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Abstract—A major difficulty that plagues the practical use of ~of PF is to estimate posterior probability distribution of a
Slepian-Wolf coding (and distributed source coding in general) is object of interest by sampling a list of random particleshwit
that the precise correlation among sources need to be knowa associated weights. Our proposed algorithm is carried out

priori. To resolve this problem, we propose an adaptive Slepian- . fp s
Wolf decoder using particle filtering based belief propagation. based on factor graph [12], [13], which affords great fleiipi

We show through experiments that the proposed algorithm can in modeling systems. We show that the proposed algorithm
simultaneously reconstruct a compressed source and estimateeth no longer depends on the initial estimation of the correfati

joint correlation between the sources. Further, comparing to te  parameter and offers an accurate real-time estimation ef th
conventional Slepian-Wolf coder based on standard belief prop- arameter. For different code rates, our algorithm shows a
agation, thg proposed.approa.ch. can achieve higher compressmnI d di ¢ d th ficient _
under varying correlation statistics. ower decoding error rate (and thus a more efficient compres
sion) than that of a standard BP algorithm.
|. INTRODUCTION Since the close relationship between SW coding and channel
Slepian-Wolf (SW) coding refers to the lossless distributezbding, the proposed approach can also be used for channel
compression of correlated sources. Considércorrelated state estimation (for example, see our prior work in [14]).
sourcesX1, X, -, Xn. Assuming that encoding can onlyUnlike in channel coding that channel state information can
be performed separately that encoders can see only one obe estimated with the help of a pilot signal, this trick canno
the N sources but the compressed sources are transmitted tmeaused for SW coding and Distributed Source Coding (DSC)
base station and decompressed jointly. To the surprise iy m@n general since sources in DSC are specified by the problems
researchers of their time, Slepian and Wolf showed thatt[1]themselves and are not controllable by users. Further.ewnhil
is possible to have no loss in sum rate under this restrictivee only present asymmetric SW coding of two sources (i.e.,
situation. That is, at least in theory, it is possible to k&0 compressing one source assuming that the other source is
the source losslessly at the base station even though the swailable at the decoder as side information), the propose
rate is barely above the joint entrogy(X;, X5, -+, Xn). approach can be easily extended to non-asymmetric cases and
Wyner is the first who realized that by taking computechultiple sources [15].
syndromes as the compressed sources, error-correctiitg par This paper is structured as follows. In Section Il, we
check codes can be used to implement SW coding [2]. THescribe the precise problem formulation and an overview of
approach was rediscovered and popularized by Praahanour proposed PF based BP algorithm for SW decoding. A brief
al. more than two decades later [3], where the scheme review of the standard BP algorithm on a factor graph is given
restricted to two correlated sources with one of them tokatan Section IIl. The BP algorithm based on PF are described in
as side information. Numerous channel coding based SS8¥ction IV. Finally, in Section V we present simulation fésu
coding schemes have been proposed [3], [4], [5], [6], [7]. [Band in Section VI, we draw the concluding remarks.
Noticeably, by using efficient channel codes such as the Low-
Density Parity-Check (LDPC) codes, it is possible to corapre
a joint binary source very closed to the SW limit (i.e., the Let X andY be two correlated binary sources (taking value
joint entropy) [9], [10]. However, the fundamental assuimpt 0 and 1) and the correlation between them be symmetric in
is that the correlation statistics needs to be known acelyratsuch a way that” can be considered as the output &f
a priori. passing through a Binary Symmetric Channel (BSC) with
In this paper, we propose an adaptive LDPC code basaoknown crossover probability. That is,
SW decoder that combines Particle Filtering (PF) with elie
-

Il. PROBLEM FORMULATION

X, with probability 1 — p,

propagation (BP) to simultaneously reconstruct a compress X'&1, with probability p.

