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Abstract—A major difficulty that plagues the practical use of
Slepian-Wolf coding (and distributed source coding in general) is
that the precise correlation among sources need to be knowna
priori. To resolve this problem, we propose an adaptive Slepian-
Wolf decoder using particle filtering based belief propagation.
We show through experiments that the proposed algorithm can
simultaneously reconstruct a compressed source and estimate the
joint correlation between the sources. Further, comparing to the
conventional Slepian-Wolf coder based on standard belief prop-
agation, the proposed approach can achieve higher compression
under varying correlation statistics.

I. I NTRODUCTION

Slepian-Wolf (SW) coding refers to the lossless distributed
compression of correlated sources. ConsiderN correlated
sourcesX1,X2, · · · ,XN . Assuming that encoding can only
be performed separately thatN encoders can see only one of
theN sources but the compressed sources are transmitted to a
base station and decompressed jointly. To the surprise to many
researchers of their time, Slepian and Wolf showed that [1] it
is possible to have no loss in sum rate under this restrictive
situation. That is, at least in theory, it is possible to recover
the source losslessly at the base station even though the sum
rate is barely above the joint entropyH(X1,X2, · · · ,XN ).

Wyner is the first who realized that by taking computed
syndromes as the compressed sources, error-correcting parity
check codes can be used to implement SW coding [2]. The
approach was rediscovered and popularized by Pradhanet
al. more than two decades later [3], where the scheme is
restricted to two correlated sources with one of them treated
as side information. Numerous channel coding based SW
coding schemes have been proposed [3], [4], [5], [6], [7], [8].
Noticeably, by using efficient channel codes such as the Low-
Density Parity-Check (LDPC) codes, it is possible to compress
a joint binary source very closed to the SW limit (i.e., the
joint entropy) [9], [10]. However, the fundamental assumption
is that the correlation statistics needs to be known accurately
a priori.

In this paper, we propose an adaptive LDPC code based
SW decoder that combines Particle Filtering (PF) with belief
propagation (BP) to simultaneously reconstruct a compressed
source and estimate the joint correlation between the sources.
The PF algorithms, also known as sequential Monte Carlo al-
gorithms, are sophisticated modeling techniques for estimation
based on Monte Carlo simulations [11]. The main objective

of PF is to estimate posterior probability distribution of an
object of interest by sampling a list of random particles with
associated weights. Our proposed algorithm is carried out
based on factor graph [12], [13], which affords great flexibility
in modeling systems. We show that the proposed algorithm
no longer depends on the initial estimation of the correlation
parameter and offers an accurate real-time estimation of the
parameter. For different code rates, our algorithm shows a
lower decoding error rate (and thus a more efficient compres-
sion) than that of a standard BP algorithm.

Since the close relationship between SW coding and channel
coding, the proposed approach can also be used for channel
state estimation (for example, see our prior work in [14]).
Unlike in channel coding that channel state information can
be estimated with the help of a pilot signal, this trick cannot
be used for SW coding and Distributed Source Coding (DSC)
in general since sources in DSC are specified by the problems
themselves and are not controllable by users. Further, while
we only present asymmetric SW coding of two sources (i.e.,
compressing one source assuming that the other source is
available at the decoder as side information), the propose
approach can be easily extended to non-asymmetric cases and
multiple sources [15].

This paper is structured as follows. In Section II, we
describe the precise problem formulation and an overview of
our proposed PF based BP algorithm for SW decoding. A brief
review of the standard BP algorithm on a factor graph is given
in Section III. The BP algorithm based on PF are described in
Section IV. Finally, in Section V we present simulation results
and in Section VI, we draw the concluding remarks.

II. PROBLEM FORMULATION

Let X andY be two correlated binary sources (taking value
0 and 1) and the correlation between them be symmetric in
such a way thatY can be considered as the output ofX

passing through a Binary Symmetric Channel (BSC) with
unknown crossover probabilityp. That is,

Y =

{

X, with probability 1 − p,

X ⊕ 1, with probability p,
(1)

where⊕ means “exclusive or” operation. We assume that the
crossover probabilityp may drift over time but will not change
too rapidly.



Note that ifp is constant over time and is knowna prior,
X can be compressed very close to the SW limit (H(X|Y ))
using syndrome based approach and LDPC codes [9]. At the
SW encoder, the syndrome of a block ofX is computed and
transmitted to the decoder. At the SW decoder,Y is treated
as the output ofX passing through a correlation channel. SW
decoding is almost identical to conventional LDPC decoding.
However, rather than decoding to a codeword, the decoder
approximates the estimated block ofX as a code vector with
the received syndrome.

