In these probability

maps, a brighter point indicates a higher maximum belief.

Fig. 6 shows the output of all proposed algorithms. Fig. 6(a) corresponds the test image and Fig. 6(b) to

the reference image. Fig. 6(c)–(e) show results using block representation to extract the features and OMP,
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Figure 4: Lattice factor graph used in BP

SP, and NCC to find the candidate points, respectively. Moreover, we showed in Fig. 6(f)–(h) when SIFT

was used instead. As shown in Fig. 6, using subspace pursuit with either block or SIFT feature extraction

yields better results than the other methods. More importantly, the sparse coding approach in extracting

candidate points (OMP or SP) performs significantly better than selecting candidate points as those with

highest NCC. This agrees with our intuition obtained from Fig. 3. Note that for θ = 0.2 and block feature,

the failure rate (i.e., maximum belief < 0.2) is 0. That is, all pixels of the synthesized images are extracted

from the reference images. For Fig. 6(c)–(e), the failure rates are 0, 0, and 0, respectively.

We now proceed to compare SCoBeP with other approaches; we tested the methods under varying

contrast, scaling, rotation, and deformation. The experiment indicates robustness of our approach to changes

in contrast (Fig. 8), scale (Fig. 9), rotation (Fig. 10), and deformation (Fig. 11). For the above results, block

features are used. Note that when θ = 0.2, the failure rates of finding a match for all these images are 0.

That is, all pixels are extracted from reference images.

We compared SCoBeP with high accuracy optical flow method [1] and the state-of-the-art SIFT flow

method [2]. The reference and test data sets are shown in the first two columns of Figs. 8, 9, 10, 11, 12 that

illustrate scenes captured from two different angles. Since some objects that appeared in the test image had

been occluded by other objects in the reference image, not all pixels in the test image could be matched

(a) (b) (c)

Figure 5: Probability map obtained from BP. a) Test Image; b) Probability Map (A brighter point indicates

a higher maximum belief); c) Synthesized Image
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(a) (b) (c) 24.7007 (d) 26.1572 (e) 17.8525 (f) 20.5173 (g) 21.1971 (h) 16.1547

Figure 6: Results of variations of SCoBeP and NCC-BP: a) Reference Image; b) Test Image; c) Block-OMP;

d) Block-SP; e) Block-NCC; f) SIFT-OMP. g) SIFT-SP; h) SIFT-NCC. In addition, the number under

columns (c)–(h) are the PSNR of images in comparison with the test image. Note that for the variations of

NCC-BP, i.e., (d) Block-NCC and (h) SIFT-NCC, sparse coding was not performed.

to the reference image. These figures depict the results obtained from SIFT flow and high accuracy optical

flow method [1] and also present the strength and weaknesses of different approaches. For the data set of

Figs. 8, 9, 10, 11, and 12, the leftmost image in each row is the reference image and the second one is the

test image. The test image is synthesized from the reference image in each row by SCoBeP, high accuracy

optical flow method [1], and SIFT flow. The reference image and the test image are shown in columns (a)

and (b). The synthesized images generated from SCoBeP and those with highlighted areas are shown in

columns (c) and (d). The warped images using SIFT flow and the same images with highlighted artifacts

are shown in columns (e) and (f). Finally, columns (g) and (h) show similar comparative results for high

accuracy optical flow method [1].

However, the Peak Signal to Noise Ratio (PSNR) cannot qualify the accuracy of the registration methods

perfectly. It can only give a rough estimation of similarity between the synthesized image and the test image.

In the term of PSNR, we compared the test image with the output of SCoBeP, SIFT flow and high accuracy

optical flow method and the results are shown under columns (c), (e) and (g) of Figs. 8, 9, 10, 11, and 12.

In addition, the PSNR values belonging to each set of images are summarized in Table 1. In the majority of

scenes, the PSNRs resulting from SCoBeP are significantly higher than those from the two other methods.

Also, as Table 1 shows, the average PSNR of SCoBeP is 21.12 db and it is approximately 1.6 db more that

SIFT flow and high accuracy optical flow method where the average PSNRs of SIFT flow and high accuracy

optical flow method are 19.42 db and 19.18 db, respectively. While the extracted features of our approach

are similar to high accuracy optical flow method and SIFT flow features, our proposed method excels in

finding the exact locations of objects and recognizing the different movements of the objects.

