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A Video Super Resolution Framework Using
SCoBeP

Nafise Barzigar, Aminmohammad Roozgard, Pramode Verma, and Samuel Cheng

Abstract—Super resolution as an exciting application in image
processing was studied widely in the literature. This paper
presents new approaches to video super resolution, based on
sparse coding and belief propagation. First, find candidate match
pixels on multiple frames using sparse coding and belief prop-
agation. Second, incorporate information from these candidate
pixels with weights computed using the Nonlocal-Means (NLM)
method in the first approach or using SCoBeP method in the
second approach. The effectiveness of the proposed methods is
demonstrated for both synthetic and real video sequences in
the experiment section. In addition, the experimental results
show that our models are naturally robust in handling super
resolution on video sequences affected by scene motions and/or
small camera motions.

Index Terms—Super Resolution, Sparse Coding, Belief Prop-
agation, Nonlocal-Means Filter

I. INTRODUCTION

UPER RESOLUTION tries to combine several low res-

olution (LR) images from a scene and produces one
higher resolution image with better optical resolution. This
is an inverse problem that is commonly tackled by integrating
denoising, deblurring, and upsampling.

Fig. 1 illustrates this inverse process and presents how the
LR sequence may be modeled using an original higher resolu-
tion frame. During imaging, the blurring effect can be modeled
by the optical point spread function (PSF). The scene may
then be warped due to camera or object motion. Moreover,
the motion effect might not be the same for all frames in
the sequence. A fixed decimation operator is typically used to
model the effect of sampling by the image sensor. The operator
is characterized by the resolution ratio between the original
higher resolution frame and the LR sequence. The noise, which
in most applications assumed to be white i.i.d. Gaussian, is
added to the LR frames. The outcome of the super resolution
reconstruction problem depends on the involved operators and
noise characteristics of the above mentioned model.

A wide variety of super resolution methods have been stud-
ied in the last two decades [1]-[10]. Huang and Tsai were the
first to address the multiframe super resolution problem using
a frequency domain approach that works for band limited
and noise-free images [11]. Later, it was extended by others,
such as Kim et al. who proposed a super resolution method
on noisy and blurred images [12]. Pleg and Irani [1] also
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Fig. 1: A general model of multi-frame super resolution.

suggested a different approach for the super resolution problem
based on the iterative backprojection (IBP) method adopted
from computer aided tomography (CAT). Recently, an iterative
multiframe super resolution method was presented in [9] that
relied on extending the steerable kernel method in space-time.
However, the approach assumes the input frames only contain
smooth textures. Also, it has difficulties to estimate a pixel-
wise motion in regions with the larger motion [13].

In dealing with camera position variation, a few attempts
have been made through a global motion model [4], [5],
[11], [14]. Bonchev and Alexiev suggested a method of super
resolution that used the information from several LR frames
by controlling the camera position in frequency domain when
taking frames [5]. Also, in [14] a maximum a posteriori
(MAP) was adopted to provide coarse estimates of rotation
and translation between images. The authors claimed that
such estimation step provided enough accuracy to effectively
remove the effect of the rotational and coarse (super-pixel)
translational motion between the images. Although that algo-
rithm incorporates smoothness priors as a constraint to recon-
struct the HR images, using these smoothness priors might
not lead to smooth results [15]. A number of super resolution
approaches using Total Variation (TV) regularization terms
have been explored in the last decade, e.g., the approach by
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Fig. 2: Block diagram representation of our models.

Mitzel et al. in [7], where their method is not restricted to
any particular motion model and they do not assume that the
motion is known. In another work, Farsiu e al. suggested a
multiframe super resolution method by applying constraints on
the L; norm of both the bilateral TV regularization term and
the data fusion term to produce a sharp, high resolution (HR)
image [4]. The researchers also registered the LR images with
respect to a reference frame before starting the super resolution
process. Liu and Sun in [13] proposed a Bayesian framework
for adaptive video super resolution that deals with video super
resolution by also simultaneously estimating underlying large
motion. Moreover, they jointly estimated the flow field and the
noise level in a coarse-to-fine manner on a Gaussian image
pyramid using the HR image and the blur kernel.

In this work, we focus on video frames that suffer from
non-homogeneous noise, atmosphere or camera blur, motion
and down-sampling effects. Also, as real videos can be taken
from both fixed or movable cameras, we also consider frames
affected by scene motions and/or small camera motions. Note
that as we will see in the coming sections, the approach we
introduced here works well for such scenario. Our method is
complementary to approaches such as [13], which considers
the superresolution of sequences with larger camera motions
but little or no scene motions.

We propose to solve the super resolution problem using a
novel framework taking advantage of two recently developed
techniques: SCoBeP [16] and Nonlocal-Means (NLM) [17].
Our approaches are based on the concept of Sparse Coding
and Belief Propagation (SCoBeP) which is earlier introduced
in [16] for 2-D signals (images). It turns out that the technique
is well-suited for super resolution of video (a 3-D signal) as
we explore in this paper.

As a summary of our approaches, we first build an over-

complete dictionary out of all block features of LR frames
as shown in Fig. 2. Different from [18], we are not gener-
ating HR/LR patch pairs from the frames by exploiting self-
similarities. For each pixel of the initial estimate of the HR
frame, we then select a set of candidate pixels out of the
constructed dictionary using sparse coding [19]. The match
score of each candidate pixel will be evaluated taking both
local and neighboring information into account using belief
propagation [20]. The best matches will be selected as the
candidates with the highest scores. An occluded pixel or any
pixel not covered by the LR frames is likely to be identified
since the match scores in this case will be significantly
smaller than a typical maximum score when a match pixel
actually exists. Finally, in our first proposed method, the NLM
approach exploits similarity in patches around candidate pixels
to average out the noise among similar patches [6] and in our
second proposed method, a pixel is reconstruct from multiple
candidate pixels with the weights extracted directly from the
output of SCoBeP.

