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Abstract

We present iterative algorithms that numerically solve optimization problems of computing the capacity-power

and rate-distortion functions for coding with two-sided state information. Numerical examples are provided to

demonstrate efficiency of our algorithms.

Key words- Blahut-Arimoto algorithm, coding with side information, Gel’fand-Pinsker problem, Wyner-

Ziv problem

I. Introduction

Coding with side information has gained increased research interest recently due to its great practical

potentials. For example, source coding with side information at the decoder (a.k.a. Wyner-Ziv coding

[1]) is recognized as an important component in emerging wireless sensor networks; on the other hand,

channel coding with side information at the encoder (a.k.a. Gel’fand-Pinsker coding [2]) can be used to

model the digital watermarking problem [3] and also applies to broadcast channel coding [4]. However,

very often, it is necessary to use a more general setup with two-sided state information where both the

encoder and the decoder have the access to (possibly different) side information. The capacity-power and

the rate-distortion functions in this case are given by [5]:

C(P ) = max
q′(x|u,s1)q(u|s1):E[p(S1,S2,X)]≤P

I(U ;Y, S2)− I(U ;S1) (1)

and
R(D) = min

q(u|s1,x)q′(x̂|s2,u):E[d(X,X̂)]≤D
I(U ; X,S1)− I(U ; S2), (2)

respectively, where i.i.d. random variables X and Y are the channel input and output in the channel

coding problem, X and X̂ are the source input and the reconstructed output in the source coding

problem, S1 and S2 are side information at the encoders and the decoders, respectively, and U is an

auxiliary random variable. P and D are the power and distortion constraints for the respective channel

coding and source coding problems with p(·, ·, ·) and d(·, ·) being the power and distortion measures. The

expressions in both (1) and (2) are optimized over valid conditional probability mass functions (PMFs)

q(·|·) and q′(·|·, ·).
Calculations of capacity-power and rate-distortion functions are difficult optimization problems. For

conventional source and channel coding, Blahut-Arimoto algorithms [6], [7] provide efficient numerical

solutions for memoryless channels and general i.i.d. sources with arbitrary power and distortion measures.

These optimization techniques were later generalized in [8]. Extensions to channels and sources with

memory were given in [9], [10].
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However, when side information is present at the encoder and/or the decoder, calculation of channel

capacity and rate-distortion function becomes more difficult. Recently, Blahut-Arimoto algorithms were

generalized to the Gel’fand-Pinsker problem in [11], [12] and the Wyner-Ziv problem in [11]. In this paper

we further extend the algorithms of [11], [12] to the general setup with two-sided state information; that

is, we provide computation techniques for solving (1) and (2) numerically using iterative methods. Thus,

our proposed methods can be regarded as generalizations of divide-and-conquer algorithms of Blahut

and Arimoto to the most general case when side information maybe present at the encoder, at the

decoder, at neither the encoder nor the decoder, or at both the encoder and the decoder (note that, in

this case, side information at the encoder may differ from that at the decoder). Therefore, our unified

framework subsumes the solutions of [11], [12] for the Gel’fand-Pinsker problem (channel coding with

side information present at the encoder only), the solution of [11] for the Wyner-Ziv problem (source

coding with side information present at the decoder only), and the solutions of Blahut and Arimoto [6],

[7] (source and channel coding without side information); it also includes cases of source coding (channel

coding) with side information present at the encoder (decoder) only and at both the encoder and the

decoder which are not considered previously in [6], [7], [11], [12]. However, we treat only point-to-point

transmission; the works of [11], [13] which consider broadcast and multiple-access channels, respectively,

can be regarded as generalizations to multiuser communication settings.

Our methods follow the main idea of Blahut-Arimoto technique of alternating minimization/maximization;

that is, we divide the original optimization problem into simpler (convex/concave) optimization problems

in which only a subset of variables are optimized while the rest is kept fixed; then, the solution to such

a partial optimization problem is fed into another sub-problem (with different variables kept fixed) and

a different subset of variables is optimized. The algorithms continue to iterate until all the variables are

optimized.

