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Abstract—We consider zero-error Slepian-Wolf coding for a special
kind of correlated sources known as Hamming sources. Moreover, we
focus on the design of codes with minimum redundancy (i.e., perfect
codes). As shown in a prior work by Koulgi et al., the design of a perfect
code for a general source is very difficult and in fact is NP-hard. In
our recent work, we introduce a subset of perfect codes for Hamming
sources known as Hamming Codes for Multiple Sources (HCMSs). In this
work, we extend HCMSs to generalized HCMSs, which can be proved
to include all perfect codes for Hamming sources. To prove our main
result, we first show that any perfect code for a Hamming source with
two terminals is equivalent to a Hamming code for asymmetric Slepian
Wolf coding (c.f. Lemma 2). We then show that any multi-terminal (of
more than two terminals) perfect code can be transformed to a perfect
code for two terminals (c.f. Lemma 3) and to a perfect code with an
asymmetric form (c.f. Lemma 4). Equipped with these results, we prove
that every perfect Slepian-Wolf code for Hamming sources is equivalent
to a generalized HCMS.

I. INTRODUCTION

Slepian-Wolf (SW) coding refers to lossless distributed com-
pression of correlated sources. Consider s correlated sources
X1, X2, · · · , Xs. SW coding studies a setup in which encoding is
performed separately for each encoder that can see only one of the
s sources whereas decoding is performed jointly.

Wyner is the first who realized that by taking computed syndromes
as compressed sources, channel codes can be used to implement
SW coding efficiently [1]. The approach was rediscovered and
popularized by Pradhan et al. more than two decades later [2].
Practical syndrome-based schemes for S-W coding using channel
codes have been further studied in [3], [4], [5], [6], [7], [8], [9],
[10], [11]. Despite these efforts, most prior works are restricted to
the discussion of two sources [2], [12], [13], [14], [15], [11] except
for a few exceptions [16], [3], [17].

In [17], we described a generalized syndrome based SW code and
extended the notions of a packing bound and a perfect code from
regular channel coding to SW coding with an arbitrary number of
sources. In [18], we introduced the notion of Hamming Code for
Multiple Sources (HCMSs) as a perfect code solution for Hamming
sources. Moreover, we have shown that there exist an infinite number
of HCMSs for three sources. However, we have also pointed out that
not all perfect codes for Hamming sources can be represented as
HCMSs. In this paper, we extend HCMS to generalized HCMS. The
main contribution is to show the universality of generalized HCMS.
Namely, any perfect SW code for a Hamming source is equivalent
to a generalized HCMS (c.f. Theorem 3).

This paper is organized as follows. In the next section, we will
describe the problem setup and introduce perfect SW codes for
Hamming sources. We will review HCMS and introduce generalized
HCMS in Section III. In Section IV, before the conclusion we will
show the universality of generalized HCMS.
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II. GENERAL SYNDROME BASED SW CODING AND PERFECT SW
CODES FOR HAMMING SOURCES

We will begin with a general definition of syndrome based SW
codes with multiple sources [17].

Definition 1 (Syndrome based SW code). A rate (r1, r2, · · · , rs)
syndrome based SW code for s correlated length-n sources contains s
coding matrices H1, H2, · · · , Hs of sizes m1×n,m2×n, · · · ,ms×
n, where ri = mi/n for i = 1, 2, · · · , s.

• Encoding: The ith encoder compresses length-n input xi into
yi = Hixi and transmits the compressed mi bits (with
compression rate ri = mi/n) to the base station.

• Decoding: Upon receiving all yi, the base station decodes
all sources by selecting a most probable x̂1, x̂2, · · · , x̂s that
satisfies Hix̂i = yi, i = 1, 2, · · · , s.

Unlike many prior works focusing on near-lossless compression,
in this work we consider true lossless compression (zero-error re-
construction) in which sources are always recovered losslessly [19],
[20], [21], [22]. So we will characterize a set of s-terminal source
tuples S to be compressible by a SW code if any source tuple in S
can be reconstructed losslessly. Alternatively, we say the SW code
can compress S. Apparently, a SW code can compress S if and only
if its encoding map restricted to S is injective (or 1-1).