source and estimate the joint correlation between the ssurc
The PF algorithms, also known as sequential Monte Carlo athere® means “exclusive or” operation. We assume that the
gorithms, are sophisticated modeling techniques for egiom crossover probability may drift over time but will not change
based on Monte Carlo simulations [11]. The main objectiveo rapidly.
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Note that ifp is constant over time and is knovenprior, BP Based on Partical Filter
X can be compressed very close to the SW linift({|Y")) Standard BP
using syndrome based approach and LDPC codes [9]. At the
SW encoder, the syndrome of a block &fis computed and
transmitted to the decoder. At the SW decodérjs treated P ;

as the output ofX passing through a correlation channel. SW ‘
decoding is almost identical to conventional LDPC decoding 12
However, rather than decoding to a codeword, the decoder
approximates the estimated block &f as a code vector with
the received syndrome. fas
Just as channel decoding, a blockfcan be reconstructed
using BP algorithm [16] over the corresponding factor graph

[12]. Fig. 1 show the factor graph of the proposed BF based i

IRinisial

BP for SW coding, which includes the Tanner graph of the
standard BP as a subgraph. Using the usual convention,-a vari £
able node that specifies an unknown is denoted by a circle and
a factor node that specifies the “correlation” among mutipl P
variable nodes is denoted by a square. The name factor graph
comes from the fact that the joint probability function cam b

expressed as the multiple of the factor functions of theofact
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Region 1| Region 2 Region 3

nodes [12].
For [th]e case of standard BP. a block ok Fig. 1. Factor graph representation of the proposed BF b@géaoding.
(X1,Xs2,---,XnN) is compressed intoM syndrome bits

(Sa,SB, -+ ,Swm), thus resulting inM : N compression. A

syndrome factor nod¢,, a € {A,B,---, M}, which takes

into account the constraint imposed by the received synéro
bit s,, is defined as

between adjacent neighboring nodes. ket .; (z;) denotes
rt[t.1e message sent from factor node¢o variable node;, and
let m;_,, (x;) denotes the message sent from variable node
to factor nodea. In this paper, the proportionality symbal

Fa(xa) = L if 50 © @icni) i =0, @ indicates that these messages must be normalized so tiat the
e 0, otherwise sum to one. The messages updating steps can be expressed as
On the other hand, a correlation factor nodg: € follows:
{1,2,---, N}, which handles the correlation between tkg Mg (7;) H Me—i () (5)
andY;, is defined as ceEN()\a
) — 1 - D if Ti = Yi, and
filw:) = { P, otherwise ®)

Note that in the standard BP, the crossover probabjlity Mo (@) o< Y | fa(xa) [] mjmal@y) |, (6)
assumed to be constant and knowampriori. The main con- Xa\Ti JEN (a)\i

tribution of our approach is to release _from these Cons_gainwhereN(i) \a denotes the set of all neighbors of a given
We assume tha_p IS unknoyvn anq varies slowly over t_'me'nodez' except for nodes; > denotes a sum over all the
As shown in Fig. 1, multiplef;, i« € {1,2,---,N}, will v

connect to the same variable nogie. We call the number of variablex, that are arguments of, exceptz;. Moreover, the
correlation factor nodes connecting to eaghthe connection BP algorithm approximates the beligf(x;) at a variable node
ratio, which is equal to three in Fig. 1. Since we assume thaas follows

p only varies slowly over time, the adjacemshould be close bi (2;) H Ma—i (7). 7
in value. This characteristic is captured by ghéactor nodes )

fi2, fa3,-++, fzvv—1,nv @s shown in Region 1 of Fig. 1, where

a p-factor nodef;,_; ;» is defined as

IV. BELIEF PROPAGATION ALGORITHM BASED ON
1 (pir—1 pi/)2> @ PARTICLE FILTER

i'—1,4'\Di'—1,Pi’ ) = €Xp | —

fore( pr) V2T P < 2ZA Since standard BP can only handle discrete variables, it is

where \ is a hyper-prior and can be chosen rather arbitrarilfutile for estimating the crossover probabilities ps, - - - , pn-

(Region 1 in Fig. 1). However, by incorporating PF with BP,

we are able to extend BP to handle even continuous variables.
BP algorithm is a powerful method for computing approx¥o ease exposition, we will briefly review PF in the following

imate marginal probability functions by exchanging messagThen we will describe in detail our PF based BP algorithm.