In a recent related work, Chiang and Boyd [14] proposed a geometric programming method for comput-

ing lower bounds for rate-distortion function with two-sided state information by exploiting Lagrangian

duality. Since the method is based on converting the original problem into a convex/concave optimization

form, exploiting the geometric programming approach for computing the capacity with two-sided state

information is a difficult open problem [14].

II. Algorithm Derivation

In this section, we provide the detailed derivation of our iterative algorithms. For easy exposition, we

first consider computation of the unconstrained capacity for the channel coding problem with two-sided
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state information. Then, we describe the iterative algorithms for computing the capacity-power and

rate-distortion functions. Since the derivations are similar, for the latter two cases we will skip proofs

and only state the results.

Notation-wise, p, q, q′, Q, and Q0 are used to express PMFs. However, we reserve p for those PMFs

fixed by the problem setup. Random variables are denoted by upper-case letters, e.g., X, and for their

realizations we use low-case letters, e.g., x. Script letters, e.g., X , are reserved for the alphabets of

random variables. || · || denotes the cardinality of a set.

A. Channel Capacity Without Power Constraint

The unconstrained channel capacity with two-sided state information is given by

C = max
q′(x|u,s1)q(u|s1)

I(U ; Y, S2)− I(U ; S1).

Define a conditional PMF

Q0(u|y, s2) ,

∑
x,s1

p(s1, s2)q(u|s1)q′(x|u, s1)p(y|x, s1, s2)
∑

x,s1,u
p(s1, s2)q(u|s1)q′(x|u, s1)p(y|x, s1, s2)

, (3)

then by the definition of mutual information [15], we can write

C = max
q′(x|u,s1)q(u|s1)

∑
s1,s2,u,x,y

p(s1, s2)q(u|s1)q′(x|u, s1)p(y|x, s1, s2) log
Q0(u|y, s2)

q(u|s1)
,

where p(s1, s2) and p(y|x, s1, s2) are PMFs given by the channel. For PMFs q(u|s1), q′(x|u, s1), and

Q(u|y, s2), define the functional

F (q, q′, Q) =
∑

s1,s2,u,x,y

p(s1, s2)q(u|s1)q′(x|u, s1)p(y|x, s1, s2) log
Q(u|y, s2)
q(u|s1)

; (4)

then we have the following lemma.

Lemma 1:

C = max
q′(x|u,s1)q(u|s1)

max
Q(u|y,s2)

F (q, q′, Q). (5)

Proof: Since obviously C = max
q′(x|u,s1)q(u|s1)

F (q, q′, Q0), it suffices to show

F (q, q′, Q0) = max
Q(u|y,s2)

F (q, q′, Q), and this is true because for any Q,

F (q, q′, Q)− F (q, q′, Q0) =
∑

s1,s2,u,x,y

p(s1, s2)q(u|s1)q′(x|u, s1)p(y|x, s1, s2) log
Q(u|y, s2)
Q0(u|y, s2)

(a)

≤
∑

s1,s2,u,x,y

p(s1, s2)q(u|s1)q′(x|u, s1)p(y|x, s1, s2)
(

Q(u|y, s2)
Q0(u|y, s2)

− 1
)

= 0,
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where the equality in (a) is achieved if Q = Q0.

