
1.4. ADVANCED CHANNEL CODING TECHNIQUES 21

When we have more than 3 variable nodes connecting to the check node a, it is
easy to show using induction that

tanh
(
Lai
2

)
←

∏
j∈N(a)\i

tanh
(
Lja
2

)
. (1.73)

Hard threholding can be applied to the final belief to estimate the value of each
bit. That is,

x̂i =
{

0, if βi ≥ 0,
1, otherwise, (1.74)

where βi =
∑
a∈N(i) Lai. The algorithms may terminate after some predefined

number of iterations. It is also common to terminate the algorithm whenever
the estimate variables satisfy all checks. The overall algorithm is summarized
in Algorithm 1.3.

Algorithm 1.3 Summary of LDPC decoding using BP
• Initialization:

Lii = log
p(0|yi)
p(1|yi)

(1.75)

• Messages update:

– Check factor to variable node update:

Lai ← 2 tanh−1

 ∏
j∈N(a)\i

tanh
(
Lja
2

) (1.76)

– Variable to check factor node update:

Lia ←
∑

b∈N(i)\a

Lia, (1.77)

• Belief update: denote the net belief in terms of log-likelihood ratio as
βi for variable node i, then

βi ←
∑

a∈N(i)

Lai (1.78)

• Stopping criteria: repeat message update and belief update steps un-
til maximum number of iterations is reached or all checks are satisfied.
Output the hard threshold values of net beliefs as the estimated coded
bits.

1.4.4 Soft Decoding of Convolutional Codes using BP

While the Viterbi Algorithm as described in Section 1.2.1 can find the maximum
likelihood sequence, it cannot tell how likely that a particular bit of the input is



22 CHAPTER 1. BACKGROUND ON CHANNEL CODING THEORY

1 or 0. That is why Viterbi algorithm is sometimes known to be a hard-decoding
algorithm. In this section, we will describe a soft-decoding algorithm that can
output the probability of each input bit to be 1 or 0 based on BP algorithm.

The key is to realize the correlation structure of the trellis can be represented
by a hidden Markov model. Given the two states before and after an input bit is
coded, the output bits are conditional independent of the states and the output
bits at all other times. Thus, the correlations among the states and true output
bits at all times can be depicted by a factor graph as shown in Figure 1.8. Note
that the factor graph is actually a tree in this case. And thus the probabilities
estimated by belief propagation is actually exact.

Let us revisit the [5, 7] rate-1/2 convolution code. Assume that the output
bits go through a binary symmetric channel with cross over probability p. De-
note y as the actual output at a particular time instance and s1 and s2 are
states before and after y is processed. The factor function f(s1, s2, y) for the
factor node connecting s1, s2, and y can be easily constructed and is listed in
Table 1.1. For example, for y = 00, s1 = 00, and s2 = 01, f(s1, s2, y) = 0 since
transition from state 00 to state 01 is not allowed (see Figure 1.2). On the other
hand, if s2 = 10, f(s1, s2, y) = p2 is non-zero now as the transition from s1 to s2
is valid. Moreover, given 11 as the anticipated output for this state transition,
both received bits must be wrong and hence the probability is p2.

Belief propagation can be applied directly to the factor graph to compute the
probability distribution of each state. When these probabilities are known, the
probability of the input bit to be x will be the sum probability of the transitions
that results from the input x.

Example 1.4 (Soft-decoding using Belief Propagation). Let us continue with
Example 1.1. Assuming that the fourth and the eighth bits are corrupted. That
is, the decoder receives 00, 10, 10, 00, 10, 11. Given these bits, the decoder can
estimate the probabilities of the received states using belief propagation as in
Figure 1.8. Figure 1.8(a) shows the message received by each state variable
node from the factor node to its right. Note that the first state is known to be
00 by construction and thus Pr(s = 00) = 1. This probability is passed to the
first factor node from the left and the message to second state variable node
is computed and passed. The messages are computed one after another with
factor nodes on the left started first. The probability distribution of each state is
shown after all factor nodes are updated. We call this the forward propagation.

Similarly, since the last state has to be 00 by designed also (the encoder is
flushed with extra 0 bits after encoding the entire input bitstream), Pr(s =
00) = 1 holds for the last state. This probability distribution is passed to the
neighboring factor node to its left. The factor nodes will be updated one by
one with the nodes on the right finish first. The probability distribution of each
state after the updates are shown In Figure 1.8(b). We call this the backward
propagation.

