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Abstract— Driven by applications in data-hiding, MIMO
broadcast channel coding, precoding for interference cancella-
tion, and transmitter cooperation in wireless networks, Costa
coding has lately become a very active research area. In this
paper, we first offer code design guidelines in terms of source-
channel coding for algebraic binning. We then address practical
code design based on nested lattice codes and propose nested
turbo codes using turbo-like trellis-coded quantization (TCQ)
for source coding and turbo trellis-coded modulation (TTCM)
for channel coding. Compared to TCQ, turbo-like TCQ offers
structural similarity between the source and channel coding
components, leading to more efficient nesting with TTCM and
better source coding performance. Due to the difference in
effective dimensionality between turbo-like TCQ and TTCM,
there is a performance tradeoff between these two components
when they are nested together, meaning that the performance of
turbo-like TCQ worsens as the TTCM code becomes stronger
and vice versa. Optimization of this performance tradeoff leads
to our code design that outperforms existing TCQ/TCM and
TCQ/TTCM constructions and exhibits a gap of 0.94, 1.42 and
2.65 dB to the Costa capacity at 2.0, 1.0, and 0.5 b/s, respectively.

Index Terms— Costa coding, nested lattice codes, trellis-coded
quantization (TCQ), turbo-like TCQ, and turbo trellis-coded
modulation (TTCM).

I. INTRODUCTION

CHANNEL coding with side information (CCSI) refers
to the problem of communicating over a noisy channel

with some partial knowledge about the transmission channel
in the form of side information available at the encoder but
not at the decoder. Pioneering works were done by Gelfand
and Pinsker [1] on general CCSI and by Costa on the special
case of the so-called problem of “writing on dirty paper"
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[2] more than 20 years ago1. These works have formed the
information-theoretical foundation of modern steganography
and data-hiding [5], [6].

In the multimedia data-hiding or watermarking problem, a
message (or watermark) is to be embedded into a multimedia
(e.g., audio, image or video) host signal that is present only
at the encoder as the side information. The rules of data-
embedding are usually that the host medium is minimally
perturbed, i.e., the embedding processing is minimally intru-
sive, and that the embedded message can be reliably recovered
by the intended decoder even in the presence of an attacker
who might attempt to corrupt or erase the message while not
rendering the embedded host signal unusable.

Although CCSI by association is naturally tied to covert
communication problems such as data-hiding, the scope of
its applicability is far more general, as it extends to non-
covert communication systems as well. Specifically, it turns
out that the most efficient way to digital broadcast [7] is to
follow the principle of CCSI. Indeed, recent results [8], [9] on
the capacity region of the MIMO Gaussian broadcast channel
have their roots in the work of Marton [10], whose codebook
construction is intimately connected to the methodology of
CCSI. This connection between Costa coding and Marton’s
achievable rate regions of general broadcast channels was first
made in the introduction of Gelfand and Pinsker’s original
paper [1]. Other applications of CCSI are precoding for
inter-symbol interference channels [11], [12] and transmitter
cooperation [13], [14] in wireless networks.

Driven by these applications, several research groups have
recently proposed practical Costa code designs. The first was
under the name of quantization index modulation [15]. Eggers
et al. [16] studied Costa coding for information embedding
based on the simplest scalar quantization, achieving a gap of
3.5 dB from the capacity at 1.0 bit per sample (b/s), Yu et al.
[17] employed trellis-coded quantization (TCQ) [18] as the
source code and trellis-coded modulation (TCM) [19] as the
channel code. Due to the weakness of TCM, this TCQ/TCM
scheme operates 3.75, 5.75, and 6.0 dB away from the capacity
at 2.0, 1.0 and 0.5 b/s, respectively.

Chou et al. [20], [21] reported a turbo-coded trellis-based
Costa coding scheme by nesting a TCQ source code inside
a turbo TCM (TTCM) [22] channel code. However, owing
to the structural dissimilarity between TCQ and TTCM, the
actual performance of TCQ is severely degraded when it is

1Shannon [3] considered the case of causal side information in 1958.
Kuznetsov and Tsybakov [4] were the first to consider the case of non-causal
side information, and Gelfand and Pinsker [1] obtained the capacity for this
case. This paper considers code design for the Costa problem [2], where the
side information is assumed to be non-causally available at the encoder.
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coupled (or nested) with TTCM, especially at low rate. At 1.0
b/s, the scheme by Chou [21] performs 2.07 dB away from
the capacity.

Targeting the more challenging low rate regime, Erez and
ten Brink [23] recently proposed an efficient code design
within the framework of nested lattice codes [11] that performs
1.3 dB from the capacity at 0.25 b/s by using vector quantiza-
tion (VQ) and irregular repeat-accumulate (IRA) codes [24].
Bennatan et al. [25] devised another practical scheme based
on superposition coding [7], achieving the same performance
as in [23] with TCQ and low-density parity-check (LDPC)
codes [26], [27]. Using a combined source-channel coding
approach, Sun et al. [28] reported the best result of 0.83
dB away from the capacity at 0.25 b/s by using TCQ and
IRA codes. However, these systems cannot straightforwardly
be applied to the high rate regime because it is much more
involved to design good high rate LDPC/IRA codes for multi-
level constellations, especially when shaping is used [29].

Aiming to design a system that performs well at both low
and high transmission rates, we examine an alternative nested
approach and provide practical nested turbo code designs
for the Costa problem. Preliminary results from this work
appeared in [30]. After reviewing the theoretical results on
Gelfand-Pinsker coding and Costa coding in Section II, we
offer code design guidelines in terms of source-channel coding
for algebraic binning in Section III. Section IV discusses
practical considerations in nested designs. Section V presents
our proposed nested turbo codes using turbo-like TCQ for
source coding and TTCM for channel coding. Since there
exists no efficient turbo TCQ scheme yet2, we employ turbo-
like TCQ, which provides structural similarity to TTCM,
hence enables better nesting with TTCM than TCQ. Because
turbo-like TCQ is not turbo TCQ, the effective dimensionality
of turbo-like TCQ is different from that of TTCM. This leads
to a performance tradeoff between these two components when
they are nested together in our Costa code design. Specifically,
the performance of turbo-like TCQ steadily worsens when
we make the TTCM code stronger; the opposite is true
when TTCM is weakened (until it degenerates to TCM).
Optimization of this performance tradeoff leads to our best
code construction. Simulation results reported in Section VI
show that our proposed Costa code design offers sizable
performance gains at different transmission rates over the
TCQ/TCM construction of [17] and TCQ/TTCM construction
of [20], [21]. Section VII concludes the paper.