Lemma 1 is the key step in constructing our algorithm. By introducing the functional F (·, ·, ·), we can

find the capacity by optimizing PMFs q, q′, and Q one at a time alternatively. Note that from Lemma

1, the optimal PMF Q is always equal to the PMF Q0. Now we have

Lemma 2 (Optimization of q) For fixed PMFs q′ and Q, F (q, q′, Q) is maximized by

q∗(u|s1) =
exp

∑
s2,x,y

p(s2|s1)q′(x|u, s1)p(y|x, s1, s2) log Q(u|y, s2)
∑
u

exp
∑

s2,x,y
p(s2|s1)q′(x|u, s1)p(y|x, s1, s2) log Q(u|y, s2)

, (6)

and the achieved maximum is given by

F (q∗, q′, Q) =
∑
s1

p(s1) max
u

∑
s2,x,y

p(s2|s1)q′(x|u, s1)p(y|x, s1, s2) log
Q(u|y, s2)
q∗(u|s1)

, (7)

where exp(·) denotes the exponential function.

Proof: For fixed q′ and Q, F (q, q′, Q) is maximized by q∗(u|s1) if and only if the following Kuhn-

Tucker conditions are satisfied:

∂F

∂q

∣∣∣∣
q∗

= γs1 , if q∗(u|s1) > 0, (8)

and
∂F

∂q

∣∣∣∣
q∗
≤ γs1 , if q∗(u|s1) = 0. (9)

Since ∂F
∂q =

∑
s2,x,y

p(s1, s2)q′(x|u, s1)p(y|x, s1, s2)
(
log Q(u|y,s2)

q(u|s1) − 1
)

, the first condition (8) becomes

∑
s2,x,y

p(s1, s2)q′(x|u, s1)p(y|x, s1, s2) log
Q(u|y, s2)
q∗(u|s1)

= γ̃s1 , (10)

where γ̃s1 depends on s1 only. Then, (6) follows from (10) after some mathematical manipulation. For

the second part, note that

F (q, q′, Q) =
∑
s1,u

p(s1)q(u|s1)
∑

s2,x,y

p(s2|s1)q′(x|u, s1)p(y|x, s1, s2) log
Q(u|y, s2)
q(u|s1)

≤
∑
s1

p(s1)max
u

∑
s2,x,y

p(s2|s1)q′(x|u, s1)p(y|x, s1, s2) log
Q(u|y, s2)
q(u|s1)

,

where equality holds when the Kuhn-Tucker conditions, and hence (10), are satisfied; that is, when q is

equal to the optimal q∗.

The results of Lemmas 1 and 2 are combined and a partial optimality condition is summarized by the

following corollary.
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Corollary 1 (Optimality condition AF ) For fixed q′, F (q, q′, Q) is maximized by q∗ and Q∗. That is

F (q∗, q′, Q∗) =
∑
s1

p(s1)max
u

∑
s2,x,y

p(s2|s1)q′(x|u, s1)p(y|x, s1, s2) log
Q∗(u|y, s2)
q∗(u|s1)

, AF . (11)

Now to optimize q′, we need the following lemma.

Lemma 3 (Optimization of q′) For fixed q and Q, F (q, q′, Q) is maximized by q′∗ given by

q′∗(x|u, s1) =





1, if f(x, u, s1) = max
x′

f(x′, u, s1),

0, otherwise
(12)

and the maximum is equal to

F (q, q′∗, Q) =
∑
s1,u

p(s1)q(u|s1)max
x

f(x, u, s1) , BF , (13)

where f(x, u, s1) ,
∑

s2,y p(s2|s1)p(y|x, s1, s2) log Q(u|y,s2)
q(u|s1) .

Proof: For fixed q and Q, note that

F (q, q′, Q) =
∑

s1,u,x

p(s1)q(u|s1)q′(x|u, s1)
∑
s2,y

p(s2|s1)p(y|x, s1, s2) log
Q(u|y, s2)
q(u|s1)

(a)

≤
∑
s1,u

p(s1)q(u|s1)max
x

∑
s2,y

p(s2|s1)p(y|x, s1, s2) log
Q(u|y, s2)
q(u|s1)

︸ ︷︷ ︸
f(x,u,s1)

, BF , (14)

thus, F (q, q′, Q) reaches the maximum BF , if the equality holds in (a).