While asymptotically optimum SW codes [14], [16], [3] can be
designed and approach quite close to the SW limit, in low delay ap-
plications, it may be more suitable to use zero-error codes rather than
codes with an asymptotically vanishing error. For highly correlated
sources, we expect that sources from most terminals are likely to be
the same. The trivial case is when all s sources are identical. The next
(simplest non-trivial) possible case is when all sources except one are
identical. Moreover, in the source that is different from the rest, only
one bit differs from the corresponding bit of other sources. We call
the sources s-terminal Hamming sources of length n if their possible
outcomes include the patterns described in the two aforementioned
senarios with equal probability but exclude any other patterns. Let S
be the set containing all s-terminal Hamming sources of length n.
By simple counting, the set S has a size of (sn + 1)2n when the
number of terminals s > 2 and a size of (n+1)2n when s = 2 [17].
Thus, if S is compressible by a SW code with C denoted as the set of
all compressed outputs, the code has to satisfy a packing bound that
|C| ≥ |S|. We characterize a code as perfect if the code can compress
S and the equality in the packing bound is satisfied (i.e., |C| = |S|).
Note that the encoding map of a perfect code C restricted to the target
source S has to be bijective (i.e., both surjective and injective). The
mapping is injective due to the fact that S is compressible by C and
surjective due to the perfectness condition that |C| = |S|.

The notion of perfectness is a direct analogy of that in channel
coding. Just as a perfect channel code can transmit information at
the capacity of the target channel with a finite length code, a perfect
SW code achieves the SW bound [23] of its target sources even with
a finite source length. In fact, it is not difficult to show that a perfect
code in channel coding can be used to construct a perfect code for
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asymmetric1 SW coding of two sources with correlation modeled
by a hypothetical channel. For Hamming sources, the corresponding
channel is a bit error channel with no more than one bit error, which
can be perfectly handled by a Hamming code.

For the ease of exposition, we will define a Hamming matrix as
follows.

Definition 2 (Hamming Matrix). An m-bit Hamming matrix consists
of all nonzero column vectors of length m. Note that the size of the
matrix is m× (2m − 1).

We call the aforementioned matrices as Hamming matrices since
in channel coding. They correspond to the parity check matrix of a
Hamming code.

An example of perfectly compressing a 7-bit binary source with
side information was described in [2]. In this setup, two 7-bit binary
sources x and y that differ no more than 1 bit are encoded separately
and decoded jointly. Assuming that all allowed combinations are
equally likely, we have the joint entropy H(x,y) = log2(2

7(
(
7
1

)
+

1)) = 10 bits. Now, if we consider the asymmetric case that we
are only compressing x using y as side information whereas y is
compressed independently, then we need H(y) = 7 bits to compress
y but only need H(x|y) = 3 bits to compress x. This can be achieved
if we use a 3-bit Hamming matrix and 7 × 7 identity matrix as the
coding matrices of x and y, respectively. More generally, the defined
code below can compress and reconstruct perfectly a source pair x
and y as long as x and y differ no more than one bit.

Definition 3 (Hamming Code for Asymmetric SW Coding). We call
a syndrome based SW code (HX , HY ) as a Hamming Code for
Asymmetric SW Coding (HCASWC) for a pair of length-n sources
if HY is invertible and HX is an m-bit Hamming matrix with n =
2m − 1.

For a pair of target sources that differ no more than one bit,
Compressibility and perfectness can be easily verified by showing that
the mapping restricted to the source is both injective and surjective.

This two-source asymmetric example can be extended to “non-
asymmetric” cases that the compression rates of the sources can
be arbitrarily rebalanced while perfectness is conserved [12], [3].
Decompose the Hamming matrix HX as [P |I] = [P1P2|I], where I
is an identity matrix of size m×m. By the so-called code partitioning
technique [12], [3], one can be easily shown that a pair of coding
matrices H̃X =

[
I 0 0
0 P2 I

]
and H̃Y =

[
0 I 0
P1 0 I

]
can perfectly compress

a two-terminal Hamming source by treating x+y as a noise vector.
For example, to compress two-terminal Hamming source of length-
7, x and y, to 4 bits and 6 bits, respectively, we can employ

coding matrices H̃X =

(
0001000
1110100
0110010
1010001

)
and H̃Y =

 1000000
0100000
0010000
0000100
0001010
0001001

 and

the total number of encoded bits (i.e., 10 bits) is kept unchanged.
However, the aforementioned code partitioning technique cannot be
naturally extended to more than two sources. For example, for a
three-terminal source (x,y, z), a code extended from a Hamming
matrix will compress and recover the source perfectly if and only if
x+y+z has no more than one 1. This hardly relates to any realistic
physical source.

The design of zeror-error SW codes is related to the chromatic
number problem for graphs [24]. Even though the design of zero-
error SW codes is described in [19], [21], [22], they are restricted
to two terminals only. Moreover, even for this case, the design of
perfect SW codes (also described as minimum redundancy zero-error
source codes with side information) is shown to be very challenging.

1“Asymmetric SW coding” refers to a setup that only one of the two sources
is compressed.

Indeed, the problem for arbitrary sources can be shown to be NP-
hard [20]. For the case with more than two terminals, it was not until
recently that the existence of perfect SW codes for three sources was
illustrated using HCMS [18].

