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images
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Abstract

Onboard data processing has always been a challenging and critical task in remote sensing ap-

plications due to severe computational limitations of onboard equipment. Satellite images are often

rich in content, large in size and dynamic range. Efficient, low-complexity compression solutions are

essential to reduce onboard storage, processing, and communication resources. This paper is motivated

by recent trends in capturing images from twin satellites, where potential spatial and temporal correlation

among the sources can be exploited for more efficient compression. Traditionally, onboard compression

tools code images independently without exploiting correlation between different viewpoints. Distributed

compression, on the other hand, is a promising technique for onboard coding of solar images since it

exploits correlation between different views without compromising the low-complexity and communica-

tions requirements of onboard equipment. In this paper we propose an adaptive distributed compression

solution using particle filtering that tracks correlation, as well as performing disparity estimation, at

the decoder side. The proposed algorithm is tested on the stereo solar images captured by the twin

satellites system of NASA’s STEREO project. Our experimental results show improved compression

performance w.r.t benchmark compression scheme, accurate correlation estimation by our proposed

particle-based belief propagation algorithm and significant PSNR improvement over traditional separate

bitplane decoding without dynamic correlation and disparity estimation.
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I. INTRODUCTION

Onboard data processing has always been a challenging and critical task in remote sensing

applications due to severe computational and/or power limitations of onboard equipment. This

is especially the case in deep-space applications, where mission spacecrafts are collecting a

vast amount of image data that is stored and/or communicated to the observation center. In such

emerging applications, efficient low-complexity image compression is a must. While conventional

solutions, such as JPEG, have been successfully used in many prior missions, demand for

increasing image volume and resolution as well as increased space resolution and wide-swath

imaging calls for a larger coding efficiency at reduced encoding complexity.

NASA’s STEREO (Solar TErrestrial RElations Observatory), launched in Oct. 2006, has

very recently and still is providing ground-breaking images of the Sun using two space-based

observatories [1]. These images aim to reveal the processes in the solar surface (photosphere),

through the transition region into the corona and provide the 3D structure of coronal mass

ejections (CME). CMEs are violent eruptions solar plasma into space, which, if directed towards

the Earth and reaches it as an interplanetary CME along with solar flares of other origin, are

known to have catastrophic effects on the radio transmissions, satellites, power grids resulting

in large scale and long-lasting power outages, and on humans travelling in airplanes at high

altitude.

The data streams that are transmitted 24 hours per day as weather beacon telemetry from

each spacecraft have to be heavily compressed [1]. The reconstructed images are available online,

immediately after reception. Due to compression, many image artifacts have been spotted that led

to wrong conclusions (see e.g., [2]). Another, scientific stream is recorded and transmitted daily

using NASA Deep Space Network lightly compressed. These images are becoming available 2-3

days after arrival in the Flexible Image Transport System (FITS) and/or JPEG format.

A variety of image compression tools are currently used in deep-space missions, ranging from

Rice and lossy wavelet-based compression tools (used in PICARD mission by CNES2009), Dis-

crete Cosine Transform (DCT) + scalar quantization + Huffman coding (Clementine, NASA1994),

ICER (a low-complexity wavelet-based progressive compression algorithm used in Mars mis-

sion, NASA2003) to (12-bit) JPEG-baseline (Trace NASA1998, Solar-B JAXA2006) [3]. The

compression algorithms have mainly been implemented in hardware (ASIC or FPGA implemen-
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tation), but some of them run as software on DSP processors (e.g., ICER). The key characteristics

of these algorithms are relatively-low encoding power consumption, coding efficiency, and error

resilience features. Latest Earth observation satellites usually employ JPEG2000 [4] or similar

wavelet-based bitplane coding methods implemented on FPGA, which might be too prohibitive

for deep-space missions. Note that all current missions, including STEREO, use 2D, mono-view

image compression trading off computational cost and compression performance. Since STEREO

images are essentially multi-view images, with high inter-view correlation, current compression

tools do not provide an optimum approach. In this paper, we propose a distributed multi-view

image compression (DMIC) scheme for such emerging remote sensing setups.