Note that the optimum q′ specified by (12) is not unique. For given PMFs q and Q, let Sq′(Q, q) be the

set of all PMFs q′ that satisfy (12); then ||Sq′(Q, q)|| ≤ ||X ||||U×S1||. Combining (13) and Corollary 1, we

finally have

Corollary 2 (Optimality condition CF )

F (q, q′, Q) ≤
∑
s1

p(s1)max
u

max
x

∑
s2,y

p(s2|s1)p(y|x, s1, s2) log
Q(u|y, s2)
q(u|s1)

, CF ,

and equality holds if q′ maximizes F (q, q′, Q) with the other two variables fixed (i.e., if q′ = q′∗), and q

and Q maximize F (q, q′, Q) with q′ fixed (i.e., if q = q∗, Q = Q∗).

Note that F (q, q′, Q) = CF does not necessarily guarantee F (q, q′, Q) = C since there could be more than

one optimal q′. However, if F (q, q′, Q) = CF for all q′ ∈ Sq′(Q, q), then F (q, q′, Q) = C.

The overall algorithm for computing C in (1) is summarized in Fig. 1. We initialize q(u|s1) to 1
||U|| and

q′(x|u, s1) to random Kronecker delta function (KDF) of x for fixed u and s1. We first optimize q and

Q for fixed q′; F will then be compared with AF to determined if q and Q are optimum. If so (i.e., if F
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 ε

CF−F < ε

F(q,q’,Q)Compute

Q=Q 0

1/|| U ||,1)=q(u|sSet

and q’ a random KDF

Q=Q 0Update

F(q,q’,Q)Compute

Sq’ (Q,q);Compute

Sq’ (Q,q)< || ||k

k=1Set 

Sq’ (Q,q)

thk

p(s1 2),s

k

F−F <

increment 

A
no yes

no

yes

Update

usingusing

C=F
Output:

q usingUpdate 

no yes

Input: 

element of

q’Set

  p(y|x,s,s ) ,2 1

to the 

(4)(6)

(3);

Fig. 1. Algorithm for computing capacity C of a channel with two-sided state information.
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is within a threshold ε away from AF ), q′ will be set to a previously unconsidered element of Sq′(q, Q).

The procedure repeats until all elements in Sq′(Q, q) are exhausted.

B. Capacity-Power Function

In some cases, it is necessary to constrain the transmission power in a communication system. In

conventional communication system, the transmission power is a function of channel input X only.

However, to allow modelling different problems such as, e.g., digital watermarking, a more general power

function p(S1, S2, X) that also depends on S1 and S2 is needed. Using the standard Lagrange multiplier

technique, we convert (1) into

C(P ) = max
q(u|s1)q′(x|s1,u)

I(U ; Y, S2)− I(U ; S1)− µ(E[p(S1, S2, X)]− P ), (15)

where µ, the Lagrange multiplier, rather than the power constraint P , is the actual input of computation.

Both P and C(P ) are generated at the point where C(P ) curve has slope µ. After optimization, P can

be computed as P =
∑

s1,s2,x,u
p(s1, s2)q∗(u|s1)q′∗(x|s1, u)p(s1, s2, x), where q∗(u|s1) and q′∗(x|s1, u) are the

conditional PMFs that maximize (15). We can rewrite (15) as

C(P ) = max
q′(x|u,s1)q(u|s1)

∑
s1,s2,u,x,y

p(s1, s2)q(u|s1)q′(x|u, s1)p(y|x, s1, s2) log
Q0(u|y, s2)

q(u|s1)

− µ

( ∑
s1,s2,x,u

p(s1, s2)q(u|s1)q′(x|s1, u)p(s1, s2, x)− P

)
,

where Q0 is defined as in (3). Define the functional

Fc(q, q′, Q) =
∑

s1,s2,u,x,y

p(s1, s2)q(u|s1)q′(x|u, s1)p(y|x, s1, s2) log
Q(u|y, s2)
q(u|s1)

− µ
∑

s1,s2,x,u

p(s1, s2)q(u|s1)q′(x|s1, u)p(s1, s2, x),
(16)

then we have the following lemma.

