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Distributed Source Coding (DSC)

DSC: Separate compression and joint
decompression of multiple correlated sources

1973. Slepian and Wolf first to consider a DSC problem
1976. Wyner and Ziv — extension to rate/distortion

1999. DISCUS - first practical coding realization with
channel codes (Pradhan and Ramchandran)

2002. First video coding implementations based on DSC
(Stanford and Berkeley groups)



DSC Today

Information Theory Video coding

\ Multimedia streaming

Communications —

N

—— Multiview/3D video

Computer Science — ~ an
Wireless sensor networks

Biometrics

/)

Signal Processin
J J Hyperspectral imaging

Over 5,200 publications and 1 edited book (Google Scholar, Aug. 2010)



DSC Theory:
Underlying Principles and
Information Theoretical Research



Slepian-Wolf (SW) Problem
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Source Coding with Decoder Side
Information (Asymmetric SW)
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Wyner-Ziv (WZ) Problem

e Lossy source coding of X'with decoder side information Y
e Extension of asymmetric SW setup to rate-diAstortion theory
o Distortion constraint at the decoder: E/a(XX)]< D

X : V(U) , X
Source X [— > Lossy Encoding [—* Decoding —>

T

Y

For MSE distortion and jointly Gaussian X and Y, rate-
distortion function is the same as for joint encoding and joint
decoding




Multiterminal (MT) Source Coding

(Berger & Tung 77, Yamamoto & Itoh 80)

e Non-asymmetric WZ setup
o Extension of the SW setup to rate-distortion theory
e Two types: direct and indirect/remote MT source coding
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Slepian & Wolf 73

Wyner & Ziv 76, '78 Wolf 74 (multiple sources)
Cover 75 (ergodic processes)

£ 2
> & l
Q & W & Gray 74, '75 (simple network)
& N yner ray , D
Ahlswede & Kdrner 75

Yamamoto & Itoh ‘80 Sgarro 77 (two-help-one)
Berger & Tung 77 Flynn & Gray ‘87 Kérner & Marton (zig-zag network )

Omura &
Housewright 77 Gel'fand & Pinsker ‘80
Viswanathan & Berger '97 (cFo) (lossless CEO problem)
l Oohama 98 (Gaussian CEO) Csiszar & Korner ‘80
Zamir et al. Han & Kobayashi ‘80
v
Oohama 97, '05 Viswanath 02 (lossless MT network)
(Gaussian case) Chen, Zhang, Berger & Wicker '03
l l Han ‘80
Wagner et al. ‘05 Oohama 05 Song & Yeung 01

(two Gaussian sources) (Jointly Gaussian case) (sources over the network)



DSC Theory: A Rapidly Growing Field

e >200* published papers on DSC in JEEE Trans. Information
Theory in the period 1999-present

= ~7/0 papers in 1999-2005 and ~160 papers in 2006-2010
= >50 papers have been published since January 2009

e Currently dominating topics: DSC in communication systems
(relay channels, use-cooperation, etc), MT source coding,
distributed source-channel coding, universal DSC, multiple
description and DSC, successive refinement

*IEEExplore, August 2010




Main Challenges

e Addressing noisy cases (noisy hon-
Gaussian channels, noisy SI, real-world
systems, etc.)

e Time-varying statistics

e Reconstructing a function of the sources
e Looking at different network topologies
e Compressive sampling and DSC



DSC: Code Design



Channel Codes for Compression:
Algebraic Binning (wyner 74, zamir et a1 02)
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e Distribute all possible realizations of X (of length 1) into bins
e Each bin is a coset of an (n,k) linear channel code ', with
parity-check matrix /7 of size (n,n-k) indexed by a syndrome s



Encoding

Source X ——> Encoder —p Decoder -

e Encoding: For an input x, form a syndrome s=x//"
e Send the resulting syndrome (s.) to the decoder



Decoding
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e Interpret yas a noisy version (output of virtual communication
channel called correlation channel) of x

e Find a codeword of the coset indexed by s closest to y by
performing conventional channel decoding



General Syndrome Concept

o Applicable to afl linear channel codes (inc. turbo and
LDPC codes)

e Key lies in correlation modeling: if the correlation
can be modeled with a simple communication
channel, existing channel codes can be used

= SW code will be good if the employed channel code is
good for a “correlation channel”

= If the channel code approaches capacity for the

“correlation channel”, then the SW code approaches the
SW limit

o Complexity is close to that of conventional channel
coding



Parity-based Binning

e Syndrome approach: To compress an 77 -bit source, index

each bin with a syndrome from a linear channel code (n,k)
e Parity-based approach: To compress an k -bit source, index

each bin with (n-k) parity bits p of a codeword of a
systematic (n,k) channel code

e Compression rate: R,=(n-k)/k

(2n-k,n) systematic channel code

X —”
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Conventional *»  Conventional X
systematic channel channel decoder
encoding |
; Y
bits removed

Correlation Channel

(Garcia-Frias and Zhao 2001)



BER for X.