In the experiment section, we also illustrate that the pro-
posed methods can perform well on real LR videos (besides
“phantom” LR videos generated artificially) and can recon-
struct image edges with high fidelity. Although the NLM
filtering has shown great potentials for image denoising and
superresolution [17], it is only effective when a reference patch
can be identified to accurately represent the targeted patch.
Moreover, NLM approaches generally have very high com-
putational complexity. We will show in this paper reference
patches can be effectively found by SCoBeP. Further, we will
also show that the NLM step may be skipped completely
(as demonstrated in the second method) with only a small
performance penalty but a significant (about three times)
speed-up.



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, SEPTEMBER 3, 2013 3

TABLE I: Summary of Notation

Notation Description
X the reconstructed HR frame
Vi the LR frame at ¢
Yt the interpolated LR frame at ¢
T the number of available LR frames
zZ the blurred version of the reconstructed HR frame
N(q,1) a neighborhood around pixel [g, (]
Ry the matrix that extracts a patch centered around pixel [g, (]
r the resolution (magnification) ratio
n the number of candidate pixels
Xql the vectorized patch at pixel [g, (] in the reference frame
Dy the dictionary constructed from the t*" LR frame )
the sparse representation vector of a patch centered around pixel
Yalt [g,1] in t*" LR frame
Yot the vectorized patch at pixel [g,[] in the ¢*” LR frame )
Wi, g, a1, b,4] the weight r-nappin-g fro.m a pixel -in the reference frame
to b*" candidate pixel in the t*" interpolated LR frame y;
cp an n X 2 matrix storing the locations of the candidate pixels
ot the prior probability of pixel [g,] in the reference frame mapping
q

to the bt" candidate pixel in #*" interpolated LR frame

The rest of this paper is structured as follows. We give a
brief summary of related work and review the background
of super resolution and NLM filter in the next section. In
Section III, we introduce our proposed methods: SCoBeP-SR
and SCoBeP-NLM. Implementation issues are also presented
in detail in this section. Section IV presents the experimental
results and compares our results with that of the existing
super resolution methods. Finally, future work is outlined and
concluding remarks are made in Section V.

II. RELATED WORK AND BACKGROUND

Sparse representation [21] and self-similar-based techniques
[3], [10] have been used in super resolution in recent years.
In this section, we will review how some of the recent works
use these techniques in recovering the downsampled signals
and computing the similarity of image patches.

In [21], [22], a large set (of the order of a hundred thousand)
of patches randomly sampled from natural images to train an
LR and a HR dictionaries. The main idea consists of seeking in
the database for a sparse representation of each patch of the
LR input, followed by using this representation to generate
the HR output. Yang et al. [18] proposed a super-resolution
method that exploits self-similarities and group structural
constraints of image patches using only one single input frame.
In this algorithm, the patch self-similarity within the image
is exploited and the group sparsity then will be introduced
for better regularization in the reconstruction process. Another
recent example based on an enhanced sparse representation
in transform domain is block-matching 3-D filter (BM3D)
[23], which uses a block matching technique to find a set
of similar 2D blocks. Danielyan et al. have extended (BM3D)
in [8] for image and video super resolution. They produce
a sparse representation of the true signal in the transform
domain to exploit the similarity among the blocks. In contrast
to the sparse representation approaches discussed above where
they use information from only one corresponding pixel per
LR frame to reconstruct a target pixel, our first approach

incorporates the NLM method to take advantage information
from multiple matched pixels for the reconstruction.

We now turn to a discussion of certain works associated with
self-similar-based technique. Plenty of works have emerged
lately based on self-similarity for natural image and video
processing. The self-similarity property shows that the image
content desires to repeat itself within some neighborhoods.
Non local self-similarity has been effectively applied to many
aspects of image processing [3], [24], [25]. Following this
insight, Buades et al. used this approach in image denoising,
which is known as the NLM method [17]. The NLM method
was used also in image restoration explicitly exploits self-
similarities in natural images [3], [17]. Liu and Freeman in
[26] proposed a video denoising approach to use an approxi-
mate k-nearest neighbor (AKNN) algorithm to approximately
but rapidly seek the most similar patches for a given video.
As pointed out in [27], [26] takes into account only similar
blocks for a given video and thus could be classified as a
“closest structure” method, while one can call the original
NLM method [17] a “closest space” method in the sense that
it uses only closest blocks in a small window. Moreover,
Marial et al. in [25] extended the NLM method in denoising
and demosaicking using the idea that similar patches have
similar sparsity patterns. Also, in [10], Zhang et al. proposed a
non-local kernel regression method for image and video super
resolution, which exploits both non-local self-similarity and
local structural regularity in a single model. Distinct from
the local kernel regression, the NLM method estimates the
value of a pixel from all possible patches collected from a
search area, and breaks the locality constraint in the restoration
algorithms. Protter et al. [6] generalized this denoising method
to perform multiframe super resolution reconstruction with
no explicit motion estimation. In that work, computing the
similarity of video frame patches resulted in probabilistic
estimates of motion.

Prior works have been limited to block matching in re-
stricted neighborhoods. These neighborhoods determine the
candidate matches of target pixels and thus have a significant
impact on SR performance. However, they have always been
assigned with limited sizes and regular shapes (e.g., as rect-
angular blocks) in prior works and hence often do not include
the best match patches. Due to this poor block matching, the
prior techniques could suffer from block artifacts in some test
cases [6], [28].

