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Slepian–Wolf Coded Nested Lattice Quantization for
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Abstract—Nested lattice quantization provides a practical
scheme for Wyner–Ziv coding. This paper examines the high-rate
performance of nested lattice quantizers and gives the theoretical
performance for general continuous sources. In the quadratic
Gaussian case, as the rate increases, we observe an increasing
gap between the performance of finite-dimensional nested lattice
quantizers and the Wyner–Ziv distortion-rate function. We argue
that this is because the boundary gain decreases as the rate of the
nested lattice quantizers increases. To increase the boundary gain
and ultimately boost the overall performance, a new practical
Wyner–Ziv coding scheme called Slepian–Wolf coded nested lattice
quantization (SWC-NQ) is proposed, where Slepian–Wolf coding
is applied to the quantization indices of the source for the purpose
of compression with side information at the decoder. Theoretical
analysis shows that for the quadratic Gaussian case and at high
rate, SWC-NQ performs the same as conventional entropy-coded
lattice quantization with the side information available at both
the encoder and the decoder. Furthermore, a nonlinear minimum
mean-square error (MSE) estimator is introduced at the decoder,
which is theoretically proven to degenerate to the linear minimum
MSE estimator at high rate and experimentally shown to outper-
form the linear estimator at low rate. Practical designs of one- and
two-dimensional nested lattice quantizers together with multilevel
low-density parity-check (LDPC) codes for Slepian–Wolf coding
give performance close to the theoretical limits of SWC-NQ.

Index Terms—Lattice quantization and lattice channel
code, low-density parity-check (LDPC) codes, nested lattices,
Slepian–Wolf coding, syndrome-based compression, Wyner—Ziv
coding.

I. INTRODUCTION

WYNER–ZIV coding [37], or lossy source coding with
side information at the decoder, is one of the main

problems considered in network information theory [9, Ch. 14].
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It generalizes lossless source coding with side information at
the decoder—a special case of Slepian–Wolf coding [33].1 The
rate–distortion (RD) function of Wyner–Ziv coding is known
for both discrete and continuous alphabet cases of the source
and the side information with a general distortion metric in
[37], [38]. It is derived by using a technique called “binning”
that divides the set of jointly typical sequences [9] into bins
which are as far apart (in terms of the correlation statistics) as
possible. The binning scheme for Wyner–Ziv coding can be
applied to other related problems (e.g., Gelfand–Pinsker coding
[17] and its special case of dirty-paper coding [8]) based on the
duality between source coding and channel coding with side
information [2], [27]. The theoretical analyses in [37], [38] are
based on random binning which, due to its lack of structure,
does not indicate how practical code design should be done.

In their information-theoretical work, Zamir et al. [42] out-
lined a structured algebraic binning scheme based on a pair of
nested linear/lattice codes for Wyner–Ziv coding of binary sym-
metric/quadratic Gaussian sources, where the fine code in the
nested pair plays the role of source coding while the coarse code
does channel coding. The quadratic Gaussian case corresponds
to when the correlation between the source and the side infor-
mation can be modeled by an additive white Gaussian noise
(AWGN) channel as , with mean-
square error (MSE) distortion and arbitrarily distributed . Note
that Wyner–Ziv coding in general suffers a rate loss when com-
pared to coding with side information available both at the en-
coder and the decoder. The quadratic Gaussian case is special
because there is no rate loss with Wyner–Ziv coding in this
case.2 Furthermore, it is shown in [42] that the Wyner–Ziv RD
function in this special case is asymptotically achievable using
nested lattices, under the assumption that the lattices are ide-
ally sphere-packed as the lattice dimensions go to infinity. How-
ever, high-dimensional lattice codes are difficult to implement in
practice. Thus, structured binning via nested lattice codes only
facilitates high-dimensional asymptotic analysis [42].

In this paper, we analyze the performance of finite-dimen-
sional nested lattice quantizers for continuous sources under the
high-rate assumption. Here the high-rate assumption is consis-
tent with the one in classic quantization theory [18], meaning
that the source is uniformly distributed inside the fine lattice

1Throughout the paper, Slepian–Wolf coding means near-lossless source
coding with side information at the decoder.

2It was only shown in [37] that Wyner–Ziv coding of X suffers no rate
loss when X and Y are zero mean and jointly Gaussian with MSE distortion.
Pradhan et al. [27] recently extended this no rate loss result to the more general
quadratic Gaussian case.
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cell of the quantizer. The distortion-rate (DR) performance is
analyzed for both the general and the quadratic Gaussian cases.
For general continuous sources, the distortion under a specific
rate consists of two parts: one from source coding and another
from channel coding. For the quadratic Gaussian case, a tight
lower bound of the DR function is given, showing an increasing
gap from the Wyner–Ziv limit, as the rate increases. Based on
our analysis, we argue that this increasing gap is due to the de-
creasing boundary gain as the rate increases. Thus, a practical
approach to boosting the overall performance is to increase the
boundary gain with a second stage of binning, which groups
the support region of the fine lattice into cosets. This way, the
volume of the support region decreases by a factor of while the
decoding error probability stays the same. According to the defi-
nition in [11], the boundary gain increases without changing the
dimensionality of the lattices. Since various possible boundary
gains are realizable using the second stage of binning, there is
only maximally 1.53-dB granular gain left unexploited by the
quantizer. Thus, using Slepian–Wolf coding, for second-stage
binning allows us to show the theoretical performance limits at
high rate.