Lemma 4: C(P ) = maxq(u|s1),q′(x|s1,u) maxQ(u|y,s2) Fc(q, q′, Q) + µP .

From Lemma 4, we can find C(P ) by maximizing Fc one variable at a time. To optimize q, we have the

following lemma which extends Lemma 2 to the case with a power constraint.

Lemma 5 (Optimization of q) For fixed q′ and Q, Fc(q, q′, Q) is maximized by

q∗(u|s1, x) =

exp

[
∑

s2,x,y
p(s2|s1)q′(x|s1, u)p(y|x, s1, s2)[log Q(u|y, s2)− µp(x, s1, s2)]

]

∑
u

exp

[
∑

s2,x,y
p(s2|s1)q′(x|s1, u)p(y|x, s1, s2)[log Q(u|y, s2)− µp(x, s1, s2)]

] (17)
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and the maximum is given by

Fc(q∗, q′, Q) =
∑
s1

p(s1)max
u

∑
s2,x,y

[
p(s2|s1)q′(x|u, s1)p(y|x, s1, s2)

(
log

Q(u|y, s2)
q∗(u|s1)

− µp(s1, s2, x)
)]

.

The optimality conditions in Lemmas 4 and 5 are summarized by the following corollary.

Corollary 3 (Optimality condition AFc) For fixed q′, Fc(q, q′, Q) is maximized by q∗ and Q∗. That is

Fc(q∗, q′, Q∗) =
∑
s1

p(s1)max
u

∑
s2,x,y

[
p(s2|s1)q′(x|u, s1)p(y|x, s1, s2)

(
log

Q∗(u|y, s2)
q∗(u|s1)

− µp(s1, s2, x)
)]

,AFc.

To optimize q′ for fixed q and Q, we have the following lemma.

Lemma 6 (Optimization of q′) For fixed q and Q, the optimum q′∗ satisfies

q′∗(x|u, s1) =





1, if fc(x, u, s1) = max
x′

fc(x′, u, s1),

0, otherwise,
(18)

and the achieved maximum is

Fc(q, q′∗, Q) =
∑
s1,u

p(s1)q(u|s1)max
x

fc(x, u, s1) , BFc, (19)

where fc(x, u, s1) ,
∑
s2,y

[
p(s2|s1)p(y|x, s1, s2)

(
log Q(u|y,s2)

q(u|s1) − µp(s1, s2, x)
)]

.

As in the unconstrained case, the optimum q′ for fixed u and s1 may not be unique. For given PMFs q

and Q let Sq′(Q, q) be the set of q′’s that achieve the maximum in (18); then ||Sq′(Q, q)|| ≤ ||X ||||U×S1||.

Combining (19) and Corollary 3, we have the following corollary similar to Corollary 2.

Corollary 4 (Optimality condition CFc)

Fc(q, q′, Q) ≤
∑
s1

p(s1)max
u

max
x

∑
s2,y

[
p(s2|s1)p(y|x, s1, s2)

(
log

Q(u|y, s2)
q(u|s1)

− µp(s1, s2, x)
)]

, CFc,

and equality holds if q′ maximizes Fc(q, q′, Q) with the rest two variables fixed, and q and Q maximize

Fc(q, q′, Q) with q′ fixed.

As in the case without power constraint, Fc(q, q′, Q) = CFc might not imply Fc(q, q′, Q) to be the global

optimum since there are more than one optimal q′’s in general. However, if Fc(q, q′, Q) = CFc for all

q′ ∈ Sq′(Q, q), then C(P ) = Fc(q, q′, Q) + µP .