When an encoder can access images from multiple views, a joint coding scheme [5] achieves

higher compression performance than schemes with separate coding, since multi-view images are

usually highly correlated. However, due to the limited computing and communication power of

space imaging systems, it is not feasible to perform high-complexity, power-hungry onboard joint

encoding of captured solar images. Although, intuitively, this restriction of separate encoding

seems to compromise the compression performance of the system, distributed source coding

(DSC) theory [6], [7] proves that distributed independent encoding can be designed as efficiently

as joint encoding as long as joint decoding is allowed, propelling DSC as an attractive low-

complexity onboard source coding alternative.

The proposed DMIC image codec is characterised by low-complexity image encoding, and

relatively more complex decoding meant to be performed on the ground. A novel joint bitplane

decoder is described, that integrates particle filtering with standard Belief Propagation (BP)

decoding to perform inference on a single joint 2-D factor graph. We test our lossy DMIC setup

with grayscale stereo solar images obtained from NASA’s STEREO mission [1] to demonstrate

high compression efficiency with low encoding complexity and non power-hungry onboard en-

coding, brought about by DSC. DSC has been used for onboard compression of multispectral and

hyperspectral images in [8], [9], where DSC is used to exploit efficiently inter-band correlation. In

[9], for example, a low-complexity solution robust to errors is proposed using scalar coset codes

to encode the current band and the previous bands as decoder side information. The algorithms

of [9] are implemented using FPGA, and simulations on AVIRIS images show promising results.

The key contributions of this paper can be summarised as:

• An adaptive distributed multi-view image decoding scheme, which can estimate the block-
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wise correlation and disparity change between two correlated images, and also recover the

images simultaneously;

• A BP decoder with integrated particle filtering to estimate blockwise correlation changes,

since standard BP cannot handle continuous variables (except linear Gaussian model) such

as the correlation parameter. This extends our previous work [10], [11] from 1-D correlation

estimation to 2-D and from time varying correlation estimation to spatial varying correlation

estimation;

• A joint bitplane decoder (compared to the traditional separate bitplane decoder [12]), that

allows the estimation of the correlation and the disparity between two pixels directly rather

than just the correlation between a corresponding pair of bits of the pixels;

• A decoding scheme that offers greater feasibility for rate selection than the joint bitplane

encoder/decoder design used in [13] since the received syndromes of each bitplane are

independent due to separate bitplane encoding.

This paper is organized as follows. Section II gives the relevant background on distributed

compression of correlated sources with independent encoding and joint decoding, including prior

work on distributed multi-view image coding. We describe the DMIC setup in Section III and our

proposed adaptive DMIC algorithm, which includes the disparity and the correlation estimation

in Section IV. Experimental results are described in Section V. Section VI concludes the paper.

II. BACKGROUND

A. Distributed Source Coding (DSC)

In a nutshell, DSC refers to separate compression and joint decompression of mutually

correlated sources. The sources are encoded independently (hence distributed) at the encoders and

decompressed jointly at the decoder. DSC is thus a compression method that aims at exploiting

mutual dependencies across different sources that need not communicate among each other.

DSC appeared as an information-theoretical problem in the seminal paper of Slepian and Wolf

in 1973 [6]. Slepian and Wolf [6] considered the simplest case of DSC with two discrete sources

X and Y and lossless compression, and showed that it is possible to have no performance loss

of independent encoding compared to the case when joint encoding is done. Indeed, Slepian and

Wolf showed that two discrete sources X and Y can be losslessly decoded as long as:

RX ≥ H(X|Y ), RY ≥ H(Y |X), R = RX + RY ≥ H(X,Y ), (1)
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where RX and RY are rates used for compressing X and Y , respectively. The above set of

equations, known as the Slepian-Wolf (SW) coding region, shows that the sum-rate R can be as

low as the joint entropy of the sources, which is the same as if the source were encoded together.

A special case of SW coding is when one source, e.g., Y , is known at the decoder. Then, a rate

not higher than H(X|Y ) suffices for compressing X . This case is known as asymmetric SW

coding, or SW coding with decoder side information Y .

Practical SW coding is done via conventional channel coding. Indeed, correlation between

the sources is seen as a virtual communication channel, and as long as this virtual channel can

be modelled by some standard communication channel, e.g., Gaussian, channel codes can be

effectively employed.

In 1976, Wyner and Ziv [7] considered a lossy version, with a distortion constraint, of the

asymmetric SW coding problem and showed that for a particular correlation where source and

side information are jointly Gaussian, there is no performance loss due to the absence of side

information at the encoder.