Following this logic, we introduce a new framework for
Wyner–Ziv coding of continuous independent and identically
distributed (i.i.d.) sources based on Slepian–Wolf coded nested
quantization (SWC-NQ). Slepian–Wolf coding [33] here refers
to near-lossless source coding with side information at the
decoder. Practical syndrome-based schemes for Slepian–Wolf
coding using channel codes have been studied in [1], [16],
[20], [21], [26]. The role of Slepian–Wolf coding in SWC-NQ
is to exploit the correlation between the quantized source and
the side information for further compression and by making
the overall channel code stronger. SWC-NQ generalizes the
classic source coding approach of entropy-coded quantization
in the sense that the quantizer performs quite well alone and
can exhibit further rate savings by employing a powerful
Slepian–Wolf code. Moreover, it connects network information
theory with the rich areas of practical lattice source code (e.g.,
[7]) and channel code (e.g., low-density parity-check (LDPC)
codes [14], [23]) designs, making it feasible to devise codes
that can approach the Wyner–Ziv DR function.

For the quadratic Gaussian case, we establish the high-rate
performance of SWC-NQ with ideal Slepian-Wolf coding, as-
suming there is no channel decoding error in the latter. We show
that SWC-NQ with finite-dimensional nested lattice quantizer
at high rate achieves the same performance of classic entropy-
coded lattice quantization as if the side information were also
available at the encoder. For example, with ideal Slepian–Wolf
coding, one-/two-dimensional SWC-NQ performs 1.53/1.36 dB
away from the Wyner–Ziv DR function for quadratic Gaussian
sources at high rate.

We also implement one- and two-dimensional nested lattice
quantizers in the rate range of 1.0–6.0 bits per sample (b/s), for
the case when is also Gaussian (hence and are jointly
Gaussian), which is a special case of the quadratic Gaussian sce-
nario. Our experiments using nested lattice quantizers together
with irregular LDPC codes for Slepian–Wolf coding give perfor-
mance close to the corresponding limit at high rate. Our work
thus shows that SWC-NQ provides an efficient scheme for prac-

tical Wyner–Ziv coding with low-dimensional lattice quantizers
at high rate.

Although our theoretical analysis assumes high rate, when a
nonlinear minimum MSE estimator is applied at the decoder,
our simulated DR performance of SWC-NQ at low rate matches
that of classic entropy-coded quantization at low rate when the
side information is also available at the encoder. At high rate,
the nonlinear estimator degenerates to the linear one used in our
high-rate performance analysis.

We note that nonlinear estimation at the decoder can yield sig-
nificant gains only for low rate and for high rate it cannot help
noticeably. This is confirmed by the agreement of the high-rate
analysis results in this paper, which assume that the linear esti-
mation is used, with the high-rate simulation results, for which
the nonlinear estimation method is always used.

The contributions of this paper are as follows.
1) High-rate performance analysis of nested lattice quantiza-

tion for all dimensions, indicating for any finite dimension
an increasing gap in distortion from the Wyner–Ziv DR
function as the rate increases.

2) Introduction of the SWC-NQ framework for Wyner–Ziv
coding. The DR performance of SWC-NQ for the quadratic
Gaussian case is presented, showing agreement with the
performance of entropy-coded lattice quantization in
classic source coding.

3) Our proof that the performance loss of Wyner–Ziv coding
of quadratic Gaussian sources with nested lattice quantiza-
tion at a fixed high rate is independent of the source corre-
lation, with or without Slepian–Wolf coding.

4) A nonlinear minimum MSE estimator at the decoder of
the nested lattice quantizer, which improves the quantizer
performance at low rate.

5) Practical designs of one-dimensional scalar and two-di-
mensional hexagonal nested lattice quantizers and multi-
level irregular LDPC codes for Slepian–Wolf coding, con-
firming our high-rate performance analyses for both nested
lattice quantization and SWC-NQ.

The rest of this paper is organized as follows. Section II
gives the background on Slepian–Wolf coding and Wyner–Ziv
coding. Section III defines lattices and nested lattices. Sec-
tion IV is devoted to the high-rate performance analysis of
nested lattice quantization. Section V introduces SWC-NQ
and analyzes its performance. Section VI proposes an optimal
quantizer decoder, discusses practical nested lattice quantizer
design and multilevel LDPC codes for Slepian–Wolf coding,
and presents simulation results. Section VII concludes the
paper.

A. Related Works

As mentioned earlier, Zamir et al. [42] studied the high-di-
mension asymptotics of nested lattice quantization for
Wyner–Ziv coding. Practical approaches to Wyner–Ziv coding
have recently been investigated in [26], [36], [31], [24], [12],
[28], [5], [22], [40]. For example, in DISCUS [26], two source
codes (scalar quantization and trellis-coded quantizer (TCQ))
and two channel codes (scalar coset code and trellis-based
coset code [35]) are used in source–channel coding for the
Wyner–Ziv problem, resulting in four combinations. One of
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them (scalar quantization with scalar coset code) is nested
scalar quantization and another one (TCQ with trellis-based
coset code, also suggested in [36]) can effectively be considered
as nested TCQ.

A recent work [29] starts with nonuniform quantization with
index reuse and Slepian–Wolf coding and shows the same
high-rate theoretical performance as ours when the quantizer
becomes an almost uniform one without index reuse. This
agrees with our finding in Section V that at high rate, the nested
quantizer asymptotically becomes a non-nested regular one so
that strong channel coding is guaranteed.