Just as channel decoding, a block ofX can be reconstructed
using BP algorithm [16] over the corresponding factor graph
[12]. Fig. 1 show the factor graph of the proposed BF based
BP for SW coding, which includes the Tanner graph of the
standard BP as a subgraph. Using the usual convention, a vari-
able node that specifies an unknown is denoted by a circle and
a factor node that specifies the “correlation” among multiple
variable nodes is denoted by a square. The name factor graph
comes from the fact that the joint probability function can be
expressed as the multiple of the factor functions of the factor
nodes [12].

For the case of standard BP, a block ofX
(X1,X2, · · · ,XN ) is compressed intoM syndrome bits
(SA, SB , · · · , SM ), thus resulting inM : N compression. A
syndrome factor nodefa, a ∈ {A,B, · · · ,M}, which takes
into account the constraint imposed by the received syndrome
bit sa, is defined as

fa(xa) =

{

1, if sa ⊕ ⊕

i∈N(a) xi = 0,

0, otherwise.
(2)

On the other hand, a correlation factor nodefi, i ∈
{1, 2, · · · , N}, which handles the correlation between theXi

andYi, is defined as

fi(xi) =

{

1 − p, if xi = yi,

p, otherwise.
(3)

Note that in the standard BP, the crossover probabilityp is
assumed to be constant and knowna priori. The main con-
tribution of our approach is to release from these constraints.
We assume thatp is unknown and varies slowly over time.
As shown in Fig. 1, multiplefi, i ∈ {1, 2, · · · , N}, will
connect to the same variable nodepi′ . We call the number of
correlation factor nodes connecting to eachpi′ the connection
ratio, which is equal to three in Fig. 1. Since we assume that
p only varies slowly over time, the adjacentp should be close
in value. This characteristic is captured by thep-factor nodes
f1,2, f2,3, · · · , fN ′−1,N ′ as shown in Region 1 of Fig. 1, where
a p-factor nodefi′−1,i′ is defined as

fi′−1,i′(pi′−1, pi′) =
1√
2πλ

exp

(

− (pi′−1 − pi′)
2

2λ

)

, (4)

whereλ is a hyper-prior and can be chosen rather arbitrarily.

III. B ELIEF PROPAGATION IN FACTOR GRAPHS

BP algorithm is a powerful method for computing approx-
imate marginal probability functions by exchanging messages
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Fig. 1. Factor graph representation of the proposed BF basedSW coding.

between adjacent neighboring nodes. Letma→i (xi) denotes
the message sent from factor nodea to variable nodei, and
let mi→a (xi) denotes the message sent from variable nodei

to factor nodea. In this paper, the proportionality symbol∝
indicates that these messages must be normalized so that they
sum to one. The messages updating steps can be expressed as
follows:

mi→a (xi) ∝
∏

c∈N(i)\a

mc→i (xi) (5)

and

ma→i (xi) ∝
∑

xa\xi



fa (xa)
∏

j∈N(a)\i

mj→a (xj)



, (6)

where N (i) \a denotes the set of all neighbors of a given
node i except for nodea;

∑

xa\xi

denotes a sum over all the

variablexa that are arguments offa exceptxi. Moreover, the
BP algorithm approximates the beliefbi (xi) at a variable node
i as follows

bi (xi) ∝
∏

a∈N(i)

ma→i (xi). (7)

IV. B ELIEF PROPAGATION ALGORITHM BASED ON

PARTICLE FILTER

Since standard BP can only handle discrete variables, it is
futile for estimating the crossover probabilitiesp1, p2, · · · , pN ′

(Region 1 in Fig. 1). However, by incorporating PF with BP,
we are able to extend BP to handle even continuous variables.
To ease exposition, we will briefly review PF in the following.
Then we will describe in detail our PF based BP algorithm.



Update variable nodes 
in Region 1 and Region 3

Perform PF in Region 1

Initialize the values of message 
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Fig. 2. The workflow of the proposed SW decoder.
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Fig. 3. In this figure, the starting time att − 1, a standard PF has
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for a variable nodei. Then

using the information at timet − 1, we can get the weighted measure

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by computing the importance weights. The next

step is to select the “fittest” particle to obtain the unweighted measure
n“

p
(k)
i

”

t
, N

−1
p

o

by using the resampling algorithm. Then by perturbing the

congested particles, we can get the unweighted measures
n“

p̃
(k)
i

”

t
, N

−1
p

o

.

Finally, by computing the weights, we can get
n“

p̃
(k)
i

”

t
,

“

ω
(k)
i

”

t

o

at time
t and then continue the above steps.

A. Particle Filtering

PF is a technique for optimal numerical estimation when
exact solutions cannot be analytically derived [11]. The ap-
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Fig. 4. Systematic resampling process for an example withNp particles.
The weights of the particles are listed in the table above.

proach is used to estimate posterior probability distribution of
an interest object by sampling a list of random particles with
associated weights. The basic procedure of PF is as follows:

1) Initialize the list of particles from the prior distribution.
For each variable nodei in Region 1, each particlek is
assumed to have a valuepk

i = p̂ for estimating the noise
and a uniform weight 1

Np
, whereNp is the number of

the particles.
2) Compute the importance weightsω

(k)
i at each iteration.