Wyner-Ziv (WZ) source coding is usually realized by quantization followed by SW coding of

quantization indices based on channel coding [14]. Quantization is used to tune rate-distortion

performance, while the SW coder is essentially a conditional entropy coder. The WZ decoder

will thus comprise an SW decoder, which makes use of side information to recover the coded

information. The SW decoder is followed by a minimum-distortion reconstruction of the source

using side information. With WZ coding, side information is not needed at the encoder. The

latest designs based on quantization followed by advanced channel coding come very close to

the theoretical bounds (see, e.g., [15], [16]).

In much the same way as the information-theoretical DSC framework [6], [7], the state-of-

the-art SW and WZ code designs based on advanced turbo and low-density parity-check (LDPC)

codes perform well only when correlation statistics between sources are stationary and known

at the encoder and decoder. The problem of accurate statistical correlation estimation between

the source and side information is particularly important in WZ coding, since there is no unique

correlation model for non-stationary (temporal and/or spatial varying) sources.
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B. Related Work

Since our proposed DMIC scheme intersects several research topics, we group prior work into

three categories.

The first category relates to work in the area of low-complexity onboard/remote multi-view

image coding. This area is still in its infancy and we found only two relevant contributions. In

[17], lossy compression of Earth orbital stereo imagery used for height detection with three or

four views based on motion compensation and JPEG-2000 [4] and JPEG-LS is proposed. Note

that motion compensation+ JPEG-2000 might still be considered as power expensive for remote

sensing, including deep-space missions. In [18], a modification of the mono-view ICER image

coder, employed in the Mars Exploration mission, is proposed. The proposed coder optimizes

a novel distortion metric that reflects better stereoscopic effects rather than conventional mean-

square error (MSE) distortion. The results reported in [18] show improved stereo ranging quality

despite the fact that correlation information between the left and right image pair was not

exploited in any way or form. See also [19].

The second relevant topic is correlation tracking in DSC applications. Most DSC designs,

including Distributed Video Coding (DVC), so far (with few exceptions) usually simplify the

problem by modeling correlation noise, i.e., the difference between the source and side infor-

mation, as Laplacian random variables and estimate the distribution parameters either based on

training sequences or previously decoded data. This imposes certain loss especially for images

or sequences that are very different or non-stationary. Non-stationarity of the scene has been

dealt mainly by estimating correlation noise (e.g., on the pixel or block level) from previously

decoded data and different initial reliability is assigned to different pixels based on the amount

of noise estimated both in pixel- and transform-domains [20]–[24]. In [11], we proposed an

efficient way of estimating correlation between the source and side information for pixel-domain

DVC by tightly incorporating the process within the SW decoder via SW code factor graph

augmentation to include correlation variable nodes with particles such that particle filtering is

performed jointly with BP over the augmented factor graph during the SW decoding process.

Note that the BP-based SW decoding and correlation statistics estimation are considered jointly.

The proposed correlation estimation design was tested on a transform-domain DVC [25] with a

feedback channel, but with joint bit-plane coding. This work extends this result from mono-view
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to low-encoding complexity multi-view coding.

The third relevant topic is multi-view image coding using DSC principles. Despite the potential

of DSC, attaining its ultimate performance relies on the assumption that both the correlation and

the disparity among multi-view images are known a priori at the decoder. Direct measurement

of the correlation and the disparity at the encoder side is both expensive in terms of computation

and impossible without communication among imaging sensors. Thus, estimating correlation and

disparity at the decoder becomes the main challenge in DMIC. For disparity estimation in DMIC,

the idea of motion compensation [26], [27] used in DVC offers a possible solution. However,

these motion compensation methods usually require excessive amount of computation. Thus,

some low complexity disparity learning schemes for DMIC have been proposed in the literature.

In [13], Varodayan et. al. developed an Expectation Maximization (EM) based algorithm at

decoder to learn block-based disparity for lossless compression [13] and then extended it to lossy

case [28]. In comparison with the system without disparity compensation, a better compression

performance is observed when disparity compensation is employed at the decoder [13], [28].