Servetto [31] explored explicit nested lattice constructions
based on similar sublattices [6]. But we point out that results
presented in this paper contradict those in [31], [32] in three
aspects: 1) Whereas our analysis in Section IV shows that fi-
nite-dimensional nested lattice quantization performs increas-
ingly worse than the Wyner–Ziv limit as the rate increases,3 [31,
Fig. 3] seems to indicate that the performance of a low-dimen-
sional nested lattice quantizer is a constant gap (in decibels)
away from the Wyner–Ziv limit in the 2.0–7.0 b/s rate range.
2) Our simulation results with two-dimensional nested lattice
quantization shown in Fig. 11(b) are much worse than those in
[31, Fig. 4]. 3) In [32], the author attempts to apply nested lat-
tice quantization to dense sensor networks with limited resource
(e.g., fixed rate), where high correlation among sensor outputs
is achieved by increasing the number of sensors. In contrast,
we show in Section IV that, at fixed rate and dimensionality,
the gap between the performance of a nested lattice quantizer
and the Wyner–Ziv limit is independent of the source correlation
at high rate—hence, there is no high-correlation asymptotics in
Wyner–Ziv coding at high rate.

II. THEORETICAL BACKGROUNDS

In this section, we give the background on Slepian–Wolf
coding and Wyner–Ziv coding.

A. Slepian–Wolf Coding

Slepian–Wolf coding is concerned with near-lossless source
coding with side information at the decoder. For lossless com-
pression of a pair of correlated, discrete random variables and

, a rate of is sufficient if they are en-
coded jointly [9]. However, Slepian and Wolf [33] showed that

3The intuitive explanation for this increasing performance gap from the
Wyner–Ziv limit at high rate is given by a reviewer of [19], [31] as fol-
lows: Under the quadratic Gaussian correlation model X = Y + Z , with
N � N(0; � ), the noise Z should in high probability be contained in the
coarse lattice cell in order for the nested lattice coding scheme to function
well. Otherwise, the probability of decoding error will be too high, and will
dominate the total distortion, in particular, at high rate. Since a cubic cell does
not match the spherical shape of a multidimensional Gaussian, we must take
a large margin in the scaling of the coarse lattice to make the decoding error
probability small enough. Moreover, the smaller the total distortion needs to
be, the higher this margin must be.

Alternatively, using the concept of “cell overloading” [18], we can say that the
Voronoi cell of a low-dimensional (or any finite-dimensional) lattice quantizer
does not match the spherical shape of a multi-dimensional Gaussian, i.e., we
always have cell overloading with low-dimensional lattice quantizers. Relatively
large cell size (or low rate) are needed to avoid cell overloading. But as the
rate increases, the cell size decreases; this leads to more and more severe cell
overloading and explains the increasing performance gap from the Wyner-Ziv
limit.

the rate is almost sufficient even for
separate encoding (with joint decoding) of and . Specifi-
cally, the Slepian–Wolf theorem says that the achievable region
for coding and is given by

(1)

This result shows that there is no loss of coding efficiency with
separate encoding when compared to joint encoding as long
as joint decoding is performed. When the side information
(e.g., ) is perfectly available at the decoder, then the aim
of Slepian–Wolf coding is to compress to the rate limit

.

B. Wyner–Ziv Coding

Wyner–Ziv coding [37], [38] deals with the problem of RD
with side information at the decoder. It asks the question of
how many bits are needed to encode under the constraint
that , assuming the side information is
available at the decoder but not at the encoder. This problem
generalizes the setup of [33] in that coding of is lossy with
respect to a fidelity criterion rather than lossless. For both dis-
crete and continuous alphabets of and general distortion met-
rics , Wyner and Ziv [37] gave the RD function
for this problem as , where the in-
fimum is taken over all auxiliary random variables such that

is a Markov chain and there exists a function
satisfying . According to [37]

where is the classic RD function of coding with
available at the encoder (and the decoder). This means that,

compared to coding of when the side information is also
available at the encoder, there is in general a rate loss with
Wyner–Ziv coding. Zamir quantified this loss in [41], showing
a 0.22 b/s loss for binary sources with Hamming distance and
a 0.5 b/s loss for continuous sources with MSE distortion.

When is very small and the source is discrete-valued, the
Wyner–Ziv problem degenerates to the Slepian–Wolf problem
with

Another interesting setup is the quadratic Gaussian case with
the source model being and , then

where , i.e., there is no rate loss in
this case. Note that is arbitrarily distributed [27]. When is
also Gaussian (then and are jointly Gaussian memoryless
sources), let the covariance matrix of be
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with for all , then

This case is of special interest in practice because many image
and video sources can be modeled as jointly Gaussian and
Wyner–Ziv coding suffers no rate loss. For the sake of sim-
plicity, we consider this specific case in our code designs.

III. LATTICES AND NESTED LATTICES

A. Lattices

For a set of independent basis vectors ,
an unbounded -dimensional lattice is defined by

(2)

and its generator matrix . The nearest
neighbor quantizer associated with is given by

(3)

The basic Voronoi cell of , which specifies the shape of the
nearest-neighbor decoding region, is

(4)

Associated with the Voronoi cell are several important quan-
tities: the cell volume , the second moment and the nor-
malized second moment , defined by

and

(5)

respectively. The minimum of over all lattices in is
denoted as . By [7], , and .

B. Nested Lattices

A pair of -dimensional lattices with corresponding
generator matrices and is nested if there exists an
integer matrix such that and .
In this case, is called the nesting ratio, and and are
called the fine and coarse lattices, respectively.

For a pair of nested lattices , the points in the set
are called the coset leaders of relative

to , where is the basic Voronoi cell of . For each
the set of shifted lattice points

is called a coset of relative to . The th point of is
denoted as . Then

(6)

and

(7)

Since

(8)

we further define

as the Voronoi region associated with in , and
, then

(9)

An examples of and for are shown in
Fig. 1.

IV. NESTED LATTICE QUANTIZATION

Throughout this paper, we use the correlation model of
, where is the source to be coded, is the side informa-

tion, and is the noise. and are independent. In this section,
we discuss the performance of nested lattice quantization for
general sources where and are arbitrarily distributed con-
tinuous sources with zero mean, and for the quadratic Gaussian
case with . For both cases, MSE is used as the
distortion measure.

