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Abstract—In this letter, we present the exact Wyner-Ziv limit
for binary source coding with side information correlated by a
Z-channel and with the Hamming-distance as distortion metric.
A surprising discovery is that, unlike the general case, Wyner-Ziv
coding under this setup does not suffer a rate loss compared to
source coding with side information available at both the encoder
and the decoder. A detailed proof is presented with further
verification through Blahut-Arimoto simulations. Highlighting
the significance of our finding, we note that this is only the third
case for which Wyner-Ziv coding is shown not to suffer a rate
loss after the quadratic Gaussian case, proven by Wyner and
Ziv, and its generalization by Pradhan et al.

Index Terms—Source coding with side information, Wyner-Ziv
coding, rate-distortion performance, no rate loss.

I. I NTRODUCTION

W YNER-ZIV coding [1] refers to the problem of source
coding with side information exclusively available at

the decoder. The Wyner-Ziv theory states that a rate loss
generally occurs compared to source coding in which both the
encoder and the decoder are fully informed of the side infor-
mation. Wyner and Ziv established this rate loss in the case of
a binary source with binary symmetric channel correlation and
the Hamming-distance distortion metric [1]. They also proved
that the rate loss vanishes for memoryless jointly Gaussian
sources and the squared-error distortion metric (quadratic
Gaussian case) [1]. Pradhanet al. [2] generalized this result to
sources defined by the sum of arbitrarily distributed side infor-
mation and independent Gaussian noise. Zamir [3] proved that
the Wyner-Ziv rate loss is upper bounded by 0.5 bits/sample
for generic sources with squared-error distortion metric and
by 0.22 bits/sample for binary sources with Hamming-distance
distortion metric.

Although Wyner and Ziv investigated the doubly symmetric
binary source coding case, limited light has been shed until
now on the case where the correlation is expressed by an
asymmetric channel. Recent advances in Wyner-Ziv video
coding, however, have demonstrated the benefit of adopting an
asymmetric correlation channel model that can lead to perfor-
mance improvements compared to using a symmetric channel
model [4]. In [5], Varodayanet al. studied the performance
of Low-Density Parity-Check Accumulate codes for practical
Slepian-Wolf coding [6] of a binary source with decoder
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side information under the most representative asymmetric
correlation channel model, that is, the Z-channel.

Motivated by these advancements, we study the rate-
distortion performance of binary source coding with side
information when the correlation is expressed by a Z-channel
and the Hamming-distance is used as distortion metric. For
coding with side information available to both the encoder
and the decoder the rate-distortion function is derived in [7].
However, for the Wyner-Ziv coding setting this function is
unknown. In this work, we derive the rate-distortion function
for Wyner-Ziv coding under the aforementioned setup and
surprisingly, we prove that there is no rate loss compared
to source coding with side information available to both the
encoder and the decoder. Our theoretical proof, which is
further verified by Blahut-Arimoto simulations, contributes a
fundamental result as until now the Wyner-Ziv no-rate-loss
property is only known and proven for the quadratic Gaussian
case [1] and its extension [2].

II. PROBLEM SETTING

Consider the problem of source coding with a fidelity
criterion and letX, Y andX̂ be identically and independently
distributed (i.i.d.) random variables, denoting the source, the
side information and the reconstructed source, respectively.
Moreover, let the corresponding binary alphabets beX , Y
and X̂ and, the distortion measure be the Hamming-distance,
with d(x, x̂) = 0, if x = x̂, or d(x, x̂) = 1, otherwise. The
dependence between the sourceX and the side information
Y is expressed by a Z-channel, with crossover probabilities

p(y|x) =

{
0 , if x = 0 andy = 1

p0, if x = 1 andy = 0
(1)

A. Source Coding with Encoder-Decoder Side Information

In the scenario where the side information is available
both at the encoder and the decoder the rate-distortion (R-D)
function is given by

RX|Y (D) = inf
p(x̂|x,y)E[d(X,X̂)]≤D

I(X; X̂|Y ), (2)

whereE[∙] denotes the expectation operator andD is the target
distortion. A closed form expression of the R-D function for
the case of Z-channel correlation was given in [7], that is,

RZ
X|Y (D) = (1−q+qp0)

[

h(
qp0

1 − q + qp0
) − h(

D

1 − q + qp0
)

]

,

(3)
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whereq = Pr[X = 1] parameterizes the probability distribu-
tion of the binary source to be encoded andh(∙) is the binary
entropy function,h(p) = −p log2(p) − (1 − p) log2(1 − p),
with p ∈ [0, 1].