In Figure 1.8(c), the combined probabilities of both forward and backward
updates are shown. With the known state probabilities, the decoder can com-
pute the probability of each input bit to be 0 (or 1) as the sum probabil-
ity of the transition that occurs when 0 (or 1) received. For example, there
are only two transitions (00 → 00 and 00 → 10) with non-zero probabil-
ity (0.988 and 0.012). The first transition occurs when a 0 is received and
the second occurs when a 1 is received. Therefore, Pr(X1 = 0) = 0.988



1.4. ADVANCED CHANNEL CODING TECHNIQUES 23

(a) Received output y = 00

s1
00 01 10 11

s2

00 (1− p)2 p2 0 0
01 0 0 p(1− p) p(1− p)
10 p2 (1− p)2 0 0
11 0 0 p(1− p) p(1− p)

(b) Received output y = 01

s1
00 01 10 11

s2

00 p(1− p) p(1− p) 0 0
01 0 0 (1− p)2 p2

10 p(1− p) p(1− p) 0 0
11 0 0 p2 (1− p)2

(c) Received output y = 10

s1
00 01 10 11

s2

00 p(1− p) p(1− p) 0 0
01 0 0 p2 (1− p)2
10 p(1− p) p(1− p) 0 0
11 0 0 (1− p)2 p2

(d) Received output y = 11

s1
00 01 10 11

s2

00 p2 (1− p)2 0 0
01 0 0 p(1− p) p(1− p)
10 (1− p)2 p2 0 0
11 0 0 p(1− p) p(1− p)

Table 1.1: f(s1, s2, y) for different received output y.

and Pr(X1 = 1) = 0.012. For the second input bit, a 0 occurs for transi-
tions 00 → 00, 01 → 00, 10 → 01 and 11 → 01. The sum probability for
these transitions are 0.988 × 0.1 + 0 × 0.1 + 0.012 × 0 + 0 × 0 = 0.099. Sim-
ilarly, the probability of input bit to be 1 computed by sum probability is
0.988 × 0.888 + 0 × 0.888 + 0.012 × 0.012 + 0 × 0.012 = 0.878. Note that the
two probabilies do not add up to zero and need normalization since any two
neighboring states are not really independent. After normalization, we have
Pr(x = 0) = 0.1011 and Pr(x = 1) = 0.8989. Similarly, we can compute the
probabilities of all other input bits. The probabilities for them to be 0 are
0.988, 0.101, 0.014, 0.001, 1.000, and 1.000. Thus the decoded message will be
[0, 1, 1, 1, 0, 0], which is the same as the true input.

1.4.5 IRA Codes

LDPC codes are generally not systematic codes (see Section 1.1). Therefore, we
need an extra step to further translate the corrected codeword at the decoder



24 CHAPTER 1. BACKGROUND ON CHANNEL CODING THEORY

1 0.989 0.473 0.083 0.233 0.086 0.670

0 0 0.001 0.091 0.255 0.412 0.091

0 0.122 0.473 0.083 0.258 0.086 0.149

0 0 0.053 0.743 0.255 0.416 0.091

Pr(s=00)

Pr(s=01)

Pr(s=10)

Pr(s=11)

y 00 10 10 00 10 11

(a) State probabilities from forward propagation

0.412 0.254 0.083 0.006 0.001 0.012 1

0.415 0.254 0.083 0.052 0.001 0.988 0

0.087 0.257 0.742 0.471 0.012 0 0

0.087 0.235 0.091 0.471 0.985 0 0

Pr(s=00)

Pr(s=01)

Pr(s=10)

Pr(s=11)

y 00 10 10 00 10 11

(b) State probabilities from backward propagation

1 0.988 0.100 0.001 0.001 0.003 1

0 0 0.000 0.012 0.001 0.997 0

0 0.012 0.888 0.099 0.012 0 0

0 0 0.012 0.888 0.985 0 0

Pr(s=00)

Pr(s=01)

Pr(s=10)

Pr(s=11)

y 00 10 10 00 10 11

(c) Combined state probabilities

Figure 1.8: Computed probabilites of the forward-backward soft decoding (belief
propagation) algorithm. The underline received bits are corrupted.