Zamir et al.’s nested lattice quantization scheme [42] works
as follows: Let the pseudorandom vector (the dither), known
to both the quantizer encoder and the decoder, be uniformly dis-
tributed over the basic Voronoi cell of the fine lattice . For
a given target average distortion , denote as the

estimation coefficient. Given the -dimensional realizations of
the source, the side information and the dither as and , re-
spectively, then according to [42], the nested quantizer encoder
quantizes to the nearest point
in , computes which is the coset
shift of with respect to , and transmits the index corre-
sponding to this coset shift.

The nested quantizer decoder receives , forms
, and reconstructs as using linear

combination and dithering in estimation.
It is shown in [42] that the Wyner–Ziv DR function

is achievable with infinite-dimen-
sional nested lattice quantization for quadratic Gaussian case.

In this paper, we analyze the high-rate performance of fi-
nite-dimensional nested lattice quantizers. Our analysis is based
on the high-resolution assumption, which means that is small
compared to . Consequently, is small enough so that the
conditional pdf of given , is approximately con-
stant over each Voronoi cell of . Under the high-rate assump-
tion, . In addition, dithering is not needed in our high-rate
analysis. With and , the encoder/decoder described
above simplifies to the following.

• The encoder quantizes to , computes
, and transmits an index corre-

sponding to the coset leader .
• Upon receiving , the decoder forms and recon-

structs as .
In the performance analysis, we limit ourselves to this sim-

plified nested lattice quantization scheme for high rate, which is
shown in Fig. 2 and was also used in [31].
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Fig. 1. An example of v; C(v); and R(v) for n = 2, where the shaded regions correspond to R(v).

Fig. 2. The simplified nested lattice quantizer for Wyner–Ziv coding.

A. High-Rate Performance for General Sources With
Arbitrary Distribution

Theorem 4.1: If a pair of -dimensional nested lattices
with nesting ratio is used for nested lattice

quantization, the distortion per dimension in Wyner–Ziv coding
of (with decoder side information ) at high rate is

(10)

Proof: Since

(11)

the average distortion for a given realization of the side infor-
mation is

(12)
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where comes from the high rate assumption and

which is due to the fact that is odd spherical sym-
metric for and both and are fixed for

with given and , is due to for
and

, and is because

(13)

and , which
leads to

(14)

Therefore, the average distortion per dimension over all realiza-
tions of is

(15)

Remarks:
• For a fixed pair of the nested lattices only

depends on , i.e., the correlation between and . It is
independent of the marginal distribution of (or ).

• The first term in is due to lattice
quantization, which is determined by the geometric struc-
ture and . It is the same as the MSE for classic lattice
quantizers [11]. The second term

is the loss due to nesting (or lattice channel coding). It de-
pends on and the distribution of , and is characterized
by the error probability of the lattice channel code.

B. The Quadratic Gaussian Case When

Corollary 4.1: In the quadratic Gaussian case

(16)

Proof: Since the nested lattice quantizer is a fixed-rate
quantizer with rate per dimension, then (10)
can be rewritten as

(17)

For the quadratic Gaussian case, according to [42, eq. (3.14)]

(18)

if we assume is a good AWGN channel -code [7],
meaning approximates a Euclidean ball of radius .
Then

(19)

At the same time, according to [42, (3.12)], for any and
sufficiently large for the good , hence

(20)

Consequently

(21)

for the quadratic Gaussian case.

The limit (16) we obtain under the high rate assumption is
consistent with results in [42], which assert that nested lattice
quantization can achieve the Wyner–Ziv limit asymptotically as
the dimensionality goes to infinity for all rates.

C. A Lower Bound on the DR Performance With Finite in
the Quadratic Gaussian Case

The source coding loss in (10) is in an
explicit form, while the channel coding loss

not so clear. In the quadratic Gaussian case with ,
we obtain from Theorem 4.1 a lower bound on the high-rate DR
performance of finite-dimensional nested lattice quantizers.

Corollary 4.2: For , the oper-
ational DR function of Wyner–Ziv coding of (with
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decoder side information ) using -dimensional nested lattice
quantizers is lower-bounded at high rate by

for (22)

with

(23)

and

(24)

where is the packing radius
[7, p. 6] of , and its density [7, Table 1.2]. When ,
the exact best possible high-rate DR performance is

(25)

Proof:
i) Rate computation: The nested lattice quantizer is a fixed

rate quantizer with .
ii) Distortion computation: The source coding loss is

In the quadratic Gaussian case, the channel coding loss in
the second term of (10) can be evaluated as

(26)

where is the Voronoi cell associated with the lattice point
.

For the one-dimensional case, can be
expressed in terms of the erfc function, then
becomes [10]

(27)

Fig. 3. Geometry used in evaluating P (z 2 V (lll)) for the two-dimensional
case.

We hence have

(28)

For the case when , since the distribution of is spheri-
cally symmetric, without loss of generality, we can assume that

lies on an axis (e.g., the horizontal axis, as shown in
Fig. 3 for ) and use polar coordinate systems when com-
puting . Let be the packing sphere [7, p. 6] of
the Voronoi region . The volume of is

(29)

When , from the polar coordinate system in Fig. 3,
we have

(30)

Similarly, when , from the polar coordinate system
, we have

(31)



LIU et al.: SLEPIAN–WOLF CODED NESTED LATTICE QUANTIZATION FOR WYNER–ZIV CODING 4365

Fig. 4 (a) Distortions with different V ’s in the two-dimensional case. (b) �D (R) is the convex hull of distortions for different V ’s.
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Fig. 5. The lower bound �D(R) of D (R) for different dimensions, with � = 0:01, in the quadratic Gaussian case.