B. Source Coding with Decoder Side Information

In the Wyner-Ziv coding case, when the side information is
only available at the decoder, the R-D function is given by [1]

RWZ(D) = inf
p(u|x)p(x̂|u,y) E[d(X,X̂)]≤D

I(X; U |Y ) (4)

whereX̂ = f(U, Y ) and U is an auxiliary random variable,
satisfying the Markov inequalities:U ↔ X ↔ Y and
X ↔ (U, Y ) ↔ X̂. From Carath́eodory’s theorem [8], the
cardinality ofU is upper bounded as|U| ≤ |X |+1. Generally,
RWZ(D) ≥ RX|Y (D), namely, for the same distortion,
Wyner-Ziv coding suffers a rate loss compared to coding with
encoder and decoder side information [1], [3].

Next, we derive a closed form expression for the R-D
function RZ

WZ(D), for the Wyner-Ziv problem, in the case
of the Z-channel correlation, and show that, in this particular
case, there is no rate loss w.r.t. source coding with encoder
and decoder side information, i.e.,RZ

WZ(D) = RZ
X|Y (D).

III. M AIN RESULT

Theorem 1:Consider binary source coding in the presence
of side information with the Hamming-distance as distortion
metric. When the correlation between the source and the side
information is expressed by a Z-channel, Wyner-Ziv coding
does not suffer a rate loss compared to source coding with
side information available at both the encoder and the decoder.
Specifically,

RZ
X|Y (D) = RZ

WZ(D) =

(1 − q + qp0)

[

h(
qp0

1 − q + qp0
) − h(

D

1 − q + qp0
)

]

.

(5)

Proof: The quantity to be minimized in equation (4) can
be rewritten as

I(X; U |Y ) = H(U |Y ) − H(U |X). (6)

For the moment, letU be binary and the transition probabilities
given by1

p(U |X) =

[
α 1 − α
β 1 − β

]

. (7)

Note that we assumep(U |X) to be generally asymmetric,
while in the doubly symmetric binary source case, studied by
Wyner and Ziv [1], this channel was considered symmetric.

From (1), the inverse Z-channel betweenY andX is

p(X|Y ) =

[ 1−q
1−q+qp0

qp0
1−q+qp0

0 1

]

. (8)

1For binary channels, we follow the notation of Silverman in [9].

Then, the channel betweenY andU is given by the concate-
nation of the two above mentioned channels, namely,

p(U |Y ) = p(X|Y ) p(U |X)

=

[
(1−q)α+qp0β

1−q+qp0
1 − (1−q)α+qp0β

1−q+qp0

β 1 − β

]

. (9)

The entropies in (6) can be therefore expressed as

H(U |X) = −
∑

x,u

p(u, x) log2(p(u|x))

= −
∑

x

p(x)
∑

u

p(u|x) log2(p(u|x))

= (1 − q) h(α) + q h(β), (10)

and

H(U |Y ) = −
∑

y,u

p(u, y) log2(p(u|y))

= −
∑

y

p(y)
∑

u

p(u|y) log2(p(u|y))

= (1 − q + qp0) h

(
(1 − q)α + qp0β

1 − q + qp0

)

+ q(1 − p0) h(β). (11)

Replacing (10) and (11) in (6) gives

I(X; U |Y ) , R(α, β)

= (1 − q + qp0) h

(
(1 − q)α + qp0β

1 − q + qp0

)

− (1 − q) h(α) − qp0 h(β). (12)

In order to determine the corresponding distortion, we
observe that for a fixed pair(u, y), x is governed by the
conditional distributionp(x|u, y). Since the decoder can only
make a deterministic decision givenu andy, the best choice
is to outputf(u, y) = arg maxx p(x|u, y) when it sees(u, y).
1 − p(f(u, y)|u, y) is the probability that something else will
happen. Therefore, the error rate (distortion) conditioned on
(u, y) is 1− p(f(u, y)|u, y) and thus the average distortion is
given by

D =
∑

u,y

(1 − p(f(u, y)|u, y))p(u, y). (13)

Given that

p(x|u, y) =
p(x, y, u)
p(y, u)

=
p(u|x)p(x, y)

p(y, u)
, (14)

we observe the following:

p(X,Y ) =

[
(1 − q) 0

qp0 q(1 − p0)

]

, (15)

p(X = 0, Y, U ) =

[
α(1 − q) (1 − α)(1 − q)

0 0

]

, (16)

and

p(X = 1, Y, U ) =

[
βqp0 (1 − β)qp0

βq(1 − p0) (1 − β)q(1 − p0)

]

. (17)

Equations (16) and (17) are straightforward from the multipli-
cation of (15) and (7).