II. THE COSTA PROBLEM

CCSI at the encoder, or Gelfand-Pinsker coding [1], is
schematically shown in Fig. 1. The transmitter wishes to send
message m ∈ {1, . . . , M} over a memoryless channel, which
is defined by the transition probabilities p(y|x, s), where X
and Y are the channel input and output, respectively, and the
random variable S, which is independent of X , is the state
of the channel (the side information) known non-causally to

2On one hand, a recent attempt on turbo TCQ [31] resulted in worse results
than TCQ; on the other hand, there are exciting works [32], [33] on graph-
based codes for lossy coding of binary sources.
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Fig. 1. CCSI at the encoder or Gelfand-Pinsker coding.

the transmitter but not to the receiver. Based on the selected
message m and the state of the channel S, the encoder sends
codeword X which must satisfy the power constraint E[X2] ≤
PX . The capacity is given by [1]

C∗ = max
p(u,x|s)

[I(U ; Y ) − I(U ; S)], (1)

where U is an auxiliary random variable such that Y →
(X, S) → U and Y → (U, S) → X form Markov chains
and E[X2] ≤ PX . The proof of the Gelfand-Pinsker capacity
is based on random coding and binning.

Gelfand-Pinsker coding in general suffers performance loss
when compared to channel coding with side information
available at both the transmitter and the receiver. For example,
in the binary Gelfand-Pinsker problem [1], the channel output
is Y = X + S + Z , where X , S, and Z are channel input, an
interference binary-symmetric signal known to the transmitter
but not to the receiver, and unknown i.i.d. Bernoulli-p chan-
nel noise, respectively. Under a Hamming power constraint
1
nE[wH(X)] ≤ δ, 0 < δ < 1/2, the capacity is given by
C∗ = u.c.e.{H(δ)−H(p), (0, 0)}, where u.c.e. means upper
concave envelope [34], [35]. C∗ is strictly smaller than the
capacity C = H(p ∗ δ) − H(p) when the decoder also has
access to the side information S.

In contrast to the binary case of Gelfand-Pinsker coding, in
the Gaussian case, when we have the celebrated Costa problem
[2], there is no performance loss with CCSI. Specifically, when
S and Z are i.i.d. zero-mean Gaussian and the average channel
input power constraint is E[X2] ≤ PX , Costa showed that the
capacity is given by [2]

C∗ =
1
2

log(1 +
PX

PZ
), (2)

where PZ is the noise power. Thus, although S is unknown
to the decoder, the capacity remains the same as if S were
available at the decoder. Costa’s proof is again based on
random coding and binning. The result in (2) was extended to
arbitrarily distributed interference S in [12], [36].

III. CODE DESIGN GUIDELINES: SOURCE-CHANNEL

CODING FOR ALGEBRAIC BINNING

Although Costa’s proof shows the existence of capacity-
achieving random binning schemes, it does not give any
indication about practical code construction. Zamir et al. [11]
suggested an algebraic binning scheme based on nested lattice
codes. The scheme consists of a coarse lattice code nested
within a fine lattice code. The fine lattice code needs to be a
good channel code and the coarse lattice code needs to be a
good source code to approach the capacity in (2).

Fig. 2 (a) illustrates 1-D nested lattice/scalar codes with an
infinite uniform constellation, where Δ denotes the stepsize.
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Fig. 2. 1-D nested lattice codes for Costa coding.

The channel codewords are grouped into cosets/bins (labeled
as 0, 1, 2, and 3) for source coding. At the encoder, the side
information S is linearly scaled by α [2] and quantized to
the closest codeword u by the source code selected by the
message m to be transmitted (e.g., the coset/bin labeled 1 in
Fig. 2 (b)), so that the obtained quantization error X = u −
αS satisfies the power constraint E[X2] ≤ PX . Then, X is
transmitted over the additive white Gaussian noise channel
with noise Z ∼ N(0, PZ). According to [2], the optimal α =

PX

PX+PZ
= SNR

SNR+1 , with SNR= PX

PZ
. The decoder (see Fig. 2

(c)) receives the signal Y = X + S + Z , scales it by α, and
finds the codeword û closest to αY . Finally the index of the
bin containing û is identified as the decoded message3.

It is shown in [11] that this nested scheme approaches the
capacity in (2) as the dimensionality of the employed lattices
approaches infinity. However, nested lattice coding calls for
a joint source-channel code design, typically with the same
dimensional coarse lattice source code and fine lattice channel
code, which are difficult to implement in high dimensions.

We offer an algebraic message-based binning [30] interpre-
tation of Costa coding in terms of source-channel coding and
use it as the guiding principle for our proposed code designs.
From an information-theoretical perspective, according to [37],
there are granular gain and boundary gain in source coding,
and packing gain4 and shaping gain in channel coding. Dirty-
paper coding is primarily a channel coding problem (for trans-
mitting messages), one should consider the packing gain and
the shaping gain. In addition, the side information necessitates
source coding to satisfy the power constraint, therefore, the
constellation needs to be infinitely replicated so that one can
quantize the side information to satisfy the power constraint
[11]. Thus the source code in Costa coding is not conventional
in the sense that there is only granular gain, but no boundary
gain. One needs to establish the equivalence between the

3In their information-theoretic works [11], [12], the authors subtract a
common random dither from αS (to decorrelate X from the quantizer input)
before quantization and add the dither back to the estimated channel output
αY at the decoder. Together with scaling with the optimal α, dithering
theoretically assures near-capacity operation of nested lattice coding. In our
practical code designs, dithering plays a much less important role than scaling
in terms of code performance. Hence we do not mention dithering any more
in the sequel.