In contrast, the advantage of SCoBeP registration is that
the chosen candidates will have better “diversity” when com-
pared with the AKNN or even the exact K-nearest neighobor
(KNN) approach (see Fig. 3). This originates from the induced
orthogonality of the patches when sparsity is imposed in the
solution. In the KNN case, when a smooth patch is incorrectly
matched to a patch, the next best “matches” are likely around
the neighborhood of the wrong patch and it ends up incor-
rect matching for all patches. The better “diversity” actually
affords SCoBeP a larger search window compared with other
registration without sacrificing the robustness of the approach
[16]. In this paper, we take advantage of SCoBeP to select
from each LR frame a set of candidate pixels which are likely
to be most similar to the target pixel. As a result, for each pixel



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, SEPTEMBER 3, 2013 4

o i

Fig. 3: Candidate points obtained by KNN and sparse coding. The
images in (a) shows that KNN tends to result in candidate points
with poor diversity. And thus it can easily miss including the true
corresponding point as one of its candidate points. In contrast, the
images in (b) show that the candidate points of sparse coding tend
to diversify and thus is more likely to include the true corresponding
point.

and per LR frame, we have an irregular neighborhood that can
include any pixel in the frame. This significantly improves the
block matching performance that directly links to the overall
SR performance.

The contributions of the proposed approach can be sum-
marized as follows: (¢) Identifying the best similar matches
based on the local and the geometric characteristics using
factor graph, which efficiently trade off both characteristics
optimally. (4¢) Incorporating SCoBeP to efficiently sift through
pixels from all LR images and thus resulting much more
accurate non-local candidates for subsequent estimation. (#i4)
Exploiting both SCoBeP output and the NLM technique in cal-
culating weights to facilitate tradeoff between computational
complexity and performance.

A. Classic Super Resolution

Super resolution reconstruction attempts to estimate one
high quality result X out of several lower resolution and
potentially noisy images {yt}thl. A popular way to model
LR images {yt}f;l from a pseudo HR image X is through
a sequence of operations including geometrical wrapping
F, linear space-invariant blurring H, spatial decimation Dy,
and zero-mean white Gaussian noise ;. The model can be
summarized with the following equation:

V,=DHEX +¢e;, t=1,23,..T, (1)

where T is the number of available LR frames. Note that we
assume H and D are identical for all frames in the sequence.

The recovery of X from {yt}thl using the above men-
tioned model requires us to solve an inverse problem. The
maximum a posteriori probability estimate of X can be
obtained by minimizing the following objective function with
respect to X:

T
1
Arap(X) = 5 D IDHEX = Vil +X-TV(X), @)
t=1

where the first summation term ensures that the projections of
the estimate X looks similar to the LR images and the second
term, \- TV (X), acts as a prior and helps to remove artifacts
from the final solution and improves the rate of convergence
[29].

Since H and F} are space-invariant operators in (2), they can
be considered as block circulant matrices (assuming a cyclic
boundary treatment) that they commute [4], [30]. This allows
one to solve (2) in the following two steps [3], [4], [6], [30].
First, minimize the following penalty function with respect to
Z:

T
1
n(2) =5 D IDFZ =Vl 3)
t=1

where Z can be interpreted as a blurred version of the HR
frame X and thus should be approximately equal to HA'. This
step estimates the blurry high-resolution image Z from the
collection of the low resolution images ). For a more general
case with multiple input patches, we will modify €%, in (3)
to (15) as shown in Section II-C.

Then, impose the constraint of the closeness of Z and HX
and incorporate back the regularization term to obtain the
following objective function:

Grap(X) = [|HX = Z|5+ X TV (X), ©)

where X can be obtained through minimizing (16) in Section
II-C. Since H is usually singular, this stage is an under-
determined problem and needs regularization (see [31], [32]
for more detail).

In summary, one can break the minimization problem in (2)
in two steps:

1) compute a blurred version of HR Z by minimizing (3).

2) estimate the deblurred frame X from the found blurred
HR Z in step 1.

As the second step only involves the classic deblurring
problem, many potential techniques can be applied here.
In our proposed approaches, we adopt the Adaptive Kernel
Total Variation (AKTV) regularized locally-adaptive kernel
regression in a variational approach developed by Takeda et
al. [33], which can simultaneously interpolate and deblur in
one integrated step. However, one can generally incorporate
any deblurring techniques into the proposed method.

B. Background of NLM Filter

The whole entity of a self-similar object is exactly like
or similar to a part of itself. As a consequence, parts of it
can show the same statistical properties at many scales. Based
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on this presumption, non-local self-similarity techniques have
been widely used in areas such as image denoising [17], [34],
texture synthesis [24], and super resolution [3], [6], [10]. For
example, the NLM filter, which is based on the assumption that
image content is likely to repeat itself within its neighborhood,
is applied successfully to image denoising. Its key idea is that
one can denoise a pixel [¢, j] by performing weighted average
around its neighborhood [17]. More precisely, denote Y[i, j|
as the intensity of pixel [¢, j], then the intensity of denoised
pixel [gq,1], X[q,l], can be written as

B > Gyenan Wi ¢ UV, ]
Z(i,j)GN(q,l) W[% j7 q, l]

where N (g, 1) denotes a neighborhood around pixel [g, (], and
WIi, 4, q,1] is a weight that is decreased with the distances
between pixels [4, j] and [g, [], and increased with the similarity
of the patches centering at the two pixels. The formula in
(5) describes the NLM filter where denoising each pixel is
done by averaging all pixels in its neighborhood. However,
this averaging is not performed blindly and instead each pixel
in the relevant neighborhood is assigned a weight which
corresponds to the probability that the pixel Y[i, j] and the
pixel X|[gq, 1], prior to the additive noise degradation, had the
same value.