For , we generalize (31) by using the polar coordinate
system and its Jacobian determinant [3, p.
904] to get

(32)

because

Combining (30)–(32) with (26), we obtain the lower bound
in (24) for when . Hence we have (22).

Fig. 4(a) shows distortions with different ’s using nested
lattices in two dimensions with . The lower bound

is the lower convex hull of all operational DR points
with different , as shown in Fig. 4(b). We observe from Fig.
4(b) that the gap (in decibels) from to keeps
increasing as the rate increases. This is due to the fact that the
source coding loss

is bounded away from with increasing , where
is the granular gain [11] of lattice , and

, with being the nesting ratio. Fig. 5 plots
for and with . We see that

for fixed but finite , the gap (in decibels) between
and the Wyner–Ziv DR function is an
increasing function of , and that for fixed , it is a decreasing
function of .

From (10), (26), (30), and (32), we see that the gap between
and our lower bound for is

(33)

Since will be more and more spherical-like as increases,
our lower bound is asymptotically tight as goes to infinity.
When , as we shall see from Fig. 11(b) in Section VI-C,
this gap is 0.6 dB at high rate. The following corollary asserts
that this gap is independent of (or the correlation between

and ).
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D. Performance Under Varying Source Correlation in the
Quadratic Gaussian Case

With the source model in the quadratic Gaussian
case, we have . If
is fixed, then the correlation coefficient varies with .

Corollary 4.3: For fixed rate and dimensionality , the
lower bound of in (22) remains a constant gap
(in decibels) from the Wyner–Ziv limit for all .

Proof: For any point , according to (2),
for some , then and

[7, p. 4]. Consider a similar lattice
[6] of , denoted as , with packing radius and gener-
ator matrix , then is a scaled version of with scaling
factor , which is also the packing radius of defined as

in Corollary 4.2. Thus,
and .

Let , and , then
. Starting from (23) and (24), we get

(34)

and

(34)

Thus, the sum of and can be written as

(35)

with the function depending on only through
. Therefore, for fixed , both the optimal , denoted as

, which minimizes , and the resulting minimal
are independent of . Then the lower bound of

distortion is

(36)

which is proportional to . Since the Wyner–Ziv limit is
, then the gap (in decibels) between

and for fixed and is

(37)

which is a constant that is independent of (or the correlation
between and ).

In addition to the above result about the constant gap (in
decibesl) between the lower bound and for
varying source correlation, we have a similar result when

is replaced by .

Corollary 4.4: For , the opera-
tional DR function

(38)

of Wyner–Ziv coding of (with decoder side information )
using -dimensional nested lattice quantizers at high but fixed
rate remains a constant gap (in decibels) from the Wyner–Ziv
limit for all .

Proof: It suffices to show that is proportional to .
Let and define lattice and with generator matrix

and , respectively, then for any lat-

tice point , where is the corresponding lattice

point of . In addition, , and the volume of the
Voronoi cell of is . Since the normalized second
moment remains unchanged with respect to lattice scaling and
rotation, we have

(39)

which is proportional to .

V. SLEPIAN–WOLF CODED NESTED LATTICE QUANTIZATION

(SWC-NQ)

A. Motivation of SWC-NQ

Recall from Theorem 4.1 that the distortion per dimension
of the nested lattice quantizer is , where

is the source coding loss, characterized by
the granular gain of and the boundary gain of

, whereas the channel coding loss
is characterized by the error probability of lattice channel
decoding. Suppose the coarse lattice with Voronoi region
in the -dimensional space has the same overload probability
as a cubic support region of side centered at the origin, then,
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according to [11], is defined as the ratio of the normal-
ized volume of the cubic support region to the normalized

volume . That is,

(40)

Then

(41)

where is the nesting ratio. If is fixed, will decrease
with increasing ; but remains unaffected because the
overload probability stays unchanged.

To increase the boundary gain , a second-stage of bin-
ning can be applied to the quantization indices. The essence of
binning is using a channel code to partition the support region
into cosets. Assume ideal channel code is employed to partition
the support region into cosets without decoding errors and
denote the set consisting of the coset leaders as , then
and the support region for the quantization indices (or the nested
quantizer), which is also the set of the quantization cells asso-
ciated with , has volume . Thus, the effective volume of the
support region decreases by a factor of after the second stage
of binning, and therefore the boundary gain increases by
a factor of .

We thus propose a framework for Wyner–Ziv coding of i.i.d.
sources based on SWC-NQ, which follows NQ by Slepian–Wolf
coding to perform second-stage binning. Despite the fact that
there is almost no correlation among the nested quantization in-
dices that identify the coset leaders

of nested lattice pair , there still remains corre-
lation between and the side information , especially at high
rate. Write and . Ideal
Slepian–Wolf coding can be used to compress to the rate of

per dimension. In practice, state-of-the-art
channel codes, such as LDPC codes, can be used to approach the
Slepian–Wolf limit [20]. The role of Slepian–Wolf
coding in SWC-NQ is thus to exploit the correlation between
and for further compression.

B. High-Rate Performance for the Quadratic Gaussian Case

Lemma 5.1: For the quadratic Gaussian case, a lower bound
for the high-rate performance of SWC-NQ with a pair of nested
lattices is given as

(42)

where

(43)

is the probability density function (pdf) of an -dimen-
sional i.i.d. Gaussian source with mean and covariance matrix

is defined in Section III-B as lattice points of ,
and is the same as given in (24).

Proof: See Appendix A.