III. HAMMING CODE FOR MULTIPLE SOURCES

For the rest of the paper, let us denote S as the set containing all
s-terminal Hamming sources of length n. Denote M = m1 +m2 +
· · · + ms as the total number of compressed bits. Then we have
|C| = 2M and from the previous section the equation for perfect
compression as

2n(sn+ 1) = 2M , s > 2,
2n(n+ 1) = 2M , s = 2.

(1)

Since sn + 1 = 2(M−n), s obviously cannot be even except for
s = 2. On the other hand, by Fermat’s Little Theorem, we have
2(s−1) ≡ 1 (mod s) for every odd prime s > 1. This gives an
infinite number of solutions to (1)

A. HCMS

Theorem 1 (Hamming Code for Multiple Sources). For positive
integers s> 2, n,M satisfying (1), let P be an (M−n)-bit Hamming
matrix of size (M − n)× (2M−n − 1) = (M − n)× (sn).

If P can be partitioned into

P = [Q1, Q2, · · · , Qs] (2)

such that each Qi is an (M − n)× n matrix and

Q1 +Q2 + · · ·+Qs = 0, (3)

and there exists a matrix T of dimension2 (n− (s−1)(M −n))×n
such that the n× n matrix R defined by

R =

( Q1
Q2
···

Qs−1

T

)
(4)

is invertible, then we have a set of s coding matrices(
G1
Q1

)
,
(
G2
Q2

)
, · · · ,

(
Gs
Qs

)
(5)

that forms a perfect compression, where G1, G2, · · · , Gs be any kind
of row partition of T . That is,

T =

(G1
G2
···
Gs

)
, (6)

and some Gi can be chosen as a void matrix [18].

Definition 4 (Hamming Code for Multiple Sources). We call a code
composed of coding matrices described in (5) as a Hamming code
for mulitple sources (HCMS).

Remark 1 (SW coding of three sources of length-1). Apparently,
HCMS only exists if the (s−1)(M−n) ≤ n, otherwise the required
height of T will be negative. For example, let s = 3, n = 1, and
M = 3. Even though the parameters satisfy (1), we will not have
HCMS because n − (s − 1)(M − n) = −3. However, a perfect
(trivial) SW code actually exists in this case; the coding matrices for
all three terminals are simply the scalar matrix [1].

From Remark 1, we see that HCMS cannot model all perfect codes
that can compress s-terminal Hamming sources. It turns out that we
can modify HCMS slightly and the extension will cover all perfect

2We need n− (s− 1)(M − n) ≥ 0.
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SW codes for Hamming sources. Before we continue, we need the
following definitions.

Definition 5 (Full Row Rank Matrix). A full row rank matrix is a
full rank fat or square matrix. Note that the corresponding mapping
is surjective when a full row rank matrix is used as a coding matrix.

Definition 6 (Row Basis Matrix). Given a matrix A, we say a full
row rank matrix B is a row basis matrix of A, if row(B) = row(A),
where row(A) denotes the row space of A, i.e., all linear combina-
tions of rows of A.

Example 1 (Row Basis Matrix). ( 100
011 ) is a row basis matrix of both(

100
100
111

)
and

(
100
111
111

)
.

Remark 2. When B is a row basis matrix of A, there is a unique
matrix C s.t. A = CB (because every row of A can be decomposed
as a unique linear combination of B since B is a full row rank
matrix). And there exists matrix D s.t. B = DA but D is not
necessarily unique. Thus, given a vector v, if we know Av, we can
compute Bv (as DAv). Similarly, we have Av given Bv.

B. Generalized HCMS

The main idea of generalized HCMS is to “loosen” the condition in
(4) using the notion of row basis matrices. Let Y , a d×n matrix, be

a row basis matrix of

(
Q1
Q2
···

Qs−1

)
, where Q1, · · · , Qs is a partition of

a Hamming matrix satisfying (2) and (3). Since Y is a full row rank
matrix, there always exists a T s.t. R = ( Y

T ) is an n× n invertible
matrix regardless of whether (s − 1)(M − n) ≤ n is satisfied (c.f.
Remark 1).

Theorem 2 (Generalized HCMS). With T constructed according to
the previous paragraph, we let Gi, i = 1, · · · , s be any row partition
of T as in (6) and Ci be a row basis matrix of Qi for i = 1, · · · , s.
Then a set of coding matrices 4.2

(
G1
C1

)
,
(
G2
C2

)
, · · · ,

(
Gs
Cs

)
forms a

compression for the set of s-terminal Hamming sources of length n.
Moreover, the compression will be perfect if d1 + d2 + ... + ds +
(n− d) = M , where di is the number of rows of Ci.

