
1

Decomposition Approach for Low-rank Matrix
Completion and its Applications

Rick Ma, Nafise Barzigar, Aminmohammad Roozgard, and Samuel Cheng

Abstract— In this paper, we describe a low-rank matrix com-
pletion method based on matrix decomposition. An incomplete
matrix is decomposed into sub-matrices which are filled with
a proposed trimming step and then are recombined to form a
low-rank completed matrix. The divide-and-conquer approach
can significantly reduce computation complexity and storage
requirement. Moreover, the proposed decomposition method can
be naturally incorporated into any existing matrix completion
methods to attain further gain. Unlike most existing approaches,
the proposed method is not based on norm minimization nor on
SVD decomposition. This makes it possible to be applied beyond
real domain and can be used in arbitrary fields, including finite
fields. The effectiveness of our proposed method is demonstrated
through extensive numerical results on randomly generated and
real matrix completion problems and a concrete application–
video denoising. The numerical experiments show that the
algorithm can reliably solve a wide range of problems at a
speed significantly faster than recent algorithms. In the proposed
denoising approach, we present a patch-based video denoising
algorithm by grouping similar patches and then formulating the
problem of removing noise using a decomposition approach for
low-rank matrix completion. Experiments show that the proposed
approach robustly removes mixed noise such as impulsive noise,
Poisson noise, and Gaussian noise from any natural noisy video.
Moreover, our approach outperforms state-of-the-art denoising
techniques such as VBM3D and 3DWTF in terms of both time
and quality. Our technique also achieves significant improvement
over time against other matrix completion methods.

I. INTRODUCTION

The recovery of an unknown low-rank or approximately
low-rank matrix from very limited information is a recent fast
growing interest. Consider a large matrix with only a small
portion of known entry, an interesting problem is to fill the
missing entry assuming the matrix has low-rank. The problem,
which is referred to as matrix completion, or more precisely
low-rank matrix completion, has gained increasing interests
in research communities in recent years. So far, this problem
has been studied in many applications such as collaborative
filtering [1], system identification [2], computer vision [3],
machine learning [4]–[6], global positioning [7] and remote
sensing [8]. An example is the famous Netflix challenge where
a huge matrix is used to represent the rating of a movie
given by a user. Of course, a typical user will only rate very
few movie titles. Therefore, an algorithm will be needed to
complete the matrix to predict the ratings of all movies among
all users.

It has been shown theoretically that under certain assump-
tions the matrix can be recovered with very high accuracy [9]–
[11]. Their approaches convert the rank minimization problem
into a nuclear norm minimization problem instead and thus
can be solved using semidefinite program (SDP). However, the

complexity grows rather rapidly with the size of the matrix n
(∼ n3). Candes and Recht [9] showed that one can perfectly
recover most low-rank matrices from what appears to be an
in complete set of entries, and they proved in some condition,
most n × n matrices of rank r can be perfectly recovered
by solving a simple convex optimization program. Also, the
authors claimed that their method is accurate even when the
few observed entries are corrupted by a small amount of noise.
In another work, the problem of recovering low-rank and
sparse matrices using a greedy algorithm was discussed for
large matrix sizes [12]. Several efficient algorithms have been
proposed including Singular Value Thresholding (SVT) [13],
Atomic Decomposition for Minimum Rank Approximation
(ADMiRA) [14], Fixed Point Continuation with Approximate
(FPCA) [15], Accelerated Proximal Gradient (APG) [16],
Subspace Evolution and Transfer (SET) [17], Singular Value
Projection (SVP) [18], OptSpace [11], and LMaFit [19],
where OptSpace and SET are based on Grassmann manifold
optimization, SVT and SVP uses iterative hard thresholding
(IHT) to facilitate matrix shrinkage, FPCA utilizes Bregman
iterative algorithm and Monte Carlo approximate SVD, and
LMaFit adopts successive over-relaxation (SOR).

In this paper, we propose a decomposition method to
allow very efficient divide-and-conquer approach when known
entries are relatively very few. A simple “trimming” method
is proposed to recover the decomposed “cluster” matrix.
However, the decomposition method can also be combined
with any other existing matrix completion techniques to yield
further gain. One advantage of the proposed approach is
that unlike most existing approaches it does not utilize SVD
but only relies on basic vector operations. Therefore, the
approach is immediately applicable to matrices of any field
(including finite field matrices). This opens up opportunities
for new applications. To compare with other methods, we
apply to video denoising. The proposed method significantly
outperforms the-state-of-the-art denoising techniques such as
VBM3D. We also compare it to other denoising techniques
using matrix completion. Our method results in comparable
performance with significantly lower computation complexity.

The rest of the paper is organized as follows. In the
next section, we will introduce the concept of our matrix
completion method and the inference algorithm. We further
apply our proposed matrix completion to video denoising and
will show our simulation results in Section IV, followed by a
brief conclusion in Section V.

2

II. PROPOSED MATRIX COMPLETION METHOD

This section describes the rationale and the implementation
details of our proposed matrix completion method. We will
introduce the problem precisely in Section II-A, and present
several properties to be used in the later sections. Sections
II-B and II-C will describe the decomposition procedures
and present our main results. Section II-D will describe the
trimming process to recover the decomposed “cluster” matrix.

A. Minimum Rank, Junk Rows and Columns, Equivalence

Let us start with a few words on notation. When things
are clear, lines of partition in matrices may be omitted. The ?
sign may represent an unknown entry, a row or a column of
unknown entry, or a matrix of unknown entry. Similarly, this
rule applies to the 0 sign as well. To increase readability, we
use bold font for vectors and norman font for other scalars
and matrices.

1) Minimum Rank of Incomplete Matrix: Given a finite size
matrix M over field F to be completed, let

S(M) = {M̄ |M̄ is a completion of M}. (1)

If M is already completed, then S(M) = {M}. We define

mr(M) , min
M̄∈S(M)

rankM̄. (2)

Such minimum exists because rank(S(M)) ⊂ N and hence
∃M̄ ∈ S(M) such that

rankM̄ = mrM. (3)

If M =

(
A B
C D

)
, then

∃Ā ∈ S(A) such that mr(M) = mr

(
Ā B
C D

)
, (4)

as we can always find Ā from M̄ in (3). We list in the
following other obvious properties of mr(M) that will be used
later on:

mr(M) ≤ rankM̄, ∀M̄ ∈ S(M), (5)
mr(M) ≤ mr(P) if P is any partial completion of M ,

(6)
mr([A|B]) ≤ mrA+mrB, (7)
mrM t = mrM, (8)

mr

(
A B
C D

)
≥ mr(A), (9)

mrM = mrN if N can be obtained from M

through interchanging of columns/rows. (10)

2) Junk Row and Junk Column:
Definition 1: A row (column) contains entirely either zero

or unknown will be referred as a junk row (column).
Certainly, we have

mr(J) = 0 if J is a junk row (column), (11)

since we can always complete J entirely by zero entries.
Theorem 1: Let M = [J|N] where J is a junk column,

then mrM = mrN .

Proof: By (7), we have mrM ≤ mrJ +mrN = mrN .
On the other hand mrM ≥ mrN by (9). Hence mrM =
mrN .