Thus, knowing the correlation among multi-view images is a key factor in determining the

performance of a DMIC scheme. This correlation is generally nonstationary (spatially varying)

and should be handled adaptively. For example, in [29] an edge-based correlation assignment

method is proposed, where the correlation parameters of blocks with and without edges are

assigned to different values. However, even the aforementioned work is based on the assumption

that the correlation among images is known a priori. Similarly to disparity compensation,

dynamic correlation estimation given at the decoder could also yield significant improvement in

performance. However, most studies of correlation estimation in DSC focus on the correlation

estimation of stationary binary sources [30], [31], which are not suitable for the non-binary

image sources in the DMIC case.

Several other approaches were proposed in literature [32]–[35], neither of which uses corre-

lation tracking. A review on multiview-video coding based on DSC principles can be found in

[36], [37].

III. DISTRIBUTED MULTI-VIEW IMAGE CODING: SYSTEM SETUP

The block diagram of the proposed DMIC system is shown in Fig. 1. Two cameras capture

the same scene from two different angles. The captured images need to be compressed under
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Source X
Side Information Y Entropy Encoder Entropy DecoderWyner-Ziv EncoderUniform Quantizer LDPCEncoder Joint bit-plane Wyner-Ziv Decoder

Decode Output For Y
Decode Output For XCorrelation estimator & disparity compensatorSendSyndromes

Fig. 1. Lossy DMIC setup with disparity and correlation estimation.

a distortion constraint independently and communicated to the ground station for processing.

Since the two cameras view the same scene only from different angles the images captured at

the cameras are mutually correlated. The decoder at the ground station exploits this correlation

and both compressed sources to jointly decompress them. The two decompressed images can

then be used to generate a 3D image of the scene.

Let X and Y be a pair of correlated multi-view images with size M by N pixels. Assuming

that a horizontal disparity shift D exists between pixels of X and pixels of Y , the relationship

between X and Y can be modeled as

X(x,y) = Y(x−D(x,y),y) + Z(x,y), (2)

where x = 1, 2, . . . , M and y = 1, 2, . . . , N denote the coordinates of pixels, and Z(x,y) satisfies

a zero mean Laplace distribution L(Z(x,y)|σ) = 1
2σ

exp
(
− |Z(x,y)|

σ

)
.

We consider a lossy asymmetric DMIC setup as shown in Fig. 1, where image Y , the side

information, is known at the decoder through a conventional image coding. Then, the task is

to compress X as close as possible to the WZ bound [7]. At the encoder side, image X is

first quantized into Q[X(x,y)] using 2q level uniform nested scalar quantization (NSQ) [38] and

then is SW encoded using LDPC codes [12], where each bit-plane is independently encoded

into syndrome bits of an LDPC code. Denote X1
(x,y), X

2
(x,y), . . . , X

q
(x,y) as the binary format of

the index Q[X(x,y)], and denote Bj = Xj
(1,1), X

j
(1,2), . . . , X

j
(M,N) as the jth significant bit-plane,

where the superscript j = 1, . . . , q is used to represent the jth quantized bit or the jth bit-plane

in the rest of this paper.

Syndrome bits are sent to the ground station via noiseless channel. The BP algorithm is

employed to decode image X using the received syndrome bits, the given correlation between
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Fig. 2. Factor graph of joint bit-plane decoder with disparity and correlation estimation.

X and Y , and the side information Y reordered by the given disparity information by the station’s

LDPC decoder. Finally, when the BP algorithm converges, image X can be recovered based on

the output belief for each pixel [12].

Note that this asymmetric setup can easily be extended to the non-asymmetric one using, e.g.,

time-sharing or channel code partitioning [39]. This way, the rate between the two cameras can

be traded off.

IV. ADAPTIVE JOINT BIT-PLANE WYNER-ZIV (WZ) DECODING OF MULTI-VIEW IMAGES

WITH DISPARITY ESTIMATION

A. Joint Bit-plane WZ Decoding

In popular layer WZ approaches such as [12], each bit-plane of the quantized source is

recovered sequentially and this makes it difficult and inefficient for the decoder to perform

the disparity and correlation estimation. In order to facilitate this process, we introduce a joint

bit-plane WZ decoding scheme, which can adaptively exploit the disparity and the correlation

between a non-binary source and side information during the decoding process. The main idea

of our proposed joint bit-plane WZ decoding scheme is illustrated in Regions II and III of

the augmented decoder factor graph shown in Fig. 2, where all circle nodes denote variable
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nodes and all square nodes denote factor nodes. The encoder used in this paper is the traditional

syndrome-based approach using LDPC codes [12], where a given bit plane Bj is compressed into

Lj number of syndrome bits, Sj = sj
1, s

j
2 . . . , sj

Lj , thus resulting in (M ×N) : Lj compression.