DELIGIANNIS ET AL: THE NO-RATE-LOSS OF WYNER-ZIV CODING IN THE Z-CHANNEL CORRELATION CASE 3

Through direct computation, (13) becomes

D =
∑

u

min
x

p(x, y = 0, u)

= min(α(1 − q), βqp0)

+ min((1 − α)(1 − q), (1 − β)qp0). (18)

Letting 0 ≤ q ≤ 1
1+p0

(the complementary case yields the
same results), and following the variation ofα, the values of
the overall distortion will be:

• If α(1 − q) < βqp0 thenD = α(1 − q) + (1 − β)qp0;
• If α(1 − q) > (1 − q) − (1 − β)qp0 then D = βqp0 +

(1 − α)(1 − q);
• If α ∈ [βqp0, (1 − q) − (1 − β)qp0] thenD = qp0.

The following holds

D(α, β) , min(α(1 − q) + (1 − β)qp0,

βqp0 + (1 − α)(1 − q), qp0). (19)

Equations (12) and (19) enable us to formulate a Lagrangian
optimization problem, as follows:

J(α, β) = R(α, β) + λD(α, β). (20)

We considerα(1− q) < βqp0, since the caseD = qp0 is not
interesting (̂X = Y ) and α(1 − q) > (1 − q) − (1 − β)qp0

yields the same solution. Computing the partial derivatives
with respect toα andβ and setting them to zero gives

∂J

∂α
= log2

(
(1 − α)(1 − q) + (1 − β)qp0

α(1 − q) + βqp0

α

1 − α

)

− λ = 0,

∂J

∂β
= log2

(
(1 − α)(1 − q) + (1 − β)qp0

α(1 − q) + βqp0

β

1 − β

)

+ λ = 0.

By summing up the above we obtain the following:
(

(1 − α)(1 − q) + (1 − β)qp0

α(1 − q) + βqp0

)2

=
(1 − α)(1 − β)

αβ

⇔α(1 − α)(1 − q)2 = (qp0)
2 β(1 − β). (21)

Solving forα andβ, the system formed by (19) and (21) gives





α = D(D−qp0)
(1−q)(2D−(1−q+qp0))

β = 1 − D(D−(1−q))
(qp0)(2D−(1−q+qp0))

(22)

For everyD ∈ [0, qp0], equation (22) defines the parameters
of the binary channelp(U |X) that yield the minimum rate.

Replacing the above forms forα and β in (12) gives an
expression for the desired R-D function. This expression,
however, may only be an upper bound. This is because we have
assumed that|U| = 2, while, from Carath́eodory’s theorem
[8], it holds that|U| ≤ |X |+1 and thus we may need to have
|U| = 3 to attain the Wyner-Ziv limit. Next, we will show that
the expression obtained by replacingα andβ in (12) matches
the lowest R-D bound, which isRZ

X|Y (D). This proves that the
expression corresponds to the desired R-D functionRZ

WZ(D)
and that Wyner-Ziv coding does not suffer a rate loss in this
particular case.

We considerα(1 − q) < βqp0 (for the other relevant case
the proof follows the same steps), and express all the entropy

quantities in equations (3) and (12) in terms ofα and β.
Equations (19) and (21) are the expressions for the distortion
and p(U |X) achieving the R-D points and the identity to be
proven becomes

h

(
qp0

1 − q + qp0

)

− h

(
D

1 − q + qp0

)

=

h

(
α(1 − q) + βqp0

1 − q + qp0

)

−
(1 − q)

1 − q + qp0
h(α)−

qp0

1 − q + qp0
h(β)

(23)

or, equivalently

h

(
α(1 − q) + βqp0

1 − q + qp0

)

+ h

(
α(1 − q) + (1 − β)qp0

1 − q + qp0

)

=

h

(
qp0

1 − q + qp0

)

+
(1 − q)

1 − q + qp0
h(α)+

qp0

1 − q + qp0
h(β)

(24)

Using (21) we can derive the following basic identities

α(1 − q) + (1 − β)qp0

1 − q + qp0
=

α(1 − q)
α(1 − q) + βqp0

, (25)

(1 − α)(1 − q) + βqp0

1 − q + qp0
=

βqp0

α(1 − q) + βqp0
, (26)