IIl. BELIEF PROPAGATIONIN FACTOR GRAPHS



Initialize the values of message
and particles

v If true or reac
Check if the estimate has the the max
—»> same syndrome as the —number of
received one iterations

l If false

Update variable nodes
in Region 1 and Region 3

!

Perform PF in Region 1

l

Update factor nodes
in Regions 1, 2 and 3

l

Generate a new code vector
according to the belief of variable
nodes in Region 3

P ——

Export the decoded codeword

The workflow of the proposed SW decoder.
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at— 1, a standard PF has
) 1,Np_1 for a variable node. Then
t—

Fig. 3. In this figure, the starting time
10 unweighted measur (p‘f.k)
using the information at timg — 1, we can get the weighted measure
(k) (k)
{(pi >z717 (wi )t,l
step is to select the “fittest” particle to obtain the unwédgh measure
{(““)) N*l}b ing th ling algorithm. Then by perturbing th
P ), Ne y using the resampling algorithm. Then by perturbing the

by computing the importance weights. The next

congested particles, we can get the unweighted mea rﬁgC> ,Np_1 .

Finally, by computing the weights, we can %e{tﬁi’“)) , (wgk)) at time
t and then continue the above steps. ¢ ¢

A. Particle Filtering

PF is a technique for optimal numerical estimation when
exact solutions cannot be analytically derived [11]. The ap

Fig. 4.
The weights of the particles are listed in the table above.
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Particle

Systematic resampling process for an example Withparticles.

proach is used to estimate posterior probability distidmubf
an interest object by sampling a list of random particlehwit
associated weights. The basic procedure of PF is as follows:

Initialize the list of particles from the prior distribat.

For each variable nodein Region 1, each particlg is
assumed to have a valpé = p for estimating the noise
and a uniform WeightNip, where NV, is the number of
the particles.

Compute the importance Weighték) at each iteration.

In our model this weight is equal to the belief of
each particle, where the belief is obtained by the BP
algorithm, which will be presented in Part B of this
section.

Since the variance of the importance weights increase
stochastically over time, a selection (resampling) stage i
needed to eliminate particles with negligible weights and
to concentrate on particles with large weights. The future
particles in domains of higher posterior probability ehtai
improved estimates. The systematic resampling (SR)
[11], [17], [18], [19], [20] algorithm, are illustrated
graphically in Fig. 4, where the weight of particles are
listed in the table. SR first calculates the cumulative

k
sum of the particle weight§'*) = " () and updated

i=1
uniform numberU®) = U*=b 4+ Lk = 1,.. N,

p

where U(®) is obtained by drawing from the uniform
distribution |0, Nip . Then SR compares*) andU (¥)

to determine the number of replications for partiéle

by computing the number of tim&*) in the range
[Ck=1D C®)), In Fig. 4, for particle one and two,
U© belongs to the rangé,C") and UM belongs

to the range[C"), C(?) respectively, so particle one
and two are replicated once. Particle three and four are



discarded and particle five is replicated twice. Othe
particles follow the same rule.

Perturb particles. After the resampling step, particle
congregate round the values with large weights. In ord
to maintain the diversity of particles for further PF iter-
ations, particles should be perturbed by slight values.
this paper, random walk (RW) algorithm is implemente
by adding a Gaussian random noiSg0, 02) with zero
mean and variance? on the current valug? of each
new particle generated in step 3.

