2.3. DISTRIBUTED ARITHMETIC CODING 21

0 L [)01b,0.0011b])
=01 J 0.25) 0.1: [0.1b,0.11b] = [0.5,1) | — ‘ ‘
- C = | b |
[b | | [0.1:(01b01ib] = [051) T
pla)= 025# p(b)=0.75 # ‘ ba ‘ [bb
(a) Representing a and b by 001 and 1. (b) Representing bb by 1.

Figure 2.4: Representing a symbol using an interval. [0,1) is partitioned into
regions with lengths proportionally to the probabilities of the symbols. Any
interval (that in turn can be represented by a number) that lies within the
region corresponding to a symbol can be used to generate the codeword of the
symbol.

2.3.1 Arithmetic Coding

Targetted to conventional source coding, arithmetic coding is a type of en-
tropy coding, where a symbol is compressed on average to its optimum length
—logp(x). The key idea of arithmetic coding is illustrated in Figure 2.4(a),
where the interval [0, 1) is partitioned into intervals with lengths proportionally
to the probabilities of the symbols of a source. Let us call each of these intervals
the probability interval of the corresponding symbol. The main trick is that a
symbol can be uniquely represented by a real number within the probability
interval of the symbol. Moreover, the longer the probability interval, the less
number of bit needed to represent the number.

As in Figure 2.4(a), 0.001b (0.125 in decimal representation) lies inside the
probability interval of @ and thus can be used to represent a uniquely with its
bits after the decimal point (i.e., 001). Similarly, b can be identified by the
number 0.1 and thus can be coded as 1. Note that we are really referring
to the interval [0.a1as - - an,0.a1a9 - - ay] when we consider the real number
0.a1as - - - a,. Therefore, it is important to require this region to lie completely
inside the probability interval of the corresponding symbol.

Apparently, as the probability interval gets shorter, a real number with
higher precision is needed to represent the interval. It is easy to verify that
it needs approximately — log p(x) bits to represent an probability interval of x.
The length of the codeword does approximate to the optimum code length.

We can easily see why this coding approach allows unique decoding. By
construction, the regions that identifies any two symbols cannot overlap since
both regions lie completely inside the non-overlapping probability intervals of
the two symbols. As an immediate consequence, the following lemma provides
a sufficient condition for unique decoding.

Lemma 2.2 (Prefix Condition). Any codeword of the code that constructed
above cannot be a prefix of another codeword.

Proof. Assuming that the Lemma is false, there exists two codewords a =
aias - ay and b = by1bs - - - by, that a is a prefix of b. This means that m > n
and a; = b;, for i = 1,---n. Then, we have 0.b1bs - - - by, lie inside both intervals
([0.a1as - - - an,0.a1az - - - ay 1] and [0.byby - - - by, 0.b1by - - - by, 1] specified by a and
b. This contradicts with the assumption that the corresponding intervals for
each symbols cannot overlap. O

Actually, the prefix condition not only guarantees the uniqueness of the
codewords. With little inspection, the condition ensures that each symbol can

22 CHAPTER 2. SLEPIAN-WOLF CODE DESIGNS

be decoded instantenously once the codeword of the symbol is received by the
decoder.

If the coding trick described above is only used for one symbol at a time,
we will be compressing the source rather inefficiently. (In fact, we are “expand-
ing” rather than “compressing” in our example since the source bit rate is 1
bit/sample but the average “compressed” bit rate is 0.25 %« 3 + 0.75x 1 = 1.5
bit/sample.) The real power of arithmetic coding is that it can handle a group
of symbols with arbitrary size easily. Let say we are going to encode bb. Instead
of sending a codeword right away for the first symbol (b), we can first further
partition the interval of b into intervals for ba ([0.25,0.4375)) and bb ([0.4375,1)).
Upon receiving the second b, the encoder realizes that code interval is [0.4375,1)
and can represent this code interval as described before. In this case, 0.16 and
its corresponding region lie inside the probability interval of bb and thus bb can
be compressed as a single bit 1. Of course, we do not need to stop at the second
symbol, we can continue to partition the code interval into finer and finer region
and ultimately the interval will become so short and converge to a real number.
This real number corresponds precisely to the compressed symbols.