C. Rate-Distortion Function

The iterative algorithm for computing the rate-distortion function with two-sided state information is

similar to that for capacity-power computation. Using the standard Lagrange multiplier technique, we

convert (2) into
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R(D) = min
q(u|s1,x),q′(x̂|s2,u)

I(U ; X,S1)− I(U ; S2) + µ(E[d(X, X̂)]−D), (20)

where µ, the Lagrange multiplier, rather than D, is the actual input of computation. Both D and R(D)

are generated at the point where the R(D) curve has slope −µ. After optimization, D can be computed as

D =
∑

s1,s2,x,u,x̂

q∗(u|s1, x)q′∗(x̂|s2, u)d(x, x̂), where q∗(u|s1, x) and q′∗(x̂|s2, u) are the optimum conditional

PMFs, i.e., PMFs that minimize R(D). Define Q0(u|s2) ,
∑

s1,x,x̂
p(s1,s2,x)q(u|s1,x)q′(x̂|s2,u)

∑
s1,x,x̂,u

p(s1,s2,x)q(u|s1,x)q′(x̂|s2,u) , then we can

rewrite (20) as

R(D) = min
q(u|s1,x),q′(x̂|s2,u)

∑

s1,s2,x,u,x̂

p(s1, s2, x)q(u|s1, x)q′(x̂|s2, u) log
q(u|s1, x)
Q0(u|s2)

+ µ


 ∑

s1,s2,x,u,x̂

p(s1, s2, x)q(u|s1, x)q′(x̂|s2, u)d(x, x̂)−D


 .

Define the functional

G(q, q′, Q) =
∑

s1,s2,x,u,x̂

p(s1, s2, x)q(u|s1, x)q′(x̂|s2, u) log
q(u|s1, x)
Q(u|s2)

+ µ
∑

s1,s2,x,u,x̂

p(s1, s2, x)q(u|s1, x)q′(x̂|s2, u)d(x, x̂),

then we have the following lemma similar to Lemmas 1 and 4.

Lemma 7: R(D) = minq(u|s1,x),q′(x̂|s2,u) minQ(u|s2) G(q, q′, Q)− µD.

Just as Lemmas 1 and 4, Lemma 7 is the key step of the rate-distortion computation algorithm. For a

given distortion constraint D, we can now find the minimum rate R by optimizing variables q, q′, and Q

one at a time alternatively. From Lemma 7, it follows that the optimal value of Q is Q0. Now to optimize

q, we have the following lemma.

Lemma 8 (Optimization of q) For fixed q′ and Q, G(q, q′, Q) is minimized by

q∗(u|s1, x) =

exp

[
∑
s2

p(s2|s1, x) log Q(u|s2)− µ
∑
s2,x̂

p(s2|s1, x)q′(x̂|s2, u)d(x, x̂)

]

∑
u

exp

[
∑
s2

p(s2|s1, x) log Q(u|s2)− µ
∑
s2,x̂

p(s2|s1, x)q′(x̂|s2, u)d(x, x̂)

] (21)

and the minimum is given by

G(q∗, q′, Q) =
∑
s1,x

p(s1, x)min
u


∑

s2,x̂

p(s2|s1, x)q′(x̂|s2, u) log
q∗(u|s1, x)
Q(u|s2)

+ µ
∑

s2,x̂

p(s2|s1, x)q′(x̂|s2, u)d(x, x̂)


 .

(22)
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Optimality conditions in Lemmas 7 and 8 can be summarized by the following corollary.

Corollary 5 (Optimality condition AG) For fixed q′, G(q, q′, Q) is minimized by q∗ and Q∗. That is

G(q∗, q′, Q∗) =
∑
s1,x

p(s1, x)min
u


∑

s2,x̂

p(s2|s1, x)q′(x̂|s2, u) log
q∗(u|s1, x)
Q∗(u|s2)

+µ
∑

s2,x̂

p(s2|s1, x)q′(x̂|s2, u)d(x, x̂)


 , AG.

(23)

To optimize q′ for fixed q and Q, we have the following lemma.

