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Abstract—In this letter, we present the exact Wyner-Ziv limit  side information under the most representative asymmetric
for binary source coding with side information correlated by a correlation channel model, that is, the Z-channel.
Z-channel and with the Hamming-distance as distortion metric. Motivated by these advancements, we study the rate-
A surprising discovery is that, unlike the general case, Wyner-Ziv . . . ' . . .
coding under this setup does not suffer a rate loss compared to .dIStOFtIOI.’l performance of b',”af)/ source coding with side
source coding with side information available at both the encoder information when the correlation is expressed by a Z-channel
and the decoder. A detailed proof is presented with further and the Hamming-distance is used as distortion metric. For
verification through Blahut-Arimoto simulations. Highlighting  coding with side information available to both the encoder
the significance of our finding, we note that this is only the third and the decoder the rate-distortion function is derived in [7].

case for which Wyner-Ziv coding is shown not to suffer a rate . . - . . .
loss after the quadratic Gaussian case, proven by Wyner and However, for the Wyner-Ziv coding setting this function is

Ziv, and its generalization by Pradhan et al. unknown. In this work, we derive the rate-distortion function
Index Terms—Source coding with side information, Wyner-Ziv for V\_/y_ner-Zlv coding under the a_foremenﬂoned setup and
coding, rate-distortion performance, no rate loss. surprisingly, we prove that there is no rate loss compared

to source coding with side information available to both the
encoder and the decoder. Our theoretical proof, which is
further verified by Blahut-Arimoto simulations, contributes a

YNER-ZIV coding [1] refers to the problem of sourcefundamental result as until now the Wyner-Ziv no-rate-loss

coding with side information exclusively available aproperty is only known and proven for the quadratic Gaussian
the decoder. The Wyner-Ziv theory states that a rate loggse [1] and its extension [2].
generally occurs compared to source coding in which both the
encoder and the decoder are fully informed of the side infor-
mation. Wyner and Ziv established this rate loss in the case of
a binary source with binary symmetric channel correlation andConsider the problem of source coding with a fidelity
the Hamming-distance distortion metric [1]. They also provegfiterion and letX, Y and X be identically and independently
that the rate loss vanishes for memoryless jointly Gaussidistributed (i.i.d.) random variables, denoting the source, the
sources and the squared-error distortion metric (quadraside information and the reconstructed source, respectively.
Gaussian case) [1]. Pradhanal. [2] generalized this result to Moreover, let the corresponding binary alphabets ey
sources defined by the sum of arbitrarily distributed side infoand X’ and, the distortion measure be the Hamming-distance,
mation and independent Gaussian noise. Zamir [3] proved théth d(z, ) = 0,if x = &, or d(x, ) = 1, otherwise. The
the Wyner-Ziv rate loss is upper bounded by 0.5 bits/samplependence between the sour€eand the side information
for generic sources with squared-error distortion metric aid is expressed by a Z-channel, with crossover probabilities
by 0.22 bits/sample for binary sources with Hamming-distance

p(ylz) = {

I. INTRODUCTION

Il. PROBLEM SETTING

0,ifz=0andy =1
po,if x=1andy =0

distortion metric.

Although Wyner and Ziv investigated the doubly symmetric
binary source coding case, limited light has been shed until
now on the case where the correlation is expressed by an
asymmetric channel. Recent advances in Wyner-Ziv video . o o )
coding, however, have demonstrated the benefit of adopting at the scenario where the side |nformat|on_ 1S a_lva|lable
asymmetric correlation channel model that can lead to perféeth at the encoder and the decoder the rate-distortion (R-D)
mance improvements compared to using a symmetric chanfg]ction is given by
model [4]. In [5], Varodayaret al. studied the performance o . D
of Low-Density Parity-Check Accumulate codes for practical Bxpy (D) = p(im,y)El[ng,X)]gDI(X’X|Y)’ @

Slepian-Wolf coding [6] of a binary source with decoder , .
whereE[-] denotes the expectation operator dnds the target
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whereq = Pr{X = 1] parameterizes the probability distribu-Then, the channel betwedn andU is given by the concate-
tion of the binary source to be encoded dr{d) is the binary nation of the two above mentioned channels, namely,

entropy function,i(p) = —plog,(p) — (1 — p)logy(1 — p), p(UY) = p(X|Y) p(U]X)

with p € [0,1].
(1—g)atqpoB 1— (1—q)a+qpoB
= | T—q+apo ll_ngm ) 9)

B. Source Coding with Decoder Side Information

In the Wyner-Ziv coding case, when the side information i5he entropies in (6) can be therefore expressed as

only available at the decoder, the R-D function is given by [1] HU|X) = Zp u, ) logy (p(ulz))
Rwz(D) = nf I(XGUY) @)
plule)p(Eluy) Bld(X,X)]<D = Z p(@) > plule) logy (p(ulz))
where X = f(U,Y) and U is an auxiliary random variable, =(1 _wq) h(a)u+q h(B) (10)

satisfying the Markov inequalitiesVy <~ X « Y and

X < (UY) < X. From CaratBodory’s theorem [8], the and
cardinality ofU is upper bounded g#/| < |X|+1. Generally,
Rwz(D) > Rxy(D), namely, for the same distortion,
Wyner-Ziv coding suffers a rate loss compared to coding with