For instance, the first row of Fig. 8 is a simple scene that contains two waffles which had not been

masked by other objects. high accuracy optical flow method [1] failed to allocate precisely the objects (see

Fig. 8(e)–(f) in the first row) and gave 18.44 db for the PSNR. In particular, the centers of the waffles are

shifted and their boundaries are corrupted. On the other hand, the SIFT flow method introduced errors
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Table 1: Summery of PSNR results comparison between SCoBeP, SIFT-flow and high accuracy optical flow

method [1] on Figs. 8, 9, 10, 11, and 12 separately

Fig # Row# SCoBeP SIFT flow high accuracy optical flow method [1]

Fig. 8 1 22.77 17.70 18.44

(contrast changing) 2 19.45 17.14 17.25

Fig. 9 1 18.88 18.58 18.94

(scale changing) 2 19.65 17.93 18.01

Fig. 10 1 18.15 19.21 18.14

(rotation) 2 21.58 19.03 19.48

Fig. 11 1 21.81 19.21 18.51

(deformation) 2 20.24 18.16 19.67

Fig. 12

1 26.16 25.63 23.54

2 21.08 19.96 19.30

3 22.60 21.08 19.68

Average – 21.12 19.42 19.18

at the boundaries and shifted portions of the objects present in the test image (see Fig. 8(g)–(h) in the

first row) and its PSNR is 17.7036 db. In contrast to high accuracy optical flow method [1] and the SIFT

flow methods, SCoBeP registered both the centers and the boundaries of the waffles with high precision.

Furthermore, SCoBeP preserved the elliptical shape of both waffles with detailed accuracy and it had better

PSNR (22.77 db) in comparison to the other methods. Clearly, in the second row of Fig. 9(e)–(f), for high

accuracy optical flow method [1], the stop sign is distorted and the word “STOP” text is not fully readable.

Similarly, the SIFT flow method showed incompetency to generate a well-shaped stop sign and also the

occluded back panel to the left of the stop sign was not clearly reconstructed (see Fig. 9(g)–(h) in the second

row). Also, the PSNR of Fig. 9(e) and 9(g) are 17.93 db and 18.01 db. Conversely, as shown in the second

row of Fig. 9(c)–(d), SCoBeP accurately reconstructed the shape and text of the stop sign. The shape and

location of the back panel was not distorted and it was registered to the right location and its PSNR is 19.65

db.

We also evaluated our SCoBeP algorithm on the Middlebury dataset [58] and we showed our results of
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four pairs of test images with the bad pixels and the signed disparity error in Fig. 7 and Table 2. Based on the

result of the Middlebury homepage, our method ranks around the the top 30% among all submissions. Note

that SCoBeP is aimed for a registration problem which has arbitrary local disparities. But the Middlebury

testset is limited to 1-D disparity. Indeed, for the more restricted case as in the Middlebury testset, it is

probably better to use less general and more customized approaches. However, for completeness, we include

the result as a comparison. Moreover, Fig. 13 shows the disparity images of high accuracy optical flow work,

SIFT flow and SCoBeP on the complex scenes with multi objects and wide-baseline views. Just as in other

works such as [59], we used graph-cut as a processing step in refining our disparity.

While we only test SCoBeP for stereo matching (i.e., images captured from the same scene and at the

same time), SCoBeP appears to perform well for the more general case. For example, it handles well for

medical image registration where input images are captured at different times [60].

In essense, SCoBeP is rather similar to some other prior global cost optimization approaches (such

as SIFT flow), where match points are found by minimizing a cost function using BP. In retrospect, the

appeared better performance and robustness of SCoBeP is probably due to the preprocessing (sparse coding)

step. Actually the results comparing SCoBeP and NCC-BP in Fig. 6 provide good evidence that significant

gain originates from the sparse coding step. While BP is an extremely powerful tool, it works poorly for

problems with large number of loops and becomes harder to converge to a good local optimum as the size

of the problem increases. The sparse coding step allows SCoBeP to refine the original optimization problem

and shrink it to a much smaller optimization problem that can be better handled by BP. Moreover, as

pointed out in [2], one significant improvement of SIFT-flow from earlier optical flow is the notable increase

in search range. With the help of the sparse coding step, SCoBeP can increase the search range to the

entire reference image. This probably is another reason accounted for the improvement of SCoBeP over

prior works.

5. Conclusion

In conclusion, we have proposed a novel registration method based on a sparse coding and belief propa-

gation. Our technique performs registration by first running sparse coding over an overcomplete dictionary

constructed from the reference image to gather possible candidate points. Belief propagation is then applied

to eliminate bad candidates and to select optimum matches. The experimental result illustrates that our

proposed algorithm compares favorably with the high accuracy optical flow method by Brox et al. [1] and

the state-of-the-art SIFT flow method by Liu et al. [2]. Also, we tested the SCoBeP on the short-baseline

images of Middlebury test set. The SCoBeP provides decent results in both wide-baseline and short-baseline

images, even though SCoBeP is most competitive for less restrictive wide-baseline scenarios. We believe

that SCoBeP can be used for various wide-baseline applications such as video super resolution [61] and 3D
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medical image registration [62], and change detection in surveillance videos.
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Figure 7: Results on the Middlebury data sets. First row: disparity maps generated with SCoBeP. Second

row: disparity error maps with threshold 1. Errors in unoccluded and occluded regions are marked in black

and gray, respectively. Third row: Signed disparity error. Last row: Groundtruth.

(a) (b) (c) 22.77 (d) (e) 18.44 (f) (g) 17.70 (h)
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Table 2: Middlebury Stereo Evaluation. The error percentages are presented in different regions for the

data set (Tsukuba, Venus, Teddy and Cones).

