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Abstract

We aim at developing a streamlined genome sequence compression algorithm to support alternative miniaturized
sequencing devices, which have limited communication, storage, and computation power. Existing techniques that
requires heavy-client (encoder side) cannot be applied. To tackle this challenge, we carefully examined distributed
source coding (DSC) theory and developed a customized reference-based genome compression protocol to meet
the low-complexity need at the client side. Based on the variation between source and reference, our protocol will
pick adaptively either syndrome coding or hash coding to compress subsequences of changing code length. Our
experimental results showed promising performance of the proposed method when compared with the state of the
art algorithm (GRS).

I. INTRODUCTION

Fig. 1. An example of a miniaturised sequencing instrument.

The vision of miniaturized sequencing devices is
turning into reality with the emergence of MinION
(see Fig.1) by Oxford Nanopore [1]. Such devices
are promising in a variety of potential applications,
ranging from studying of wildlife and clinical capture
of sequenced genes, to food inspection for identifying
pathogens. However, such portable devices are com-
monly subject to the constraints in processing capa-
bilities, power budget, and storage and communication
limitations. With these constraints, the traditional view
of genome compression architecture as simple decoder
and complex encoder needs to be changed. It is urgent to
develop novel techniques to satisfy the emerging reality
challenges. Data compression methods (for reducing the
storage space with significantly lower computational
complexity and memory requirements) become crucial
for the efficient management of genomic data in portable devices.

In both situations (with or without reference sequences), traditional genome compression is compu-
tationally expensive at the encoder. The complexity is dominated by matching (approximately) repeated
patterns of nucleotides—namely Adenine (A), Cytosine (C), Guanine (G) and Thymine (T)—between or
within the DNA sequences. These patterns are also accompanied by insertions, deletions and substitutions
of single nucleotides.

To date, a number of specialized DNA sequence compression algorithms have been proposed. In the
spirit of Ziv and Lempel [2], Grumbach and Tachi [3] proposed the first DNA sequence compressor,
Biocompress, to compress the exact repeating patterns with a specially designed Fibonacci coder. The
algorithm was then improved in Biocompress-2 [4] by introducing a Markov model for encoding the



non-repeated regions. Chen et al. [5], [6] extended the earlier approach to cover approximated repeats
by further exploiting the nature of DNA sequences. Meanwhile, the work in [7] introduced a combined
CTW+LZ algorithm for searching approximate repeats and palindrome using hash and dynamic program-
ming. Behzadi and Fessant [8] proposed a dynamic programming approach for the optimal selection of
approximate repeats with promising compression efficiency being witnessed. However, such methods are
heuristic as the underlying statistics of the sequence patterns are generally ignored. The authors in [9]–
[11] proposed to combine the matching and substitution of approximate repeats and a specific normalized
maximum likelihood model, obtaining a much higher compression ratio. Subsequently, statistical modeling
for predicting the generation of symbols and arithmetic coding for such symbols in DNA sequences were
proposed for more efficient compression. Cao et al. [12] proposed to estimate the probability distribution
of symbols with a panel of “expert” to tackle the approximate repeat problem. Alternatively, finite context
models are proposed to capture different aspects of statistical information along the sequence [13],
[14], such reference free methods are plagued by their low compression rates (not greater than 6:1) and
prohibitive computational consumption for large DNA sets.

Recognizing reference-free architectures do not fully utilizing information, a series of algorithms are
proposed to compress sequences by matching approximate repeats with a reference sequence. The RLZ
algorithm proposed by Kuruppu et al. [15] performed relative Lempel-Ziv compression of DNA sequences
with the collection of related sequences. Wang et al. [16] proposed the GRS compressor, that is able to
compress a sequence using a reference without any additional information. Applying the copy model into
the matching of exact repeats in reference sequences, GReEn [17] achieved even larger gains when
compared to [15] and [16]. Recently, reference-based algorithms [18], [19] achieved highly efficient
compression performance for the fastq data format, by matching and comparing repeated subsequences
in the reference sequences. Although the reference-based architectures can achieve hundreds of folds
compression, the requirement of reference sequences makes it impractical for miniaturized devices, which
have very limited storage space and communication bandwidth.

In this paper, we propose a novel and pioneering architecture for the genome compression application in
miniaturized devices with limited processing capabilities, power budget, storage space and communication
bandwidth. The contribution of this paper is three-fold.