The lower bounds of for and with
different are plotted in Fig. 6. It indicates that the best per-
formance of a Slepian–Wolf coded nested scalar quantizer re-
mains a constant gap (in decibels) from the Wyner–Ziv limit at
high rate. Here the best means that the minimal achievable dis-
tortion over all possible for a given rate . Before rigor-
ously stating our main result in a theorem, we give the following
lemma.

Lemma 5.2: For nested lattice quantization with
and at

high rate.
Proof: See Appendix B.

Theorem 5.2: For the quadratic Gaussian case, the optimal
DR performance of SWC-NQ using -dimensional nested lat-
tices at high rate is

(44)

Proof: 1) By Lemma 5.2

(45)

and since
under ideal Slepian–Wolf coding. Combine and through

and we get the DR function as

(46)

Since

we have

(47)

2) Denote , and

The rate of Wyner–Ziv coding with respect to is [37]

(48)

where comes from and is due to
Lemma 5.2.
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Fig. 6. Lower bounds of (a) D (R) and (b) D (R) with different V ’s.

Define . From The-
orem 4.1

(49)

then for

(50)
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which means . Hence, , and

(51)

Since

and

(51) becomes

(52)

We thus have

(53)

Combining (47) and (53), we conclude that, at high rate, the
best DR performance of the quadratic Gaussian SWC-NQ using

-dimensional lattices is

(54)

Thus, at high rate and for the quadratic Gaussian case,
SWC-NQ performs the same as classic entropy-coded lattice
quantization with the side information available at both the
encoder and decoder. Specifically, the DR functions with
one-dimensional (scalar) lattice and two-dimensional (hexag-
onal) nested lattices are 1.53 and 1.36 dB away from the
Wyner–Ziv DR function, respectively.

We found that for finite rate and small (e.g., and
), the optimal , denoted as , that minimizes the distortion

is also finite. Fig. 7(a) and (b) plots the optimal as
functions of for and (scaled by and ,
respectively). We see that as goes to infinity, also goes to
infinity. In addition, we observe from Fig. 6 that for fixed and

stays roughly unchanged for .
Remarks:
• Since SWC-NQ has its root in variable-rate quantization,

it is not surprising to see (54) as an elegant generalization
of the result in entropy-coded quantization from classic
source coding to Wyner–Ziv coding.

• SWC-NQ relies on conditional entropy coding (or
Slepian–Wolf coding implemented via channel coding) to

achieve rate savings after nested lattice quantization. That
fact that (54) holds means two things: 1) Just like entropy
coding can achieve all the boundary gain in classic source
coding of Gaussian sources [18], Slepian–Wolf coding
in SWC-NQ can realize all the remaining boundary gain
left unexploited by the coarse lattice channel code of the
nested lattice quantizer. 2) Ideal Slepian–Wolf coding also
renders the channel code loss in
to zero. Thus, with ideal Slepian-Wolf coding, the only
remaining loss in is the granular loss portion of ,
which is maximally 1.53 dB [11].

Similar to Corollary 4.4, we give (without proof) the following
corollary of Theorem 5.2 for high-rate SWC-NQ.

Corollary 5.5: For fixed dimensionality , the optimal
performance of high-rate SWC-NQ in the quadratic Gaussian
case is decibels from the Wyner–Ziv limit

for all (or any correlation between and ).

The above result is stronger than that in Corollary 4.3 be-
cause the decibel gap is also independent
of the rate . We thus conclude that the high-rate performance
loss of Wyner–Ziv coding of quadratic Gaussian sources with
nested lattice quantization is independent of the source correla-
tion, regardless of whether Slepian–Wolf coding is used or not.
There are only high-dimension asymptotics with nested lattice
quantization (studied in [42]) and high-rate asymptotics with
SWC-NQ (presented in Theorem 5.2).

VI. CODE DESIGN AND SIMULATION RESULTS

A. Design of Nested Lattice Quantizer

The nested lattice quantizer design problem involves op-
timizing the nesting in the quantizer encoder (under a fixed
nesting ratio ) and devising the minimum MSE estimator at
the decoder.

1) Optimizing the Nesting Scheme of Lattices: Lattices with
the densest packing (i.e., the best channel code) and the thinnest
covering (i.e., the best source code) are introduced in [7]. For
example, the hexagon lattice is the best lattice source code
and the best lattice channel code at . To optimize the
nesting scheme, should be clean and geometrically similar
to [6], [31], where the former means that the Voronoi cell
boundaries for do not intersect . We follow the scheme
suggested by Conway et al. in [6] to search for clean and similar
nested lattice pairs. Fig. 8 illustrates the nesting lattice pair for

with nesting ratio .
2) The Optimal Decoder: The optimal decoder for the nested

lattice quantizer is the one that minimizes the MSE between
and the reconstructed .

Theorem 6.3: The minimum MSE decoder for the nested lat-
tice quantizer is

(55)

where is the received coset
leader for at the decoder.
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Fig. 7. (a) versus R for n = 1 and (b) versus R for n = 2.
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Fig. 8. A clean and geometrically similar nested hexagonal lattice pair with nesting ratio N = 31.

Proof:

(56)

Since and form a Markov chain

(57)

Thus,

(58)

Note that this optimal quantizer decoder (58), which is in the
form of a nonlinear estimator, is consistent with the centroid
condition in classic minimum MSE lattice (or vector) quantizer
design [18].

As an example, in the quadratic Gaussian case with
and , when

the optimal decoder for a nested scalar quantizer can be ex-
pressed as

(59)

where and are the step sizes of the nested scalar quantizers
and with and being the nesting ratio.

Nonlinear estimation at the decoder plays an important role
at low rate. Fig. 9 shows the improvement gained at low rate
by using the nonlinear minimum MSE estimator of (58) versus
the linear estimator valid for high rate (see
Section IV) for with and .