4In [37], packing gain in channel coding was also referred to as coding gain.
In this paper, we use packing gain exclusively since we view coding gain as
a generic term in the context of both source coding and channel coding.

shaping gain in channel coding and the granular gain in source
coding (e.g., via nested lattice codes [11]) for Costa coding.
Then one can shoot for the shaping gain via source coding and
the packing gain via channel coding. In practice, the former
should be done with quantizers (e.g., TCQ) having almost
spherical Voronoi regions in a high-dimensional Euclidean
space, and the latter with near-capacity channel codes (e.g.,
turbo [38] and LDPC codes).

This points to a nested approach based on TCQ and TTCM
for message-based algebraic binning, where the punch line
is to group channel codewords corresponding to the same
message into a bin, and within each bin, choose the codeword
according to the side information. In other words, we adapt the
codeword to the side information. This is much like adapting
to the “dirt" when writing on dirty paper – hence the whimsical
title of [2].

In practice, when the dimension of the coarse lattice Λ
for source coding (or quantization) is finite but high, Erez
and ten Brink [23] further show the capacity of the modulo
lattice channel [11] induced by the lattice quantizer Λ is lower
bounded by

C =
1
2

log2(1 + SNR) − 1
2

log2 2πeG(Λ), (3)

where G(Λ) is the normalized second moment of Λ. Since
G(Λ) starts from 1

12 in the 1-D case and asymptotically
approaches 1

2πe when the dimensionality of Λ goes to infinity
[39], the granular gain g(Λ) = −10 log10 12G(Λ) of Λ is
maximally 1.53 dB [37]. Equation (3) indicates that with ideal
channel coding, the loss in rate due to high-dimensional lattice
quantization is maximally 1

2 log2 2πeG(Λ) b/s. With practical
channel coding, there is an additional packing loss LossCC (in
dB). In order to measure the losses from both source coding
and channel coding (in dB), we equate the lower bound C in
(3) with C∗ = 1

2 log2(1 + SNR∗) and define LossSC (in dB)
[28] due to source coding as

LossSC � 10 log10

SNR
SNR∗ = 10 log10

2πeG(Λ)22C∗ − 1
22C∗ − 1

,

(4)
where SNR∗ = 22C∗ −1 is the capacity-achieving SNR. Then
we compute the total performance loss (in dB) in practical
Costa coding as

LossTotal = LossSC + LossCC . (5)

When the capacity C∗ is high, LossSC ≈
10 log10 2πeG(Λ) = 1.53 − g(Λ) dB, i.e., LossSC is
approximately equal to the granular loss from source coding
in this case. But as C∗ decreases, Fig. 3 indicates that
the granular loss is magnified more and more to become
LossSC (see also [12, Fig. 2]). To reduce LossSC it is
imperative to use high-dimensional lattice quantizers (or VQ
in general) to reduce the granular loss as much as possible.
This automatically precludes the scalar Costa scheme [16]
from approaching the capacity. Fig. 3 also highlights the fact
that the Costa code design problem is more challenging when
the rate is low.

With (5), the aim of Costa code design is now clear: one
needs to employ both strong source and channel codes so that
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Fig. 3. Source coding loss LossSC (in dB) in practical Costa coding at
three different rates due to the granular loss 1.53 − g(Λ) (in dB) in source
coding.

the total loss is minimized. Once the source and channel codes
are chosen, one can obtain the expected performance of the
resulting Costa code. Conversely, once the performance of a
Costa code is known, one can separately measure LossSC

due to source coding from (4), where G(Λ) is replaced by the
normalized version of the mean square error (MSE) E[X2]
introduced by the quantizer, and the packing loss LossCC

due to channel coding. These are the guidelines we follow in
constructing practical Costa codes.

IV. PRACTICAL CONSIDERATIONS IN NESTED DESIGNS

According to [11] and (5), a nested lattice code can
asymptotically approach the capacity of Costa coding in (2)
when the dimensionality of the employed lattices (for source
coding and channel coding) goes to infinity. However, whereas
recent progress [40] in iterative decoding of graph-based (e.g.,
LDPC) codes has made it possible to implement equivalent
lattice channel codes of very high effective dimensions (e.g.,
in the thousands), such progress has not yet been mirrored in
practical source coding (notwithstanding [32], [33]). For ex-
ample, turbo TCQ [31] is worse than TCQ, which is currently
the most efficient practical scheme for quantization. A 256-
state TCQ (with 1.32 dB granular gain) can only outperform
lattice source codes of up to 69 dimensions [18]. The lack
of practically efficient graph-based codes for quantization of
continuous (e.g., Gaussian) sources in general (and turbo TCQ
in particular) makes it almost impossible to implement nested
codes with the same but very high effective dimensionality.

To further see the performance difference [37] between
lattice codes for source and channel coding, using results
from [41, the sphere bound][42, Fig. 2] we plot in Fig. 4
as functions of lattice dimensionality the upper bound on
the granular gain (in dB) of lattice quantization of Gaussian
sources and the upper bound on the packing gain (in dB of
normalized SNR) of lattice channel codes for AWGN channels
(assuming BER=10−5). With nested scalar lattices for Costa
coding, the fine source code (uniform scalar quantization)
leaves unexploited the maximum granular gain of only 1.53
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Fig. 4. (a) Upper bound on the granular gain (in dB) of lattice quantization
of Gaussian sources and (b) upper bound on the packing gain (in dB
of normalized SNR) of lattice channel codes for AWGN channels (with
BER=10−5), both as functions of lattice dimensionality.

dB [37], whereas the coarse channel code (scalar coset code)
gives up the maximum 8.13 dB packing gain. With nested
trellis-based codes, the effective dimensionality of TCQ or
TCM is usually less than 300 in practice5, the upper bounds
in Fig. 4 and (5) can be used to predict and explain the
performance of TCQ/TCM code constructions of [17], [20],
[21]. In addition, Fig. 4 offers a one-to-one correspondence
between the granular/packing gain of any source/channel code
and the effective dimensionality of its equivalent lattice code.
More importantly, it is seen that the granular loss of lattice
quantization at dimension 256 is less than 0.1 dB, but lattice
channel codes at this dimension still suffers more than 1 dB
packing loss. This means that the effective dimensionality of
capacity-approaching turbo or LDPC codes is indeed much
higher than 256. Thus, when a strongest source code (e.g.,
TCQ) and a strong channel code (e.g., TTCM) are nested
together for efficient Costa coding in practice (as prescribed
in Section III), we are using two codes with very different
effective dimensions6.