1) First, to the best of our knowledge, the proposed architecture is the first practical one to meet
the demands of miniaturized devices. Motivated by the distributed source coding (DSC) for sensor
networks [20], the proposed scheme includes a simplified encoder without having access to reference
sequences or communicating with other encoders, and a complex decoder that detects repeated
subsequences in the stored reference sequences and decompress the received encoded bits with the
specifically designed graphical model. Hence, the proposed compression system can successfully
meet the constraints and requirements of the miniaturized sequencing devices.

2) Second, a flexible encoding and decoding mechanism is proposed. Using feedback from the de-
coder, the encoder transmits either hashes conducting the detection of variable-size exact repeats in
decoder or syndromes obtained with low-complexity Slepian-Wolf coding [21] of the non-repeated
subsequences. The proposed encoder and decoder perform efficiently by taking consideration of both
exact repeats and approximately repeated subsequences (e.g. insertion, deletion and substitution).

3) Third, [21] the syndrome and reference sequences at the decoder, we construct a novel factor
graph model to tackle the challenge in detecting insertion, deletion and substitution between the
reference and original source. Experimental results show that the proposed architecture can achieve
an efficient compression performance with significantly low encoding complexity when compared
to the benchmark compressor GRS.

The rest of this paper is organized as follows. In Section II, we introduce the proposed DSC based
genome compression system, which includes the implementation details of the proposed hash based
(exactly) repeated sequence coding with adaptive length and an overview of syndrome based non-repeated
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Fig. 2. Workflow of genome compression based on DSC.

sequence coding. Then, in Section III, we focus on the design of the syndromes based non-repeated
sequence coding, which can handle the insertion, deletion, and substitution between sources and reference.
The experimental results and conclusion remarks can be found in Sections IV and V, respectively.

II. SYSTEM ARCHITECTURE

The block diagram of the proposed Genome compression framework is depicted in Fig. 2. Suppose that
there are two correlated DNA sequences (i.e., source and reference sequences) available at the encoder and
decoder, respectively, where the variations between two sequences are modeled by insertion, deletion and
substitution. The alphabet of our studied DNA sequence is confined within the set {‘A’, ‘C’, ‘G’, ‘T ’, ‘N ’},
where ‘N ’ denotes an unknown base due to a low sequencing quality. Fig. 3 shows the logical flow of
the proposed framework, which we will discuss in details.

At the encoder (see the left hand side of Fig. 3), a streaming DNA sequence obtained from the portable
sequencer will be first stored in the incoming data buffer for further processing. Second, a sub-sequence
xLi , which starts with the i-th to be compressed base in the source sequence, is extracted from the incoming
data buffer, where its length L and the corresponding coding method are decided by the adaptive code
length and types selection module. The compressed sequence can be either LDPC Accumulate (LDPCA)
syndromes sxL

i
= HxLi or hash bits hxL

i
depending on whether variations are presented between the source

and the reference sequence, based on the decoder feedback, where H is the parity check matrix in LDPC
codes. Third, the encoded sequence will be temporally stored in the forward data buffer and send to the
decoder.

At the decoder (see the right hand side of Fig. 3), the received streaming data in the incoming data
buffer will be processed by one of the following modules based on the corresponding data compression
mode (i.e., either hash bits or syndromes).

1) For the received hash data hxL
i

, it will be compared with the hashes generated from a bunch of sub-
sequence candidates yLj+U , · · · ,yLj+V within the reference sequence for V −U +1 total candidates,
where j is the current offset compensated start location, and U and V are predefined lower and
upper bounds of the search region for start locations. Then, the comparison result can be further
processed as follows.

a) If a matched hash hyL
k

for k = j + U, · · · , j + V is detected (i.e., hyL
k
= hxL

i
), the next

offset compensated start location of the sliding window can be updated as j = k + L (see
Fig. 4). Moreover, we claim that yLk will be identical to xLi , if hyL

k
and hxL

i
are matched

with each other, which is the fundamental assumption of our proposed system. Intuitively,
the aforementioned assumption can be enforced by choosing a strong hash code with a small
search region. The experimental results based on sequences [22], [23] with total more than
238 million bases demonstrate that a 16-bit cyclic redundancy check (CRC) hash code with a
search region U = −2 and V = 10 provides a strong assertion of such assumption. In addition,
the decoder will inform the success to the encoder and request a longer code length based on a
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predefined protocol as updating Lcurrent = bL0, where L0 is a predefined initial length and the
scaling factor b is updated as b = b+db, db is an incremental constant, and b is initialized as 0.
For example, at the beginning, Lcurrent = L0, if a matched hash is detected, the adaptive length
Lcurrent will be updated as Lcurrent = dbL0, as the scaling factor b = 0 + db. Similarly, if nh
number of successively matched hashes are detected, the adaptive length and its corresponding
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scale factor will be Lcurrent = nhdbL0 and b = nhdb, respectively.
b) If no matched hash can be detected, the following two conditions will be checked.