Corollary 6.6: The nonlinear minimum MSE estimator of
(58) degenerates to the linear one at high
rate.

Proof: At high rate

(60)
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Fig. 9. Improvement gained at low rate by using the nonlinear minimum MSE
estimator versus the linear estimator for n = 2; � = 1 and � = 0:01.

where and are due to the high rate assumption and

Recall that the linear estimator of (60) is the one we use for
high-rate performance analysis in Section IV. But nonlinear es-
timation is employed for all rate in our simulations. Since (58)
involves integration over a disconnected region consisting of
many isolated Voronoi cells, we use the Monte Carlo method
to compute this integration in our simulations.

B. Practical Slepian–Wolf Code Design

We compress using multilevel Slepian–Wolf coding with
as the decoder side information. Denote

as the index of and write as in
its binary representation, where is the most signifi-
cant bit of , and the least significant bit. At first
is compressed using the first Slepian–Wolf code to rate

, then is compressed with the second
Slepian–Wolf code to rate , and so on.
Finally, is compressed with the th Slepian–Wolf code to
rate . By the chain rule

The rate per dimension is

By splitting into multiple bit planes, well-studied bi-
nary channel codes can be used to implement Slepian–Wolf
coding of each of them. The idea is to treat
as an input into some “hypothetical” channel with output

. At the encoder, the syndrome of the
designed channel code for a sequence of realizations of
is computed and passed to the decoder. Therefore, the com-
pression rate is one minus the channel code rate and thus the

Fig. 10. SWC-NQ with multilevel Slepian–Wolf coding.

ideal code rate is .
Decoding the th bit plane is similar to conventional
channel decoding except one thing: instead of decoding into
a channel codeword, the decoder estimates the sequence of
realizations of using the received syndrome in conjunction
with . Fig. 10 depicts SWC-NQ with
multilevel Slepian–Wolf coding.

In practice, LDPC codes have been used to implement the
Slepian–Wolf codes for their near-capacity performance [22].
To design the Slepian-Wolf code for the th bit plane , it
is essential to estimate the desired channel code rate, i.e.,

, via gathering the statistics for the
hypothetical channel with input and output

. In the following, we illustrate this Slepian–Wolf code de-
sign process, starting from estimating

, for all and .
Because is a deterministic function of , with a slight

abuse of notation, we define as this function. In other
words, . Then we have

(61)

In the one-dimensional case (with ), the integration in-
terval in (61) corre-
sponds to a union of infinite number of intervals. However, since

decays exponentially from the origin, we can approximate
the integral, thus, , accu-
rately as a linear combination of a few Gaussian tail probabili-
ties.

In higher dimensional cases (with ), however,
cannot be obtained analytically. For

example, the integration region
in the two-dimensional case corresponds to a union of

hexagons and hence no simple analytical solution can be found.
Although numerical integration may be used to evaluate (61),
we use Monte Carlo simulations because they are more flexible.
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Specifically, we first quantize the real axis into intervals and
partition all possible values of into regions for

. Denote as the region that contains and define
as an indicator function that equals to one if its argument is

true and zero otherwise. We then draw independent samples of
and , where is the

identity matrix, and let the th samples be and , respectively.
Then will be statistically equivalent to
samples of . Finally, by simple number counting, we approxi-
mate the probability in (61)
as shown in

(62)

1) Desired Channel Code Rate Computation: Armed with
(62), we estimate the LDPC code rate for the th bit plane as
shown in the first expression at the bottom of the page, where

and

are obtained directly from (62)

and

estimated by using similar Monte Carlo simulations as in (62)
with

(63)

2) Channel Estimation: Recall that at the th bit plane,
Slepian–Wolf decoding can be viewed as channel decoding
over a hypothetical channel with input and output

. Assuming that
, the channel statistics, which is needed

for decoding , is entirely captured by the log-likelihood ratio
(LLR) shown as the second array of equations at the bottom of
the page, where is the a priori LLR, which
can be estimated as

In practice, is used to design the LDPC code degree pro-
files with the help of density evolution [4], [30]. It also served
as an initial estimate during decoding. is updated after each
decoding iteration. After the final iteration, it is added to the a
priori LLR for the estimation of . Finally, the estimate
will be one if the sum is positive and zero otherwise.

While we code the bit planes from the least significant to the
most significant levels (i.e., in a bottom-up fashion), the reverse
(i.e., top-down) order is also feasible. Theoretically, there is
no performance difference between these two Slepian–Wolf
coding schemes since the chain rule will result in the same joint
conditional entropy . Coding from top down is needed
for successive refinement in practical Wyner–Ziv coding [4].
However, coding from bottom up in practice can give slightly
better performance at high rate. For example, as shown in
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TABLE I
THE CONDITIONAL ENTROPY, LDPC CODE RATE, AND THE CORRESPONDING DEGREE DISTRIBUTION POLYNOMIALS �(x) AND �(x) FOR EACH BIT PLANE OF

ONE-DIMENSIONAL SLEPIAN–WOLF CODED NESTED LATTICE QUANTIZATION WITH NESTING RATIO N = 64. H(S jY ) = 4.9618231 B/S; R = 5.009 B/S

TABLE II
THE CONDITIONAL ENTROPY, LDPC CODE RATE, AND THE CORRESPONDING DEGREE DISTRIBUTION POLYNOMIALS �(x) AND �(x) FOR EACH BIT PLANE

OF TWO-DIMENSIONAL SLEPIAN–WOLF CODED NESTED LATTICE QUANTIZATION WITH NESTING RATIO (A) N = 7; H(S jY) = 0.91278 B/S; R =
0.98 B/S AND (B) N = 31; H(S jY) = 1.66376325 B/S; R = 1.749 B/S

Table I, the conditional entropies of several lower bit planes in
the one-dimensional case are almost equal to one and hence
the corresponding bit planes are not compressed in practice.
Therefore, Slepian–Wolf coding is only employed to compress
the two most significant bit planes. Since Slepian–Wolf coding
is near- lossless, the fewer the bit planes we code, the smaller

the extra distortion introduced in Slepian–Wolf decoding. In
the case of coding the bit planes from top down, more bit
planes have their conditional entropies quite smaller than one;
Slepian–Wolf coding of these bit planes result in higher extra
distortion (see [4] for details).