Proof: Denote |x| as the Hamming weight of any binary
vector x that maps x in Zn

2 to its norm in Z by counting the
number of nonzero components, e.g., |(1, 1, 0, 1)| = 3. For any b,
vi ∈ Zn

2 s.t. |v1| + |v2| + · · · + |vs| ≤ 1, the input of correlated
sources [b + v1,b + v2, · · · ,b + vs] will result in syndrome[(

G1(b+v1)
C1(b+v1)

)
,
(

G2(b+v2)
C2(b+v2)

)
, · · · ,

(
Gs(b+vs)
Cs(b+vs)

)]
to be received at

the decoder. Given Ci(b + vi) at the decoder, we can recover
Qi(b+ vi) from Remark 2.

The decoder can then retrieve (v1, · · · ,vs) since Q1(b+ v1) +

Q2(b + v2) + · · · + Qs(b + vs)
(a)
= Q1(v1) + · · · + Qs(vs)

(b)
=

P

 v1
v2

...
vs

 , where (a) and (b) are due to (3) and (2), respectively,

and P is bijective over the set of all length-sn vectors with weight
1.

After knowing (v1, · · · ,vs), we can compute G1b, · · · , Gsb and
C1b, · · · , Csb. This in turn gives us Tb and Y b, respectively, (the
latter is again by Remark 2). So we have Rb. Since R is invertible,
we can retrieve b and thus all sources.

The second claim is apparent by simple counting.

Definition 7 (Generalized HCMS). We call a code composed of the
coding matrices described in Theorem 2 as a Generalized HCMS.

Example 2 (Generalized HCMS of three sources of length-1). Let
us revisit Remark 1. For the case s = 3, n = 1, and M = 3,
consider the Hamming matrix P = ( 101

011 ) = [Q1Q2Q3] we must
obtain C1 = C2 = C3 = [1].

(
C1
C2

)
= ( 1

1 ) ⇒ Y = [1] and T
is void and hence Gi are void. So d1 = d2 = d3 = d = 1 and
d1 + d2 + d3 + (n− d) = M . So from generalized HCMS, we get
perfect compression with coding matrices [1], [1], and [1] just as in
Remark 1.

Note that even a generalized HCMS does not guarantee the
existence of perfect compression. For example, it has been proven
there is no perfect compression for s = 3, n = 5, and M = 3 [17].
On the other hand, we showed in [18] that HCMS for three sources
exists when n and M satisfy (1) and n > 5.

IV. UNIVERSALITY OF GENERALIZED HCMS

We will now prove that every perfect compression for Hamming
sources S is equivalent to a generalized HCMS. We say two perfect
compressions are equivalent (denoted by ∼) to each other if and
only if their nullspaces can be converted to each other through the
steps of the nullspace shifting as to be described in Lemma 1. Since
each step of nullspace shifting is invertible, the term “equivalent” is
mathematically justified. In essence, the objective of this section is
to prove the following theorem.

Theorem 3. Every perfect compression of a Hamming source is
equivalent to a generalized HCMS.

The outline of the proof is as follows. First, we will show the
special case that every 2-source perfect compression is equivalent to
a Hamming code (c.f. Lemma 2 below). We will then connect any
perfect multi-source compression to a perfect compression of two
sources with Hamming codes by direct construction (c.f. Lemma 3
below). Using Lemma 1 [18], we will show that any perfect compres-
sion can be “transformed” to a perfect compression of an asymmetric
setup (c.f. Lemma 4 below) and thus we can focus ourselves only in
this asymmetric case. Finally, with the help of Lemmas 2 and 3, we
show by construction that any perfect compression of the asymmetric
setup is equivalent to a generalized HCMS and thus conclude our
proof by combining this result along with Lemma 3 (c.f. Theorem
3).

Before we continue, we would like to clarify some of our notations
used in the rest of the paper.

1) For an m× n matrix H over Z2. We denote the nullspace of
H as nullH = {v ∈ Zn

2 |Hv = 0}.
2) Let U and V be some subspaces of Zn

2 . We denote the sum
of the two vector spaces as U + V = {u+ v|u ∈ U, v ∈ V }.
Moreover, we will write U+V as U⊕V to indicate a “direct”
sum when U ∩ V = {0}.

We will now restate an important lemma that defines nullspace
shifting [18]. In a nutshell, the lemma tells us that it is possible to
tradeoff the compression rates of different source tuples by shifting a
part of the nullspace of a coding matrix to another. Simply put, any
overlapping of the nullspaces among all except one coding matrice
Hr can be shifted, partially or entirely, to Hr from all other matrices
to form a new nullspace combination. The resulting matrices will
work as well as the original.