Thanks to (8), we have the following corollary:

Corollary 1: mr
([

J
N

])
= mrN if J is a junk row.

In essence, junk rows and columns are redundant as their ex-
istence does not increase the minimum rank of an incomplete
matrix.

3) Equivalence: We say M is equivalent to N and write
M ∼ N iff N can be obtained from M through row inter-
changing, column interchanging, and junk rows and columns
deletion and augmentation. By Theorem 1 and (10), we have

M ∼ N ⇒ mrM = mrN. (12)

B. Unknown-diagonalization

Define

u-diag(B1, B2, · · · , Bn) ,

B1 ? · · · ?
? B2 · · · ?
...

. . .
? ? · · · Bn

 . (13)

We say M is u-diagonalizable1 iff M ∼ u-diag(A,B),
and both A and B contain at least one nonzero known entry.
We want to know if an incomplete matrix is u-diagonalizable
as one can complete a u-diagonal matrix efficiently with the
following theorem.

Theorem 2: Let M ∼ u-diag(B1, · · · , Bn), then mrM =
max1≤i≤nmr(Bi).

Proof: By (12) and induction, all we need to show is
when M = u-diag(A,B). Let mrA = a and mrB = b, by
(9) we have

mrM ≥ max(a, b) (14)

Let Ā, B̄ be completions of A and B, respectively such that
rankĀ = a and rankB̄ = b (c.f. (3)), then by (6),

mrM ≤ mr
(
u-diag(Ā, B̄)

)
(15)

Combining (14) and (15), we conclude that

max(a, b) ≤ mrM ≤ mr
(
u-diag(Ā, B̄)

)
. (16)

By (10), we can simply assume the first a columns of Ā
form a basis of ColĀ ; and the first b columns of B̄ form
a basis of ColB̄. Without loss of generality, let us assume
a ≥ b. We complete the matrix u-diag(Ā, B̄) by filling up the
columns:[

Āi

?

]
⇒
[
Āi

B̄i

]
,[

?
B̄i

]
⇒
[
Āi

B̄i

]
, for 1 ≤ i ≤ b, (17)[

Āi

?

]
⇒
[
Āi

0̄

]
, for b+ 1 ≤ i ≤ a. (18)

1We use u in u-diagonalizable as an abbreviation for unknown.

3

For i > a, we make use of the fact that Āi is a linear
combination of Āk|k ≤ a}. Let Āi =

∑a
k=1 ai,kĀk. We

fill [
Āi

?

]
⇒
[

Āi∑a
k=1 ai,kB̄k

]
, for i > a, (19)

where B̄k = 0, b < k ≤ a. Similarly,[
?
B̄i

]
⇒
[∑b

k=1 bi,kĀk

B̄i

]
, for i > b, (20)

where B̄i =
∑b
k=1 bi,kB̄k.

Now we have a completed u-diag(Ā, B̄) and the first a of

its columns
[
Ā1

B̄1

]
,
[
Ā2

B̄2

]
,· · · ,

[
Āb

B̄b

]
,
[
Āb+1

0

]
,· · · ,

[
Āa

0

]
form

a basis for its column space. Hence it has rank a. By (5),
mr
(
u-diag(Ā, B̄)

)
≤ a and hence by (16) and max(a, b) = a,

we get mrM = a = mr (u-diag(A,B)) as wanted.
Remark 1: Suppose A has been completed by Ā and a =

rank(Ā). Then if the number of column of B = n ≤ a, then
we can complete B arbitrarily without increasing the rank of
the output and fill the unknowns in B with (17) alone as if
b = n. More generally, given M = u-diag(Ā, B) with Ā is
completed. Then the completing process of B can be stopped
once we know that the final rankB will be no greater than
rankĀ no matter how we fill in the remaining unknowns in
B. For example, if s(B) ≤ rankĀ, where

s(B) , min(number of column of B, number of row of B),
(21)

then we can complete B arbitrarily to start with.
We will call the submatrices B1, B2, · · · , Bn in Theorem 2

as clusters, where a cluster is a matrix that cannot be further
u-diagonalized. We will defer to Section II-D for discussion
of how a cluster can be filled. In the following, we will first
present a more general decomposition that can be applied to
matrices that are not u-diagonalizable.

C. Sub Unknown-diagonalization
Definition 2: A matrix C, not u-diagonalizable, becomes u-

diagonalizable after deleting a row or a column is called sub
u-diagonalizable. The row (column) is called conjoined row
(column).

Before we describe this main theorem in this section, we
need to introduce the following lemma.

Lemma 1: mr[v|M] = mrM if ∀M̄ ∈ S(M), Col(M̄) ∩
S(v) 6= φ,.

Proof: By (1.9) we already have mr[v|M] ≥ mrM .
Let M̄ ∈ S(M) such that rankM̄ = mrM (c.f. (2)). Then
pick a v̄ ∈ S(v) ∩ Col(M̄). From (5), we get mr[v|M] ≤
rank[v̄|M̄] = rankM̄ = mrM .

Theorem 3: Let M =

v1 B1 ? · · · ?
v2 ? B2 · · · ?
...

...
. . .

vn ? ? · · · Bn

 ,

where Bi are matrices, vi are vectors that

v1

v2

...
vn

 is not a

junk column2, then mrM = maximr

(
vi Bi
1 ?

)
.

Proof: We will show the case when n = 2; cases of

higher n are easy to be generalized. Let M =

(
u A ?
v ? B

)
with

[
u
v

]
is not a junk column. If u is not a junk column, then

u contains a nonzero element. By Lemma 1 (row version),

mr

(
u A
1 ?

)
= mr[u|A] 6 mrM, (c.f. (9)). (22)

If u is a junk column, then v contains a nonzero element λ.
Obviously

mr

(
u A
1 ?

)
= mr

(
u A
λ ?

)
6 mrM, (c.f. (9), (10)).

(23)

By symmetry, we also have mr
(

v B
1 ?

)
6 mrM and

hence we have shown

mrM > max(mr

(
u A
1 ?

)
,mr

(
v B
1 ?

)
). (24)

Next, we will complete the proof by showing that ∃M̄ ∈
S(M) s.t.

rankM̄ = max(mr

(
u A
1 ?

)
,mr

(
v B
1 ?

)
). (25)

Let a = mr

(
u A
1 ?

)
− 1 and b = mr

(
v B
1 ?

)
−

1. Without loss of generality, we assume a > b. Let(
Ā0 Ā
1 X̄

)
∈ S

((
u A
1 ?

))
with rank a + 1;(

B̄0 B̄
1 Ȳ

)
∈ S

((
v B
1 ?

))
with rank b+ 1.

By (10), we may assume
{[

Ā0

1

]
,

[
Ā1

X̄1

]
, · · · ,

[
Āa

X̄a

]}
forms a basis for Col

(
Ā0 Ā
1 X̄

)
;{[

B̄0

1

]
,

[
B̄1

Ȳ1

]
, · · · ,

[
B̄b

Ȳb

]}
forms a basis for

Col

(
B̄0 B̄
1 Ȳ

)
.

Then we complete the matrix
(
Ā0 Ā ?
B̄0 ? B̄

)
to M̄ by (17)-

(20) but with k started from 0. The first a+ 1 columns of M̄
will form a basis for Col(M̄) and hence rankM̄ = a+ 1 and
we have (25).