We argue that this dimensionality mismatch, i.e., the dif-
ference in the effective dimensions of strong source and
channel codes, leads to a fundamental performance tradeoff
between the source and channel codes in any efficient nested

5256-state TCQ was used in [21] with 1.33 dB granular gain (or an effective
dimension of 76); 512-state TCQ was employed in [17] with 1.36 dB granular
gain (or effective dimension of 93). Under the constraint of current computing
power, Yang et al. [43] were able to obtain a granular gain of 1.45 dB (or an
effective dimension of 298) with 65,536-state TCQ.

6First, for two lattices to be nested, they do not have to be of the same
dimensionality (e.g., a Z-lattice can be nested in any construction-A lattice
as the coarse-fine lattice pair [39]). Second, since turbo TCQ [31] does not
perform better than TCQ or has the same effective dimensionality as a good
turbo channel code, for the best source coding performance some form of TCQ
or other source code of similar effective dimensionality needs to be used. In
the TCQ/TTCM construction of [20], [21] at 1.0 b/s, the 0.406 dB granular
gain of TCQ barely exceeds that of a four-dimensional lattice quantizer, but
the 7.51 dB packing gain of TTCM leads to an effective dimension of much
higher than 256.
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Fig. 5. Block diagram of the TCQ/TTCM encoder [20], [21].

design7. Specifically, owing to the coupling between the two
component codes, this tradeoff manifests itself in decreased
source coding performance as the channel code is made
stronger, and vice versa. For example, in the work of Erez
and ten Brink [23] with VQ and IRA codes, the nested
design leads to strong channel code with subpar source coding
performance. As another example, we will see in Section V-
A that, in migrating from TCQ/TCM to TCQ/TTCM for
Costa coding, the performance of TCQ is severely degraded
in [20], [21] when TCQ is nested inside the much stronger
TTCM code than the similarly structured TCM code. Thus,
our main task in efficient Costa code design is to use the
strongest practical source and channel codes and additionally
find the best nesting between them in terms of optimizing their
performance tradeoff.

V. NESTED TURBO CODES BASED ON TURBO-LIKE TCQ
AND TTCM

We first briefly review the related nested code construction
of [20], [21], which uses TCQ for source coding and TTCM
for channel coding.

A. The TCQ/TTCM Code Construction of [20], [21]

The trellis structure in the TCQ/TTCM scheme of [20], [21]
is constructed via a rate-k/n/m concatenated code (denoted
by C1+C2, with C1 being the rate- k

n convolutional code and
C2 being the rate- n

m convolutional code) as shown in the
encoder block diagram in Fig. 5. TCQ essentially relies on
the trellis Γ1 formed by C1+C2; the TTCM code consists of a
parallel concatenated code with C2 in both branches. C2 in the
bottom branch is preceded by an n-bit symbol interleaver and
followed by an m-bit symbol deinterleaver. The two branches
are multiplexed by taking even/odd-indexed symbols (of m
bits each) from the top/bottom branch before PAM or QAM.
It is seen from Fig. 5 that this code construction is nested since
the TTCM code is part of the overall rate- k

m TCQ source code.
At the encoder, every (n − k)-bit segment of the message

m is mapped to an n-bit symbol by the pseudo inverse of the

7A better alternative is to use superposition coding as done in [25] or
combined source-channel coding as advocated in [28] without nesting (or
such a performance tradeoff).

parity-check matrix H of C1 before being added to an output
n-bit symbol of C1. This way, the codewords of C1+C2 are
shifted by a fixed amount as determined by the message m.
Consequently one coset of TTCM codewords is selected by m
to be used for TCQ, which uses the Viterbi algorithm to search
for its input sequence of k-bit symbols so that αS is quantized
to u and the resulting quantization error X = u−αS satisfies
the power constraint E[X2] ≤ PX .

At the decoder, the received signal Y = X + S + Z is
first scaled by α, resulting in αY = u + (1− α)(−X) + αZ .
Then the input symbols (of n bits each) to TTCM, i.e., the
codewords of C1, are recovered from αY by an iterative BCJR
decoder. Finally, the transmitted message m is reconstructed by
calculating the syndromes of the recovered codewords of C1.

Denote the input sequence of n-bit symbols to the TTCM
encoder as I = [I(0), . . . , I(L− 1)], where L is the sequence
length (or trellis size) and I(t) the t-th input symbol (0 ≤
t ≤ L − 1). Whereas the presence of an interleaver greatly
boosts the performance (and the effective dimensionality) of
the TTCM code over TCM by reducing the number of nearest
neighbors (or the probability of error) [44], the TCQ source
code suffers because the interleaver significantly increases the
number of paths that need to be searched, making the Viterbi
algorithm no longer a viable solution to finding the closest
codeword u to αS. In [20], [21], the bottom branch of TTCM
is simply ignored during TCQ, i.e., I is only computed from
the L symbols passing through the top branch of TTCM during
TCQ. But the actual average quantization error E[X2] includes
contributions from both even-indexed symbols from the top
branch and odd-indexed symbols from the bottom branch,
i.e., L

2 symbols from each of the two branches. Specifically,
when the rate− n

m code C2 is systematic (as is chosen in
simulations), the samples from the top branch are different
than the ones from the bottom in only the m − n parity bits
(the n-bit systematic part of each symbol is the same for
both branches). This leads to an extra quantization error in
E[X2] that is responsible for the degradation of the source
code performance in TCQ/TTCM. For example, at C∗ = 1.0
b/s, Chou reported in [21] a gap of 5.23 dB and 2.07 dB to the
capacity in (2) with TCQ/TCM and TCQ/TTCM, respectively.
Close examination reveals that the granular gain g(Λ) of
256-state TCQ in TCQ/TCM is the normal 1.33 dB (hence
LossSC = 0.28 dB according to (4)), but it reduces to only
0.406 dB (with LossSC = 1.45 dB) in TCQ/TTCM. In
the mean time, LossCC equals to 4.95 dB and 0.62 dB in
TCQ/TCM and TCQ/TTCM, respectively. These results are
included in Table II for comparison purposes.