Lemma 1. Let H1, · · · , Hs be coding matrices of a SW code that
can compress S. Suppose there exist vector spaces K and Ni, 1 ≤
i ≤ s, such that nullHi = K ⊕ Ni when i 6= r and nullHr = Nr .
Then matrices H ′1, ..., H

′
s, with nullH ′i = K ⊕Ni when i 6= d and

nullH ′d = Nd, can also compress S.
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Furthermore, if all H ′j are full row rank matrices and
(H1, · · · , Hs) is a perfect compression, then (H ′1, ..., H

′
s) is also

a perfect compression [18].

The following lemma can be viewed as an illustration of Lemma
1. It is interesting in its own right and indispensable in the proof of
Theorem 3.

Lemma 2. Every 2-source perfect compression of a Hamming source
is equivalent to a HCASWC.

Proof: Let s = 2. If (H1, H2) can compress a Hamming source,
then by Fact 3 in the Appendix, we have nullH1 ∩ nullH2 = {0}.
Therefore we can let N1 = {0} and K = null(H1) and construct
(H ′1, H

′
2) using Lemma 1. Having {0} as nullspace, H ′1 can be any

invertible n × n matrix and we can set H ′1 to the identity matrix
without loss of generality. Meanwhile, since (H ′1, H

′
2) is perfect, H ′2

is a full rank m× n matrix with m = M − n = log2(2
n(n+1))−

n = log2(n + 1). And since the columns of H ′2 must be nonzero
and different from each other, H ′2 is unique up to a permutation of
columns. Therefore, H ′2 is an (M − n)-bit Hamming matrix and
(H ′1, H

′
2) is a HCASWC. Conversely, we can construct (H1, H2)

(up to their nullspaces) from (H ′1, H
′
2) by Lemma 1. That means any

perfect compression is equivalent to a Hamming code under Lemma
1.

The special case as described in Lemma 2 is an important inter-
mediate step to show our main result depicted in Theorem 3. The
significance of Lemma 2 may not be apparent as it only deals with
two sources while Theorem 3 is meant for more than two sources.
However, the following lemma provides a crucial link in extending
Lemma 2 to the more general case.

Lemma 3. Given the coding matrices, (H1, · · · , Hs), of a perfect
(s, n,M)-compression, we can form a perfect (2, sn,M+(s−1)n)-
compression with coding matrices (X, J), where

X =

(
I I 0 0 ··· 0 0 0
0 I I 0 ··· 0 0 0

···
0 0 0 0 ··· 0 I I

)
(7)

is a (s− 1)n× sn matrix, and

J =

(
H1 0 ··· 0
0 H2 ··· 0

···
0 0 ··· Hs

)
(8)

is a M × sn matrix, and I denotes the n× n identity matrix.

Proof: Since 2n(sn + 1) = 2M implies 2(sn)((sn) + 1) =
2M+(s−1)n (c.f. (1)), we only need to show how to retrieve the input
vectors. Let us decompose any pair of the input vectors for X and

J , respectively, into
( b1

b2
···
bs

)
and

(
b1+v1
···

bs+vs

)
, where bi’s are n-entry

vectors, vi’s are also n-entry vectors but restricted to the condition
|v1|+ · · ·+ |vs| ≤ 1, where | · | maps an element in Zn

2 to its norm
in Z by counting the number of nonzero components.

From the output of X , we will get b1+b2,b2+b3, · · · ,bs−1+
bs. Thus we can obtain b1+b2,b1+b3, · · · ,b1+bs and H2(b1+
b2), H3(b1 + b3), · · · , Hs(b1 + bs).

From the output of J , we will obtain H2(b2 + v2), H3(b3 +
v3), · · · , Hs(bs + vs) and H1(b1 + v1). Combining the re-
sults, we get H1(b1 + v1), H2(b1 + v2), · · · , Hs(b1 + vs).
Since (H1, · · · , Hs) is a perfect compression, we can compute
b1,v1,v2, · · · ,vs. Together with the output of X , we can retrieve
all b1,b2, · · · ,bs and v1,v2, · · · ,vs.

Notice that in Lemma 3, we have

nullX =

{(
c

...
c

)∣∣∣∣∣ c ∈ Zn
2

}
,

nullJ =

{( n1

...
ns

)∣∣∣∣∣ni ∈ nullHi

}
.