2Note that

v1

v2

...
vn

 is a conjoined column and M becomes u-diagonalizable

without it.

4

1) How to decompose sub u-diagonalizable matrix:
Definition 3: Given two vectors v and w of same length,

we say v is a donor for w (v � w) iff all of the known
positions of w are also known positions in v. In order words,

after some row interchanging [w|v] =

(
r̄ d̄
? n

)
with r̄ and

d̄ contain only known elements. Clearly, v � w and w � u
imply v � u. However, if v � w and w � v, we do not have
v = w. Vectors v and u are said to be comparable if either
v � w or w � v.

Theorem 4: Conjoined row (column) does not have donors
among other rows of the sub u-diag matrix.

Proof: Let C be the sub u-diag matrix, then it must
have the following structure (after some row and column

interchanging): C =

A ?
? B
u v

 , where u cannot be entirely

unknown, otherwise C is u-diagonalizable. Now, rows in [?|B]
cannot be donors of [u|v], the conjoined row. Similarly v
cannot be entirely unknown and hence, rows in [A|?] cannot
be donors of [u|v] neither.

Therefore if C is a sub u-diagonalizable, we will not
miss the chance of decomposing it if we have tested every
row and column that does not have a donor. That is to
blackout the suspicious row (column) and then carrying out the
decomposition mentioned in Section II-B. We would like to
call the decomposed components as sub-clusters. For example,[
A
u

]
and

[
B
v

]
are sub-clusters of the C in the proposition.

Unlike cluster that cannot be further u-diagonalized, sub-
clusters can be sub u-diagonalizable. For example C =
A ? ?
u v ?
? B ?
? x y
? ? D

 , where both [u|v|?] and [?|x|y] are conjoined

rows. In that case, we may first decompose C into sub-clusters[
A
u

]
and

v ?
B ?
x y
? D

. Then we may further decompose the later

into

vB
x

 and
[
y
D

]
, if necessary.

Remark 2: There is a trade-off between the complexity of
searching for conjoined rows (columns) and the gain obtained
for further decomposition. Even though a conjoined row
cannot have any donors from Theorem 4, verifying that for
a row can be computationally consuming itself.

However, as one can easily see that the row with the
maximum number of known elements will generally have
no donor3. Therefore, such rows are usually good candidates
of a conjoined row and they are easy to find. Thus, in our
implementation, we only check such rows for the simplicity
of implementation. However, other variation of conjoined row
searching can be easily adopted to the sub u-diagonalization
approach.

3It is not true of course when another row has the same maximum number
of known elements and exactly the same locations of known elements.

D. Trimming

Theorem 5: Let Mdi be the di-th column of M and donor
(c.f. def 3) of a vector v for 1 ≤ i ≤ t, such that after some

row interchanging, [v|Md1Md2 · · ·Mdt] =

(
r̄ D̄
? N

)
with

r̄ and D̄ are completed. If r̄ ∈ Col(D̄), then mr[v|M] =
mrM .

Proof: Thanks to (10), we may start with [v|M] =(
r̄ D̄A
? NB

)
.

Pick ai ∈ F such that

r̄ =
∑

aiD̄i. (26)

Then ∀M̄ =

[
D̄Ā
N̄B̄

]
∈ S(M), we complete v to

v̄ =

[
r̄∑
aiN̄i

]
∈ S(v) ∩ Col(M̄). (27)

(Note that rank[v̄|M̄] = rankM̄ .) Now Lemma 1 implies
mr[v|M] = mrM .

1) Trimming Process: We test column by column to see
if we can make use of Theorem 5 to trim away any column
v from a given matrix, which can be a cluster or sub-cluster
mentioned in the previous section. We call this process as
column trimming. When we find a column satisfying the
condition of Theorem 5, we will mark down the dependency
relation between it and its donor (i.e. (26)) in order. Then we
black it out and go for the next column.

Similarly, we have row trimming. Notice that the trimming
process and the sub u-diagonalizable testing can be carried
out together, thanks to Theorem 4. The theorem also tells us
that trimmed cluster is still a cluster, i.e., not u-diagonalizable.
However, it can be a sub-cluster.

An uninterrupted (c.f. Remark 1) trimming process starts
with a column trimming followed by a row trimming, or
the other way round. Then we carry out these two kinds of
trimming one after the other, until there is no more reduction
in the matrix. After the trimmed matrix gets completed, we
restore, in reverse order, the blackouts with the completed
forms given by (27).

We haven’t made any approximation in our completion
procedure. Our algorithm can be dovetailed with any other
method, without compromising the lowest rank they can find
for a given matrix.

E. Implementation

Using the results developed in the earlier subsections, we
will now present two prototype matrix completion algorithms:
one based on unknown diagonalization and the other based on
unknown sub-diagonalization. The key steps of the algorithms
are summarized in Algorithm 1 and Algorithm 2, and the detail
implementation of each step is presented in the following.

Implementation Details:
• c = ScanCluster(M) finds the clustering information

and outputs the row and column indexes of each potential

5

Algorithm 1 U-DiagFillMatrix(M)

Inputs : an incomplete matrix M
Complete the matrix M: given the incomplete matrix M do:

– c = ScanCluster(M)
– Ma = ArrangeMatrix(M, c)

– Cluster trimming and partial filling: for each cluster
Bi in the arranged matrix Ma:
• M i

t = Trimming(Bi)
• Fi = FillCluster(Bi,M

i
t)

• Update(Ma, Fi)

– Mf = FillOffDiag(Ma,
{
M i
t

}n
i=1

, c)

– M̂ = RevertMatrix(Mf , c)

Output : a complete matrix M̂

Algorithm 2 SubU-DiagFillMatrix(M) (Theorem 3)

Inputs : an incomplete matrix M
Initialize :

• c = ScanCluster(M)
• if c shows that more than one cluster are found from the

previous step, output M̂ = U -DiagFillMatrix(M)
(Algorithm 1) and exit.

• i = FindConjoinedColIndex(M)

• cv = ScanCluster(M\i), where M\i is the submatrix
of M excluding column i.

• Ma = ArrangeMatrix(M\i, cv)
• v = ArrangeColumn(Mi, cv), where Mi is the ith

column of M

Complete the matrix M :
– Cluster trimming and partial filling: for each cluster
Bi in Ma and the respective vi in v (c.f. (29)):
• B̂i = PadCluster(Bi,vi)
• F̂i = U -DiagF illMatrix(B̂i) (Algorithm 1)
– M̃ = BuildSubDiagMatrixByClusters({F̂i}ni=1)
– M̂\i = RevertMatrix(M̃\1, cv)

– M̂i = RevertColumn(M̃1, cv)

Output : a complete matrix M̂

cluster as a data structure c. For a target row, we mark all
columns that correspond to known entries on that row as
columns of the target row’s cluster. We then scan through
each such column and mark the rows that correspond to
known entries on the respective column. The resulting
rows will cover all the rows belong to the same cluster
of the target row. This step will be repeated to all rows
sequentially except those that have been marked to be
belonged to some clusters in prior steps. c will then store
the total number of clusters and the column and row
indices of each cluster.

• Ma = ArrangeMatrix(M, c) rearranges the matrix M
into Ma using c by reordering rows and columns. The

resulting Ma will have the format of
B1 ? · · · ?