As the rate gets smaller, the power constraint PX (hence
the quantization error E[X2]) is smaller, the impact of the
extra quantization error on E[X2] becomes more severe. For
example, at C∗ = 0.5 b/s, the extra quantization error (even
with the minimum m − n = 1) causes the granular gain of
the source code of Chou et al.’s TCQ/TTCM construction to
be negative, leading to 4.00 dB loss from the corresponding
capacity in (2). This result is given in Table III as a benchmark.
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Fig. 6. Block diagram of the proposed turbo-like TCQ/TTCM encoder.

B. Turbo-like TCQ/TTCM code construction

The encoder block diagram of our proposed nested turbo
code construction is depicted in Fig. 6, where the obvious
difference from Fig. 5 is the employment of a new turbo-like
TCQ in place of TCQ. The same iterative BCJR decoder for
TCQ/TTCM [20], [21] is adopted in our design.

Turbo-like TCQ is chosen as the source code because it
has a similar parallel concatenated structure as used in the
TTCM channel code. This structure facilitates the nesting of
the source code inside the channel code by enabling both
parallel branches of the source code to be taken into account
in quantizing αS, hence leading to better source coding
performance than in TCQ/TTCM. In this sense, turbo-like
TCQ is better suited than TCQ in fulfilling the need for strong
source code in our nested turbo code design.

However, we shall see soon that turbo-like TCQ is not turbo
TCQ. Its effective dimensionality is still lower than that of
TTCM. Dimensionality mismatch thus exists in our turbo-
like TCQ/TTCM code design, and there is a performance
tradeoff between these two components, meaning that the
performance of turbo-like TCQ worsens as the TTCM code
becomes stronger and vice versa. Another novelty of our
work is optimization of this performance tradeoff by choosing
the best percentage (between 50% and 100%) of samples
processed by the top branch of the parallel concatenated
structure in Fig. 6. The rest of this section gives details on
the two new elements in our design, namely, turbo-like TCQ
and performance tradeoff between turbo-like TCQ and TTCM,
on top and beyond that of [20], [21].

1) Turbo-Like TCQ: Recall from Section V-A that the
problem with the source code in [20], [21] is that the bottom
branch of TTCM is ignored during TCQ. Turbo-like TCQ
aims to alleviate this problem by also taking into account
the bottom branch in source coding. Thus the main difference
between turbo-like TCQ in Fig. 6 and TCQ in Fig. 5 lies
in the computation of the input sequences of symbols I =
[I(0), . . . , I(L − 1)] to the TTCM encoder. Specifically, we
compute the soft-output version of I, denoted as IS , using
a soft-output Viterbi algorithm (SOVA) [45] for the TCQ in
the top branch; assuming even/odd multiplexing, in the even
positions the TCQ metrics are computed from the top branch
alone, while in the odd positions the a priori information from
the bottom branch determines the TCQ metrics as described
in more detail next.

Were it not for the bottom branch, turbo-like TCQ would
degenerate to TCQ based on Γ1. In such case, SOVA-based
computation of IS would proceed by first setting the n-bit
input symbol I(t) to a specific codeword c2 of C2, i.e., I(t) =
c2 ∈ C = {0, 1, . . . , 2n − 1}, and then computing the soft-
output IS(t, c2) as the minimal total distortion corresponding
to all possible input sequences I ∈ Cm

1 , which denotes the
coset of C1 indexed by the message m. That is

IS(t, c2) = min
I∈Cm

1 ,I(t)=c2

L−1∑
l=0

{
|u(l) − αS(l)|2︸ ︷︷ ︸

ρ(l)

}
,

0 ≤ t ≤ L − 1, 0 ≤ c2 ≤ 2n − 1, (6)

where S = [S(0), . . . , S(L − 1)] is the length-L sequence of
side information, u = [u(0), . . . , u(L− 1)] is the sequence of
trellis codewords corresponding to a certain input sequence I
with I(t) = c2, and ρ(l) denotes the distortion metric in TCQ.
After computing IS(t, c2) for all t (0 ≤ t ≤ L − 1) and all
c2 ∈ C, IS takes the matrix form of⎡

⎢⎣
IS(0, 0) · · · IS(L − 1, 0)

...
. . .

...
IS(0, 2n − 1) · · · IS(L − 1, 2n − 1)

⎤
⎥⎦ . (7)

With turbo-like TCQ, calculation of IS in our nested turbo
code design is based on both parallel branches. Trellis Γ1 for
the top TCQ source code is constructed by C1 + C2, while
trellis Γ2 for the bottom branch contains only C2. This parallel
concatenated structure is necessary for more efficient message
transmission (or embedding of the message m in trellis Γ1),
because the message is better protected by the powerful TTCM
channel code. In this structure, code C1 can only be merged
on the top branch with C2, creating the equivalent Γ1 trellis,
but not in the bottom branch where the interleaver does not
allow similar merging.

SOVA-based computation of IS requires a new composite
distortion metric that takes both branches into account. As-
suming even-odd multiplexing in the turbo-like TCQ/TTCM
encoder, we puncture the systematic bits at odd indices in
trellis Γ1 and set the distortion metric ρ1(t) at index t in trellis
Γ1 to

ρ1(t) =
{ |u(t) − αS(t)|2, if t is even,

0, if t is odd.
(8)

The distortion from odd indices is provided by trellis Γ2

in the form of a priori information. Borrowing ideas from
the initialization step in TTCM decoding, for a systematic
C2, we compute this a priori information at index t, denoted
as ρ2(t, c2), as the minimal distortion corresponding to the
systematic input symbol I(t) = c2 of C2 and all possible
parity symbols B(t) ∈ B = {0, 1, . . . , 2m−n − 1}. That is

ρ2(t, c2) =

⎧⎨
⎩

0, if t is even,
minI(t)=c2,B(t)∈B |u(Π(t)) − αS(Π(t))|2,

if t is odd,
(9)

where Π(t) is the same symbol interleaver as used in the
TTCM encoder. The a priori information ρ2(t, c2) is dein-
terleaved before being fed into trellis Γ1. To incorporate both
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ρ1(t) and ρ2(t, c2) into the computation of IS(t, c2), we set
ρ(t) = ρ1(t) + ρ2(t, I(t)) in (6) and end up with