NLM filter computes the weight based on both radiometric
proximity and geometric proximity between the pixels. The
radiometric part is estimated by computing the Euclidean
distance between two image patches centered around these two
included pixels. Let us consider I, ; as the matrix that extracts
a patch with fixed and predefined size of g x g pixels at its
position [g,!] in the image. Hence, R, ;) is equivalent to the
g% g matrix representing the extracted patch of ) at position of
[g,1]. As NLM estimation is a zero-order regression, only the
zero-order basis is used for estimation. Therefore, the NLM
weights look like

Xlg, ]

; (&)

o RV — R ;|3
Wi, j, q,1] =e:vp{—” = 202 : ”2} (6)

xF(V/(g—)? + (U~ 5)2),

where o manages the effects of radiometric differences be-
tween two patches and when the intensities of the two patches
are far away, the weight becomes very small and thus can be
ignored. Whereas the function f is in charge of the geometric
distance, and it may have many forms such as a Gaussian, a
box function, or a constant [3], [6]. Since there are various
other ways to choose the weights in (5), in this paper we will
restrict our choice to SCoBeP [16] and NLM as described in
Sections III-B and III-C.

C. NLM for Super Resolution

Since self-similarities exist in most natural images, one can
also use the NLM algorithm to take advantage the non-local
similarity property of natural images in the superresolution
problem.

In essence, one may extract a target patch information from
multiple patches instead of one patch per each LR frame. This

allows us to modify f?w 1, in (3) instead to [3], [6]

XYY Wil

t=1 [gq,l]€T [ri,rj]EN (q,l)

< |DRYZ ~ REY,

6%\/[L(Z)

)

where 7 is the set of pixel coordinates of the entire frame X,
N (g, 1) is a neighborhood of the pixel [g, (], and Wi, j, q,, ]
can be interpreted as a weight that the pixel [g,[] in the
reference frame should be mapped to the pixel [i,j] in the
tth LR frame ). R(fl and Rﬁj are defined as the HR and
LR patch extraction operators respectively, where the size of
the extracted patches are related to the resolution ratio r as
follows. Let the size of patches extracted by RiL’j and Rg{l be
g X g and k X k, respectively. We have k = r(g — 1) + 1.
Note that k£ is not set precisely as rg to avoid the need of
extrapolation. The detail in computing W will be deferred to
Section III-B and III-C.

As for the first step, one can show that the optimum Z can
be computed as [6]

T . .

2.1 = Dot 2 prisrglenan YIS T4, Lt Vei g

i - T . .
Zt:l Z[Ti,Tj]EN(q,Z) W[%]a q, l, t]

®)

III. PROPOSED METHOD

The key to apply NLM to super resolution efficiently
depends on how we can identify the appropriate neighboring
set (M (g, 1)) for each pixel and also how we can choose the ap-
propriate weighting function. In particular, the neighborhood
N(q,1) has significant effect on the performance of the NLM
filter. The neighborhood should be sufficiently large to take
advantage “non-local” benefit of the algorithm. However, this
also significantly increases the complexity of the algorithm.

Ideally, we would like the neighborhood set A (q,l) to
cover the entire frame. That is, to allow each pixel to take
into account information from any pixel of every LR frame
and let the weight variable Wi, j, q,[, ] to take care of the
significance of the contribution. This, of course, will lead to
unrealistic computational load if we blindly look into every
pixel of every LR frame. What we need is an intelligent
preprocessing step to identify pixels that are likely to provide
useful information to the target pixel no matter where the
formers locate. The described problem above is closely related
to image registration, and we want to look for multiple matches
from each reference frame (i.e., an LR frame in this case).

While many registration methods can be used, we chose to
use SCoBeP [16] for the aforementioned purpose as SCoBeP
naturally identifies multiple matched pixels and returns the
corresponding match scores as needed in this application. In
summary, for each pixel in the initial estimate of the HR
frame, we use SCoBeP to select from each LR frame a set
of n candidate pixels which are likely to be most similar to
the target pixel. The similarity between a target pixel and a
candidate pixel, which will be characterized by a weight, will
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be used by the SCoBeP method as to be described in Section
III-B or the NLM filter as to be described in Section III-C.

For the rest of this section, we will review the SCoBeP
registration technique in the context of superresolution and
provide the implementation details of our proposed super
resolution methods, SCoBeP-SR and SCoBeP-NLM, which
are based on sparse coding, belief propagation and NLM. We
divide the super resolution process into two steps as shown in
Sections III-A and II-B or III-C.

A. Use SCoBeP [I6] to compute the locations and prior
probabilities of candidate pixels

The proposed method described here is inspired by our
recent work, SCoBeP [16]. First, we extract the features
from all interpolated LR frames {yt};il and the reference
frame X. To extract the features, we consider a patch of size
(2h +1)? containing neighboring pixels around each pixel on
the reference and LR frames, where h is a positive integer.
For each pixel [p, g] in the reference frame X', we vectorized
the patch centered around the pixel [p,q] to a feature vector
X, € RS*L where S = (2h +1)2.

In this paper, we focus ourselves on only using block
features even though the proposed approach can generally
be applied to other features (such as SIFT-features). Thus,
each feature considered here is essentially a vectorized block
centered around a pixel in a frame.

Second, to match the extracted features of the reference
frame to the corresponding extracted features of the t**
interpolated LR frame y;, we create a dictionary which con-
tains all feature vectors of y;. More precisely, a dictionary
D; € RSXMN (M and N are the height and width of
the interpolated LR frame y; minus h from each side) is
constructed with all possible vector Y, & RS*1 as Dy’s
column vectors, where Y, is created in the same manner as
X but from the t*" interpolated LR frame y; instead. Thus,
we can write D; as

Di=WY11,Y12¢ - YiniYo1s - Ymng 9

We then normalize dictionary D, to guarantee the norm of
each feature vector to be 1.