In our model this weight is equal to the belief of
each particle, where the belief is obtained by the BP
algorithm, which will be presented in Part B of this
section.

3) Since the variance of the importance weights increase
stochastically over time, a selection (resampling) stage is
needed to eliminate particles with negligible weights and
to concentrate on particles with large weights. The future
particles in domains of higher posterior probability entail
improved estimates. The systematic resampling (SR)
[11], [17], [18], [19], [20] algorithm, are illustrated
graphically in Fig. 4, where the weight of particles are
listed in the table. SR first calculates the cumulative

sum of the particle weightsC(k) =
k
∑

i=1

ω(i) and updated

uniform numberU (k) = U (k−1) + 1
Np

, k = 1, ..., Np,

where U (0) is obtained by drawing from the uniform
distributionu

[

0, 1
Np

]

. Then SR comparesC(k) andU (k)

to determine the number of replications for particlek

by computing the number of timeU (k) in the range
[C(k−1), C(k)). In Fig. 4, for particle one and two,
U (0) belongs to the range[0, C(1)) and U (1) belongs
to the range[C(1), C(2)) respectively, so particle one
and two are replicated once. Particle three and four are



discarded and particle five is replicated twice. Other
particles follow the same rule.

4) Perturb particles. After the resampling step, particles
congregate round the values with large weights. In order
to maintain the diversity of particles for further PF iter-
ations, particles should be perturbed by slight values. In
this paper, random walk (RW) algorithm is implemented
by adding a Gaussian random noiseN

(

0, σ2
r

)

with zero
mean and varianceσ2

r on the current valuepk
i of each

new particle generated in step 3.
5) Update weight by resetting to a uniform weight1

Np
for

each particle, whereNp is the number of the particles.
6) Iterate the steps 2 to 5 when updating each variable node.

B. Belief Propagation based on the Particle Filter

We applied the BP algorithm [16] to the factor graph in
Fig. 1. Since we assumed that the correlation was symmetric,
the initial value of the message sent from the factor nodes in
Region 2 to variable nodes in Region 3 is given by

ma→i(xi) = fa (xi) =

{

1 − p̂, if yi = xi,

p̂, otherwise,
(8)

where p̂ is an initial estimated crossover probability. The
message passing schedule is illustrated in Fig. 2. First, the
messages sent from variable nodes were updated. Then we
performed PF. Finally, the messages sent from factor nodes
were updated. The message update rules are detailed as
follows, where we usei anda denote the variable nodes and
factor nodes respectively:

1) Update variable nodes in Region 3 using (5)
2) In the PF algorithms, the messages are represented by

Np particles. Hence, updating variable nodes in Region
1 needs to update information for each particle. The
updating equation follows

mi→a

(

pk
i

)

∝
∏

c∈N(i)\a

mc→i

(

pk
i

)

, (9)

whereN (i) \a denotes the set of neighbors of nodei

except for nodea; k denotes thek-th particle andpk
i is

the value ofk-th particle for variable nodei.
3) Compute the belief of each variable nodei in Region 3

beingxi

bi (xi) ∝
∏

a∈N(i)

ma→i (xi) (10)

wherexi is equal to0 or 1.
4) Compute the belief of each particle for each variable

nodei in Region 1 beingpk
i

b
(

pk
i

)

∝
∏

a∈N(i)

ma→i

(

pk
i

)

(11)

In the model, the beliefb
(

pk
i

)

of each particlek is

corresponding to the weight
(

ω
(k)
i

)

shown in Fig. 3.
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Fig. 5. Estimation of crossover probabilities for linearly changing correlations
and 1:16 connection ratio.

5) Update factor node in Region 3 follows (12)

ma→i (xi) ∝
∑

xa\xi



fa (xa)
∏

j∈N(a)\i

mj→a (xj)



,

(12)
wherefa (xa) is defined in (2)

6) Update factor node in Region 1, which means to update
each particle according to (13)

ma→i

(

pk
i

)

∝ ∑

pi+1

(

fa

(

pk
i+1, p

k
i

)

mi+1→a

(

pk
i+1

))

,

ma→i+1

(

pk
i+1

)

∝ ∑

pi

(

fa

(

pk
i+1, p

k
i

)

mi→a

(

pk
i

))

,

(13)

where fa

(

pk
i+1, p

k
i

)

= e−
(pk

i+1
−pk

i )
2

λ , and pi or pi+1

means all the particles in the variable nodesi or i + 1
of Region 1.