IS(t, c2) = min
I∈Cm

1 ,I(t)=c2

L−1∑
l=0

{
ρ1(l) + ρ2(l, I(l))

}
,

0 ≤ t ≤ L − 1, 0 ≤ c2 ≤ 2n − 1. (10)

Note that the deinterleaving needed for the last equation has
already been taken into account in equation (9). After running
the SOVA with (10) on trellis Γ1, we output IS before hard
thresholding IS to I with

IS(t) = arg min
c2∈C

IS(t, c2), 0 ≤ t ≤ L − 1. (11)

Turbo-like TCQ is motivated by the need to take into
account distortion from quantizers in both parallel branches
of Fig. 6. It is not turbo TCQ mainly because quantization is
not done iteratively (so as to avoid performance degradation
as observed in [31] after the first iteration). Without iterative
quantization (or source encoding), the distortion from the
bottom-branch TCQ can only be included in the form of
a priori information as done in (9). This in turn limits the
improvement of turbo-like TCQ/TTCM over TCQ/TTCM in
terms of source coding performance. The effective dimension-
ality of the turbo-like TCQ source code is still much lower than
that of the TTCM channel code.

We call our source code turbo-like TCQ because it has
the parallel concatenated structure with interleavers Π and
Π−1, and more importantly, the operation in (10) essentially
implements the first iteration of turbo TCQ, which takes
advantage of the fact [31] that turbo TCQ generally improves
upon TCQ at the first iteration before loosing ground at
subsequent iterations.

2) Performance Tradeoff Between Turbo-Like TCQ and
TTCM: Let T be the percentage of samples chosen by the
multiplexer from the top branch of the parallel concatenated
structure (for both turbo-like TCQ and TTCM). With the
default setting of even-odd multiplexing in Fig. 6, T = 50%.
But T could be varied from 50% to 100%. Note that the
distortion metric ρ1(t) in (8) and the a prior information
ρ2(t, c2) in (9) can be easily modified when T �= 50%.

On one hand, as T is increased from 50% to 100%,
the turbo effect due to the presence of the interleaver is
gradually reduced, causing the performance of the TTCM code
to deteriorate. In fact, when T = 100%, TTCM degrades
to TCM, leading to the worst channel coding performance.
On the other hand, increasing T guarantees improved source
coding performance in our nested turbo code design. This is
because the a prior information ρ2(t, c2) accounted in turbo-
like TCQ for samples from the bottom branch is still not as
reliable as the actual distortion contributed by these samples
to the final average quantization error E[X2]. Higher T means
less samples from the bottom branch, and hence less unreliable
information in the distortion metric of turbo-like TCQ. When
T = 100%, turbo-like TCQ degenerates to TCQ, giving the
best source coding performance; in this case, our turbo-like
TCQ/TTCM code becomes a TCQ/TCM code.

Thus, even with the inclusion of ρ2(t, c2), the extra quan-
tization error also exists in turbo-like TCQ, although it is

smaller than that in TCQ/TTCM. Increasing T reduces the
number of samples contributing to this extra quantization error,
making it even smaller. Overall, by increasing T from 50% to
100%, we are making the TTCM channel code weaker but the
turbo-like TCQ source code stronger. The parameter T hence
offers a means of trading off the performance of the source
code and that of the channel code in our nested design. The
best performance tradeoff can be reached by searching for the
optimal percentage T ∗ between 50% and 100% that gives the
minimal gap from the capacity-achieving SNR.
Remarks:

• Because the above performance tradeoff is rooted in
dimensionality mismatch between the source and channel
coding components in any nested design for Costa coding,
it also applies to the TCQ/TTCM code construction.
This means results in [20], [21] with TCQ/TTCM and
T = 50% can be improved by simply searching for the
best T ∗ between 50% and 100%. With T = 100%, the
TCQ/TTCM code also becomes the simple TCQ/TCM
code.
With T = 50% (or default odd-even multiplexing),
because turbo-like TCQ gives better source coding per-
formance in our nested turbo code design than the
TCQ/TTCM code construction, meaning dimensionality
mismatch is less severe, we expect the optimal T ∗ in
our design to be less than that for the TCQ/TTCM
construction. In fact, if there were turbo TCQ (with the
same effective dimensionality as TTCM), the optimal T ∗

would be 50% in an ideal nested turbo code design, i.e.,
no performance tradeoff would be needed!

VI. SIMULATION RESULTS

Picking the appropriate code rate parameters (n, k, m), we
simulate our code design for transmission rates of 2.0, 1.0,
and 0.5 b/s. For these transmission rates, both convolutional
codes C1 and C2 are chosen as the constraint-length four
Ungerboeck code [19]. C2 needs to be systematic to fit the
turbo algorithm. If C1 were also systematic, there would exist
error propagation when recovering the original message m via
computing the syndromes, since the parity-check polynomials
would have infinite weights. Therefore, non-systematic C1 is
chosen.

The code C2 is mapped to a finite constellation, which we
call the basic constellation. The side information S can have
an arbitrary large magnitude, therefore we replicate the basic
constellation infinitely so that S never lies in the overload
region of the quantizer (so as to satisfy the power constraint).
The quanitzer thus selects a copy of the basic constellation
codeword which lies nearest to S.

We evaluate our Costa code’s performance by its BER at
a certain SNR. First we look into the effect of varying the
uniform quantization stepsize q [18] in TCQ. Our experiments
indicate little performance difference by using different q’s,
and this is true for different T ’s and transmission rates. Thus,
for results reported in the following, q is set to 1.0 for all
transmission rates. In addition, all results are based on 256-
state TCQ and a BER of 10−5.
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components is depicted by partitioning the total performance gap into the
sum of LossCC and LossSC .

A. Simulation Results at 2.0 b/s

For a transmission rate of C∗ = 2.0 b/s, the rate k
n of code

C1 has to be chosen such that n− k = 2. Hence C1 is chosen
as a non-systematic rate- 1

3 code. The polynomials are found
using a computer search over all possible rate- 1

3 codes [19].
The generator polynomials for C1 are g0(D) = 2, g1(D) =
4 and g2(D) = 23 in octal notation. Code C2 is chosen as
a systematic rate- 3

4 code with feedback polynomial h0(D) =
23, and feedforward polynomials h1(D) = 10, h2(D) = 0, and
h3(D) = 0. The codewords of C2 are mapped to a 16-PAM
constellation.