At the joint bit-plane decoder, the factor nodes f j
1 , f

j
2 . . . , f j

Lj as shown in Region III of Fig.

2, take into account the constraint imposed by the received syndrome bits. For a factor node

f j
a , a = 1, . . . , Lj , j = 1, . . . , q, we define the corresponding factor function as

f j
a(X̃j

a, s
j
a) =





1, if sj
a ⊕

⊕
X̃j

a = 0,

0, otherwise.
(3)

where X̃j
a denotes the set of neighbors of the factor node f j

a , ⊕ represents the bitwise addition

and
⊕

X̃j
a denotes the bitwise sum of all elements of the set X̃j

a.

Then in Region II, the relationship among a candidate quantized source Q[X(x,y)], side infor-

mation Y(x,y) and disparity compensation D(x,y) can be modeled by the factor function

h(x,y)(Q[X(x,y)], Y(x,y), σ,D(x,y)) =

∫ P(Q[X(x,y)]+1)

P(Q[X(x,y)])

1

2σ
exp

(
−|X − Y(x−D(x,y),y)|

σ

)
dX , (4)

where P (Q) denotes the lower boundary of quantization partition at index “Q”, e.g., if a pixel

X(x,y) satisfies P (Q) ≤ X(x,y) < P (Q + 1), the quantization index Q[X(x,y)] of pixel X(x,y) is

equal to “Q”. Then, given the estimation of the correlation σ and the disparity D(x,y), standard

BP can be used to perform joint bit-plane decoding based on the proposed factor graph (see

Regions II and III in Fig. 2) and the corresponding factor functions (3) and (4).

B. Adaptive Joint Bit-plane WZ Decoding with Disparity Estimation

We assume that each block includes n× n pixels and shares the same disparity, which yields
⌈

M
n

⌉ × ⌈
N
n

⌉
number of blocks for an M × N image, where d•e represents the ceiling of “•”

that rounds “•” towards positive infinity. Then the horizontal disparity field is a constant within

a block and will be denoted as D(x′,y′) ∈ {−l, · · · , 0, · · · , l}, where x′ = 1, · · · ,
⌈

M
n

⌉
and

y′ = 1, · · · ,
⌈

N
n

⌉
are the block indices. Thus, in the rest of this paper, we will use D(x′,y′) to

represent the disparity D(x,y) of a pixel X(x,y) that lies inside the Block(x′, y′). For example, in

the 2-D factor graph of Fig. 2, a 6× 6 image is divided into 3× 3 number of blocks with 2× 2

pixels in each block.

In order to estimate the disparity between images, we introduce extra variable nodes φ(x′,y′) in

Region I (see the 2-D factor graph in Fig. 2). Each factor node h(x,y) in Region II is connected
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mh(x,y)→φ(x′,y′)
�
D(x′,y′)

� ∝
X

Q[X(x,y)]∈[0,2q ]

h(x,y)(Q[X(x,y)], Y(x,y), σ, D(x′,y′))

qY
j=1

m
X

j
(x,y)→φ(x′,y′)

�
Xj

(x,y)

�
, (5)

m
h(x,y)→X

j
(x,y)

�
Xj

(x,y)

�
∝

X
D(x′,y′)

h(x,y)(Q[X(x,y)], Y(x,y), σ, D(x′,y′))mφ(x′,y′)→h(x,y)

�
D(x′,y′)

� Y

j′∈[1,q]/j

m
X

j′
(x,y)→h(x,y)

�
Xj′

(x,y)

�
,

(6)

to an additional variable node φ(x′,y′) in Region I. Here we define the connection ratio as the

number of factor nodes h(x,y) in Region II which each variable node φ(x′,y′) is connected to,

e.g., the connection ratio is equal to 4 in Fig. 2. According to the BP update rules, the factor

node update from Region II to the variable node φ(x′,y′) in Region I can be written as (5), where

N (φ(x′,y′))/h(x,y) denotes all the neighboring factor nodes of variable node φ(x′,y′) except h(x,y).