i) if Lcurrent = L0, the decoder will inform the hash matching failure to the encoder and
request syndromes from the encoder for further action.

ii) Otherwise, the decoder also informs the hash matching failure to the encoder, but requests
a shorter code length by setting Lcurrent = L0.

2) For the received syndromes, the decoder will pass the syndrome to the proposed factor graph based
LDPCA decoder with the capability of handling deletion, insertion and substitution between the
source and the reference (see the next section for more implementation details). The following two
conditions will be checked.

a) If the decoded source x̂Li satisfies both the parity check constraint (i.e., sxi
= Hx̂Li ) and the

hash constraint (i.e., hxL
i
= hx̂L

i
), the decoder will send an LDPCA success message back to

the encoder and update the offset compensated start location j through the Smith-Waterman
local alignment between the reference and the decoded source. Moreover, the encoder will
send hash codes to the decoder for the next sub-sequence.

b) Otherwise, the decoder will request additional LDPCA syndromes from the encoder.

III. SYNDROME BASED NON-REPEATED SEQUENCE CODING

As previously mentioned in our system architecture, if an exact repeat cannot be identified by hash
coding, the decoder will request syndromes from the encoder through a feedback channel. In this section,
we introduce the codec design of the proposed syndrome based non-repeated sequence coding.

A. Syndrome based non-repeated sequence encoding
The first step of the proposed syndrome based non-repeat encoder is to convert DNA data into a binary

source, such that they can be compressed under a binary LDPCA encoder. Suppose the following mapping
rule for the letters within the alphabet, i.e., ‘A’→ 000, ‘C’→ 001, ‘G’→ 010, ‘T ’→ 011, ‘N ’→ 100,
a DNA subsequence x can be represented by the corresponding binary vector xb. For instance, given a
DNA subsequence x = [‘A’‘T’‘G’‘C’‘T’‘N’]T with length N = 6, its corresponding binary vector will
be xb = [000 011 010 001 011 100]T with length 3N . Thus, for LDPC based Slepian-Wolf (SW)
coding (i.e., lossless DSC), the compressed syndromes will be generated through sx = Hxb, where H
is a sparse parity check matrix with size M × 3N and M < 3N . Thus, the resulting code rate can be
expressed as R = M/N bits per base. It is worth mentioning that the computational complexity of the
aforementioned encoder is ultra-low, since the only operation is the bit-wise multiplication between the
sparse matrix H and the original source. Moreover, we employ LDPCA codes to implement rate adaptive
decoding, where the decoder can incrementally request additional LDPCA syndromes from the encoder
through a feedback channel, when facing decoding errors.

B. Syndrome based non-repeated sequence decoding
To perform syndrome based decoding for non-repeat DNA subsequence x with the reference sequence as

side information y, the key factor is to be able to explore the variations between the source subsequence x
and the reference sequence y, where the variations are modeled by the insertion, deletion, and substitution
between the source and reference. Moreover, a substitution can be expressed as an insertion in the source
sequence followed by a deletion in the corresponding location in the reference sequence. In this section,
we demonstrate that such variations can be effectively estimated through Bayesian inference on graphical
models. The graphical model of our proposed syndrome based decoding with variation is depicted in Fig.
5. In Fig. 5, the variable nodes (usually depicted by a circle) denote variables such as source symbol,
binary source bits, local offset introduced by variation, and syndromes. Besides, factor nodes (depicted
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Fig. 5. Factor graph of genome compression based on DSC.

by squares) represent the relationship among the connected variable nodes. In the rest of this section, we
will describe how to construct the proposed factor graph for the DNA sequence decoding with variations.