? B2 · · · ?
...

. . .
? ? · · · Bn

 , (28)

where submatrices B1, B2, · · · , Bn are clusters.
• M i

t = Trimming(Bi) finds the dependency of each col-
umn and row to the others columns and rows. This can be
solved efficiently using QR decomposition. When a col-
umn/row can be represented by the other columns/rows, it
will be removed from the basis choices in the cluster Bi.
The data structure M i

t stores the dependency relationship
of columns and rows in the cluster Bi (see Theorem 5).
More precisely, M i

t will tell which column is independent
from the rest (basis column). And how a trimmed column
should be represented in terms of the basis columns.

• Fi = FillCluster(Bi,M
i
t) fills the unknown elements

of the cluster Bi using the dependency relationship M i
t .

Unknowns that lie on a basis choice (i.e., a column vector
that cannot be “trimmed” in the previous step) will be
filled with zeros. Unknowns that lie on a “trimmed”
column will be filled according to Equation (27) of
Theorem 5 so that the rank of the cluster will not increase.
In other words, a trimmed column will be constructed as
linear combination of basis columns according to M i

t .
• Update(Ma, Fi) replaces the corresponding submatrix in
Ma using filled clusters Fi.

• Mf = FillOffDiag(Ma,
{
M i
t

}n
i=1

, c) fills the ”off-
diagonal“ elements in the matrix Ma using the depen-
dency relationships

{
M i
t

}n
i=1

, the clusters relationship c
to ensure the entire matrix has a rank no larger than the
rank of the lowest rank cluster according to Equations
(17)-(20) (see Theorem 2).

• M̂ = RevertMatrix(Mf , c) reverts each coefficient in
the filled matrix Mf to its original location in the input
matrix M using c.

• i = FindConjoinedColIndex(M) finds a potential
conjoined column v as the column vector with the
minimum number of unknowns (c.f. Definition 2) and
returns the column index.

• v = ArrangeColumn(Mi, cv) reorders the coeffi-
cients in Mi, the ith column of M , according to
cv . The matrix [v|Ma] should be equivalent to M
through column and row interchanging, where Ma =
ArrangeMatrix(M\i, cv) and M\i is the submatrix of
M excluding Mi. Moreover, we should have [v|Ma] with
the structure

[v|Ma] =

v1 B1 ? · · · ?
v2 ? B2 · · · ?
...

...
. . .

vn ? ? · · · Bn

 . (29)

• B̂i = PadCluster(Bi,vi) vertically concatenates the
column vi to the cluster Bi and then adds to the end a
row with all unknowns except the first coefficient being

6

one, i,e., B̂i =

(
vi Bi
1 ?

)
.

• M̃ = BuildSubDiagMatrixByClusters({F̂i}ni=1)
constructs a sub unknown-diagonized matrix using clus-
ters F̂i, i = 1, · · · , n, according to the proof of Theorem
3 (See explanation after Equation (25)). M̃ should have
rank no larger than the rank of the largest rank clusters.

• M̂\i = RevertMatrix(M̃\1, cv) reverts the submatrix
of M̃ (excluding the first column) and output to the
submatrix of M̂ (excluding column i).

• M̂i = RevertColumn(M̃1, cv) reorders the coefficients
of the column vector M̃1 according to cv . Note that
along with M̂\i = RevertMatrix(M̃\1, cv), [M̂i|M̂\i]
is equivalent to [M̃1|M̃\1] through row and column
exchanges.

F. Complexity analysis

The computational complexity of low-rank matrix comple-
tion can be determined by considering the following three
steps: 1) scanning matrix to find the clusters, 2) in each cluster,
finding the dependency of each column and row to the other
columns and rows, respectively, and 3) filling the clusters and
“off-diagonal” elements in the matrix.

Assume the input matrix has p rows and q columns. For
the worst case, the required time of scanning matrix to find
the clusters will be O(pq) since one has to scan through
all elements of the matrix. For finding the dependencies and
removing the dependent columns and rows, the time depends
on the number of cluster n and the size of clusters. One can
take advantage of QR decomposition and the complexity will
be about O(p′q′2) for the column trimming of a cluster with
size p′ × q′, and since the cluster sizes are approximately
proportional to p

n and q
n , therefore the complexity of column

trimming is O
(
p
n (qn)2n

)
= O(pq

2

n2). As a result, the time
complexity for finding columns and rows dependencies is
O
(
p2q+q2p

n2

)
.

Similar complexity can be argued for filling the clusters.
For filling a column that involved a cluster with width q̂, and
assuming that the rank of the filled matrix is r, the first r
column can be filled directly and so complexity will be just
O(rp). But for the rest of the (q̂ − r) columns, it needs to
be computed as the weighted sum of the first r columns, and
so the complexity will be O

(
(q̂− r)rp

)
. Thus, the total com-

plexity for filling n clusters will be O
(
n(rp+ (q̂ − r)rp)

)
≈

O
(
n(rp + (q/n − r)rp)

)
= O

(
rp(n + q − rn)

)
= O(rpq)

since one may approximate q̂ as q
n and n ≤ q.

Consequently, the total time complexity of Algorithm 1 for
the typical case will be O

(
pq+ p2q+q2p

n2 +rpq
)
. For Algorithm

2, excluding the step of FindConjoinedColIndex(M) (of
complexity O(pq)), the rest essentially has the same complex-
ity O

(
pq + p2q+q2p

n2 + rpq
)

as Algorithm 1. However, n will
be the number of sub-clusters in this case.

Just to put things into perspective, note that the current
implementation requires approximately 0.1 s per matrix with
size 1500× 1500 for Algorithm 1 and 0.8 s for Algorithm 2
in the most demanding case when running with pure Matlab
on a Pentium 3 GHz (11-GB RAM) machine.

100 200 300 400 500 600 700 800
0

5

10

15

20

25

of Coefficient

F
in

a
l
R

a
n
k

FPCA

SVT

LMAFIT1

LMAFIT2

Proposed method

Fig. 1: Final Rank of FPCA [15], SVT [13], LMaFit1 [19], LMaFit2 [19],
and the proposed method on small problems with varying rank and number
of coefficients. Note that the input matrix has 1000 rows and 1000 columns.

III. SIMULATION RESULT FOR MATRIX COMPLETION

In this section, to demonstrate how our proposed method is
capable to efficiently recover low-rank matrices, we evaluate
our proposed method on a series of matrix completion prob-
lems. Our experiments can be divided into Random Matrix
Completion Problems and Real Matrix Completion Problems.

1) Experiments on random matrix completion problems:
In this subsection, we evaluate our proposed method on a
few random matrix completion problems. First, we test the
sensitivity of our proposed method to the rank estimation using
an increasing number of coefficients strategy. In this test, we
maintained the size of the matrices consistent, q = p = 1, 000
and varied the number of coefficients K from 100 to 800.
A summary of computational results is presented in Table I.
The final matrix rank “Rank” and average CPU time “Time”
corresponding to this set of K values are reported in this table.
This table reveals that our proposed method runs significantly
faster than all other solvers to achieve a comparable accuracy.
Moreover, the other solvers are essentially dominated by our
proposed solver with respect to the obtained final low ranks.