Moreover, (5) can be seen as the E-step algorithm used in [13]. Similarly, the factor node update

from Region II to Region III can be written as (6), where (6) can also be seen as the M-step

algorithm used in [13]. Thus our approach provides a unified framework that is easier to be

understood and be implemented.

C. Adaptive Joint Bit-plane WZ Decoding with Correlation Estimation

To compress image X close to the WZ bound in the standard BP approach, the correlation

parameter σ must be known a priori. However, in practice, the correlation between the colocated

pixels of the pair of correlated images X and Y is unknown, and making the situation even more

challenging, this correlation may vary over space. Thus, besides the proposed disparity estimation,

we introduce an additional correlation estimation algorithm to perform online correlation tracking

by extending our previous correlation estimation model [10] from 1-D to 2-D and from time-

varying to spatially-varying. Moreover, our proposed framework is universal and can be applied

to any parametric correlation model.

Namely, we assume that σ is unknown and varies block-by-block over space, where the same

blockwise assumption is also used in Section IV-B. To model this, we introduce another set

of extra variable nodes σ(x′,y′) in Region I (see the 2-D factor graph in Fig. 2). Now, each

factor node h(x,y) in Region II will be connected to an additional variable node σ(x′,y′) in Region

I. Here the connection ratio used for correlation estimation is the same as that for disparity

estimation in Section IV-B. Moreover, the correlation parameter σ used in the factor function
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hx,y(Q[X(x,y)], Y(x,y), σ,D(x′,y′)) can be modified accordingly by replacing σ as σ(x′,y′), since we

assume σ varies over space.

Furthermore, the correlation changes among adjacent blocks may not be arbitrary [29]. The

ability to capture correlation changes among adjacent blocks can significantly increase the

stability of correlation tracking of each block. To achieve this, we introduce additional factor

nodes g(x′′,y′′) in Region I (see the 2-D factor graph in Fig. 2), where x′′ = 1, · · · ,
⌈

M
n

⌉− 1 and

y′′ = 1, · · · ,
⌈

N
n

⌉− 1 denote block indices just as x′ and y′. The corresponding factor function

can then be modeled as

g(x′′,y′′)
(
σ(x′′,y′′), σ(x′′+c,y′′+d)

)
= exp

(
−

(
σ(x′′,y′′) − σ(x′′+c,y′′+d)

)2

λ

)
(7)

where the offset (c, d) is restricted to {(0, 1), (0,−1), (1, 0), (−1, 0)} according to the defined

2-D factor graph, and λ is a hyper-prior and can be chosen rather arbitrarily.

Since standard BP can only handle discrete variables with small alphabet sizes or continuous

variables with a linear Gaussian model, it cannot be applied directly for estimating the continuous

correlation parameters. However, by incorporating particle filtering with BP, we are able to extend

BP to handle continuous variables. Then the proposed factor graph model can be used to estimate

the continuous correlation. Due to space limitations, we direct readers to our prior work [10]

for more details on the particle-based BP (PBP) implementation.

V. RESULTS

To verify the effect of correlation and disparity tracking for DMIC, we test the above setup

with grayscale stereo solar images [1] captured by two satellites of the NASA’s STEREO project,

where the twin satellites are about 30 million miles apart, and the viewing angle is about 6− 8

degrees. For the purposes of illustrating accurate tracking of the correlation and the disparity, our

simulations for the SW code use only a low-complexity regular LDPC code with variable node

degree 5. More complex irregular codes would further improve the overall peak signal-to-noise

ratio (PSNR) performance.

The following constant parameters are used in our simulations: maximum horizontal shift

l = 5, block size n = 4, hyper-prior λ = 10, initial correlation for Laplace distribution σ = 5
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Fig. 3. Residual histogram for solar images in SET 1.

and initial distribution of disparity

p(D(x′,y′)) =





0.75, if D(x′,y′) = 0;

0.025, otherwise;
,

where the selection of initial values follows [13]. Moreover, we present results for two sets of

solar images referred to as solar image SET 1 and solar image SET 2. All tested images are of

size M ×N = 128× 72 pixels.