C. Simulation Results

Assuming the source and the decoder side information
are related by , with and

, extensive simulations have been carried out to
evaluate nested lattice quantization in the one- and two-dimen-
sional cases and our proposed SWC-NQ scheme for Wyner–Ziv

coding of . The bit-error rate of our practical Slepian–Wolf de-
coder is less than and the errors are accounted for in our
reported MSE distortion.

In the one-dimensional case, Fig. 11(a) shows results with
nested lattice quantization alone and with SWC-NQ. Nested
lattice/scalar quantization alone exhibits a 3.95–9.60-dB per-
formance gap from for 1.0–6.0 b/s, which agrees
with the exact high-rate performance given in (29) in Corol-
lary 4.2. With SWC-NQ, we observe that the gap between our
simulation results with ideal Slepian–Wolf coding (with rate
computed as ) and is indeed 1.53 dB at high
rate; using practical Slepian–Wolf codes based on irregular
LDPC codes of length bits (with profiles from Table I), this
gap is 1.66–1.80 dB for 0.93–5.0 b/s.

For two-dimensional nested lattice quantization, we use the
hexagonal lattices. Table II lists the conditional entropy

and practical LDPC code rate for each bit plane when the
nesting ratio and , along with the profiles of the prac-
tical LDPC codes. Fig. 11(b) gives results with nested lattice
quantization alone and with SWC-NQ. With two-dimensional
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Fig. 11. Results based on (a) one-dimensional nested lattice quantization with and without SWC and (b) two-dimensional nestedA lattice quantization with and
without SWC.
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nested lattice quantization alone, our simulated performance
is 4.06–8.48 dB worse than for 1.40–5.0 b/s.
At high rate, our simulated points are 0.6 dB above the lower
bound given in (26) in Corollary 4.2. Since the sphere-based
lower bound becomes tighter and tighter as increases (and
exact as goes to infinity), we conclude that 0.6 dB (observed
at ) is the maximum gap between the lower bound in
Corollary 4.2 and at high rate.

With SWC-NQ, we also see from Fig. 11(b) that the gap be-
tween our results with ideal Slepian–Wolf coding (assuming

bits per second) and is 1.36 dB at
high rate. With practical Slepian–Wolf coding based on irreg-
ular LDPC codes (of length bits), this gap is 1.67–1.84 dB
for 0.95–3.29 b/s.

VII. CONCLUSION

In this paper, we have analyzed the high-rate performance of
nested lattice quantization for Wyner–Ziv coding, showing an
increasing gap from the theoretical limit as the rate increases.
The reason for the increase of the gap is mainly because the
boundary loss is an increasing function of the rate. To compen-
sate for the boundary loss, an SWC-NQ framework has been
proposed for Wyner–Ziv coding, where Slepian–Wolf coding
plays the role of second-stage binning to save rate after nested
lattice quantization. Assuming ideal Slepian–Wolf coding,
SWC-NQ is shown to perform a constant gap (in decibels)
away from the Wyner–Ziv DR function at high rate. This result
mirrors that from entropy-coded quantization in classic source
coding. A nonlinear minimum MSE estimator at the decoder
is introduced and used in simulations that degenerates to the
linear estimator we use in our high-rate performance analysis.
Simulations with one- and two-dimensional nested lattice quan-
tization and SWC-NQ (with ideal Slepian-Wolf coding) for
quadratic Gaussian sources show agreement with our high-rate
analytical results. Using irregular LDPC codes for practical
Slepian–Wolf coding in SWC-NQ exhibits a roughly constant
gap from the Wyner–Ziv limit for a wide range of rates.

We have also proved that the performance loss of Wyner–Ziv
coding of quadratic Gaussian sources with nested lattice quan-
tization at a fixed high rate is independent of the source corre-
lation, with or without Slepian–Wolf coding.

APPENDIX A

Proof of Lemma 5.1 for the lower bound on the DR perfor-
mance SWC-NQ in the quadratic Gaussian case.

1) Rate Computation: The rate for SWC-NQ is

(64)

Since at high rate

(65)

where is due to the high rate assumption and

Then the achievable rate of SWC-NQ is

where and use the high rate assumption and is due
to the periodic property of , i.e., .
Thus. the achievable rate of SWC-NQ is

(66)

2) Distortion Computation: From Theorem 4.1, the average
distortion of nested lattice quantization over all realizations of

is , which can be
lower-bounded as

(67)

according to (26) and (32)
Because Slepian–Wolf coding is near-lossless, the distortion

of SWC-NQ is also . Combining and through in
(66) and (67), we obtain the DR performance of SWC-NQ with
a pair of -dimensional nested lattices as

(68)

APPENDIX B

Proof of Lemma 5.2: This proof closely follows [37, p. 3, re-
mark 3)] with slight modifications. Let
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Here is actually the minimum distance between points in .
Thus, if

(69)

where is due to the triangle inequality. From Theorem 4.1,
, where

is the source coding loss and is the channel coding loss, then

(70)

Now since is a function of and , Fano’s inequality [9],
[15] implies that

(71)

then

(72)

Meanwhile

(73)

At high rate, and , thus
.
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