Third, to identify the candidate Y;;; that looks most similar
to the input X ; in the reference frame, we apply sparse coding
to each extracted features of the reference frame. Sparse
coding will reconstruct a reference patch at pixel [g,[] as a
linear combination of LR patches. Denote «; as the sparse
vector where each element corresponds to a coefficient in this
combination. Note that «;; should be sparse, i.e., it should
be 0 for most coefficients.

Mathematically, we try to solve the following sparse coding
problem of finding the most sparse coefficient vector cq;; such
that

qu = Dtaqlt~ (10)

The sparse vector ;. is the representation of X;, which
has few number of non-zeros coefficients. Thus, 4, describes

how to construct X; as a linear combination of a few columnsz [q7 l] =

(also referred to as atoms) in D;. The locations of the nonzero
coefficients in « specifically point out which Y; in the

Fig. 4: Sparse representation of a feature vector X,; with a dictionary
Dy aqi as a sparse vector constructs the feature vector X using
a few columns (highlighted in gray) of dictionary D;.

dictionary D is used to build X; and the values of the non-
zero coefficients in oy, show what “portions” thereof are used
for its construction. As shown in Fig. 4, one expected that most
of the coefficients in oy, obtained by sparse coding are zero,
and the bases of those non-zero coefficients correspond to the
highlighted gray columns in D;. Thus, X; can be written as a
sparse linear combination of those highlighted gray columns.

To solve (10), besides linear programming, many other
suboptimal techniques have been proposed including orthog-
onal matching pursuit [35], Subspace Pursuit (SP) [36] and
gradient projection [37]. In this work, we employed Subspace
Pursuit (SP) [36]. After finding the sparse representation vector
Oy, to select the n candidate pixels, we simply pick those
corresponding to n largest absolute value of coefficients in
agie. We denote cpgiy as an n X 2 matrix storing the locations
of these candidate pixels and py;; as the length-n vector storing
the corresponding values of ay;;. We will take the normalized
|pqit| as a prior probability of matching the reference patch
at [q,l] to a patch of the interpolated LR frame y; taking
only local characteristics into account but ignoring geometric
characteristics of the matches.

Finally, to incorporate geometric characteristics, we model
the problem by a factor graph and apply belief propagation to
update probabilities p,;; (for more details, see [16]).

We assume the operations such as warping and blurring in
the maximum a posteriori probability equation (2) are known.
However, this is not true in practice. In particular, while the
blurring operation can be approximated to be more or less
constant over the entire scene, the warping operation could
vary from pixels to pixels. One way to handle the unknown
warping problem is to adopt the Bayesian formulation and
integrate all possible warping operations, this is of course
too expensive to compute. Fortunately, the SCoBeP step has
already provided us some candidate match locations. So (8)
becomes

Z?:l ZZ:l Z[i,j]\[ri,rj]e/\/(cp(b)) W[Za ja q, la b7 t]yt [Z’ J]

qlt

T n .o
Zt:l Zb:l Z[i,j]|[7“i,7“j]6./\/(cp$i) W[Za 1,4, lv ba t]
(11)
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Algorithm 1 Super Resolution framework using SCoBeP -
estimate version of HR frame X

Inputs : LR and noisy frames {yt}thl, resolution ratio 7,
weight patch R, frame number . and the maximum number
of iterations

Initialize :

e Set Z as the bicubic interpolated frame of ),

Iterate : while the maximum number of iterations is not
reached
Use SCoBeP to find candidate pixels :

resolution frame

For each increased

o Extract dense feature

o Construct dictionary D,

« Find the initial estimates of candidate pixel probabilities

pqit and candidate pixel locations cpg;
o Apply belief propagation to refine pg; and cpgs
Find the blurred HR frame : For each pixel location [g, ]

on the HR frame Z and for b € {1,2,--- ,n}, for each
pixel location [i, j] such that [ri,rj] € N (cpffl’z)

o Compute weights:

1) SCoBeP-SR weights:

> b
WIi, 3,1, b, t] = I(eply, = [i, J})pfﬂi

OR

2) SCoBeP-NLM weights:

2
Rq1Z2-R_ NOXL
qlt

202

2

W[i7jaQ7lab7t} :pl(lll)i)fexp _‘

X (Vg —ri)2+ (1 —1j)? +&(t —t)?)
o Compute Z, the blurred version of reconstructed HR

frame: n
— — w 3]s ,l,b,t 12,7
Zt,] b=1 Z[z Nri,ri]EN(c EIE;Z) [1 7,9 ]yt[ ]]

Zlg,l] =

DAY Wi, j,a,1,,t]

li gl re, Pl €N (et
End of Iteration

Perform deblurring : X =TVdeblur(Z2)
Qutput : a HR frame X

where W(i, j,q,1,b,t] can be interpreted as the weight map-
ping from a pixel in the reference frame to b'" candidate pixel
in the t*" interpolated LR frame y;. Since there are various
other ways to choose the weights in (11), in this paper we will
restrict our choice to SCoBeP-SR weights and SCoBeP-NLM
weights as described in the next subsections.

B. Calculate Weights for SCoBeP-SR

As SCoBeP has naturally identified pixels that are most
likely to be relevant to a target pixel and also output the
corresponding “weight” of the relevant pixels. Thus, we have
introduced and implemented a new SCoBeP based SR algo-
rithm, SCoBeP-SR, where “mixing” weights and candidates
are extracted from the SCoBeP step only.

The prior probability

i\L

found during the
SCoBeP step

'\

Fig. 5: Candidate pixel and weight computation in SCoBeP. For
the patch in the middle frame, SCoBeP weights the found candidate
pixels along the space-time.