HUY) = Zp u, y) logy (p(uly))

encoder and decoder side information [1], [3]. == Zp Zp (uly) logs (p(uly))
Next, we derive a closed form expression for the R-D
function RZ,,(D), for the Wyner-Ziv problem, in the case = (1—q+qpo) h ((1 _ Q)O‘JF‘IPOB)
of the Z-channel correlation, and show that, in this particular 1—q+aqpo
case, there is no rate loss w.r.t. source coding with encoder +q(1—po) R(B). (11)

and decoder side information, i.€?%, ,(D) = RX‘Y( ). Replacing (10) and (11) in (6) gives

A
[1l. MAIN RESULT I(X;UY) = R(a,B)

1—qg)a+
Theorem 1:Consider binary source coding in the presence =(1—-q+aqpo) h <(1_(J)+QM>
of side information with the Hamming-distance as distortion 47T qpo
metric. When the correlation between the source and the side = (1 =q) h(a) = gpo h(B). (12)

information is expressed by a Z-channel, Wyner-Ziv coding |n order to determine the corresponding distortion, we
does not suffer a rate loss compared to source coding WgBserve that for a fixed paifu,y), = is governed by the
side information available at both the encoder and the decodgfnditional distributionp(z|u, ). Since the decoder can only
Specifically, make a deterministic decision givenandy, the best choice

” P is to outputf(u,y) = arg max, p(x|u,y) when it seegu, y).
Rxy(D) = Ry (D) = 1 — p(f(u,y)|u,y) is the probability that something else will

(1= g+ qpo) | A( apo s D ) happen. Therefore, the error rate (distortion) conditioned on
0 1—q+qpo 1—qg+qpo’|  (u,y)is1—p(f(u,y)|lu,y) and thus the average distortion is
(5) given by
Proof: The quantity to be minimized in equation (4) can D= Z (1 —p(f(u,y)|u,v))p(u,y). (13)
be rewritten as
I(XUY) = HU|Y) — HU|X). 6 ~ Cventhat
(2l y) = p(z,y,u) _ plulz)p(z,y) (14)
For the moment, lel/ be binary and the transition probabilities PEY) =" w) — plyw)
given by . we observe the following:
« —
p(UIX)[ _ } ) 1- 0
B 1-p p(X,Y):[( 7 1 } (15)
gpo  q(1—po)

Note that we assume(U|X) to be generally asymmetric,
while in the doubly symmetric binary source case, studied by p(X =0,Y,U) = {0‘(10 q) (1—-a)- Q)} . (16)

Wyner and Ziv [1], this channel was considered symmetric. 0
From (1), the inverse Z-channel betweEnand X is and
1—g qpo _ _ | Bapo (1 = B)apo
p(X|Y) = |:1ng170 1q1+qp0:| ) @ PrX=1LY.U)= [56}(1 “p0) (1= B)q(1—po)| " (17)

Equations (16) and (17) are straightforward from the multipli-
1For binary channels, we follow the notation of Silverman in [9]. cation of (15) and (7).
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Through direct computation, (13) becomes guantities in equations (3) and (12) in terms @fand S.
. Equations (19) and (21) are the expressions for the distortion
D=3 min p(z,y=0,u) and p(U|X) achieving the R-D points and the identity to be

i proven becomes
= min(a(1 — q), Bgpo)

+min((1 - a)(1 - q), (1 - B)qpo)- (18) h<1 apo )_h<D>_

. . - 1- B
Letting 0 < ¢ < 1~ (the complementary case yields the ) 4+ apo ) 4+ apo
same results), and following the variation @f the values of j (a( —9)+ ﬁqpo)_ 1-9) h a)_# h(3)