Fig. 7 shows the performance gap (in dB) of our turbo-
like TCQ/TCM code to the capacity-achieving SNR vs. the
percentage T when the trellis (or interleaver) length is L =
50, 000. It also depicts the performance tradeoff between the
source and channel coding components by partitioning the
total performance gap into the sum of LossCC and LossSC . It
is seen that LossSC in (4) decreases as T increases, but it is
offset by the increase in LossCC . Our best results indicate
a performance gap to capacity of only 0.94 dB, which is
achieved with T ∗ = 70.5%.

Simulations are also conducted with L = 10, 000, and
results with T = 50% and the corresponding T ∗’s for both
L = 10, 000 and L = 50, 000 are tabulated in Table I, where
the performance of the simple TCQ/TCM scheme of [21] is
also included as a benchmark8. In addition, for comparison
purposes, we give the performance of the TCQ/TTCM scheme
of [20], [21] with T = 50% and with percentage optimization
for both L = 10, 000 and L = 50, 000. We note that when
T = 100%, both our nested turbo code and the TCQ/TTCM
code degenerate to TCQ/TCM.

Both Fig. 7 and Table I reveal the sizable performance
gain obtained by using T ∗ (with optimal performance tradeoff

8We note that for the TCQ/TCM scheme reported in [17], g(Λ) = 1.36
dB with LossSC = 0.18 dB, LossCC = 3.57 dB, leading to LossTotal =
3.75 dB.
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between turbo-like TCQ and TTCM in our nested turbo code)
over T = 100% (or TCQ/TCM). Using T ∗ offers a small
performance gain over using T = 50% at the relatively high
transmission rate of C∗ = 2.0 b/s.

Table I also shows that our nested turbo code always
outperforms the TCQ/TTCM code [20], [21], although the
improvement margin is small. In addition, for the same L, the
optimal T ∗ is smaller in our nested turbo code than that in the
TCQ/TTCM code. This is consistent with the fact that, when
nested inside TTCM, turbo-like TCQ (with 1.15 dB granular
gain) performs better than TCQ (with 0.99 dB granular gain).
The granular loss due to nesting (or the extra quantization
error) in TCQ/TTCM is 1.27-0.99=0.28 dB, but it is reduced
to 1.27-1.15=0.12 dB in turbo-like TCQ/TTCM (with optimal
T ∗).

B. Simulation Results at 1.0 b/s

For the transmission rate of C∗=1.0 b/s, C1 is chosen as a
non-systematic rate- 1

2 code with generator polynomials g0(D)
= 10 and g1(D) = 23 in octal notation. Code C2 is a rate- 2

3
systematic code with feedback polynomial h0(D) = 23, and
feedforward polynomials h1(D) = 10, and h2(D) = 0. The
codewords of C2 are mapped to an 8-PAM constellation.

Fig. 8 shows the performance gap (in dB) of our turbo-
like TCQ/TCM code to the capacity-achieving SNR vs. the
percentage T when the trellis (or interleaver) length is L =
50, 000. The performance tradeoff between the source and
channel coding components is also depicted by partitioning the
total performance gap into the sum of LossCC and LossSC .
Our best results indicate a performance gap to capacity of only
1.42 dB, which is achieved with T ∗ = 81.25%.

Table II with C∗ = 1.0 b/s is the counterpart of Table I with
C∗ = 2.0 b/s. Compared to using T = 50%, using the optimal
percentage T ∗ improves the performance of our nested turbo
code at C∗ = 1.0 b/s by more than 0.3 dB for both L =
10, 000 and L = 50, 000. Moreover, it is seen from Table II
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TABLE I

PERFORMANCE GAP (IN DB) TO THE CAPACITY-ACHIEVING SNR FOR DIFFERENT CODE DESIGNS WHEN THE RATE IS 2.0 B/S. A RATE-1/3/4

CONCATENATED CODE AND A 1-D PAM CONSTELLATION WITH STEPSIZE q = 1.0 IS USED.

L = 10,000 L = 50,000

TCQ/TCM TCQ/TTCM turbo-like TCQ/TTCM TCQ/TTCM turbo-like TCQ/TTCM
(T =100%) T =50% T ∗=72.5% T =50% T ∗=70% T =50% T ∗=73 % T =50% T ∗=70.5%

g(Λ) 1.27 0.99 1.12 1.07 1.15 0.99 1.12 1.07 1.15

LossSC 0.28 0.58 0.44 0.49 0.41 0.58 0.44 0.49 0.41

LossCC 3.96 0.64 0.65 0.60 0.61 0.56 0.58 0.52 0.53

LossTotal 4.24 1.22 1.09 1.09 1.02 1.14 1.02 1.01 0.94

that at T =50%, our turbo-like TCQ/TTCM code outperforms
the TCQ/TTCM code [20], [21] by more than 0.2 dB. The
improvements from using turbo-like TCQ with optimal T ∗ in
our nested turbo code lead to 0.54-0.60 dB overall gain over
the TCQ/TTCM code.

Results in Table II also indicate that optimizing T is more
effective at lower rates. This is because the extra quantization
error in the quantizer has higher impact on its granular gain at
lower rates. A comparison of g(Λ) in Tables I and II indeed
reveals that the granular gain at T =50% is much lower when
C∗ = 1.0 b/s than when C∗ = 2.0 b/s. The granular loss due
to nesting (or the extra quantization error) in TCQ/TTCM is
1.33-0.406=0.924 dB, but it is reduced to 1.33-1.04=0.29 dB
in turbo-like TCQ/TTCM (with optimal T ∗).

C. Simulation Results at 0.5 b/s

In order to get a fractional transmission rate, we use a
2-D QAM constellation. C1 is chosen to be Ungerboeck’s
systematic rate- 2

3 code for a QAM constellation, with the
feedback polynomial being h0(D) = 23 and the feedforward
polynomials being h1(D) = 4 and h2(D) = 16. In order to
avoid infinite weight, the parity-check matrix of C1 used for
calculating the syndromes is pre-multiplied by h0(D). Code
C2 is chosen as a rate- 3

4 with h0(D) = 23, h1(D) = 4, h2(D)
= 16, and h3(D) = 2. The mapping from the codewords of
C2 to the constellation is based on Ungerboeck’s partitioning
of a 16-QAM constellation [19].