The method for calculating Wi, j, ¢, [, b, t] for SCoBeP-SR
is based on the materials that have been developed in section
III-A. As some candidate locations and the corresponding
belief are available from the SCoBeP output. We will simply
assign the weights as zero except the candidate locations and
the weights precisely as the beliefs output from SCoBeP. More
precisely, we define

. N
Whid,0.1.b,8) = Iepgy = [ dDoly. (1)
where T (Clet = [i, ]) is an indicator function which is equal
to 1 if cpglt = [i, j] and O otherwise. To maintain the original
formulation, the neighborhood function of a patch P will just
equal to the patch itself. That is, N'(P) = P.

C. Calculate Weights for SCoBeP-NLM

In this subsection, the method for estimating
WIi, j,q,1,b,t], based on the materials that have been
developed in Sections II-B and III-A, is proposed as follows:

HRq,lZ Ry

Pait H

. b
W[Il’v]7qvl7bv t] pélzexp 20_

X F(V/(g = ri)? + (L= 7)) + E(t — t)?),

13)

where t. is the frame number of the output frame (see Fig. 5),
and ¢ is a scaling factor taking into account the difference in
scale along the temporal and spatial dimensions. Note that we
denote here pflll’g as the b element of p,; (the probability of
pixel [g, [] in the reference frame mapping to the b*" candidate
pixel in t** interpolated LR frame), and cpélzz as the b'h
of cpyyy (the bt candidate location described by cpqi¢). Hence,
R, p?) in (13) extracts a patch at the position cp(li from frame

row

Y. To follow the notation easily, we summarized them in Table
L.

Note that computing weights involves the knowledge of the
unknown frame Z. For first iteration, the weights are computed
by using an estimated version of Z, which is a scaled-up
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frame generated by a conventional image interpolation algo-
rithm such as bicubic, bilinear, or the lanczos method [38]—
[40]. For the remaining iterations, the weights are computed
using the estimated Z obtained in the previous iteration. The
main procedure for our proposed methods are summarized in
Algorithm 1, and also graphically depicted in Fig. 2. Note that
in Algorithm 1, one can either pick SCoBeP-SR weights or
SCoBeP-NLM weights for computing the weights.

As a summary of our approaches, we were able to write
and minimize our cost function which has two terms:

xrap(X) =
1 — -
P IDID IS
t=1 [q,1€Z b=1 [; j{|[ri,rj]eN (cp®))

qlt

x |DREHX — REY |+ A-TV(X).

W[i>j7 q, lu b> t]

(14)

As described in Section II-A, we followed [3], [4], [6] and
decomposed (14) into two steps:

1) compute a blurred version of HR Z which Z = HX by

minimizing
5?\@(3) =
1 T n
EZ Z W[i7j>Q7l7b7t]
=11 UET D=1 (3 5] [ri,rj]eN (cpt)
2
x ||DRZ — R, (15)

2) estimate the deblurred frame X from the found blurred
HR Z in step 1:

Erap(X) = |HX = Z|5+X-TV(X),  (16)

We introduced the first step in Sections III-A, III-B, and
II-C, and as the second step is the conventional deblurring
problem, many works can be applied here, which we simply
adopted (AKTYV) regularized locally-adaptive kernel regres-
sion in a variational approach developed by Takeda et al. [33].

We denote cpg,, as an n X 2 matrix storing the locations of
these candidate pixels and pg;,, as the length-n vector storing
the corresponding values of «g,. Each coefficient in pg,
serves as a prior probability of matching the reference patch at
[q,1] to a LR patch of ), taking only local characteristic into
accounts but ignoring geometric characteristics of the matches.
Finally, to incorporate geometric characteristics, we model the
problem by a factor graph and apply belief propagation to
update probabilities pgi, (for more details, see [16]).

IV. EXPERIMENTAL RESULTS

In this section, we consider in two separated subsections
with two different sets of experiments'. We utilize four test
sequences (Miss America, Foreman, Suzie and Stefan) in
Section IV-A to compare the performance of our proposed
methods with the state-of-the-art methods [6], [9], [41]. In that
section we will first generate synthetic LR sequences and next
apply super resolution methods to the degraded sequences. We

The image frames of the result sequences using SCoBeP-NLM and SCoBeP-SR are
available at http://students.ou.edu/B/Nafise.Barzigar-1/software/SCoBeP-NLM.html.

will then compare the results to the ground truth (the original
sequences). Also, in Section IV-B, we will illustrate additional
examples that will assess our super resolution methods for
real video sequences. Comparison will be made against the
multi-image super resolution method proposed by Farsui et al.
[4], 3-D ISKR method [9], super resolution Using TV prior
method [41] and a single image up-sampling using the Lanczos
algorithm [40], which were implemented using the software
provided by their authors.

A. Evaluation On Synthetic Sequences

In this section, to evaluate our performance, we present
some super resolution examples using existing sequences such
as Miss America, Foreman, Suzie, and Stefan. The sequences
in this section contain object motions only in the scene and
no camera movement. All tests in this section were processed
in the following manner: All 30 frames were involved in the
reconstruction of each frame. The similar block size used for
computing weight (R) was 13 x 13 and was not changed for
various tests. The low patch extraction operator Rﬁj extracts
only one pixel, therefore the Ré{ ; extracts a patch of size 3 x 3
pixels. Also, the search area (the size of neighborhood N) is
31x31 pixels. We set the parameter 0 = 2.2 and the maximum
number of iterations equal to 2 for all sequences.

To generate the LR frames, first, we degrade the test
sequences by blurring the videos with a 3 x 3 uniform point
spread function (PSF) and downsampling them by a resolution
ratio of 3 : 1 in both horizontal and vertical directions. Then
the white Gaussian noise with standard deviation of 7,,p;sc = 2
is added to each frame. Two of the selected LR sequences,
Foreman and Suzie for frame numbers 8, 13,23, and frame
numbers 3,23 are shown in Figs. 6(a), and 8(a), respectively.
Then, we upscale the degraded videos using the Lanczos inter-
polation [40], the GNL-Means method [6], and our proposed
methods. Figs. 6(b)—(e), and 8(b)—(e), respectively, show the
results.