(9)

Then Lemma 1 tells us that two full row rank matrices with
nullspaces {0} and nullX ⊕ nullJ3, respectively, are also a perfect
compression. From the proof of Lemma 2, the first matrix is an
invertible matrix and the second one is a M+(s−1)n−sn = M−n-
bit Hamming matrix. Let us denote the latter matrix as P . Then

nullP = nullX ⊕ nullJ. (10)

Partition P into
P = [Q1Q2 · · · .Qs], (11)

such that Qi is a (M − n)× n matrix. We have

Q1 +Q2 + · · ·+Qs = 0 (12)

because nullX ⊂ nullP .
Secondly, nullJ ⊂ nullP implies

nullHi ⊂ nullQi (13)

for 1 ≤ i ≤ s. Furthermore, for any

bi ∈ nullQi, (14)

we have


0

...
bi

...
0

 ∈ nullP and we can decompose it into


c

...
c

...
c

 +


c

...
c+bi

...
c

. Since


c

...
c

...
c

 ∈ nullX , by (10) we have


c

...
c+bi

...
c

 ∈ nullJ, (15)

and thus c ∈ nullHj , j 6= i, and c+ bi ∈ nullHi. Let

Li =
⋂

1≤j≤s|j 6=i

nullHj , (16)

then we have c ∈ Li. Suppose Li = {0}, then c = 0 and bi ∈
nullHi. Together with (13), we will get nullHi = nullQi. It will
be convenient for our analysis to have Li = {0} for as many i
as possible. Actually, it is possible to force a maximum number of
(s − 1) intersections to satisfy this condition by applying Lemma 1
repeatedly. This is more precisely stated in the following lemma:

Lemma 4. Given a perfect compression (H ′1, H
′
2, · · · , H ′s), there

exists (H1, · · · , Hs) ∼ (H ′1, · · · , H ′s) s.t. nullH1 ∩ ...∩ nullHi−1 ∩
nullHi+1 ∩ ... ∩ nullHs = 0 for 1 ≤ i < s.

Proof: See Appendix.
It is interesting to point out that the case considered in Lemma

4 corresponds to an asymmetric case where the maximum amount
of rate is allocated to source s with the rest of the sources given
minimally sufficient rates for lossless reconstruction. Now, we are
ready to prove our main result.

3Note that nullX and nullJ are orthogonal from Fact 3 in the Appendix
since X and J form a compression for a Hamming source.
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Proof of Theorem 3:
By Lemma 4, we can restrict our attention only to perfect compres-

sion whose coding matrices H1, · · · , Hs satisfy Li = {0}, 1 ≤ i < s
(c.f. (16)) without loss of generality. Our goal here is to show that
any of the aforementioned perfect compression can be transformed
to some equivalent generalized HCMS.

To transform to a generalized HCMS, we first generate X and J
according to (7) and (8) and hence a corresponding Hamming matrix
P and its partition matrices Qi (c.f. (11)). From the argument after
Lemma 3, we have nullQi = nullHi for i 6= s. This does not hold for
s because Ls 6= {0}. Instead, we can compute nullQs as follows. Let
Y be a row basis matrix of

(
Q1
···

Qs−1

)
as in the setup of the generalized

HCMS, and thus

nullY = nullQ1 ∩ · · · ∩ nullQs−1 = nullH1 ∩ · · · ∩ nullHs−1. (17)

With this, we can show

nullQs = nullHs ⊕ nullY (18)

from the following:

• nullQs ⊂ nullHs ⊕ nullY : Following the same logic from (14)
to (15), if we assume bs ∈ nullQs, we have c ∈ nullH1∩ · · ·∩
nullHs−1 = nullY and c + bs ∈ nullHs by (15). Therefore,
bs = c + bs + c ∈ nullHs + nullY . Since nullHs ∩ nullY =
nullH1 ∩ ... ∩ nullHs = 0 (c.f. Fact 3), we have nullQs ⊂
nullHs ⊕ nullY .

• nullHs ⊕ nullY ⊂ nullQs: Given bs ∈ nullHs and c ∈ nullY , 0

...
0

bs+c

 =

 c

...
c
c

 +

 c

...
c
bs

 ∈ nullP (c.f. (10)) because c

...
c
c

 ∈ nullX and

 c

...
c
bs

 ∈ nullJ (c.f. (17)). Thus 0 =

P

 0

...
0

bs+c

 = Qs(bs + c). Hence bs + c ∈ nullQs and so we

have nullHs ⊕ nullY ⊂ nullQs.

Following the construction procedure of the generalized HCMS,
we need to find a matrix T s.t.

R = ( Y
T ) (19)

is an invertible n× n matrix. Since the nullspaces of Hs and Y are
orthogonal to each other (c.f. (18)), there exists a subspace A such
that

nullHs ⊕ nullY ⊕A = Zn
2 . (20)

Now, if we let T be a full row rank matrix with

nullT = nullHs ⊕A, (21)

we have
nullT ⊕ nullY = Zn

2 . (22)

Being a row basis matrix matrix of

(
Q1
Q2
...