Fig. 9 shows the performance gap (in dB) of our turbo-
like TCQ/TCM code to the capacity-achieving SNR vs. the
percentage T when the trellis (or interleaver) length is L =
50, 000. The performance tradeoff between the source and
channel coding components is again depicted by partitioning
the total performance gap into the sum of LossCC and
LossSC . Our best results indicate a performance gap to
capacity of 2.65 dB, which is achieved with T ∗ = 85%.

From Table III, it is seen that compared to using T = 50%,
the performance gain from using the optimal T ∗ is more than
0.5 dB. Optimizing the percentage T is thus more effective
as the rate gets lower. In fact, it significantly improves the
TCQ/TTCM code, whose source coding performance at T =
50% is so bad that the corresponding granular gain is negative
(worse than that of a scalar quantizer). The granular loss due
to nesting (or the extra quantization error) in TCQ/TTCM is
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Fig. 9. Performance gap (in dB) of our turbo-like TCQ/TCM code to the
capacity-achieving SNR vs. the percentage T when C∗ = 0.5 b/s and L =
50, 000. The performance tradeoff between the source and channel coding
components is again depicted by partitioning the total performance gap into
the sum of LossCC and LossSC .

1.32+0.35=1.67 dB, but it is reduced to 1.32-0.92=0.40 dB in
turbo-like TCQ/TTCM (with optimal T ∗).

Despite the effectiveness with using the optimal T ∗, the gap
to the capacity at C∗ = 0.5 b/s remains at 2.65 dB. Hence, in
the low rate regime, our nested lattice scheme cannot compete
with recent code designs [23], [25], [28] geared towards lower
transmission rates. This is due to the coupling between the
source and channel codes in our nested design of Fig. 6,
where the TTCM channel code is part of the whole turbo-like
TCQ source code. The inherent performance tradeoff between
the source and channel codes is the main weakness that is
responsible for the non-competitive performance of our nested
design at low rates.

VII. CONCLUSIONS

We have introduced a practical nested turbo scheme for
the Costa problem. Compared with the TCQ/TTCM scheme
of [20], [21], where TCQ is weakened by the employment
of TTCM, our turbo-like TCQ/TTCM scheme improves the
source coding performance by using a parallel concatenated
structure and taking into account quantization errors from its
top and bottom branches. In addition, aiming to balance the
performance tradeoff between turbo-like TCQ and TTCM and
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TABLE II

PERFORMANCE GAP (IN DB) TO THE CAPACITY-ACHIEVING SNR FOR DIFFERENT CODE DESIGNS WHEN THE RATE IS 1.0 B/S. A RATE-1/2/3

CONCATENATED CODE AND A 1-D PAM CONSTELLATION WITH STEPSIZE q = 1.0 IS USED.

L = 10,000 L = 50,000

TCQ/TCM TCQ/TTCM turbo-like TCQ/TTCM TCQ/TTCM turbo-like TCQ/TTCM
(T =100%) T =50% T ∗=82.5% T =50% T ∗=80% T =50% T ∗=83.5% T =50% T ∗=81.25%

g(Λ) 1.33 0.406 0.95 0.67 1.04 0.406 0.97 0.67 1.04

LossSC 0.28 1.45 0.76 1.12 0.65 1.45 0.74 1.12 0.65

LossCC 4.95 0.62 0.87 0.71 0.88 0.57 0.79 0.67 0.77

LossTotal 5.23 [21] 2.07 [21] 1.63 1.86 1.53 2.02 1.53 1.79 1.42

TABLE III

PERFORMANCE GAP (IN DB) TO THE CAPACITY-ACHIEVING SNR FOR DIFFERENT CODE DESIGNS WHEN THE RATE IS 0.5 B/S. A RATE-2/3/4

CONCATENATED CODE AND A 2-D QAM CONSTELLATION WITH STEPSIZE q = 1.0 IS USED.

L = 10,000 L = 50,000

TCQ/TCM TCQ/TTCM turbo-like TCQ/TTCM TCQ/TTCM turbo-like TCQ/TTCM
(T =100%) T =50% T ∗=90% T =50% T ∗=82.5% T =50% T ∗=92.5 % T =50% T ∗=85%

g(Λ) 1.32 -0.35 0.96 0.09 0.85 -0.35 1.05 0.09 0.92

LossSC 0.42 3.19 1.08 2.52 1.27 3.19 0.92 2.52 1.15

LossCC 5.58 0.81 1.86 0.86 1.53 0.73 1.87 0.77 1.50

LossTotal 6.00 [21] 4.00 2.94 3.38 2.80 3.92 2.79 3.29 2.65

hence obtain the best overall performance, we optimize the
percentage of samples chosen by the multiplexer from the top
branch of our nested turbo code design. Simulations show that
our nested turbo code provides the best performance so far at
medium-to-high rates (e.g., ≥ 1.0 b/s). For example, at 1.0 b/s,
Eggers et al.’s scalar scheme [16], Chou et al.’s TCQ/TTCM
code [20], [21], and our nested turbo code perform 3.5 dB,
2.07 dB, and 1.42 dB, respectively, away from the Shannon
capacity.

Whenever dimensionality mismatch is present in practical
nested Costa design,the tradeoff between the source and
channel coding components limits its overall performance.
However, in the high rate regime, our turbo-like TCQ/TTCM
code works well and it seems to be the best option. In the low
rate regime (e.g., < 1.0 b/s), Costa code design becomes more
challenging (as seen from Section III and results in Table III);
it is better to adopt Erez and ten Brink’s design [23] in the
case; the best alternative is to use superposition coding as
done in [25] or combined source-channel coding as advocated
in [28] without nesting. Overall, because our work and those
of [23], [25], [28] target at different rate regimes, they are
complementary to each other.

Finally, we note that application of Costa coding has been
addressed in [15-16,44-47] for data-hiding and in [50] for
digital broadcast, and that the design presented in this work
has been applied to coding for MIMO broadcast channels in
[51].
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