In the second test, we consider applying matrix completion
algorithms to randomly generated low-rank matrix approxima-
tion problems varying the size and the rank of the matrix, and
the number of coefficients K. The purpose of this test is to
find a low-rank approximation to a mathematically full-rank
matrix, where it can have the lower rank in a short time. We
compared our proposed method with LMaFit1 and LMaFit2,
where the other solvers APGL, FPCA and SVT were excluded
from this comparison since they would have demanded exces-
sive CPU times. A summary of the computational results is
presented in Table II. In this table, “Time” denotes the average
CPU time, and “Rank” denotes the rank of the recovered
solution for each solver.

2) Experiments on real matrix completion problems: In this
subsection, we consider the low-rank matrix approximation
problems based on “real data” set, namely, the Jester joke
data set4 [20] and “image inpainting”.

4The Jester joke data set includes 4.1 million ratings for 100
jokes from 73421 users and is available online on the website:
http://www.ieor.berkeley.edu/ goldberg/jester-data/.

7

TABLE I: Comparison of six solvers on small problems with varying rank and number of coefficients

Problem FPCA [15] APGL [16] SVT [13] LMaFit1 [19] LMaFit2 [19] Proposed method
p = q K Rank T ime Rank T ime Rank T ime Rank T ime Rank T ime Rank T ime
1000 100 1 11.08 76 3.43 1 44.76 2 0.36 3 0.34 1 0.05
1000 150 1 10.65 113 8.08 4 17.64 2 0.35 4 0.28 1 0.08
1000 200 4 11.96 144 14.43 10 80.37 3 0.40 5 0.33 1 0.11
1000 250 4 11.16 150 29.27 9 98.35 4 0.37 6 0.35 1 0.14
1000 300 3 10.86 150 20.00 14 103.20 4 0.34 7 0.35 1 0.16
1000 350 5 10.28 150 100.97 16 117.12 4 0.28 7 0.26 2 0.17
1000 400 5 10.23 150 58.71 10 136.00 5 0.31 8 0.39 2 0.20
1000 450 7 9.97 150 88.73 12 148.86 5 0.34 10 0.33 3 0.21
1000 500 9 10.08 150 120 17 168.00 10 0.40 9 0.42 3 0.21
1000 550 10 11.61 150 134.30 18 189.40 7 0.28 13 0.33 4 0.23
1000 600 11 10.04 150 130.15 20 211.20 9 0.39 14 0.36 5 0.25
1000 650 12 11.40 150 128.72 17 226.05 11 0.37 14 0.40 5 0.26
1000 700 11 11.52 150 117.34 23 249.85 10 0.53 15 0.50 5 0.26
1000 750 14 10.22 150 134.35 21 253.15 11 0.45 14 0.41 6 0.27
1000 800 13 10.48 150 132.36 20 276.80 11 0.43 14 0.39 6 0.30

TABLE II: Comparison of three solvers on problems with varying size,
rank of the matrix and number of coefficients

Problem LMaFit1 [19] LMaFit2 [19] Proposed method
p = q K Rank Time Rank Time Rank Time
1000 300 4 0.34 7 0.35 1 0.16
1000 400 5 0.31 8 0.39 2 0.20
1000 500 10 0.40 9 0.42 3 0.21
5000 1500 18 0.37 20 0.36 3 1.03
5000 2000 22 0.41 26 0.45 4 1.39
5000 2500 25 0.41 27 0.43 8 1.52

10000 1000 20 2.47 23 3.64 1 0.79
10000 1500 8 1.32 9 1.57 2 1.17
10000 2000 42 2.12 51 2.54 2 1.86
20000 1500 15 7.75 18 8.40 1 1.61

The Jester joke data set contains four problems “jester-1”
with 24983 users who have rated 36 or more jokes, “jester-2”
with 23500 users who have rated 36 or more jokes, “jester-3”
with 24938 users who have rated between 15 and 35 jokes,
and “jester-all” with combining all of the first three data sets.

let M be the original incomplete data matrix where the ith

row of M corresponds to the ratings given by the ith user
on the jokes, and δ be the set of indexes for which Mij is
given. Since some of the entries of M are missing, we compute
the Normalized Mean Absolute Error (NMAE) to measure the
accuracy [16], [19], [20]. The NMAE is defined as

NMAE =
1

rmax − rmin |δ|
∑

(i,j)∈δ

|Mij −Xij |, (30)

where rmin and rmax are the lower and upper bounds for
the ratings, and Mij and Xij are the estimated and computed
ratings of joke j by user i, respectively. Note that we have
rmin = −10 and rmax = 10 and all ratings are scaled to the
range [−10,+10].

Table III shows the results for the LMaFit method [19]
and our proposed method on the real matrix completion
problem using the jester joke data set. As shown in this table,
our proposed method generally returns solutions with lower
NMAE than those returned by LMaFit. It is critical to compare
two solvers on problem “jester-3” where even LMaFit reports
a solution with the lower rank of 43; our solution is more
accurate than LMaFit solution and shows the lower NMAE.

To graphically illustrate the effectiveness of our proposed
method, we applied it to image inpainting. In grayscale image
inpainting, the value of some of the pixels on the image are
missing, and the task here is to fill these missing values.
Note that the missing pixel positions in the image inpainting
are not randomly distributed. If the image is of low-rank, or
of numerical low-rank, the matrix completion solvers can be
applied on the image inpainting problem to obtain low-rank
approximations.

The 512 × 512 original grayscale image is shown in Fig.
2 (a). Fig. 2 (b) was obtained by truncating the SVD of the
images to get the images of rank 40. Fig. 2 (c) is the masked
image obtained from Fig. 2 (b), where 9.30% of the pixels
were masked in a non-random fashion. The recovered images
of Fig. 2 (c) from LMaFit, APGL, and our proposed method
are depicted in Figs. 2 (d), (e), and (f).

Table IV shows a summary of the computational results of
the image inpainting. Note that in this table, Rel.err 5 denotes
the relative error between the original and recovered images.
From these figures and the table, we can see our proposed
method recover the images significantly better than the other
methods with the less relative error.

IV. APPLICATION TO VIDEO DENOISING

Video sequences are often corrupted by noise during acqui-
sition or transmission. Some noise sources located in camera
hardware became active during image acquisition under some
lighting conditions. Other noise sources are over transmission
channels. Most video denoising algorithms proposed in the
literature assume additive white Gaussian noise, which can be
categorized into pixel domain and transform domain methods.
However, we consider Impulsive/Poisson/Gaussian noise in
our work and will show how robust our video denoising
method is.

Many video denoising methods have been proposed in the
last few decades, e.g., [21]–[24]. One of the first methods to
address the denoising problem was the bilateral filter, which

5We used the relative error: Rel.err :=
‖Mrec−M‖F
‖M‖F

to estimate the
closeness of Mrec to M , where Mrec is the “recovered” image produced by
the algorithms, and M is the original image.

8

TABLE III: Numerical results on real data sets.