α(1 − q) + βqp0

(1 − α)(1 − q) + (1 − β)qp0
=

βqp0

(1 − α)(1 − q)
. (27)

The following then hold

h

(
α(1 − q) + βqp0

1 − q + qp0

)

= log2(1 − q + qp0)−

α(1 − q) + βqp0

1 − q + qp0
log2(α(1 − q) + βqp0)−

(1 − α)(1 − q) + (1 − β)qp0

1 − q + qp0
log2((1−α)(1−q)+(1−β)qp0)

(28)

and, using (25),

h

(
α(1 − q) + (1 − β)qp0

1 − q + qp0

)

= h

(
α(1 − q)

α(1 − q) + βqp0

)

=

log2(α(1 − q) + βqp0) −
α(1 − q) log2(α(1 − q))

α(1 − q) + βqp0
−

βqp0 log2(βqp0)
α(1 − q) + βqp0

. (29)

Summing up (28) and (29), and using (27), gives

h

(
α(1 − q) + βqp0

1 − q + qp0

)

+ h

(
α(1 − q) + (1 − β)qp0

1 − q + qp0

)

=

log2(1 − q + qp0) +
(1 − α)(1 − q) + (1 − β)qp0

1 − q + qp0
×

log2(
βqp0

(1 − α)(1 − q)
) −

α(1 − q) log2(α(1 − q))
α(1 − q) + βqp0

−

βqp0 log2(βqp0)
α(1 − q) + βqp0

. (30)

By using (25) and (26) for the last two terms, and following
basic arithmetic operations, and convenient regrouping of the
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Fig. 1. DerivedRZ
WZ(D) = RZ

X|Y (D) and corresponding R-D points
from the Blahut-Arimoto algorithm: (a)p0 = 0.5, p0 = 0.3, p0 = 0.2 and
q = 0.3; (b) p0 = 0.3, andq = 0.5, q = 0.3, q = 0.2

terms, this becomes

h

(
α(1 − q) + βqp0

1 − q + qp0

)

+ h

(
α(1 − q) + (1 − β)qp0

1 − q + qp0

)

=

log2(1 − q + qp0) −
1 − q

1 − q + qp0
log2(1 − q)−

qp0

1 − q + qp0
log2(qp0) −

1 − q

1 − q + qp0
×

[−α log2(α) − (1 − α) log2(1 − α)]−
qp0

1 − q + qp0
[−β log2(β) − (1 − β) log2(1 − β)]. (31)

It is straightforward to show that this is equivalent to(24).

IV. B LAHUT-ARIMOTO SIMULATIONS

In order to verify our theory, we used an implementation of
the Blahut-Arimoto algorithm for the R-D problem with two-
sided state information [10], adapted such that it generates the
R-D points for binary source coding with decoder side infor-
mation, under Z-channel correlation. We vary the distribution
of the sourceX, by modifying q = Pr[X = 1], as well as the
crossover probability of the Z-channel, by modifyingp0.

Fig. 1(a) presents the Wyner-Ziv R-D performance for a
uniform source with varying crossover probability for the Z-
channel, while Fig. 1(b) depicts the R-D when the correlation
channel is kept constant, and the source distribution is varying.
The figures corroborate the perfect match of our theoretical R-
D function [see (5)] with the experimental R-D points obtained
with the Blahut-Arimoto algorithm, full lines for the former
and, respectively, discrete values for the latter.

Moreover, the variation ofp(U |X) with the distortion, as
obtained by the Blahut-Arimoto algorithm for two different
pairs of p0 and q, is depicted in Figs. 2(a) and (b). It can
be observed thatp(U |X) exhibits an asymmetric behavior.
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Fig. 2. p(U |X) obtained from the Blahut-Arimoto algorithm: (a)p0 = 0.5
andq = 0.5; (b) p0 = 0.3 andq = 0.3

In particular, it is noteworthy that, for(p0, q) = (0.3, 0.3),
p(Ū |X)—i.e., the channel betweenX and the inverse ofU—
approximates a Z-channel (α ≈ 1) for any D ∈ [0, 0.09].

V. CONCLUSION

Motivated by practical applications, we have derived the R-
D function for Wyner-Ziv coding for a binary source with side
information correlated by a Z-channel and with the Hamming-
distance as distortion metric. A surprising discovery is that,
under this setup, Wyner-Ziv coding does not suffer a rate
loss compared to source coding with encoder and decoder
side information. This is only the third case for which the
Wyner-Ziv no-rate-loss property is shown and proven after the
quadratic Gaussian case [1] and its extension [2].
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