Qs−1

)
, Y is a full row rank

matrix and this ensures that we can find T such that R is invertible
(c.f.(19)).

We will now start to construct the coding matrix of the gen-
eralized HCMS. Denote Ci as a row basis matrix of Qi for
all i and consider the generalized HCMS with coding matrices
C1, C2, · · · , Cs−1,

(
T
Cs

)
. We will prove that the code is equivalent

to the target perfect code by showing that each coding matrix is a full
row rank matrix and shares the same nullspace with the corresponding
coding matrix of the target code. More precisely, we need to show

1) Ci to be full row rank matrices and nullCi = nullHi for 1 ≤
i < s; and

2)
(

T
Cs

)
to be a full row rank matrix and null

(
T
Cs

)
= nullHs.

We got 1) easily since each Ci is a row basis matrix of Qi and
nullQi = nullHi. So we only need to show 2) to finish the proof.

Since Cs is a row basis matrix of Qs, we have

rowCs = rowQs ⊂ row

(
Q1
Q2
...

Qs−1

)
= rowY, (23)

where rowQs ⊂ row

(
Q1
Q2
...

Qs−1

)
is due to Qs = Q1+Q2+ ...+Qs−1

(c.f. (12)) and row

(
Q1
Q2
...

Qs−1

)
= rowY since Y is a row basis matrix

matrix of

(
Q1
Q2
...

Qs−1

)
. Then we have

(
T
Cs

)
to be a full row rank matrix

as desired because its row vectors are linear independent, thanks to
(23) and the fact that R = ( Y

T ) is invertible (c.f. (19)). Further,
null

(
T
Cs

)
= nullT ∩ nullCs = nullT ∩ nullQs since Cs is a row

basis matrix of Qs. But nullQs ∩ nullT = (nullHs ⊕ nullY ) ∩
nullT . Since nullHs ⊂ nullT (c.f. (21)), we can apply Fact 2 (see
Appendix) to obtain nullQs ∩ nullT = (nullT ∩ nullY )⊕ nullHs =
0 ⊕ nullHs (c.f. (22)) = nullHs. Therefore, we have null

(
T
Cs

)
=

nullHs as desired.
�

V. DISCUSSIONS AND CONCLUSIONS

This paper concludes our effort in seeking perfect codes for
Hamming sources with an arbitrary number of sources. In [18], we
showed the existence of such codes. In this paper, we showed that
for any perfect code in Hamming sources, there is an equivalent
generalized HCMS and all can be derived from a Hamming matrix.

A contribution of this work is to further strenghten the connection
of a perfect code in channel coding and that in SW coding, where for
the case with more than two sources, the proof is highly non-trivial
but can be shown with a significant amount of effort as illustrated in
this paper. One may wonder the usefulness of the current work due to
the restrictiveness of the Hamming source model. Indeed, extending
to more complicated correlation models could be a very difficult task.
For a more complex model, it is probably extremely challenging
just to show if a perfect code exists or can be constructed using
linear codes. However, we believe that our experience in this series of
work (along with [17], [18]) should provide valuable insight to future
researchers who choose to pursue this challenge. To summarize, the
following suggestions may be useful:

1) Do not underestimate the importance of the two-source sce-
nario. It was surprising to us that multi-source (s > 2) cases
will turn out to be so tightly coupled with the two-source case
(s = 2) (via Lemma 3). For more complex models, we will
recommend researchers to also closely look into this special
case first.

2) Seek a “nullspace shifting” lemma for the corresponding
model. Lemma 1 [18] is a cornerstone of the entire series of our
work. It essentially allows us to shift the rate flexibly from one
encoder to another without changing the property of the code.
We envision a similar lemma will be necessary in extending
our results to any correlation model.

3) Focus on an asymmetric case. If a “nullspace shifting” lemma
exists, it will always be helpful to focus on an asymmetric case
(as described in Lemma 4) since it corresponds to a corner
point in the SW region and is typicially the simplest case. In
particular, it is highly likely that only one encoder will need
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special treatment in the asymmetric case (i.e., Encoder s in the
Proof of Theorem 3).

�

APPENDIX

Simple facts

Fact 1. For vector spaces U, V, and W , it is easy to show that

(V + U) ∩W ⊂ (V ∩W ) + U if U ⊂W. (24)

Proof: Let v ∈ V, u ∈ U that v+u ∈W . Then u ∈ U ⊂W ⇒
v ∈W ⇒ v ∈ V ∩W . As a result v + u ∈ (V ∩W ) + U .

Fact 2. For vector spaces V , U , and W , (V⊕U)∩W = (V ∩W )⊕U
if U ⊂W .