Problem LMaFit [19] Proposed method
Name p/q Iter T ime NMAE Rank T ime NMAE Rank

jester-1 24983/100 30 3.54 0.1946 62 6.34 0.1942 100
jester-2 23500/100 35 5.98 0.1960 62 5.51 0.1959 100
jester-3 24938/100 169 8.02 0.1970 43 7.34 0.1381 97

jester-all 73421/100 35 11.15 0.1869 62 49.69 0.1865 100

(a) (b) (c)

(d) (e) (f)

Fig. 2: Image inpainting Problem for Boat image: (a) Original image; (b) rank 40 image; (c) deterministically 9.30% masked rank 40 image; (d) LMaFit1
[19]; (e) APGL [16]; (f) result of the proposed method.

TABLE IV: Numerical results on image inpainting

Problem APGL [16] LMaFit1 [19] Proposed method
%mask r Iter T ime Rel.err Rank Iter T ime Rel.err Rank T ime Rel.err Rank

3.70 40 33 8.37 0.1039 50 195 7.29 0.0818 42 7.80 0.0794 40
9.30 40 29 2.78 0.0354 50 139 1.49 0.0365 40 3.45 0.0248 40
15.81 40 33 3.32 0.1155 50 258 2.74 0.1408 46 5.21 0.0890 40

was proposed by Tomasi and Manduchi [24]. However, this
method fails to perform well in when the noise is strong.
Selesnick and Li [23] proposed 2D and 3D dual-tree oriented
wavelet transforms which give a motion-based multi-scale
decomposition for video. They used the proposed transforms
for video denoising, where the 2D transform is applied to each
frame individually.

Recently, the idea of patch based sparse coding has been
applied to video denoising [21], [25]–[27]. Marial et al. in [25]
suggested to extend the sparse coding approach by proposing
that similar patches share the same dictionary elements in their
sparse decomposition on denoising. Another recent example
based on an enhanced sparse representation in transform
domain is block-matching 3-D filter (BM3D) [27]. In BM3D,

9

similar 2D image blocks are grouped into a 3D data array
based on the l2 norm distance function. Then, the 3D data
array is filtered by wavelet shrinkage or Wiener filter in
3D transform domain. The denoised image is produced from
all grouped blocks after applying the inverse 3D transform.
The concept of BM3D is generalized to video denoising in
VBM3D [21]. In VBM3D, the noisy video is processed in
a block-wise manner in both spatial and temporal domains.
Then, a predictive search block-matching is combined with
collaborative hard thresholding or collaborative Wiener filter-
ing.

In this work, we show that the proposed method can
operate directly on the raw noisy images that suffer from
non-homogeneous noise. The proposed method is similar to
that described in [28]. However, we incorporate our proposed
matrix completion method into the denoising algorithm and
rather than applying a suboptimal block matching algorithm
as in [29], we use a near-optimal block matching method [30]
with higher complexity. We can afford latter as the proposed
matrix completion method runs significantly faster than other
matrix completion methods. The goal of our denoising method
is to keep only the reliable pixels and get rid of all other
un-reliable pixels we find as noise. For each patch in the
reference frame, we find the similar patches in the other frames
using a block matching algorithm. The found matches will
be vectorized and then stacked into a matrix. The reliable
pixel values in the matrix are between the mean ± standard
deviation of all elements in the same row. The main step will
be done by applying our proposed matrix completion approach
on the incomplete matrix. The output of matrix completion is
a noise free full matrix. Then, the average value of each row
in the full matrix can recover the denoised patch. Repeating
the same procedure for all blocks of reference frame can build
a denoised frame.

A. Our Method

The problem of video denoising can mathematically be
shown as

y(x) = z(x) + n(x), (31)

where z(x) is the original video signal and y(x) is
the observed video after being corrupted by Gaus-
sian/Poisson/Impulsive noise n(x). x = (i, j, k) ∈ X are
coordinates in the spatio-temporal 3D domain X ⊂ Z3, where
the first two components (i, j) are the spatial coordinates
and the third one k is the time (frame) index. The main
procedure for our proposed denoising method is summarized
in Algorithm 3.

Implementation Details:
• Y am = AMF (y) performs adaptive median filtering

using y. Because, the video is corrupted by image noise,
applying a patch matching algorithm directly on noisy
video generates unreliable result. Specifically, the block
matching algorithm will suffer from impulsive noise, and
its performance will be seriously degraded by strong
impulsive noise. Hence, using a preprocessing step to

Algorithm 3 Video Denoising using matrix completion- esti-
mate version of denoised image X
Inputs : noisy video y, pixel overlap v
Initialize :

• Set V and W to be zero images of the same size as the
video frame size.

Produce the pre-processing step for removing impulsive
noise before patch matching :
• Apply Adaptive Median Filter:
Y am = AMF (y)

Find the denoised patches: For each coordinate x ∈ Ω with
v pixel overlap in each direction do:

(a) Sx = BM
(
Y amx

)
(b) ẐSx

= ReliableElements
(
YSx

)
(c) Žx = DMC

(
ẐSx

)
(d) ẑx = AV Grow(Žx)
(e) V = V + ẑx
(f) W =W + ŵx

Normalize : Ẑ = V/W
Output : a denoised image Ẑ

remove impulsive noise before the block matching step
will improve the resulting performance. In our work, we
simply use the adaptive median filter proposed by Hwang
and Haddad in [31].

• Ω ⊂ X is a set that includes the coordinates of the refer-
ence blocks. In general, each pixel in the reference image
is covered by several patches. We aggregate overlapped
patches by a weighted average at each pixel.

• Y amx denotes a block of size q × q in Y am, where its
center is at x.

• Sx = BM
(
Y amx

)
presents a block matching algorithm

using Y amx as a reference block, where the result is the
set Sx containing the coordinates of the matched blocks.
Although there are several methods to find the similar
matches [21], [32]–[34], in our work, we use the Adaptive
Rood Pattern Search (ARPS) algorithm [30] because of
its computational efficiency.

• YSx denotes a matrix formed by stacking the vectorized
blocks Yx∈Sx together, where Yx is a block of size q× q
centered at x in y.

• ẐSx
= ReliableElements

(
YSx

)
discards those ma-

trix elements of YSx that are far away from mean ±
standard deviation of its corresponding row, designates
them as unreliable elements, and then replaces them by
zero. Note that those unreliable elements could be the
pixels corrupted by Gaussian/Poisson/Impulsive noise or
from mismatched patches obtained from previous step
(block matching). Also, keeping the reliable elements, lets
us recover the full matrix needed for the next step.

• Žx = DMC
(
ẐSx

)
performs a decomposing approach

for low-rank matrix completion algorithm (see Section II)
using ẐSx

and Žx that will be a full matrix with noise

10

free elements. Recently, many matrix completion methods
have been studied [2], [11], [19]. In our work, we use a
decomposing approach for low-rank matrix completion
algorithm, because of its computational efficiency.

• ẑx = AV Grow(Žx) finds the average value of each row
in matrix Žx and converts the obtained vector to a block.
Also, ẑx will be an estimated block of size q×q centered
at x in V̂ .

• ŵx is a patch with the same size as ẑx. Note that, all
pixel values in ŵx are equal to 1.