We first study the parity check constraint imposed by the received syndromes, where s1, · · · , sM , the
realization of variable node Sl, l = 1, · · · ,M , denotes the received syndromes in Fig. 5. Similar to the
standard LDPC codes, the factor nodes cl, l = 1, · · · ,M , take into account the parity check constraints,
where the corresponding factor function can be expressed as

cl(xcl , sl) =

{
1, if sl ⊕

⊕
xcl = 0,

0, otherwise. (1)

where xcl denotes the set of neighbors of the factor node cl, and
⊕

xcl denotes the binary sum of all
elements of the set xcl .

Moreover, x1i , x
2
i , x

3
i , the realization of variable node Xr

i with i = 1, · · · , N , r = 1, 2, 3, are the binary
representation for the i-th base xi in the DNA sequence according to the mapping rule introduced in the
Section III-A, where the mapping rule is captured by the factor node fi, i = 1, · · · , N with corresponding
factor function as follows
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fi(xi, x
1
i , x

2
i , x

3
i ) =

{
1, if map(x1i , x

2
i , x

3
i ) = xi,

0, otherwise. (2)

where map(•) denotes the mapping from the binary bits “• ”to a letter in the alphabet, e.g. the output
of map(0, 1, 1) corresponds to the letter “T”.

Moreover, since the alphabet is not uniformly distributed in an arbitrary DNA sequence, the prior
distribution for the alphabet is captured by the factor node hxi , where learning prior through training
DNA sequences will be discussed shortly in the results section.

Now, we introduce an additional erasure variable node Mi to capture the variation between reference yi
and source xi, where the variable mi = 1 indicates the presence of variations, mi = 0 means the existence
of matches yi+ti = xi and ti = −T, · · · , T are all possible local offsets within the search region [−T, T ].
Moreover, the corresponding prior distribution of variable mi is captured by the factor node hmi

with
factor function defined as

hmi
(mi) =

{
1− pe if exist matches yi+ti = xi
pe, otherwise, (3)

where pe can be learnt through training DNA sequence.
For the existence of matches yi+ti = xi, the local offset ti is captured by the variable node Ti and

its corresponding prior is represented by the factor node hti with hti(ti) = pti , where pti can be learnt
through training DNA sequences. Furthermore, as the local offsets between adjacent DNA bases do not
vary significantly in our assumption, it is expected that adjacent variables ti will not differ much in
value. Such characteristic is captured by the additional factor node qti,ti+1

, where the corresponding factor
function is defined as

qti,ti+1
(ti, ti+1, α) =

α

2
e−α|ti−ti+1|, (4)

where α is the scale parameter of the Laplace distribution.
The factor node gi and its corresponding factor function gi(mi, yi, xi, ti) are introduced to combine the

impact imposed by the side information yi, erasure mi and local offset ti. For mi = 0, the factor function
can be expressed as,

gi(mi = 0, yi, xi, ti) =

{
1 if yi+ti = xi,
0, otherwise. (5)

For mi = 1, the variable nodes Ti and Yi will be disconnected from the factor node gi . Therefore, the
simplified factor function gi(mi = 1, xi) = 1 can be used to take the impact of erasure into account.

Finally, in the context of Bayesian inference, estimating unknown variables corresponds to the evalua-
tions of their marginal distribution, which can be efficiently achieved by performing message passing on a
factor graph. With the factor graph defined above in Fig. 5, the original DNA sequence can be recovered
by the estimated posterior distribution of each source xi.

IV. RESULTS

Two genome sequence data - The Arabidopsis Information Resrouce (TAIR) [24] and The Institute
for Genomic Research (TIGR) [25] are adopted in our experiments. These two database are collected by
professional groups or institutes, and have been widely used by research communities.

The TAIR maintains a database of genetic and molecular biology data for the model higher plant
Arabidopsis thaliana [24]. In this experiment, we test TAIR8 [22] dataset and TAIR9 [23] dataset, where
each dataset contains five chromosomes with over 238 million bases in total. Moreover, the genome of
TAIR9 is used for testing our compression performance with TAIR8 as reference only available at the
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decoder. For this experiment, all the hyper-parameters are initialized as follows, the initial code length
L0 = 528, the incremental constant bd = 3, the scale parameter of Laplace distribution α = 1, the
maximum local offset search region T = 4 and the erasure probability pe = 0.01. The proposed codec is
implemented in MATLAB and evaluated on an Intel 3.0GHz CPU.
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Fig. 6. The empirical statistics of (a) the DNA bases {‘A’, ‘T’, ‘G’, ‘C’, ‘N’} and these of (b) the local offsets with the range from −4 to
4.