Lemma 9 (Optimization of q′) For fixed q and Q, the optimum q′∗ satisfies

q′∗(x̂|u, s2) =





1, if g(x̂, u, s2) = minx̂′ g(x̂′, u, s2),

0, otherwise,
(24)

and the achieved minimum is

G(q, q′∗, Q) =
∑
u,s2

min
x̂

g(x̂, u, s2) , BG, (25)

where g(x̂, u, s2) ,
∑

s1,x p(s1, s2, x)q(u|s1, x)
(
log q(u|s1,x)

Q(u|s2) + µd(x, x̂)
)
.

Similarly to the previous cases, the optimum q′ might not be unique. For given PMFs q and Q, let

Sq′(Q, q) be the set of q′’s that achieve the minimum in (24); then ||Sq′(Q, q)|| ≤ ||X̂ ||||U×S2||.

Since there is no simple way to combine (23) and (25), unlike in capacity computation, we need to verify

both conditions, G = AG and G = BG, for optimality. But, even when both conditions are satisfied,

G(q, q′, Q) might not be the global optimum because for fixed q and Q, there might be more than one q′∗.

However, if the above two conditions are satisfied for all q′ ∈ Sq′(Q, q), then R(D) = G(q, q′, Q)− µD.

III. Proof of Convergence

We show in this section that the algorithms described in Section II converge to global optimums.

Our proof is based on a result of Yeung in [16, Chapter 10], which shows that a two-step iterative

maximization (minimization) algorithm converges to the global optimum if the optimization function is

concave (convex). We will show in the following (Lemmas 10-12) that for fixed q′, F and Fc are concave

and G is convex. Therefore, for fixed q′, q∗, and Q∗, all three algorithms converge to the corresponding

global optimums. Once q and Q are optimized, q′’s are updated by (12), (18), or (25). Since F and

Fc strictly increase and G strictly decreases after the updates, and the number of possible optimal q′’s

(q′ ∈ Sq′(Q, q)) is finite, F , Fc, and G will ultimately converge to the global optimums.

Lemma 10 (Concavity of F for fixed q′) F (q, q′, Q) is concave over q and Q for fixed q′.
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Proof: By the log-sum inequality, for an arbitrary positive γ ≤ 1 and γ̄ = 1− γ,

(γq1(u|s1) + γ̄q2(u|s1)) log
γq1(u|s1) + γ̄q2(u|s1)

γQ1(u|y, s2) + γ̄Q2(u|y, s2)

≤γq1(u|s1) log
q1(u|s1)

Q1(u|y, s2)
+ γ̄q2(u|s1) log

q2(u|s1)
Q2(u|y, s2)

.

(26)

Multiplying both sides by −p(s1, s2)q′(x|u, s1)p(y|x, s1, s2) and summing over s1, s2, u, x, and y, we obtain

F (γq1 + γ̄q2, q
′, γQ1 + γ̄Q2) ≥ γF (q1, q

′, Q1) + γ̄F (q2, q
′, Q2).

Lemma 11 (Concavity of Fc for fixed q′) Fc(q, q′, Q) is concave over q and Q for fixed q′.

Proof: From Lemma 10, F (q, q′, Q) is concave. Since Fc(q, q′, Q) = F (q, q′, Q) − µE[p(S1, S2, X)],

and µE[p(S1, S2, X)] is linear with respect to q and Q, Fc(q, q′, Q) is concave.

Lemma 12 (Convexity of G for fixed q′) G(q, q′, Q) is convex over q and Q for fixed q′.

Proof: Using the log-sum inequality, we can show that
∑

s1,s2,x,u,x̂

p(s1, s2, x)q(u|s1, x)q′(x̂|s2, u) log q(u|s1,x)
Q(u|s2) is convex over q and Q for fixed q′. Since

µ
∑

s1,s2,x,u,x̂

p(s1, s2, x)q(u|s1, x)q′(x̂|s2, u)d(x, x̂) is linear with respect to q and Q, the sum of the two

expressions, i.e., G(q, q′, Q), is convex.