TABLE V: OUTPUT PSNR OF OUR PROPOSED DENOISING
METHOD FOR THE TWO VIDEO SEQUENCES; note that, we kept the
Gaussian and Poisson noise constant in all tests
hhhhhhhhhhhhhhhhhhImpulsive noise density

Video name (frame size)

Suzie Coastguard

0.10 26.3679 22.6124
0.15 26.2852 22.6060
0.20 26.3810 22.5819
0.25 26.3135 22.6281
0.30 26.3545 22.6105
0.35 26.4119 22.6163
0.40 26.2867 22.6346
0.45 26.3257 22.6149
0.50 26.3257 22.5907

B. Experimental Results on Denoising

In this section, we present some video denoising examples
to evaluate our performance, using existing sequences such as
Miss America, Galleon, and Suzie. All tests in this section
were processed in the following manner: All 30 frames were
involved in the reconstruction of each image. The block size
used for block matching (q) was 20×20 and was not changed
for various tests. We obtained a locally consistent solution by
allowing patches to overlap, where the overlapped regions (v)
were 5 pixels in each direction. Also, for each reference patch,
we extracted 5 most similar patches used in each frame using
block matching algorithm. For simplicity, we employ the basic
version of our algorithm without taking advantage of sub u-
diagonalization.

In Fig. 3, we show the PSNR result and a clear visual
comparison of the Galleon sequence. The original video is
seriously corrupted by a significant mixed noise level with
Poisson noise, Gaussian white noise of mean zero and variance
0.02, and Impulsive noise of the noise density 0.03. As shown
in Figures. 3 and 5, VBM3D method [21] and tvregv2 [35]
generate severe artifacts at edge areas, while our proposed
denoising method performs remarkably well for the detail
structures and is free of these artifacts.

In Table V, we present the PSNR results of the proposed de-
noising algorithm for a few sequences, where Impulsive noise
is changing. This table shows how our algorithm is robust in
denoising the corrupted sequences of serious impulsive noise.

In Graph 4, we compare our denoising method with the
VBM3D method [21], which is among the state-of-the-art in
video denoising. In this comparison, we apply our denoising
method on Coastguard and Suzie sequences, for which we
changed the Gaussian noise but kept the Poisson and Impulsive

TABLE VI: PSNR and time comparison for using various matrix comple-
tion

Tempete Galleon Coastguard

Proposed method PSNR[dB] 23.37 22.73 23.57
Time(seconds) 240 218 110

Denoising method PSNR[dB] 22.79 22.60 23.63
using OptSpace [11] Time(seconds) 1355 1683 538

Denoising method PSNR[dB] 22.78 22.52 21.81
using LMAFIT1 [19] Time(seconds) 220 251 119

Denoising method PSNR[dB] 21.38 20.39 20.97
using FPCA [15] Time(seconds) 5828 7069 1584

noise constant for all methods. Note that, for a fair comparison
and also because the VBM3D method [21] works on removing
just the Gaussian noise from the corrupted video, we ran the
adaptive median filter method [31] on the test data with a
pre-process of removing impulsive noise. In contrast, in our
work, we did not use any existing impulsive noise method to
detect pixels corrupted by Impulsive noise. The graph in Fig. 7
shows the frame by frame PSNR values of Miss America and
vtc1nw. Table VII shows the average PSNR values for our
proposed method and the compared methods. Our proposed
method surpasses the VBM3D method [21] in all frames by
a significant margin for all sequences with more than 2dB.
In contrast, while [28] also outperform the VBM3D method
but with a significantly smaller margin, we conjecture that the
gain is due to the near-optimal block matching method [30]
used in our approach.

We also replaced our proposed decomposition matrix com-
pletion with OptSpace [11], LMAFIT1 [19] and FPCA [15]
to compare the result and time consumption (see Table VI).
It can be seen in Table VI that our method has comparable
performance in terms of PSNR, for which it executes much
faster than those methods.

V. CONCLUSION

In conclusion, we have proposed a novel and efficient
decomposition method for matrix completion. A key idea
of our approach is to divide and conquer. The input matrix
is partitioned into clusters, and then each cluster is filled
separately. A dependency scanning step estimates the lowest
possible rank of each cluster by identifying independent rows.
The unknown elements of these independent rows can then
be filled arbitrarily without increasing the rank of the cluster.
The remaining unknown elements of the clusters are filled by
the dependency relationship obtained earlier. Finally, the ”off-
diagonal” elements are filled to ensure the entire matrix has
the lowest possible rank.

We have compared our method with several recently intro-
duced techniques using randomly generated and real world
matrices. We further proposed a block-based video denoising
method using our decomposition approach, in which we keep
only reliable pixels and eliminate all unreliable pixels. Our
denoising method can remove the serious mixed noise from
video sequence, while most of the existing methods have been
limited to one specific type of noise. Quantitative and quali-
tative experiments with video sequences corrupted by mixed
noise have shown that the proposed algorithm outperforms the
state-of-the-art methods for video denoising tasks.

11

(a) (b) (c) (d)

Fig. 3: Video denoising for Galleon sequence: (PSNR in brackets). From left to right: noisy image; tvregv2 [35] [PSNR: 17.8208]; VBM3D algorithm [21]
[PSNR: 17.9226]; result of the proposed denoising algorithm [PSNR: 21.2437].

TABLE VII: AVERAGE PSNR FOR THE TWO VIDEO SEQUENCES

Sequence Wiener2 VBM3D [21] 3DWTF [23] tvregv2 [35] Proposed denoising Method
Miss America 26.6796 30.9090 24.5168 28.1036 32.1931

vtc1nw 25.5855 28.2356 22.1496 27.7033 31.6442

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
12

14

16

18

20

22

24

P
e
a
k
 S

ig
n
a
l
to

 N
o
is

e
 R

a
ti
o
 [
d
B

]

Guassian Variance

Coastguard: Noise density of Impulsive noise = 0.1

VBM3D

DMC

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
12

14

16

18

20

22

24

26

28

P
e
a
k
 S

ig
n
a
l
to

 N
o
is

e
 R

a
ti
o
 [
d
B

]

Guassian Variance

Suzie: Noise density of Impulsive noise = 0.1

VBM3D

DMC

Fig. 4: PSNR values of VBM3D algorithm [21] and proposed denoising method for Coastguard and Suzie sequences. Note that, we kept the Impulsive
noise consistent in all tests.

(a) (b) (c) (d)

Fig. 5: Video denoising for Suzie sequence: (PSNR in brackets). (a) noisy image; (b) tvregv2 [35] [PSNR:25.1205]; (c) VBM3D algorithm [21]
[PSNR:26.5245]; (d) result of the proposed denoising algorithm [PSNR:29.3254].

(a) (b) (c) (d)

Fig. 6: Video denoising for Coastguard sequence: (PSNR in brackets). (a) noisy image; (b) tvregv2 [35] [PSNR:20.9469]; (c) VBM3D algorithm [21]
[PSNR:21.0090]; (d) result of the proposed denoising algorithm [PSNR:23.5725].

12

0 5 10 15 20 25 30
24

25

26

27

28

29

30

31

32

33

P
e
a
k
 S

ig
n
a
l
to

 N
o
is

e
 R

a
ti
o
 [
d
B

]

Time

Miss America: Noise density of Impulsive noise = 0.02, Guassian Variance = 0.01

VBM3D

3DWTF

tvregv2

tvregv2

Our Method

0 5 10 15 20 25 30
20

22

24

26

28

30

32

34

P
e
a
k
 S

ig
n
a
l
to

 N
o
is

e
 R

a
ti
o
 [
d
B

]

Time

vtc1nw: Noise density of Impulsive noise = 0.02, Guassian Variance = 0.01

VBM3D

3DWTF

tvregv2

wiener2

DMC

Fig. 7: PSNR values of each denoised frame by VBM3D algorithm [21],
3DWTF [23], tvregv2 [35], wiener2 and the proposed denoising method for
(a) the Miss America and (b) the vtc1nw sequence.