Proof: From Fact 1, we know that (V +U)∩W ⊂ (V ∩W )+U .
Now let v ∈ V ∩W , u ∈ U ⊂W . Then v + u ∈W and v + u ∈
V +U . Therefore (V ∩W )+U ⊂ (V +U)∩W . Lastly, we notice
that V ∩ U = (V ∩W ) ∩ U as U ⊂ W . Hence V ∩ U = {0} iff
(V ∩W ) ∩ U = {0}, that justifies the direct sum signs.

Fact 3. If a code with coding matrices H1, H2, · · · , Hs can com-
press a Hamming source S, then we must have nullH1 ∩ nullH2 ∩
· · · ∩ nullHs = {0}.

Proof: If there exists some vector c 6= 0 and c ∈ H1 ∩
nullH2 ∩ · · · ∩ nullHs, then the source outcome with all s terminals
equal to c will share the same codeword as the outcome with all
s terminals equal to 0. Since both of them are in S, therefore the
mapping restricted to S is not surjective and thus contradicts with
the assumption that the code can compress S.

Proof of Lemma 4

Let Ri =
⋂

1≤j≤s|j 6=i

nullH ′j . Notice that if all i 6= s, Ri = {0},

then we are finished as there is nothing to prove. In general we can
still make use of Lemma 1 to shift each Ri from encoder s to encoder
i. After the shifting, the new Ri, that we would call Li, should have
a zero dimension. Let us see the details. We have

Ri ⊂ nullH ′j , for i 6= j, (25)

and
Ri ∩Rk =

⋂
1≤j≤s

nullH ′j
(a)
= {0} for i 6= k, (26)

where (a) is due to Fact 3.
By (25) and (26), there exists a space Ns that we can decompose

nullH ′s = Ns ⊕R1 ⊕ ...⊕Rs−1. (27)

Apply Lemma 1 for s−1 times, we can form an equivalent perfect
compression by first moving the entire Ri (i.e., K in Lemma 1) from
nullH ′s to nullH ′i for i runs from 1 to s− 1 and obtain

Ni = nullH ′i ⊕Ri, 1 ≤ i < s. (28)

Then if we let Hj be a full row rank matrix with

nullHj = Nj for 1 ≤ j ≤ s, (29)

we have (H1, · · · , Hs) ∼ (H ′1, · · · , H ′s).
Recall that Li =

⋂
1≤j≤s|j 6=i

nullHj =
⋂

1≤j≤s|j 6=i

Nj We still need

to show Li = {0} for 1 ≤ i < s.
By symmetry, we only need to show that L1 = {0}. By (28), we

have N2 ⊂ nullH ′2⊕R2. Suppose N2 ∩ · · · ∩Nk ⊂ (nullH ′2 ∩ · · · ∩

nullH ′k) + (R2 + · · ·+Rk) for a k < s− 1. Then N2 ∩ · · · ∩Nk+1

is a subset of

((nullH ′2 ∩ · · · ∩ nullH ′k) + (R2 + · · ·+Rk))∩ (nullH ′k+1 +Rk+1)
(30)

by induction hypothesis.
By (25), we have R2+· · ·+Rk ⊂ nullH ′k+1 ⊂ nullH ′k+1+Rk+1.

So we can apply Fact 1 on (30) and thus obtain N2 ∩ · · · ∩ Nk+1

as a subset of ((nullH ′2 ∩ .. ∩ nullH ′k) ∩ (nullH ′k+1 + Rk+1)) +
(R2+ · · ·+Rk). Apply Fact 1 once more with V = nullH ′k+1, U =
Rk+1,W = nullH ′2 ∩ · · · ∩ nullH ′k, and we have (c.f. (25) for U ⊂
W ) N2 ∩ · · · ∩Nk+1 to be a subset of (nullH ′2 ∩ · · · ∩ nullH ′k+1)+
R2 + R3 + · · · + Rk+1. By induction we get N2 ∩ · · · ∩ Ns−1 ⊂
(nullH ′2 ∩ · · · ∩ nullH ′s−1) +R2 + · · ·+Rs−1.

Lastly, N2∩· · ·∩Ns

(a)
⊂ ((nullH ′2∩· · ·∩nullH ′s−1)+R2+ · · ·+

Rs−1) ∩ nullH ′s
(b)
⊂ (nullH ′2 ∩ · · · ∩ nullH ′s) +R2 + · · ·+Rs−1

(c)
=

R1 +R2 + · · ·+Rs−1, where (a) is due to Ns ∈ nullH ′s (c.f. (27)),
(b) is due to Fact 1, and (c) is from the definition of R1.

Thus, N2 ∩ · · · ∩ Ns ⊂ (R1 + · · · + Rs−1) ∩ Ns = {0}, where
the last equality is from the construction of Ns (c.f. (27)). �
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