Algorithm
Avg. Tsukuba Venus Teddy Cones

Rank nonocc all disc nonocc all disc nonocc all disc nonocc all disc

RandomVote [55] 41.5 4.85117 5.54108 17.7114 0.139 0.4526 1.8612 5.4020 9.5420 14.826 2.6214 7.9315 7.5417

RecursiveBF 42.8 1.8562 2.5163 7.4553 0.3548 0.8860 3.0140 6.2835 12.149 14.320 2.8022 8.9141 7.7920

SCoBeP 43.2 1.4747 2.0148 7.9265 0.2430 0.6240 3.2845 6.2234 1.738 15.735 3.4945 8.8438 9.3253

IterAdaptWgt [56] 43.3 0.852 1.283 4.592 0.3549 0.8656 4.5365 7.6064 14.583 17.365 3.2040 9.3652 8.4939

MultiResGC [57] 43.8 0.907 1.325 4.827 0.4558 0.8455 3.3249 6.4638 11.842 17.056 4.3474 10.568 10.767

(a) (b) (c) 19.45 (d) (e) 17.25 (f) (g) 17.14 (h)

Figure 8: Comparison among SCoBeP, high accuracy optical flow method [1], and SIFT flow over images

with contrast changes. a) Reference Image; b) Test Image; c) Synthesized image using proposed method;

d) Accurate registered regions are circled (proposed method); e) Synthesized image using high accuracy

optical flow method [1]; f) Inaccurate registered regions are circled (high accuracy optical flow method [1]);

g) Synthesized image using SIFT flow; h) Inaccurate registered regions are circled (SIFT flow). In addition,

the number under columns (c), (e) and (g) are the PSNR of images in comparison to the test image.

(a) (b) (c) 18.88 (d) (e) 18.94 (f) (g) 18.58 (h)
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(a) (b) (c) 19.65 (d) (e) 18.01 (f) (g) 17.93 (h)

Figure 9: Comparison among SCoBeP, high accuracy flow, and SIFT flow over images with scale changes.

a) Reference Image; b) Test Image; c) Synthesized image using proposed method; d) Accurate registered

regions are circled (proposed method); e) Synthesized image using high accuracy optical flow method [1]; f)

Inaccurate registered regions are circled (high accuracy optical flow method [1]); g) Synthesized image using

SIFT flow; h) Inaccurate registered regions are circled (SIFT flow). In addition, the number under columns

(c), (e) and (g) are the PSNR of images in comparison to the test image.

(a) (b) (c) 18.15 (d) (e) 18.14 (f) (g) 19.21 (h)

(a) (b) (c) 21.58 (d) (e) 19.48 (f) (g) 19.03 (h)

Figure 10: Comparison among SCoBeP, high accuracy optical flow method [1], and SIFT flow over images

with rotation changes. a) Reference Image; b) Test Image; c) Synthesized image using proposed method;

d) Accurate registered regions are circled (proposed method); e) Synthesized image using high accuracy

optical flow method [1]; f) Inaccurate registered regions are circled (high accuracy optical flow method [1]);

g) Synthesized image using SIFT flow; h) Inaccurate registered regions are circled (SIFT flow).In addition,

the number under columns (c), (e) and (g) are the PSNR of images in comparison to the test image.

(a) (b) (c) 21.81 (d) (e) 18.51 (f) (g) 19.21 (h)
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(a) (b) (c) 20.24 (d) (e) 19.67 (f) (g) 18.16 (h)

Figure 11: Comparison among SCoBeP, high accuracy optical flow method [1], and SIFT flow over images

with deformation. y) Reference Image; t) Test Image; j) Synthesized image using proposed method; ad)

Accurate registered regions are circled (proposed method); e) Synthesized image using high accuracy optical

flow method [1]; f) Inaccurate registered regions are circled (high accuracy optical flow method [1]); g)

Synthesized image using SIFT flow; o) Inaccurate registered regions are circled (SIFT flow).In addition, the

number under columns (j), (e) and (g) are the PSNR of images in comparison to the test image.

(a) (b) (c) 26.16 (d) (e) 23.54 (f) (g) 25.63 (h)

(a) (b) (c) 21.04 (d) (e) 19.30 (f) (g) 19.96 (h)

(a) (b) (c) 22.60 (d) (e) 19.68 (f) (g) 21.08 (h)

Figure 12: SCoBeP computed for image pairs depicting the mixture of contrast change, scale change,

rotation and deformation. a) Reference Image; b) Test Image; c) Synthesized image using proposed method;

d) Accurate registered regions are circled (proposed method); e) Synthesized image using high accuracy

optical flow method [1]; f) Inaccurate registered regions are circled (high accuracy optical flow method [1]);

g) Synthesized image using SIFT flow; h) Inaccurate registered regions are circled (SIFT flow).In addition,

the number under columns (c), (e) and (g) are the PSNR of images in comparison to the test image.

23



Figure 13: Disparity map of SCoBeP, high accuracy optical flow method [1], and SIFT flow. The two first

left columns show the reference and test images, respectively. The third column shows disparity maps of

SCoBeP and the forth column and the fifth column are the disparity maps of high accuracy optical flow

method [1] and Sift flow, respectively.
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