The graphs? in Fig. 7 show the frame by frame PSNR values
of Miss America, Foreman and Suzie. Our proposed methods
beats the GNL-Means method in all frames by a significant
margin for all sequences. The average PSNR values for our
proposed methods and the compared methods are shown in
the caption of Fig. 7.

The PSNR results of 8" and 13*" frames of the Miss
America sequence are summarized in Table II, showing that
the proposed methods again constantly outperform the current
state-of-the-art methods. Note that the results from 3-D ISKR
method is cited directly from [9]. In Fig. 9, we show the PSNR
result and a clear visual comparison on the Suzie sequence.
As shown in Fig. 9, although the GNL-Means method [6] acts
well at regular-structured areas, it suffers from block artifacts?
due to poor block matching. In contrast, our proposed methods
performs remarkably well for both regular and detail structures
and is free of these artifacts. In Fig. 10, we further show

2The PSNR results of 3D-ISKR [9] are not listed as they are not available in their
original paper.

3Please note that we have adopted the terminology “block artifact” from
[10]. The terminology is different from the artifacts typically found in low
bitrate compressed image by old JPEG.
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[

(a) (b)

(d) (e)

Fig. 6: Results for the 8", 13" and 23" frame from the “Foreman” sequence. From Left column to Right column: LR frame; GNL-Means
[6]; Lanczos interpolation [40]; result of the proposed SCoBeP-NLM; result of the proposed SCoBeP-SR. Also, the PSNR values for all the

frames are shown in Fig. 7(b).

the results of Foreman sequence compared with the GNL-
Means method [6], 3-D ISKR method [9] and NLKR [10]. The
super resolution results on Miss America sequence in frames
8 and 13 and Stefan sequence are also given in Figs. 11 and
12, respectively for visual comparison. The proposed methods
outperform the other methods by notable improvement.

Moreover, we examined how our methods perform under
various noise levels. We added white Gaussian noise with
standard deviation o, (varying from 0 to 2) to the LR
sequences, where the sequence with o, = 0 was degraded
by the downsampling process only. Table III shows that both
SCoBeP-NLM and SCoBeP-SR are able to produce fine details
when the noise level is increasing. For a clear comparison on
varying noise level, we show the results of a noise added Fore-
man sequence in Fig. 13, where we compared our algorithms
with the state-of-the-art 3-D ISKR [9].

B. Evaluation on Real video Sequences

In this section, we turn to some real sequences, where we
apply our proposed methods directly to the captured sequences
without altering the frames. Note that there are no published
methods that have tested on real sequences. As no standard

TABLE III: Noise Addition: PSNR for 1°¢ frame of Foreman
Sequence

[ [[ Lanczos [40] | 3-D ISKR [9] | SCoBeP-NLM [ SCoBeP-SR |

o, = 0.00 28.51 28.94 29.88 29.76
o = 1.20 28.44 28.93 29.86 29.74
o, = 1.60 28.36 28.87 29.83 29.73
o, = 2.00 28.25 28.86 29.75 29.68

sequence is available, we have captured a sequence for testing
and with camera motion intentionally introduced. We choose
the multi-image super resolution method proposed by Farsui et
al. [4], 3-D ISKR method [9], super resolution Using TV prior
method [41] and a single image up-sampling using the Lanczos
algorithm [40] for comparison because their source codes are
available publicly. Since no ground truth is available for a
real sequence, we cannot evaluate the resulting HR frames
with objective measure such as PSNR. However, the perceptual
quality illustrate the robustness of our proposed methods on
real videos.

Fig. 14 shows the superresolution results for a real Navajo
Sculpture video sequence (70 x 80 pixels, 30 frames). One
can see some “blocking” artifacts in the original sequence due

TABLE II: PSNR for 8" and 13*" frames of Miss America Sequence

| Miss America Sequence | Nearest Neighborhood || Lanczos [40] | GNL-Means [6] | 3-D ISKR [9] | SCoBeP-NLM | SCoBeP-SR |

87 frame 32.97 34.76

34.49 35.53 36.28 36.20

13" frame 32.74 34.48

35.33 35.15 36.33 36.02
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—6— lanczos
—— GNL-Means

SCoBeP-SR
—B— SCoBeP-NLM|

Peak Signal to Noise Ratio [dB]

31

—6— Lanczos

—%— GNL-Means
SCoBeP-SR

—E— SCoBeP-NLM|

—5— lanczos

Peak Signal to Noise Ratio

o 5 10 15 20 25 30 “o 5 10
Time

(a) Miss America

(b) Foreman

15 20 25 30
Tome Time

(c) Suzie

Fig. 7: PSNR values of each super resolved frame by Lanczos [40], GNL-Means [6], and the proposed method for (a) the results of
Miss America shown in Fig. 11, (b) the results of Foreman shown in Fig. 6, and (c) the results of Suzie shown in Fig. 8. The average
PSNR values for all frames for the Miss America example are 34.12[dB] (Lanczos), 35.09[dB] (GNL-Means [6]), 35.73[D B] (SCoBeP-SR)
and 35.94[dB] (SCoBeP-NLM) and the average PSNR values for the Foreman example are 28.51[dB] (Lanczos), 29.01[dB] (GNL-Means
[6]), 29.71[DB] (SCoBeP-SR) and 29.80[dB] (SCoBeP-NLM), and also the average PSNR values for the Suzie example are 29.73[dB]
(Lanczos), 29.79[dB] (GNL-Means [6]), 30.56[DB] (SCoBeP-SR) and 30.77[dB] (SCoBeP-NLM), respectively.