Due to finite precision of any computing device, scaling is an required step to
avoid underflow problems. Let LOW and HIGH be the lower and upper bound
of the code interval, respectively. During encoding, the encoder knows that the
next bit has to be 0 whenever a) HIGH < 0.5. Therefore, the encoder can
safely output a bit 0 and scales up the region by two. That is, LOW «— 2LOW
and HIGH «— 2HIGH. On the other hand, if b) LOW > 0.5, the encoder
knows that next output bit has to be 1 and thus it can output 1 and scales up
the region by setting LOW «— 2(LOW — 0.5) and HIGH «— 2(HIGH — 0.5).

The scaling steps described above are not complete. With the only two
scaling rules above, it may occur that LOW = 0.5 — ¢; and HIGH = 0.5 + €
with very small €; and e5. To avoid this kind of underflow, the code interval
should be scaled by two also when ¢) HIGH < 0.75 and LOW > 0.25. In that
case, LOW « 2(LOW — 0.25) and HIGH < 2(HIGH — 0.25). Note that
the encoder cannot tell whether the next output bit should be 1 or 0 at this
stage. However, for each scaling-up, the encoder expects the code interval to
be closer to 0.5. Actually, one can easily verify that if the code interval turns
out to be less than 0.5 after one scaling, the next two output bits should be
01 as the code interval will lie in the second quandrant if no scaling has been
applied. Similarly, if the code interval turns out to be larger than 0.5, the next
two output bits should be 10.

In general, the encoder will store the number of times that Case ¢) happens
and let the number be BITS-TO-FOLLOW. When finally the encoder realizes
the code interval is smaller than 0.5 (i.e, Case a) happens), the next BITS-TO-
FOLLOW+1 output bits should be 011 ---1 and BITS-TO-FOLLOW should be
reset to 0. If the opposite (Case b) happens, the next BITS-TO-FOLLOW+1
output bits will be 100---0 and again BITS-TO-FOLLOW should be reset to
0.

Decoding is very similar to encoding except that an extra variable VALUE
comes into the picture. VALUE can be interpreted as the location of the code
interval up to the maximum available precision. For example, let the bit preci-
sion of the coders be 6. At the beginning of decoding, VALUE is constructed
from the first 6 bits of the incoming bit stream. From VALUE, the decoder will
know precisely which symbol the code interval lies into and thus such symbol

2.3. DISTRIBUTED ARITHMETIC CODING 23

o
o

100001

b b
— —
0)
b 1 b
b b
100 S— 0 —
a - A
0 1
[o M 0 1+
- — - —
o1 0
0
—a a

Figure 2.5: An example of encoding (left) and decoding (right) of arithmetic
coding. A sequence of symbols bbabbabaa --- is compressed into a bitstream
1000010101000 - - - .

will be the next output symbol. As the output symbol is known, the code in-
terval will be partitioned and shrinked as in encoding. The scaling procedure is
almost identical except that the decoder needs to update VALUE as well during
scaling. Moreover, VALUE is scaled up by two, an incoming bit is read as the
least significant bit of VALUE. This step is important to maintain the precision
of VALUE.

Example 2.9 (Arithmetic Coding). A detail coding example is shown in Figure
2.5. A sequence of symbols bbabbabaa - - - is compressed into 1000010101000 - - - .

The left and right figures in Figure 2.5 describe the status of encoding and
decoding, respectively. The thick horizontal line is the code interval. In the left
figure, we can see the code interval shrinks to lie within the range [0.25,0.75) as
symbols b, b, a are coded. The code interval scales up twice afterward and thus
BITS-TO-FOLLOW becomes two. The scaling up steps are highlighted by the
dash lines connecting the corresponding LOWSs and HIGHs of code intervals of
adjacent time steps. As two symbols b, b are coded afterward, the code interval
now falls in the range of [0.5,1), thus the code interval expands and 100 are
output. The explanation of rest of the left figure is similar and thus is omitted.

The right figure looks very similar to the left figure except that there is a
cross mark within the code interval for each iteration step. The cross mark
corresponds to VALUE described previously. Since 6 bit precision is used in
this example, 6 bits 100001 are read by the decoder to generate VALUE at the
beginning of decoding. As VALUE falls inside the probability interval of b, the
decoder knows that the first output symbol is b. Similarly, it can tell from the
next two iteration steps that b and a are the next two symbols. Case c) scaling
occurs in the fourth and fifth iterations and two bits are read by the decoder to
keep VALUE to maintain the precision of VALUE. The explanation for rest of
the figure is similar and will be left as an exercise to the readers.

Due to space limitation, we only describe some fundamental elements of
arithmetic coding. For detail implementation issue, we recommend the classic
reference by Witten et al. [4].