First, the empirical marginal statistics of the DNA bases {‘A’, ‘T’, ‘G’, ‘C’, ‘N’} and these of the local
offsets ti within the range from −4 to 4 are shown in Figs. 6(a) and 6(b), respectively, which will be
used as the priors in the syndrome based non-repeated sequence decoding. In Figs. 6(a), we verify the
assumption that the alphabets of DNA sequences are usually non-uniformly distributed. Moreover, Fig.
6(b) depicts that the maximum local offset with T = 4 is sufficiently large for capturing shifts between
the reference and the source.
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Fig. 7. Compression performance of the proposed codec on TAIR dataset, (a) the average code rates vs. the different maximum local offsets
in syndrome coding; (b) the overall compression performance (i.e., hash bits + syndromes) for all 5 chromosomes.

Fig. 7(a) illustrates the relationship between the average code rates and the different maximum local
offsets in syndrome coding based on all 5 chromosomes. In Fig. 7(a), we can see that the code rates
decrease as the maximum local offsets increase, due to the fact that a larger maximum local offset offers
a wider search region for exploring the reference. However, a larger maximum local offset may also result
in a higher decoding complexity. Fig. 7(b) shows the overall compression performance (i.e., hash bits +
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syndromes) for all 5 chromosomes in terms of compressed file size. Moreover, Fig. 8 shows a side-by-side
comparison of the compression rate and compression time. We can see that both the proposed method
and GRS algorithm achieve significant file size reductions (i.e., up to 8252x file size reduction).
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Fig. 8. Performance comparison between GRS and our proposed codec on TAIR dataset.

For the TIGR data, we tested the chromosome 4 (35.8MB) of the TIGR5 dataset using the chromosome
4 of the TIGR6 as the reference by varying the LDPC code length (i.e., 528, 1056, 1584, 2112 and 2640)
as shown in Table I. Moreover, we also implemented GRS method on this dataset, and the result was
also listed in Table II as reference. We can see that the compression performance decreases as the LDPC
code length increases. The proposed algorithm achieved better compression performance comparing with
GRS in this case. It is because that the reference chromosome 4 in TIGR6 includes a significant amount
of insertions when comparing with the same chromosome in TIGR 5, where the insertion information in
the reference chromosome has no contribution to the size of DSC compressed data.

Our proposed encoder shows a significantly lower encoding complexity. It is worth mentioning that the
proposed codec is implemented by MATLAB, where a potential performance boost is highly expected
by using more efficient programming languages e.g., C/C++. To the best of our knowledge, this is the
first study of DSC based genome compression. There is no doubt that it opens many possibilities for the
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TABLE I
PERFORMANCES OF OUR PROPOSED METHOD ON CHROMOSOME 4 OF TIGR5 (35.8 MB)

LDPC Code Length Compression Size (KB) Encoding Time (Seconds) Decoding Time (Seconds)
528 3.68 0.04 298

1056 4.58 0.009 596
1584 5.67 0.01 787
2112 6.97 0.01 1102
2640 6.72 0.08 1374

TABLE II
PERFORMANCE OF GRS ON CHROMOSOME 4 OF TIGR5 (35.8 MB)

Compression Size (KB) Encoding Time (Seconds) Decoding Time (Seconds)
26.34 12 6

portable miniaturized applications in which energy consumption and bandwidth usage are of paramount
importance.

V. CONCLUSION

In this paper, we present a DSC based genome compression architecture. To the best of our knowledge,
the proposed framework is the first study of its kind: specially targeted at the low complexity genome
encoding for miniaturized devices, which have limited processing capabilities, power budget, storage space
and communication bandwidth. Compared to traditional reference based DNA compression algorithm
(e.g., GRS), the proposed framework offers ultra-low encoding complexity (non-repeated subsequences
are encoded using low complexity DSC encoding), while (exactly) repeated subsequences are compressed
through adaptive length hash coding based on the decoder feedback. The customized factor graph based
decoder tackles the challenges of detecting insertion, deletion and substitution between the reference and
the original source, and it recovers the non-repeated subsequences based on received syndromes. Last
but not least, our proposed genome compression framework incorporates LDPCA codes for rate adaptive
decoding. Experimental results show that the proposed architecture could achieve an efficient compression
performance with significantly lower encoding complexity when compared to the benchmark compressor
GRS.
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