(a)

()

©

() (e)

Fig. 8: Results for the 3t" and 23'" frame from the “Suzie” sequence. From Left column to Right column: LR frame; GNL-Means [6];
Lanczos interpolation [40]; result of the proposed SCoBeP-NLM; result of the proposed SCoBeP-SR. Also, the PSNR values for all the

frames are shown in Fig. 7(c).

to its low resolution as shown in Fig. 14(a). In Fig. 14(m),
we illustrate the ability of our proposed methods in removing
these artifacts and resulting in a clear output. We also show
the superresolution results by the Lanczos interpolation [40],
Farsui et al. method [4], 3-D ISKR method [9], and the TV
prior method [41] with three time magnification per each
dimension (i.e., an output resolution of 210 x 240 pixels) in
Fig. 14(c)—(i), respectively. As shown in Fig. 14, the Farsui et
al. method [4] and the TV prior method [41] introduce severe
block artifacts (near the mouth and the eyes in Figs. 14(e) and
14(i) respectively), and the 3-D ISKR method [9] does not
preserve the line texture well and generates the ghost image
as shown in Fig. 14(g). In contrast, our proposed methods do
not suffer from these artifacts.

The computational complexity of SCoBeP-SR can be deter-
mined by considering the following two steps: 1) computing
the locations and prior probabilities of the candidate pixels,
2) calculating weights via the NLM and SCoBeP or only
SCoBeP. The complexity associated with the computing the

location and weights of the candidate pixels takes 70% of the
overall complexity in SCoBeP-NLM. Since we replace NLM
weight with SCoBeP weight in Algorithm 1 and we found
the probabilities for the candidate matches in the previous
step it can significantly reduce computation complexity and
storage requirement. Just to put things into perspective, note
that the current implementation requires approximately 700 s
per frame for the Algorithm 1 using SCoBeP-NLM weights,
and 230 s for Algorithm 1 using SCoBeP-SR weights in
the most demanding case like “Navajo” sequence with high-
resolution frame size of 250 x 220, with the current pure
Matlab implementation on a Pentium 3 GHz (11-GB RAM)
machine. In comparison, ISKR takes approximately 5784 s
per frame.

V. CONCLUSION

In conclusion, we have proposed two novel and efficient
super resolution methods based on SCoBeP [16] and Nonlocal-
Means (NLM) techniques, which finds corresponding patches
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Fig. 9: Video super resolution for Suzie sequence: (frame 28 and 18 with the resolution ratio 3, PSNR in brackets). From Left column
to Right column: Ground truth; LR frame; GNL-Means [6] [PSNR: 29.87 - 29.86]; Lanczos interpolation [40] [PSNR: 29.41 - 29.27];
SCoBeP-NLM [PSNR: 30.95 - 30.75]; SCoBeP-SR [PSNR: 30.55 - 30.71].

Fig. 10: Video super resolution for Foreman sequence: From Left column to Right column: Ground truth; GNL-Means [6]; 3-D ISKR [9];

NLKR [10]; result of the proposed SCoBeP-NLM.

using sparse coding and demonstrates competitive results in
both the synthetic and the real sequences. Our techniques
perform super resolution by first running sparse coding over
an overcomplete dictionary constructed from the LR frames to
gather possible match candidates. Belief propagation is then
applied to eliminate bad candidates and to select optimum
matches. Finally, in the SCoBeP-NLM, the NLM approach
exploits similarity in patches around candidate pixels to aver-
age out the noise among similar patches. While the algorithm
performs favorably comparing with other recent approaches as
illustrated in the experimental results, the algorithm is quite
complex and we realized that the source of most computation
is originated from the NLM component. As SCoBeP has
naturally identified pixels that are most likely to be relevant to

a target pixel and also output the corresponding “weight” of
the relevant pixels. This suggested us that NLM is probably not
essential in our SCoBeP based SR algorithm. Thus, we have
also implemented a SCoBeP based SR algorithm, SCoBeP-SR,
where “mixing” weights and candidates are extracted from the
SCoBeP step only.

We conducted experiments on both the synthetic and the
real video sequences, where our approaches work well for
both types of sequences demonstrating the effectiveness and
robustness of our approaches. Furthermore, unlike many ex-
isting super resolution approaches targeting to LR frames that
have been pre-registered manually [2] or have assumed a
stationary camera [3], [10], the proposed method can handle a
sequence captured with a moving camera and do not require
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Fig. 11: Video super resolution for Miss America sequence; frame 8 (top) and frame 13 (bottom): From left to right: Ground truth; Lanczos
interpolation [40]; GNL-Means [6]; 3-D ISKR [9]; super resolution Using TV prior [41]; SCoBeP-NLM; SCoBeP-SR.

Fig. 12: Video super resolution for Stefan sequence: From top to
bottom column: LR frame; 3-D ISKR [9]; result of the proposed
SCoBeP-NLM.

preprocessing of the sequence.

As SCoBeP provides decent results in images with both
significantly and slightly varying viewpoints [16], [42], hence,
it will be useful to a wide range of applications such as

Fig. 13: Video super resolution for Foreman sequence with noise:
we added synthetic additive white Gaussian noise (AWGN) to the
input LR sequence, with the noise level o, = 1.20 (left) and o, =
2.00 (right). From top to bottom column: Noisy LR; 3-D ISKR [9];
SCoBeP-NLM; SCoBeP-SR.

de-interlacing, surveillance application and medical image
super resolution. As for future work, we plan to extend our
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Fig. 14: Multi-frame super resolution for real frames: “Navajo”
sequence. (a) LR frame; (b) Lanczos interpolation; (c) Farsui et al.
[4] method; (d) 3-D ISKR [9]; (e) super resolution Using TV prior
[41]; (f) SCoBeP-NLM; (g) SCoBeP-SR.

approaches to these areas.
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