First, we verify the Laplacian assumption of the correlation between correlated images X and

Y in Fig. 3. The x-axis in the figure shows the pixel difference between image X and side

information Y , while on the y-axis probability of occurrence of such difference in shown. A

solid line shows an approximation with Laplacian parameter α set to 0.23. Obviously, Laplace

distribution provides a good starting approximate to the residual between images X and Y .

Then, we examine the rate-distortion performance of the proposed adaptive DMIC scheme,

where PSNR of the reconstructed image is calculated as an indicator of the distortion. We

consider the following five different schemes.

a). Adaptive correlation DMIC with a known disparity, which is used as the benchmark

performance.

b). Adaptive correlation and disparity DMIC, which is the proposed scheme in this paper.

c). Adaptive disparity DMIC with a known fixed correlation, which corresponds to the setup

used in [13], [28].
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d). Non-adaptive joint bit-plane DMIC with known fixed correlation only, where the correlation

and disparity estimators are not available at the decoder.

e). Non-adaptive separate bit-plane DMIC with known fixed correlation only, which corre-

sponds to the setup used in [12].

Results for solar images in SET 1 and SET 2 are given in Fig. 4 and Fig. 5, respectively. The

results are shown as compression rate vs. PSNR of he reconstruction. As expected, the benchmark

setup in case a) shows the best rate-distortion performance, since the reference disparity is

known before decoding. Comparing cases b) and c), we find a significant performance gain of

the proposed scheme b) due to the improved knowledge of correlation statistics due to dynamic

estimation. Moreover, all the adaptive DMIC schemes (cases a), b) and c)) outperform the non-

adaptive schemes (cases d) and e)). Besides, in the case without adaptive decoding, we find that

the performance of joint bit-plane DMIC in case d) is still better than separate bit-plane DMIC

in case e). One possible reason for this is that the joint bit-plane DMIC in case d) can exploit

the correlation between two non-binary sources much better, since in case e), each bit-plane is

decoded separately.

The performance of JPEG codec and JPEG2000 codec are also shown as references in Fig.

4 and Fig. 5. One can see that DMIC schemes significantly outperform two independent JPEG

codings, while JPEG2000 is still unreachable due to its high compression efficiency and used

arithmetic entropy coding at the cost of high encoding complexity.

Finally, Fig. 6 and Fig. 7 show the final estimate of the correlation and the disparity for solar

images in SET 1 and SET 2, respectively, where the reference disparity and residual after 4× 4

block matching between source and side information are provided as references. We can see that

the proposed adaptive DMIC scheme outputs a good estimate for both correlation and disparity.

This also explains why the rate-distortion performance of adaptive decoding outperforms the

non-adaptive decoding scheme in Fig. 4 and Fig. 5.

VI. CONCLUSION

This paper is motivated by the limited onboard processing and communications requirements

of correlated images captured by different telescopes or satellites. Traditionally, these images are

compressed independently using state-of-the-art, low-complexity compression algorithms such as
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Fig. 4. Rate-distortion performance of the proposed adaptive DMIC scheme for solar images in SET 1.
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Fig. 5. Rate-distortion performance of the proposed adaptive DMIC scheme for solar images in SET 2.
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Fig. 6. The final estimate of the correlation and the disparity for solar images in SET 1, where the true disparity and residual

after 4× 4 block matching between source and side information are provided as references.

JPEG without considering the spatial and temporal correlation among images captured by deep-

space satellites. In order to exploit the correlation among the multiple views acquired from a

solar event and enhance compression without jeopardising the encoding onboard complexity and

independent encoding process to minimise communication complexity, we proposed an adaptive
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Fig. 7. The final estimate of the correlation and the disparity for solar images in SET 2, where the true disparity and residual

after 4× 4 block matching between source and side information are provided as references.

DMIC algorithm, which can estimate the correlation and disparity between stereo images, and

decode image sources simultaneously. To handle spatially-varying correlation between stereo

images, we extend our previous particle-based belief propagation work [10] for correlation

estimation to the 2-D case. Moreover, our correlation and disparity estimation algorithms are

all based on an augmented factor graph, which offers great flexibility for problem modeling

in remote sensing applications. Through the results, a significant decoding performance gain

has been observed by using the proposed adaptive scheme, when comparing with the non-

adaptive decoding scheme and traditional JPEG. While our proposed scheme performs worse

than JPEG2000, the latter has significantly higher encoding complexity comparing to ours.
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