7) Update factor node in Region 2
a) Message from Region 2 to Region 1

ma→i

(

pk
i

)

∝
∑

xj∈{0,1}

(

fa

(

xj , yj , p
k
i

)

mj→a (xj)
)

,

(14)

where fa

(

xj , yj , p
k
i

)

=

{

1 − pk
i if yj = xj

pk
i otherwise

,

and j refers toj-th variable node in Region 3.
b) Message from Region 2 to Region 3

ma→i (xi) ∝
∑

k∈[1,Np]

(

fa

(

xi, yi, p
k
j

)

mj→a

(

pk
j

))

,

(15)

where fa

(

xi, yi, p
k
j

)

=

{

1 − pk
j if yi = xi

pk
j otherwise

,

and j refers to thej-th variable node in Region
1.

V. RESULTS

In this section, the decoding performance of standard BP
and that of PF based BP algorithm are compared. Moreover,
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Fig. 6. Estimation of crossover probabilities for sinusoidal changing
correlations and 1:16 connection ratio.

the estimation accuracy of error probability are also analyzed
under the conditions with different numbers of iterations and
different connection ratios.

We first investigated the estimated crossover probability
obtained by the BF based BP algorithm over a linearly and
a sinusoidal changing correlations. Here, SW codes were
randomly generated by parity check matrices with 20480
variable nodes and 12288 check nodes, where each variable
node connects 3 check nodes. Moreover, 16 particles were
assigned to each variable node in Region 1 (see Fig. 1). For
the random walk step, we assumedσ2

r = 0.0001. For the factor
node update in Region 1, we assumed thatλ = 0.001. The
following results were obtained by averaging the estimated
error probability of 30 different codewords. Fig. 5 shows the
estimated results of a linearly changing correlation, where
the crossover probabilityp increased continuously from 0.05
to 0.3 by the stepV = 0.3−0.05

20480 for each input codeword
bit. From Fig. 5, we can see that with the increase of the
number of iterations, the estimated crossover probabilityp̂

becomes closer to the exact input crossover probability, even
though they started with a far underestimated initial value.
Moreover, as shown in Fig. 6, an estimatedp̂ for SW codes
over a sinusoidal changing correlation is presented. The results
also verified that our proposed algorithm can generate a good
estimation of a complexly changing correlation.

Next we compared the performance results of the standard
BP and our proposed algorithm in terms of decoding error.
The following performance results were also obtained by
averaging 30 independent simulations, where the code length
was 20480 and the code rates changed from 0.1 to 0.4. The
SW limit1 is equal to the conditional entropyH(X|Y ) =

1
20480

∑

i∈[1,20480]

H(pi), where H(pi) = −pi log(pi) − (1 −

1Strictly speaking, the achievable compression rate should be even higher
than the SW limit since the original SW setup assume that the correlation
statistics are known to both the encoder and decoder.
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Fig. 7. Decoding error probability for a linearly changing correlation with
1000 iterations and 1:16 connection ratio.
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Fig. 8. Decoding error probability for a sinusoidal changing correlation with
1000 iterations, where different connection ratios are used to test the decoding
performance.

pi) log(1 − pi). The value of crossover probabilitypi in the
BSC continuously increased from 0.05 to 0.3 by the step
V = 0.3−0.05

20480 . The number of particles was 16. Fig. 7 shows
that our proposed algorithms obtained better performance than
that of standard BP. Similarly, for the sinusoidal time-varying
BSC, we assumed that the crossover probability changed
according to Fig. 6. In this situation, Fig. 8 also shows thatPF
based BP algorithm offered a better performance. Moreover,
we can see that with the increase of connection ratios from 1:1
to 1:16, the decoding performance of our proposed algorithm
became better. Furthermore, in Fig. 9, we shows the results of
estimated error probability as a function of connection ratio
with 1000 iteration times. We can see that the estimation
accuracy increases as the connection ratio increases, since
the variable nodes in Region 1 can obtain more channel
information from the factor nodes in Region 2 by using a
higher connection ratio. When the connection ratio is equal to
1:16, our algorithm shows a perfect matching result in Fig. 9,
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Fig. 9. Estimation of error probability for sinusoidal changing correlation
with 1000 iterations and different connection ratios.

which also explained why the 1:16 connection ratio yielded a
better decoding performance in Fig. 8.

VI. CONCLUSION

We proposed an adaptive SW decoding algorithm based
on PF and BP on a factor graph. By introducing the PF
algorithm in the left-hand side of the factor graph in the
standard BP algorithm, the error probability of a BSC will
be updated for each variable node step by step. During our
experiments, a precise estimation of error probability hasbeen
observed by using our PF based BP algorithm. Thus, the
decoding performance of our algorithm is no longer sensitive
to the initial estimation of the error probabilityp. Finally,
we concluded that our PF based BP algorithm yields a more
efficient compression than that does the standard BP algorithm.
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