the overall distortion will be: 1 =g +apo 1 —q+apo —4q+apo 23)
o If a(l —q) < Bqpo thenD = «a(1 — q) + (1 — B)gpo;
o If a(l—¢q)>(1—¢q)—(1—08)gpo thenD = Bqpy + or, equivalently
O o (1-q)+5 (1-qg+(1-5)
o If a € [Bgpo, (1 —q) — (1 — B)gpo] then D = gpo. h (O‘qqpo) +h<0‘ g qpo) -
The following holds 1=aq+qpo L=q+apo
. b ( qpo ) (1-9) o) LI
D(a,8) = min(a(l = q) + (1 — B)qpo, L—q+gqpo/) 1-q+aqpo 1—q+apo
Bapo + (1 — a)(1 = q),qpo). (19) (24)
Equations (12) and (19) enable us to formulate a LagrangianUSing (21) we can derive the following basic identities
optimization problem, as follows: a(l—q) + (1 = B)gpo _ a1 —q) (25)
J(e, B) = R(a, B) + AD(a, B). (20) 1—q+qpo a(l—q) + Bgpo’
1—a)(l—-¢q)+
We considera(1 — q) < Bqpo, since the casé = gpy is not ( 1)£ . +q()]p Bao _ ol qu)pi Bany (26)
interesting X = Y) anda(l —¢q) > (1 —¢q) — (1 = B)gpo o(l—q)+ 8 0 3 0
yields the same solution. Computing the partial derivatives 4 aPo apo . 27)
with respect ton and 8 and setting them to zero gives (1-a)l—-g)+ (1 =Fapo (1-a)(l—q)
oJ | ((1 —a)(1—q)+(1-B)gpo « ) o The following then hold
do =~ TP\ al-q)+Bap  1-a N O R N
R (LSS TR P JO o ) T el mata)-
aﬁ 2 Oé(l - Q) + /quO 1- ﬁ a(l — q) + ﬁqpo ! 1
By summing up the above we obtain the following: 1—q+ qpo 0g2((1 = q) + Bapo) -
1—a)(1—q)+(1—
(1-a)(-9+(1-Bam) _(-au-g EZVLZDTLZI 0 (10144 (1-pam)
a(1 —q) + Bqpo o a4 apo (28)
sal—a)(l—q)? = 2 8(1—p5). 21
( )1 —¢q)" = (gpo)” B(1 - B) (21) and, using (25),
Solving fora andg, the system formed by (19) and (21) gives
o D(D—qpo) h a(]- - Q) + (1 — ﬂ)(JPo —h a(]- - CI) _
&= T—9@D-—(1—q+apo)) 22) 1—q+qpo a(l = q) + Bqpo
a(1 — g)logy(a(l — q))
— D(D—(1—q)) log, (a(1 — q) + — _
A =1~ GeD-(—¢tamo) ({1 = a) + fapo) a(l —q) + Bapo
For everyD € [0, gpo], equation (22) defines the parameters MM‘JPO). (29)
of the binary channeb(U|X) that yield the minimum rate. a(1 = q) + Bapo

Replacing the above forms far and 3 in (12) gives an Summing up (28) and (29), and using (27), gives
expression for the desired R-D function. This expression,

however, may only be an upper bound. This is because we have <oz(1 —q)+ ﬂqpo> b <Oé(1 —q)+(1- 5)qpo>
assumed thafl/| = 2, while, from CaratBodory’s theorem 1—q+qpo 1—q+qpo
[8], it holds that|i/| < |X|+1 and thus we may need to have (1—a)(1—q)+ (1 —B)gpo
U| = 3 to attain the Wyner-Ziv limit. Next, we will show that ~ 1082(1 — ¢ +qpo) + 1= ¢+ apo X
the expression obtained py rgp;acmgandﬁ_ln (12) matches Bapo - a(1 — q)logy(a(l — ¢))
the lowest R-D bound, which 8%, (D). This proves that the logy( 0= a)1- q)) oll —q) + Bap
expression corresponds to the desired R-D funcigi,, (D) Bapo 1o (ﬁo )
and that Wyner-Ziv coding does not suffer a rate loss in this P4bo 1082\79P0) (30)
particular case. (1 —q) + Bapo

We considera(1 — ¢) < Bqpo (for the other relevant caseBy using (25) and (26) for the last two terms, and following
the proof follows the same steps), and express all the entrdggsic arithmetic operations, and convenient regrouping of the
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Fig. 1. DerivedRZ, ,(D) = R)qu(D) and corresponding R-D points
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Fig. 2. p(U|X) obtained from the Blahut-Arimoto algorithm: (@) = 0.5
andq = 0.5; (b) po = 0.3 andg = 0.3

0.09

from the Blahut-Arimoto algorithm: (app = 0.5,p0 = 0.3,po = 0.2 and
q=0.3; (b) po =0.3, andqg = 0.5,q = 0.3,g = 0.2

In particular, it is noteworthy that, fofpo,q) = (0.3,0.3),
p(U|X)—i.e., the channel betweek and the inverse o/ —
approximates a Z-channek & 1) for any D € [0,0.09].

terms, this becomes

d

a(1 — q) + Bgpo a(l —q) + (1 - B)gpo

o ()

1—q+qpo 1—q+ qpo V. CONCLUSION
- Motivated by practical applications, we have derived the R-
loga(1 = a+ qpo) 1—q+qpo logy (1 —q) D function for Wyner-Ziv coding for a binary source with side
qpo | —q information correlated by a Z-channel and with the Hamming-
1—q+ qpo 08(qpo) — 1 2+ avo distance as distortion metric. A surprising discovery is that,

under this setup, Wyner-Ziv coding does not suffer a rate
loss compared to source coding with encoder and decoder
side information. This is only the third case for which the
Wyner-Ziv no-rate-loss property is shown and proven after the
guadratic Gaussian case [1] and its extension [2].

[—alogy(@) — (1 — a)logy(1 - a)]—

ot [B1082(8) = (1= 9)loga(1 = )]

It is straightforward to show that this is equivalent(&). B

(31)
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