ACKNOWLEDGMENT

The authors would like to thank the associate editor and
the anonymous reviewers for their constructive comments and
suggestions. We would also like to thank Mrs. Renee Wagen-
blatt and Ms. Sepideh Darbandi for editing the manuscript.

REFERENCES

[1] N. Srebro, “Learning with matrix factorizations,” Ph.D. dissertation,
Citeseer, 2004.

[2] E. Candes and Y. Plan, “Matrix completion with noise,” Arxiv preprint
arXiv:0903.3131, 2009.

[3] C. Tomasi and T. Kanade, “Shape and motion from image streams under
orthography: a factorization method,” International Journal of Computer
Vision, vol. 9, no. 2, pp. 137–154, 1992.

[4] T. Graepel, “Kernel matrix completion by semidefinite programming,”
Artificial Neural NetworksICANN 2002, pp. 141–142, 2002.

[5] J. Abernethy, F. Bach, T. Evgeniou, and J. Vert, “Low-rank matrix
factorization with attributes,” arXiv preprint cs/0611124, 2006.

[6] Y. Amit, M. Fink, N. Srebro, and S. Ullman, “Uncovering shared
structures in multiclass classification,” in MACHINE LEARNING-
INTERNATIONAL WORKSHOP THEN CONFERENCE-, vol. 24, 2007,
p. 17.

[7] A. Singer, “A remark on global positioning from local distances,”
Proceedings of the National Academy of Sciences, vol. 105, no. 28,
p. 9507, 2008.

[8] R. Schmidt, “Multiple emitter location and signal parameter estimation,”
Antennas and Propagation, IEEE Transactions on, vol. 34, no. 3, pp.
276–280, 1986.

[9] E. Candes and B. Recht, “Exact matrix completion via convex opti-
mization,” Foundations of Computational Mathematics, vol. 9, no. 6,
pp. 717–772, 2009.

[10] E. Candes and T. Tao, “The power of convex relaxation: Near-optimal
matrix completion,” arXiv, vol. 903, 2009.

[11] R. Keshavan, A. Montanari, and S. Oh, “Matrix completion from a few
entries,” Information Theory, IEEE Transactions on, vol. 56, no. 6, pp.
2980–2998, 2010.

[12] A. Waters, A. Sankaranarayanan, and R. Baraniuk, “Sparcs: Recovering
low-rank and sparse matrices from compressive measurements,” Tech-
nical report, Rice University, Houston, TX, Tech. Rep., 2011.

[13] J. Cai, E. Candes, and Z. Shen, “A singular value thresholding algorithm
for matrix completion,” preprint, 2008.

[14] K. Lee and Y. Bresler, “Admira: Atomic decomposition for minimum
rank approximation,” arXiv, vol. 905, 2009.

[15] S. Ma, D. Goldfarb, and L. Chen, “Fixed point and Bregman iterative
methods for matrix rank minimization,” Mathematical Programming, pp.
1–33, 2009.

[16] K. Toh and S. Yun, “An accelerated proximal gradient algorithm for
nuclear norm regularized least squares problems,” preprint, 2009.

[17] W. Dai and O. Milenkovic, “Set: an algorithm for consistent matrix
completion,” Arxiv preprint arXiv:0909.2705, 2009.

[18] R. Meka, P. Jain, and I. Dhillon, “Guaranteed rank minimization via
singular value projection,” 2009.

[19] Z. Wen, W. Yin, and Y. Zhang, “Solving a low-rank factorization
model for matrix completion by a nonlinear successive over-relaxation
algorithm.”

[20] K. Goldberg, T. Roeder, D. Gupta, and C. Perkins, “Eigentaste: A
constant time collaborative filtering algorithm,” Information Retrieval,
vol. 4, no. 2, pp. 133–151, 2001.

[21] K. Dabov, A. Foi, and K. Egiazarian, “Video denoising by sparse 3d
transform-domain collaborative filtering,” in Proc. 15th European Signal
Processing Conference, vol. 1, no. 2. Citeseer, 2007, p. 7.

[22] S. Chang, B. Yu, and M. Vetterli, “Adaptive wavelet thresholding
for image denoising and compression,” IEEE Transactions on Image
Processing, pp. 1532 – 1546, September 2000.

[23] I. Selesnick and K. Li, “Video denoising using 2d and 3d dual-tree
complex wavelet transforms,” Wavelets: Applications in Signal and
Image Processing X, vol. 5207, pp. 607–618, 2003.

[24] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color
images,” in Computer Vision, 1998. Sixth International Conference on.
IEEE, 1998, pp. 839–846.

[25] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman, “Non-local
sparse models for image restoration,” in Computer Vision, 2009 IEEE
12th International Conference on. IEEE, 2009, pp. 2272–2279.

[26] M. Orchard and G. Sullivan, “Overlapped block motion compensation:
An estimation-theoretic approach,” Image Processing, IEEE Transac-
tions on, vol. 3, no. 5, pp. 693–699, 1994.

[27] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by
sparse 3-d transform-domain collaborative filtering,” Image Processing,
IEEE Transactions on, vol. 16, no. 8, pp. 2080–2095, 2007.

[28] H. Ji, C. Liu, Z. Shen, and Y. Xu, “Robust video denoising using low
rank matrix completion,” in Computer Vision and Pattern Recognition
(CVPR), 2010 IEEE Conference on. IEEE, 2010, pp. 1791–1798.

[29] B. Liu and A. Zaccarin, “New fast algorithms for the estimation of
block motion vectors,” Circuits and Systems for Video Technology, IEEE
Transactions on, vol. 3, no. 2, pp. 148–157, 1993.

[30] Y. Nie and K. Ma, “Adaptive rood pattern search for fast block-matching
motion estimation,” Image Processing, IEEE Transactions on, vol. 11,
no. 12, pp. 1442–1449, 2002.

[31] H. Hwang and R. Haddad, “Adaptive median filters: new algorithms
and results,” Image Processing, IEEE Transactions on, vol. 4, no. 4, pp.
499–502, 1995.

[32] N. Barzigar, A. Roozgard, S. Cheng, and P. Verma, “Scobep: Dense
image registration using sparse coding and belief propagation,” Journal
of Visual Communication and Image Representation, 2012.

[33] S. Zimmer, S. Didas, and J. Weickert, “A rotationally invariant block
matching strategy improving image denoising with non-local means,” in
Proc. 2008 International Workshop on Local and Non-Local Approxi-
mation in Image Processing, 2008, pp. 135–142.

[34] N. Barzigar, A. Roozgard, P. Verma, and S. Cheng, “A video super
resolution framework using scobep,” IEEE Transactions on Circuits and
Systems for Video Technology, 2013.

[35] P. Getreuer. (2009) http://www.getreuer.info/home/tvreg.