Update weight by resetting to a uniform Welgﬂ{ for
each particle, wheréV,, is the number of the part|cles
6) lterate the steps 2 to 5 when updating each variable no

4)

Crossover prob. p

5)

Crossover prob. p

B. Belief Propagation based on the Particle Filter
We applied the BP algorithm [16] to the factor graph in

Fig. 1. Since we assumed that the correlation was symmetﬁ@ S.

the initial value of the message sent from the factor nodes A &
Region 2 to variable nodes in Region 3 is given by

5
iy — o, )

otherwise

o) = Falo) = { 17 ®
p)
where p is an initial estimated crossover probability. The
message passing schedule is illustrated in Fig. 2. First, th
messages sent from variable nodes were updated. Then we
performed PF. Finally, the messages sent from factor node$)
were updated. The message update rules are detailed as
follows, where we usé anda denote the variable nodes and

factor nodes respectively:

1) Update variable nodes in Region 3 using (5)

2) In the PF algorithms, the messages are represented by
N, particles. Hence, updating variable nodes in Region
1 needs to update information for each particle. The
updating equation follows

mi—a p1 H Me—i p1 (9) 7)
ceN(i)\a
where N (i) \a denotes the set of neighbors of node
except for node:; k denotes thé-th particle andp” is
the value ofk-th particle for variable node
3) Compute the belief of each variable nodiem Region 3
being x;
a€N (1)
wherex; is equal to0 or 1.
4) Compute the belief of each particle for each variable
nodei in Region 1 being?
H Mg—q (pf) (11)
a€N (1)
In the model, the belieb (pF) of each particlek is n

corresponding to the WEIgI’(tw(k)) shown in Fig. 3.
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Estimation of crossover probabilities for linearhaniging correlations
16 connection ratio.

Update factor node in Region 3 follows (12)

Mmae—; (xz) X Z H mij—a x] 5

Xa \T; JEN (a)\i
(12)

fa Xa

where f, (x,) is defined in (2)
Update factor node in Region 1, which means to update
each particle according to (13)

> (fa (pfr, pF) Mit1—a (PE11)),

Z (fa (pic+17pi€) Mi—a (pf))7
" (13)

Mg—i (pf) X

Pi+1
Ma—it+1 (Pfﬂ) X

(Pﬁl*??)z

Ry

where f, (pf.1,pk) = o ,andp; of iy
means all the particles in the variable nodesr i + 1
of Region 1.

Update factor node in Region 2

a) Message from Region 2 to Region 1
Z (fa (xjyyjapi?) mj—a (mj))7

xz;€{0,1} (14)

1—pF ify =z
k) _
where fa (1'] yYjs Py ) = plg ¢ othérwsé

and j refers toj-th vanatie node in Region 3.
Message from Region 2 to Region 3

Mai (@) o< > (fa (2,55 05) mj—a (0F)),

ke[1,Np]

Ma—si (pf) X

b)

(15)
where f, (z ) L-pf iy =
o \Ti> Yis Pj Pk otherwise '’

and j refers to thej-th variable node in Region

1.

V. RESULTS
this section, the decoding performance of standard BP

and that of PF based BP algorithm are compared. Moreover,
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Fig. 7. Decoding error probability for a linearly changingr@lation with
Fig. 6.  Estimation of crossover probabilities for sinusbi¢hanging 21000 iterations and 1:16 connection ratio.
correlations and 1:16 connection ratio.

1000 iterations
10 ‘ ‘

the estimation accuracy of error probability are also aredy
under the conditions with different numbers of iteratiomsl a |
different connection ratos. 4  jeeesese
We first investigated the estimated crossover probability 107F
obtained by the BF based BP algorithm over a linearly and
a sinusoidal changing correlations. Here, SW codes were
randomly generated by parity check matrices with 20480
variable nodes and 12288 check nodes, where each variable
node connects 3 check nodes. Moreover, 16 particles were
assigned to each variable node in Region 1 (see Fig. 1). For
the random walk step, we assumed= 0.0001. For the factor
node update in Region 1, we assumed that 0.001. The 10
following results were obtained by averaging the estimated
error probability of 30 different codewords. Fig. 5 shows th
estimated results of a linearly changing correlation, whefid: 8. Decoding error probability for a sinusoidal chamgevrrelation with
e : 1000 iterations, where different connection ratios arelusdest the decoding
the crossover probability increased continuously from 0.05,¢rformance.
to 0.3 by the stepy = 23-005 for each input codeword
bit. From Fig. 5, we can see that with the increase of the
number of iterations, the estimated crossover probabjlity p,)log(1 — p;). The value of crossover probability; in the