Asymmetric Binning for SW

For two sources, code rate = 1>
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Non-asymmetric Binning for SW

Codeword length 20,000 bits
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Practical WZ Coding Solutions

e Three types of solutions proposed:
= Nested quantization

= Combined quantization and SW coding
(DISCUS, 1999, 2003)

= Quantization followed by SW coding
(Slepian-Wolf coded quantization - SWCQ)

<3uewm,uad panoldwi



Nested Lattice Quantization

 Nested lattice

= A (fine) lattice is
partitioned into
sublattices (coarse
lattices)

= A bin: the union of
the original Voronoi
regions of points of a
sublattice




Nested Lattice Quantization

e Encoding: output
index of the bin
containing X

= Quantize X'using the
fine lattice

= Output the index Vof
the coarse lattice
containing quantized
lattice point

e Decoding: find lattice point
of sublattice I/that is closest

to ¥ Bin index: /= 8



Nested Lattice Quantization

e Encoding: output
index of the bin
containing X

= Quantize X'using the
fine lattice

= Output the index Vof
the coarse lattice
containing quantized
lattice point

e Decoding: find lattice point
of sublattice I/that is closest

to ¥ Bin index: /= 8



SW Coded Quantization (SWCQ)

e Nested lattice quantization is asymptotically

optimal as dimensions go to infinity (s. Servetto, 2002)

= Difficult to implement even in low dimensions

e The bin index Vand the SI Yare still highly

correlated, i.e., H(V) > H(V|Y)
= Use SW coding to further compress V!

""""""""""""""""""""""""""""""

X Nested
" | Quantization

Slepian-Wolf

Encoding

___________________________________________

| Slepian-Wolf ‘?

|__Decoding




WZC vs. Classic Source Coding

e (Classic entropy-constrained quantization (ECQ)

e Wyner-Ziv coding (SWCQ)

= Nested quantization: quantization with SI
= Slepian-Wolf coding: entropy coding with SI

""""" Classic source coding is just a special case of WZ coding
(since the SI can be assumed to be a constant)

_____________________________________________________________________________________________________________________________________



Gaussian WZC (NSQ 1-D Lattice)
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(Yang et al. 2009)
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MT Source Code Design
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Terminal 2

e Conventional quantization + lossless “non-
asymmetric” Slepian-Wolf coding of quantization
indices V; and V,

(Yang, Stankovic, Xiong, Zhao, IEEE Inform. Theory, March 2008)



Gaussian MT Source Coding (with TCQ)

(bis)
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Current Trends

Rateless/Digital Fountain codes for DSC
Nonbinary/multilevel channel codes

Non-channel coding based DSC (Arithmetic
coding, Huffman)

Code designs for compress-forward (relay
channels, user cooperation)

Rate adaptive DSC



Main Challenges

Time-varying, non-uniform statistics

Low complexity, short code-length codes
Rate compatible codes

Real-time decoding

Joint source-channel coding
User-cooperation

Compressing compressively sampled data



DSC: Key Applications



Security



Conventional Video Coding

Source X

X
——»

X Current frame

RN\

Encoder

T

Y

A previous frame

Predictive video encoding

(interframe)

Predictive video
decoding
(interframe)

e High-complexity encoding (TV station, strong server)
e Low-complexity decoding (TV, computer, cell-phone)



(Witsenhausen & Wyner 80)

Distributed Video Coding (DVC)

N
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Source X [—»> Encoder -——> Decoder R
. Ty X
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Video . ideo |
encoder § decoder

e The encoder does not need to know SI Y

e Low-complexity encoding (cell-phone, web-cam)
e High-complexity decoding (computer server)
e Low-complexity network: cell-server (converts to H264) -cell



Video
Scalability streaming

N/

ﬁh‘wg it

DVC .
low enc complexity Error Multiview

robustn_ess/ video
protection




Video Frame

X=X,

K=X,,,

Pixel-domain DVC

feedback

_____ —

Key Frame

(Aaron, Zhang, Girod, 2002)
(Aaron, Rane, Zhang, Girod, 2003)
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Robust Scalable DVC

(Xu, Stankovic, Xiong, 2007)

At very low rate Base Layer
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Simulation Example

(Xu, Stankovic, Xiong, 2007)

Transmission rate 256 Kbps
5% macroblock loss rate in the base layer
10% packet loss rate for WZ coding layer

H.264 Scalable DVC system



DVC: Latest Developments

Performance improvement: Advanced side
information generation (e.g., bidirectional motion
estimation + spatial smoothing)

= DISCOVER DVC codec close to H.264/AVC no motion
Improved error resilience

No need for feedback channel
Efficient rate control

Improved reconstruction



Stereo Video Coding

e The same view encoded independently with two
cameras

e High correlation among the views can be
exploited with MT source coding

Camera 1

v
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Encoder 1
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Stereo Video Coding

(Yang, Stankovic, Xiong, Zhao, IEEE TIP0S9)
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Distributed/Stereo Video Applications

e A new attractive video compression
paradigm
= Video surveillance
= Low complexity networks
= Visual sensor networks
= Multiview/3D video coding



Correlation Tracking

Correlation between real-world images/source
hugely varies in time

Compression codec requires a good correlation
estimation all the time

Essential to learn correlation and adapt on-the-fly
the decoding process

Idea: particle-based Belief Propagation (BP) for
joint tracking and decoding



Simulation Example

Without correlation tracking With correlation tracking



Other Applications

e Hyperspectral image compression (Cheung et ai.
2006, Abrardo et al. 2010)

o Wireless hearing aids (rRoy & Vetterli 2009)
o Biometrics (Mitsubishi Labs, Draper et al.)
e Image encryption (Berkeley group)

e Cognitive radio spectrum sensing (Cheng &
Stankovics 2009)



Conclusion

e QOver the years DSC research has mainly shifted
from IT to signal/image processing and
communications

e It has given invaluable insights to coding theory as
well as image/video compression



Conclusion: Applications

e Unfortunately, DSC has not yet found a commercial
application

e DVC lags behind H.264/AVC performance-wise

e Large code-length and probabilistic nature of DSC
are obstacles to WSN applications



Conclusion: Applications

e Rather than a driving technology DSC could become
a supporting mechanism

= to increase image resolution
= encode colour

= provide scalable protection
= encode headers

= |ncrease security




Final Remark

e Many open problems in theory and practice
e Novel ideas are essential to break the wall

It is not just that DSC is so elegant that we
can't let it go...