IV. Numerical Examples

In this section, we provide numerical examples for our iterative algorithms. Though the setups of these

examples are rather simple, the results are highly non-trivial.

τ

Z1

Z0

pZ0

pZ1

τp θp

X Y

θ

Fig. 2. Binary symmetric channel with two-sided channel state information θ and τ .

Example 1: Binary Symmetric Channel with Channel State Information. Consider a binary

symmetric channel Y = X ⊕ τ ⊕ Z as shown in Fig. 2, where X is the channel input and τ and Z are

the channel noises. The transition probability of τ is fixed to be pτ , whereas the transition probability
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of Z can take two different values and is controlled by a binary random variable θ with p(θ = 1) = pθ as

follows:

pZ =





pZ1 , if θ = 1,

pZ0 , if θ = 0.

Consider θ and/or τ as channel state information that may be available to the encoder and decoder.

Since each coder can have access either to both side information θ and τ , or only to θ, or only to τ , or

to none of them, there are 16 different situations.

We use the algorithm described in Section II-A with pτ = 0.5, pZ1 = 0.001, and pZ0 = 0.3. Since

pτ = 0.5, when τ is given to neither the encoder nor decoder, X and Y are effectively independent, and

hence for all four possible cases (θ available or not at the encoder and/or decoder), the channel capacity

is simply zero. This is verified in our result. More interestingly, the 16 cases can be grouped into three

cases only as shown in Table I; the capacity for each case is shown in Fig. 3. Furthermore, when τ is

available at at least one coder, we can reach the higher capacity C2 only if θ is available at the decoder.

TABLE I

Channel capacities for different cases in Example 1; S1 and S2 are the sets of side information

available at the encoder and decoder, respectively.

Capacity Cases

0
S1 = ø,S2 = ø; S1 = {θ}, S2 = ø;

S1 = ø,S2 = {θ}; S1 = {θ}, S2 = {θ}

C1

S1 = ø,S2 = {τ}; S1 = {τ}, S2 = ø;

S1 = {θ}, S2 = {τ}; S1 = {τ}, S2 = {τ};
S1 = {θ, τ}, S2 = ø; S1 = {θ, τ}, S2 = {τ}

C2

S1 = ø,S2 = {θ, τ}; S1 = {τ}, S2 = {θ};
S1 = {θ}, S2 = {θ, τ}; S1 = {τ}, S2 = {θ, τ};
S1 = {θ, τ}, S2 = {θ}; S1 = {θ, τ}, S2 = {θ, τ}

Example 2: Binary Symmetric Source with Side Information. Consider the source Y generated

by passing an all-zero sequence X through the binary symmetric channel described in Example 1 (see

Fig. 2), and assume the same numerical setting with pτ = 0.5, pZ1 = 0.01, and pZ0 = 0.3. We compute

the rate-distortion functions for this source when pθ = 0.5. Like in the previous example, τ and/or θ may

be provided to the source encoder and decoder as side information, and hence we have totally 16 different
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Fig. 3. Left figure: channel capacity C versus pθ for two different cases in Example 1; right figure: rate-distortion

functions for five different cases in Example 2.

cases. Interestingly, these 16 cases can be grouped into five cases only as shown in Table II. The reason

for this is apparent. Indeed, for instance, if τ is given to neither the encoder nor the decoder, the source is

just a binary symmetric source regardless of the availability of θ. Hence, the rate-distortion function for

these cases should be the same as that for a binary symmetric source with no side information. Another

interesting observation is that side information is not helpful if it is provided to the encoder alone; for

example, the case S1 = ø, S2 = ø and the case S1 = {θ, τ},S2 = ø have the same rate-distortion function.

This is consistent with the classic result of Berger [17].
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