becomes closer to the exact input crossover probabilignevBSC continuously increased from 0.05 to 0.3 by the step

though they started with a far underestimated initial valug — 95-095 The number of particles was 16. Fig. 7 shows

Moreover, as shown in Fig. 6, an estimatedor SW codes that our proposed algorithms obtained better performanee t
over a sinusoidal changing correlation is presented. Thét® that of standard BP. Similarly, for the sinusoidal timeyiag
also verified that our proposed algorithm can generate a g®gC, we assumed that the crossover probability changed
estimation of a complexly changing correlation. according to Fig. 6. In this situation, Fig. 8 also shows P&t
Next we compared the performance results of the standaygsed BP algorithm offered a better performance. Moreover,
BP and our proposed algorithm in terms of decoding errage can see that with the increase of connection ratios frdm 1:
The following performance results were also obtained hy 1:16, the decoding performance of our proposed algorithm
averaging 30 independent simulations, where the codeHengkcame better. Furthermore, in Fig. 9, we shows the restilts o
was 20480 and the code rates changed from 0.1 to 0.4. Timated error probability as a function of connectioriorat
SW limit' is equal to the conditional entrop¥f (X|Y) = with 1000 iteration times. We can see that the estimation
i > H(pi), where H(p;) = —p;log(p;) — (1 — accuracy increases as the connection ratio increases sinc
i€[1,20480] the variable nodes in Region 1 can obtain more channel
information from the factor nodes in Region 2 by using a
higher connection ratio. When the connection ratio is equal t
1:16, our algorithm shows a perfect matching result in Fig. 9

|| —e— Standard BP
—<+—PF based BP (1:1)
—=—PF based BP (1:2)
——PF based BP (1:4)
—+— PF based BP (1:8)
——PF based BP (1:16)
L= -SW Iimit ‘
0.6 0.65 0.7 . 075 0.8
Compression rate

10"

Decoding error rate

0.85

Istrictly speaking, the achievable compression rate shoeildvien higher
than the SW limit since the original SW setup assume that theeledion
statistics are known to both the encoder and decoder.
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with 1000 iterations and different connection ratios.

AWGN channels,”"Communications, |EEE Transactions
on, vol. 53, no. 4, pp. 555-559, 2005.

[7] J. Chen, D.-k. He, A. Jagmohan, and L. A. Lastras-

Montano, “On the reliability function of variable-rate
Slepian-Wolf coding,” in45th Annual Allerton Confer-
ence, Urbana-Champaign, IL, 2007.

[8] A. Liveris, C. Lan, K. Narayanan, Z. Xiong, and

C. Georghiades, “Slepian-Wolf coding of three binary
sources using LDPC codes,” ifroc. Intl. Symp. Turbo
Codes and Related Topics, 2003.

[9] A. Liveris, Z. Xiong, and C. Georghiades, “Compression

[11]

which also explained why the 1:16 connection ratio yielded a

better decoding performance in Fig. 8.

VI. CONCLUSION

[12]

We proposed an adaptive SW decoding algorithm basgl(;’ ]
on PF and BP on a factor graph. By introducing the PF
algorithm in the left-hand side of the factor graph in the

standard BP algorithm, the error probability of a BSC w
be updated for each variable node step by step. During
experiments, a precise estimation of error probability een
observed by using our PF based BP algorithm. Thus,
decoding performance of our algorithm is no longer seresit
to the initial estimation of the error probability. Finally,
we concluded that our PF based BP algorithm yields a m

efficient compression than that does the standard BP digurit
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